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Abstract

Given an infinite word over the alphabet {0, 1, 2, 3}, we define a class of bipar-
tite hereditary graphs Gα, and show that Gα has unbounded clique-width unless α
contains at most finitely many non-zero letters.

We also show that Gα is minimal of unbounded clique-width if and only if α
belongs to a precisely defined collection of words Γ. The set Γ includes all almost
periodic words containing at least one non-zero letter, which both enables us to
exhibit uncountably many pairwise distinct minimal classes of unbounded clique
width, and also proves one direction of a conjecture due to Collins, Foniok, Kor-
pelainen, Lozin and Zamaraev. Finally, we show that the other direction of the
conjecture is false, since Γ also contains words that are not almost periodic.

Mathematics Subject Classifications: 05C75, 05C85

1 Introduction

Typically, when some graph parameter is bounded for a given class of graphs, there are
a range of problems defined on graphs that are in general intractable, but for which effi-
cient (polynomial time) algorithms exist for this class. To give two examples, Courcelle’s
Theorem [5] states that any graph property expressible in MSO2 logic can be decided in
linear time on graphs with bounded treewidth, and Courcelle, Makowsky and Rotics [4]
showed that any graph property expressible in MSO1 logic has a linear time algorithm on
graphs with bounded clique-width.

While treewidth is the parameter of choice for minor-closed classes of graphs, clique-
width has the property that it can remain bounded for graphs with a high edge density,
and is thus of more use with hereditary classes of graphs. Indeed, if H is an induced
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subgraph of G, then the clique-width of H is at most the clique-width of G. (For formal
definitions, see Section 2.)

In light of the algorithmic consequences, a natural goal is to characterise which classes
of graphs are unbounded with respect to a given parameter. A standard approach is to
identify the minimal classes: for example, planar graphs are the unique minimal minor-
closed class of graphs of unbounded treewidth (see Robertson and Seymour [17]), and
circle graphs are the unique minimal vertex-minor-closed class of unbounded rank-width
(or, equivalently, clique-width) – see Geelen, Kwon, McCarty and Wollan [11].

The situation for clique-width and hereditary classes is much more complicated, yet
remains of significant interest (note that every vertex-minor-closed class is a hereditary
class, but not vice-versa). First, there exist hereditary classes that have unbounded clique-
width, but which contain no minimal class of unbounded clique-width: it is well-known
that the class of square grid graphs has this property; a more recent example is due to
Korpelainen [13], who also suggests possible ways to handle such classes.

However, there do also exist minimal hereditary classes of unbounded clique-width.
We refer the reader to the excellent survey by Dabrowski, Johnson and Paulusma [8] for
further details of the progress in recent years. Of particular relevance here is the work of
Collins, Foniok, Korpelainen and Lozin [3], in which a countably infinite family of minimal
hereditary classes of unbounded clique-width is given.

More precisely, the authors of [3] construct hereditary bipartite graph classes by taking
the finite induced subgraphs of an infinite graph whose vertices form a two-dimensional
array and whose edges are defined by an infinite word over the alphabet {0, 1, 2}. They
show that classes defined by an infinite periodic word over the alphabet {0, 1} are minimal
of unbounded clique-width, and conjecture that a class defined by a word over the alphabet
{0, 1, 2} is minimal of unbounded clique-width if and only if the word is almost periodic,
and not the all-zeros word.

In this paper, we go further by proving the following results.

Theorem 1. Let α be an infinite word over the alphabet {0, 1, 2, 3}, and let Gα be the
corresponding hereditary graph class (as defined in Section 2).

(a) If α has an infinite number of non-zero letters, then Gα has unbounded clique-width
(Theorem 12).

(b) If α is an almost periodic word with at least one non-zero letter then Gα is minimal
of unbounded clique-width (Theorem 21).

(c) The number of distinct minimal hereditary classes of graphs of unbounded clique-
width is uncountably infinite (Theorem 23).

(d) Let Γ denote the set of all recurrent words over {0, 1, 2, 3} with at least one non-zero
letter for which the weight of the word between any two consecutive occurrences of
any factor is bounded. Then Gα is minimal of unbounded clique-width if and only if
α ∈ Γ (Theorem 24).
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Part (b) of Theorem 1 establishes that one direction of the conjecture in [3] is true,
although note that we go further by including the additional letter 3 in the alphabet
(which represents a different type of inter-column connection). The other direction of their
conjecture is false: this follows from part (d) of Theorem 1, which establishes precisely
which of the classes, that are defined by words over {0, 1, 2, 3} and have unbounded clique-
width, are minimal with this property. In Section 5 we give an explicit counterexample
of a word in Γ that is not almost periodic.

The rest of this paper is organised as follows. Section 2 provides some background,
and defines key definitions and concepts. Section 3 is devoted to proving that the classes
defined over {0, 1, 2, 3} in general have unbounded clique-width. This is done from first
principles for classes over the alphabet {2, 3}, and then extended to the full four-letter
alphabet using rank-width techniques.

Section 4 provides the central proof that if α is an infinite almost periodic word with
at least one non-zero letter then Gα is a minimal hereditary class of graphs of unbounded
clique-width. To do this we modify the notion of cluster graphs, first used by Lozin [14],
and show how this can be used in conjunction with Menger’s Theorem to provide an
integrated proof of the minimality result. That there are uncountably many distinct
minimal hereditary classes of graphs of unbounded clique width follows by considering
Sturmian sequences.

Finally, in Section 5, we explore sequences that are recurrent but not almost peri-
odic, and prove the precise characterisation between minimal and non-minimal hereditary
classes of graphs of unbounded clique-width.

2 Preliminaries

A graph G is a pair of sets, vertices V (G) and edges E(G) ⊆ V (G) × V (G). Unless
otherwise stated, all graphs in this paper are simple, i.e. undirected, without loops or
multiple edges. We denote N(v) as the neighbourhood of a vertex v, that is, the set of
vertices adjacent to v.

A set of vertices is independent if no two of its elements are adjacent. A graph is
bipartite if its vertices can be partitioned into two independent sets.

Given a graph G(V,E), a subset U ⊆ V and a vertex v ∈ V \U , we say that v distin-
guishes U if v has both a neighbour and a non-neighbour in U . If U is indistinguishable
by the vertices outside U , we call U a module. A module U is trivial if |U | = 0 or 1 or
U = V (G). A graph, every module of which is trivial, is called prime. We denote the set
of prime induced subgraphs of G, Prime(G).

We will use the notation H 6I G to denote graph H is an induced subgraph of graph
G, meaning H can be obtained from G by a sequence of vertex removals. If graph G does
not contain the induced subgraph H we say that G is H-free.

A class of graphs C is hereditary if it is closed under taking induced subgraphs, that
is G ∈ C implies H ∈ C for every induced subgraph H of G. It is well known that for
any hereditary class C there exists a unique (but not necessarily finite) set of minimal
forbidden graphs {H1, H2, . . . } such that C = Free(H1, H2, . . . ).
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If H is an induced subgraph of G, then this can be witnessed by one or more embed-
dings, where an embedding of H in G is an injective map φ : V (H) → V (G) such that
the subgraph of G induced by the vertices φ(V (H)) is isomorphic to H. In other words,
vw ∈ E(H) if and only if φ(v)φ(w) ∈ E(G).

2.1 Bipartite hereditary graph classes defined by an infinite word

The graph classes we consider are all formed by taking the set of finite induced subgraphs
of an infinite graph defined on a grid of vertices. We start by defining an infinite empty
graph P with vertices

V (P) = {vi,j : i, j ∈ N}.

In general, we think of P as an infinite two-dimensional array in which vi,j represents the
vertex in the i-th row (counting from the top) and j-th column (counting from the left).
Hence vertex v1,1 is in the top left corner of the grid and the grid extends infinitely to the
right and downwards. The j-th column of P is the set Cj = {vi,j : i ∈ N}, and the i-th
row of P is the set Ri = {vi,j : j ∈ N}.

We will refer to a (finite or infinite) sequence of letters chosen from a finite alphabet
as a word. We denote by αj the j-th letter of the word α and we denote αkj to be the
concatenation of k copies of the letter αj. A factor of α is a contiguous subword of α.
The length of a word α is the number of letters the word contains, while the weight of α
is the number of non-zero letters it has, which we will denote |α|1.

An infinite word α is recurrent if each of its factors occurs in it infinitely many times.
We say that α is almost periodic (sometimes called uniformly recurrent or minimal) if
for each factor β of α there exists a constant L(β) such that every factor of α of length
at least L(β) contains β as a factor. Finally, α is periodic if there is a positive integer p
such that αk = αk+p for all k. Clearly, every periodic word is almost periodic, and every
almost periodic word is recurrent.

Let α be an infinite word such that αj ∈ {0, 1, 2, 3} for each natural j. We define a
family of infinite graphs {Pα} with vertices V (P), and with edges between consecutive
columns Cj, Cj+1 of V (P), such edges determined by the letters of the word α.

(i) If αj = 0 then the edges between Cj and Cj+1 are given by {(vi,j, vi,j+1) : i ∈ N}
(i.e. a matching).

(ii) If αj = 1 then the edges between Cj and Cj+1 are given by {(vi,j, vk,j+1) : i 6=
k; i, k ∈ N} (i.e. the complement of a matching).

(iii) If αj = 2 then the edges between Cj and Cj+1 are given by {(vi,j, vk,j+1) : i 6
k; i, k ∈ N}.

(iv) If αj = 3 then the edges between Cj and Cj+1 are given by {(vi,j, vk,j+1) : i >
k; i, k ∈ N}.

This notation matches and extends that used in [3].
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H0∞
i,j (6, 6) H1∞

i,j (6, 6)

H2∞
i,j (6, 6) Hω

i,2j−1(6, 6)

Figure 1: Bipartite graphs defined on a 6× 6 square grid.

For ease of reference we will denote Hα
i,j(m,n) as the m× n induced subgraph of Pα

formed from the vertices {vx,y : x = i, i+ 1, . . . , i+m− 1, y = j, j+ 1, . . . , j+n− 1}. See
Figure 1.

Let Gα denote the class of all finite induced subgraphs of Pα. By definition, Gα is
a hereditary class, and any graph G ∈ Gα can be witnessed by an embedding into the
infinite graph Pα. Given such an embedding of G into Pα, we will be especially interested
in the induced subgraphs of G that occur in two adjacent columns: an αj-link is the
induced subgraph of G on the vertices of G ∩ (Cj ∪ Cj+1), and will be denoted by Gj.

Letting 2∞ stand for the infinite word of all 2s, we note that G2∞ is the class of bipartite
permutation graphs. Note, too, that G3∞ = G2∞ (this can be seen by considering a vertical
reflection of the 2-dimensional array), so it is not necessarily the case that two words α
and β give rise to distinct hereditary classes.

On the other hand, the word with alternating 2s and 3s, which throughout we will
denote by ω = 232323 · · · , defines the class Gω which is distinct from G2∞ . Indeed, the
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graph,

embeds in Pω, but is one of the minimal forbidden induced subgraphs of permutation
graphs.

2.2 Clique-width and rank-width

Clique-width is a graph width parameter introduced in the 1990s by Courcelle, Engelfriet
and Rozenberg [6]. A recent survey of clique-width for hereditary graph classes is [8]. The
clique-width of a graph is denoted cwd(G) and is defined as the the minimum number of
labels needed to construct G by means of the following four graph operations:

(a) creation of a new vertex v with label i (denoted i(v)),

(b) taking the disjoint union of two previously-constructed labelled graphs G and H
(denoted G⊕H),

(c) adding an edge between every vertex labelled i and every vertex labelled j for distinct
i and j (denoted ηi,j) and

(d) giving all vertices labelled i the label j (denoted ρi→j).

Every graph can be defined by an algebraic expression τ using the four operations above,
which we will refer to as a clique-width expression. This expression is called a k-expression
if it uses k different labels.

Alternatively, any clique-width expression τ defining G can be represented as a rooted
tree, tree(τ), whose leaves correspond to the operations of vertex creation, the internal
nodes correspond to the ⊕-operation, and the root is associated with G. The operations
η and ρ are assigned to the respective edges of tree(τ).

A related parameter is that of rank-width, which was introduced by Oum and Seymour
in 2006 [16]. They showed that the measures are closely related through the inequality

rwd(G) 6 cwd(G) 6 2rwd(G)+1 − 1

so that a graph class has bounded clique-width if and only if it has bounded rank-width.
For a graph G and a vertex v, the local complementation at v is the operation that

replaces the subgraph induced by the neighbourhood of v with its complement. For a
graph G and an edge vw, the graph obtained by pivoting vw is the graph obtained by
applying local complementation at v, then at w and then at v again. When G is bipartite,
Oum showed in [15] that this is equivalent to complementing the edges between N(v)\w
and N(w)\v.

We will use the notation H 6V G to denote graph H is a vertex-minor of graph G,
meaning H can be obtained from G by a sequence of vertex removals and local comple-
mentations. A useful result is the following.
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Lemma 2 (Oum [15]). If H 6V G then rwd(H) 6 rwd(G).

3 Graph classes with unbounded clique-width

In this section we show that the graph classes {Gα}, where α is an infinite word over
{0, 1, 2, 3} that contains infinitely many letters from {1, 2, 3}, have unbounded clique-
width. We will extend the methods of Golumbic and Rotics [12], and of Brandstädt
and Lozin [2], the latter of which proved that the clique-width of the class of bipartite
permutation graphs (i.e. G2∞) is unbounded. We deal with {2, 3} graphs first as these are
susceptible to direct proof methods. We can then use rank-width/local complementation
techniques following Collins et al [3] to show that the more complex {0, 1, 2, 3} graphs
have a suitable {2, 3} vertex-minor to prove that these too have unbounded clique-width.

In the case of binary words (i.e. words over the alphabet {0, 1}), the following result
covers what we require.

Lemma 3 (Collins, Foniok, Korpelainen, Lozin and Zamaraev [3]). If α is an infinite
binary word containing infinitely many 1s then the graph class Gα has unbounded clique-
width.

3.1 {2, 3} graph classes with unbounded clique-width

To assist with determining the clique-width of these graph classes, it is helpful to consider
a sequence {Wα

n } of graphs which are constructed as follows.
The vertices of Wα

n are an n× n array with vertex ui,j in row i and column j. These
vertices are partitioned according to the diagonal they are on, such that ui,j is on diagonal
Di+j−1. Hence, D1 = {u1,1}, D2 = {u2,1, u1,2}, and so on.

Wα
n has an edge (ui,j, uk,l) whenever ui,j ∈ Dm, uk,l ∈ Dm+1 and either :

(a) αm = 2 and k > i, or

(b) αm = 3 and l > j.

Observe that these edges always create an n × n square grid. Furthermore, the edges
between two consecutive diagonals Dm and Dm+1 of Wα

n correspond to the edges between
two consecutive columns Cm and Cm+1 of Pα.

Lemma 4. For all n ∈ N, Wα
n can be embedded into Pα.

Proof. For each vertex ux,y of Wα
n we will identify a vertex vi,j of Pα so that we can define

an injective map φ : V (Wα
n )→ V (Pα) such that φ(ux,y) = vi,j as follows:

If (x, y) = (1, 1) then (i, j) = (n, 1), otherwise (i, j) is given by:

i = n+ x− 1−
x+y−2∑
m=1

1m

j = x+ y − 1
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Figure 2: Embedding Wω
5 in Hω

1,1(9, 9) (shown by large vertices)

where

1m =

{
1 if αm = 3,

0 if αm = 2.

It can be seen that the subgraph of Pα induced by the vertices φ(V (Wα
n )) is isomorphic

to Wα
n .

An example of embedding W ω
5 is shown in Figure 2.

We will now calculate a lower bound for the clique-width of Wα
n by demonstrating a

minimum number of labels needed to construct Wα
n using the allowed four graph opera-

tions.
Let τ be a clique-width expression defining Wα

n and tree(τ) the rooted tree representing
τ . The subtree of tree(τ) rooted at a node x will be denoted tree(x, τ). This subtree
corresponds to a subgraph of Wα

n we will call Wx.
Let a be the lowest ⊕ node in tree(τ) such that Wa contains a full row and a full

column of Wα
n . We denote by r and b the two children of a in tree(τ). Let us colour the

vertices of Wr and Wb red and blue, respectively, and all the other vertices in Wα
n white.

We let colour(v) denote the colour of a vertex v as described above, and label(v) denote
the label of vertex v (if any) at node a.

We assume that there is neither a blue nor a red column in Wα
n . For if Wα

n contains a
blue column then obviously it cannot contain a red row, and it cannot contain a blue row
due to the choice of a. Likewise, if Wα

n contains a red column. Hence, if it does include a
blue or red column, as a consequence of the symmetry of Wα

n , we can apply similar types
of argument to those that follow to the rows instead of the columns to deliver the same
result.
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Observation 5. Suppose u, v, w are three vertices such that u and v are non-white,
uw ∈ E(Wα

n ) but vw /∈ E(Wα
n ), and colour(w) 6= colour(u). Then u and v must have

different labels at node a because the edge uw still needs to be created, whilst respecting
the non-adjacency of v and w.

Let us denote a row without white vertices by r. From the foregoing, we know that
every column j in Wα

n must have a vertex with different colour than that of ur,j. We
denote by xj a nearest to ur,j vertex in the same column with colour(xj) 6= colour(ur,j).
Letting i be the row-value in Wα

n such that ui,j = xj, we then let yj denote ui+1,j if i < r
or ui−1,j if i > r. Notice that yj is non-white and xj is adjacent to yj in Wα

n . This creates
two sets of n vertices, X = {xj : j = 1, . . . , n} and Y = {yj : j = 1, . . . , n} where xj is
adjacent to yj for each j.

We examine first the case for the word ω = 2323 · · · , the infinite word with alternating
2s and 3s, as this is relatively simple whilst demonstrating the technique required.

Lemma 6. Let ω be the infinite word with alternating 2s and 3s. Then

cwd(W ω
n ) > n/2.

Proof. We claim that for W ω
n , no three vertices in Y can have the same label. From this

the lemma will follow since the n vertices in Y are labelled with at least n/2 labels at node
a. Suppose for a contradiction that vertices Y ′ = {yj1 , yj2 , yj3} ⊆ Y have the same label
at a. Without loss of generality we assume that j1 < j2 < j3. Let X ′ = {xj1 , xj2 , xj3} ⊆ X
be the corresponding subset of X.

Assume a vertex yji in Y ′ is not adjacent to a vertex xjk in X ′. Clearly, i 6= k and
hence vertices yji , yjk and xjk form a triple as described in Observation 5, so yji and yjk
have different labels, a contradiction. Hence, each vertex in Y ′ must be adjacent to each
vertex in X ′.

Observation 7.

(a) if a vertex vi,j lies on an odd diagonal D2m−1 then it has only one neighbour to its
right and all its neighbours lie on the even diagonals D2m and D2m+2;

(b) if a vertex vi,j lies on an even diagonal D2m then it has only one neighbour to its
left and all its neighbours lie on the odd diagonals D2m−1 and D2m+1.

The leftmost vertex in X ′, xj1 , must have two neighbours in Y ′ to its right, so from
Observation 7, xj1 must sit on an even diagonal and all the vertices in Y ′ must sit on odd
diagonals. On the other hand, the rightmost vertex in X ′, xj3 , must have two neighbours
in Y ′ to its left, so from Observation 7, xj3 must sit on an odd diagonal and all the vertices
in Y ′ must sit on even diagonals. We have a contradiction and hence no three vertices in
Y can have the same label, as required.

The extension to consider arbitrary words over {2, 3} is similar, but the behaviour
of the diagonals given in Observation 7 represent just two of several possible types of
behaviour.
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22 23 32 33

Figure 3: Neighbourhood types (large vertices are neighbours of central vertex)

Lemma 8. If α is any infinite word over the alphabet {2, 3} then

cwd(Wα
n ) > n/4.

Proof. We claim that for Wα
n , no five vertices in Y can have the same label. From this

the lemma will follow since the n vertices in Y are labelled with at least n/4 labels at
node a.

Suppose for a contradiction that vertices Y ′ = {yj1 , yj2 , yj3 , yj4 , yj5} ⊆ Y have the
same label at a. Without loss of generality we assume that j1 < j2 < j3 < j4 < j5. Let
X ′ = {xj1 , xj2 , xj3 , xj4 , xj5} ⊆ X be the corresponding subset of X. As in Lemma 6, we
must have each vertex in Y ′ adjacent to each vertex in X ′.

If a vertex lies on diagonal Dm we say it has type αm−1αm. Hence, we have 4 possible
types of vertex, namely 22, 23, 32 and 33. The distinguishing feature of each is its
neighbourhood. Each has two branches to its neighbourhood on diagonals Dm−1 and
Dm+1 – see Figure 3.

(a) a type 22 vertex neighbourhood has 1 branch (Dm−1) extending up/right and one
(Dm+1) extending down and left,

(b) a type 23 vertex neighbourhood has 2 branches (Dm−1 and Dm+1) extending up and
right,

(c) a type 32 vertex neighbourhood has 2 branches (Dm−1 and Dm+1) extending down
and left,

(d) a type 33 vertex neighbourhood has 1 branch (Dm−1) extending down/left and one
(Dm+1) extending up and right.

We have 5 vertices in X ′ each of which could be one of 4 types, so potentially there
are 45 = 1, 024 different cases, but we can handle these in groups that depend on the type
of the two outside vertices xj1 and xj5 .

Case 1 : xj1 and xj5 are each of type 22 or 33.
Since xj1 must be adjacent to 4 vertices in Y ′ to its right and xj5 must be adjacent to

4 vertices in Y ′ to its left, then all the vertices in Y ′ must be on the same diagonal (as the
neighbourhood of xj1 has only one branch going rightwards and the neighbourhood of xj5
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has only one branch going leftwards). But now there is no possible neighbourhood type for
xj3 that could make it simultaneously adjacent to yj1 and yj5 , so we have a contradiction.

Case 2 : xj1 and xj5 are each of type 23 or 32.
We must have xj1 of type 23 if it is to be adjacent to yj5 . Likewise, xj5 must be of

type 32 if it is to be adjacent to yj1 . We claim that none of the middle 3 vertices in X ′

can be of type 23 or 32. For if xj2 is type 23 or 32 it cannot be both adjacent to yj1 and
yj5 . Likewise for xj3 and xj4 .

The remaining possibility is that the middle 3 vertices in X ′ are type 22 or 33. Con-
sidering vertex xj3 we must have all three vertices xj1 , xj3 and xj5 on the same diagonal
otherwise xj3 cannot be adjacent to both yj1 and yj5 . Lastly, xj2 and xj4 must be of the
same type as xj3 (i.e. either type 22 or 33) and on the same diagonal as xj3 in order to be
adjacent to both yj1 and yj5 . But then they cannot both be adjacent to yj3 and we have
a contradiction.

Case 3 : One of xj1 and xj5 is of type 22 or 33 and the other is of type 23 or 32.
Suppose xj1 is type 22 and xj5 is type 32, then yj3 , yj4 and yj5 must be on the same

diagonal. xj3 cannot be type 23 or 32 as it could not be adjacent to both yj1 and yj5 .
If xj3 is type 33 then it must be on the same diagonal as xj1 in order for both xj1 to be

adjacent to yj3 and xj3 to be adjacent to yj1 . But then xj2 cannot be any of the 4 types
and still be simultaneously adjacent to yj1 , yj3 and yj5 , hence we have a contradiction.

Likewise if xj3 is type 22 then it must be on the diagonal Dm−2 (where xj1 is on Dm)
in order for both xj1 to be adjacent to yj3 and xj3 to be adjacent to yj1 . But then, as
before, xj2 cannot be any of the 4 types and still be simultaneously adjacent to yj1 , yj3
and yj5 , hence we have a contradiction.

For the other Case 3 combinations (e.g. xj1 is type 33 and xj5 is type 32) we can use
an analogous argument and each time reach a contradiction. We omit the details.

We have now considered all possible combinations of vertex type and each one leads
to a contradiction. Hence, no five vertices in Y can have the same label.

Lemma 9. If α is any infinite word over the alphabet {2, 3} then the graph class Gα is a
hereditary class of graphs of unbounded clique-width.

Proof. This follows immediately from Lemmas 6 and 8.

3.2 {0, 1, 2, 3} graph classes with unbounded clique-width

We now extend our results to graph classes Gα where α is an infinite word over the
alphabet {0, 1, 2, 3} containing an infinite number of letters from {2, 3}. For this we will
use the rank-width parameter described in Section 2.2. From [3] we have a toolkit of
graph operations which we extend to show that the graph class Gα contains a graph with
a vertex-minor Hγ

1,1(q, q) for some q where γ is an infinite word from the alphabet {2, 3}.
If we can make q as large as we like then combining Lemma 2 with Lemma 9 gives us the
result that Gα has unbounded rank-width and therefore unbounded clique-width.

The following graph operations are demonstrated in [3] unless otherwise stated. Each
operation takes a graph Hα

1,1(m,n) and uses local complementation and vertex deletion to
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create a p× q vertex-minor Hγ
1,1(p, q), for some p 6 m and q 6 n, where γ is a q− 1 letter

word derived from α with certain letters removed. We use the term 0 removal where the
removed letter(s) are 0s and likewise 1 removal where the removed letter(s) are 1s.

0 Removal Operations

(i) Removing a 0 from the factor 00 can be achieved by applying local complementation
to each of the vertices in the middle column and then deleting the vertices in that
column.

(ii) The 0 in the factor 01 can be removed by applying local complementation to each of
the vertices in the middle column sequentially from top to bottom and then deleting
the vertices in that column. If the number of rows m is even this is equivalent to
removing the 0 from the factor 01. If the number of rows is odd the same result is
achieved by modifying the process so that the local complementation ends on row
m − 1 and deleting the last row of vertices. The factor 10 can be reduced to 1 in
the same way.

(iii) Removing the 0 from the factor 02 can be achieved by local complementation on
the vertices of the middle column and then deleting the odd rows. Also factor 20
can be reduced to 2, 03 to 3 and 30 to 3 in the same way.

These operations allow us to create a vertex-minor Hγ
1,1(p, q) with the letters of γ from

the alphabet {1, 2, 3}.
1 Removal Operations

(i) Transforming the factor 211 into 2 can be achieved by using one pivot (on the edge
xy between vertex x in the first row in the column between the 2 and 1 and vertex
y in the last row in the column between the two 1s) and deleting the first and last
rows to give a 200 factor and then using 0 removal operations to reduce to 2. In the
same way we can transform the factor 112 into 2, 311 into 3 and 113 into 3.

(ii) Transforming the factor 212 into 22 can be achieved by using one pivot (on the edge
xy between vertex x in the first row in the column between the 2 and 1 and vertex
y in the last row in the column between the 1 and 2) and deleting the first and last
rows to give a 202 factor and then using 0 removal operations to reduce to 22. In
the same way we can also reduce 313 to 33.

(iii) Finally, we claim we can transform the factor 213 into 22. As this is not covered by
[3] we give the proof here.

Let Ck, Ck+1, Ck+2, Ck+3 be four consecutive columns of Hi,j(m,n) such that Ck ∪
Ck+1 induce a 2-link, Ck+1 ∪ Ck+2 induce a 1-link and Ck+2 ∪ Ck+3 induce a 3-link.
Let x be the vertex in the first row of column Ck+1 and y be the vertex in the
last row of column Ck+2. It can be seen that by pivoting on the edge xy and then
deleting the whole of the first row, the second row to the right of column Ck+2 and
deleting y and vertices on the last row to the right of y, we have transformed the

the electronic journal of combinatorics 29(1) (2022), #P1.63 12



factor 213 into 202. We can then use the zero removal operations to reduce to 22.
In the same way we can also reduce 312 to 33.

Observation 10. If r is the number of rows prior to the removal of a 0 or 1 by one of the
these operations then after the operation the number of rows left will be at least (r/2)−2.

Thus, by starting with a large enough number m in our choice of Hi,j(m,n), we may
remove a finite number of 0s and 1s and still ensure that there are enough rows left at
the end of the process.

We now have a complete set of tools, using local complementation and vertex removal
applied to Hα

1,1(m,n), to create a vertex-minor Hγ
1,1(p, q) with the letters of γ coming only

from the alphabet {2, 3}.

Lemma 11. Let α be an infinite word over the alphabet {0, 1, 2, 3} which has an infinite
number of letters from {2, 3}. Further, let β be a factor αkαk+1 · · ·αk+p−1 of length p
which has q (0 < q 6 p) letters from {2, 3} and p− q letters from {0, 1}.

Then Hα
1,k((q+ 4)2p−q), p) has a vertex-minor isomorphic to Hγ

1,1(q, q), for some word
γ using only letters from the alphabet {2, 3}.

Proof. This follows by applying the graph operations described above to remove the 0s
and 1s. There are p − q such letters, and using Observation 10 it can be seen that by
starting with at least (q + 4)2p−q rows, there will be at least q rows remaining after
executing the necessary operations to remove them.

We now have the following theorem:

Theorem 12. If α is an infinite word from the alphabet {0, 1, 2, 3} with an infinite number
of non-zero letters, then the graph class Gα is a hereditary class of graphs of unbounded
clique-width.

Proof. If there are no 2s or 3s or only a finite number of 2s and 3s in α, we can use
Lemma 3. If there is an infinite number of 2s and 3s in α then we can use Lemmas 9 and
11 as follows. For any q we can find a graph G in Gα that has a vertex-minor Hγ

1,1(q, q),
for some infinite word γ using only letters from the alphabet {2, 3}. In turn, Hγ

1,1(q, q)
contains an induced subgraph W γ

q/2, so using Lemma 2 we have

rwd(G) > rwd(Hγ
1,1(q, q)) > rwd(W γ

q/2).

But from Lemma 8 cwd(W γ
q/2) > q/8 → ∞ as q → ∞ (and hence also rwd(W γ

q/2) → ∞)
so it follows that Gα is a graph class with unbounded rank-width and hence unbounded
clique-width.

4 Minimality of almost periodic graph classes

Let α be an infinite almost periodic word from the alphabet {0, 1, 2, 3}, with at least one
non-zero letter. In this section we will prove that the graph classes Gα are minimal of
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unbounded clique-width. To do this, we must show that any proper hereditary subclass
has bounded clique-width. If C is a proper hereditary subclass of Gα then there must exist
a non-trivial finite forbidden graph F that is in Gα but not in C. In turn, this graph F
must be an induced subgraph of some Hα

1,j(k, k) for some k > 2, j > 1 (i.e. an induced
graph on a k × k square of vertices starting in column j that incorporates an embedding
of F and therefore must also be forbidden. Given that we are assuming that α is almost
periodic then there are infinitely many j-s to choose from).

Consider a graph G ∈ C ⊆ Free(Hα
1,j(k, k)). If there exists an embedding φ : V (G)→

V (Pα) straddling columns Cj, . . . , Cj+k−1 of Pα then there must be limits to the number
and position of vertices of φ(V (G)) in these columns to avoid creating an induced subgraph
isomorphic to Hα

1,j(k, k).
Clearly an embedding of G cannot have k complete horizontal rows in columns j to

j + k − 1 as this would induce the forbidden subgraph. For graphs only involving letters
0 and 1 this condition is sufficient, and was dealt with in [3]. However, letters 2 and 3
are more complex. Lozin in [14] dealt with the class G2∞ by introducing the concept of
clusters and creating a cluster graph which provided a method of defining a partition of
the vertices of G which gave the desired boundary on clique-width.

In considering {0, 1, 2, 3} graphs we use a modified version of the cluster graph method
used in [14] which we describe in Section 4.1.

The following lemma will be used to place a bound on the clique-width of induced
subgraphs of Pα. Given a graph G and a subset of vertices U ⊆ V (G), 2 vertices of U
will be called U-similar if they have the same neighbourhood outside U . U -similarity is
an equivalence relation. The number of equivalence classes of U in G will be denoted
µG(U) (or µ(U) when the context is clear). Also, by G[U ] we will denote the subgraph of
G induced by U . It follows that U is a module of G if and only if µ(U) = 1.

Lemma 13 (Lozin [14]). If the vertices of a graph G can be partitioned into subsets
U1, U2, . . . , Un in such a way that for every i

(a) the clique-width of G[Ui] is at most k > 2, and

(b) µ(Ui) 6 l and µ(U1 ∪ · · · ∪ Ui) 6 l,

then the clique-width of G is at most kl.

Corollary 14. Suppose for n > 2 that the (n− 1) letter factor αjαj+1 · · ·αj+n−2 consists
of t > 1 non-zeros and n − t − 1 zeros. Then the clique-width of Hα

i,j(m,n), (m > 1), is
at most 6t+ 3.

Proof. To build Hα
i,j(m,n) we partition it into subsets U1, U2, . . . , Um by including in Uk

the vertices of the k-th row of Hα
i,j(m,n). This means G(Uk) is a disjoint union of paths

so has clique-width at most 3. Also, only a vertex in Uk that is in a column s such that
αs−1 and/or αs is non-zero could have a neighbour outside Uk, so µ(Uk) 6 2t+ 1. Also, it
is not difficult to see that µ(U1 ∪ · · · ∪ Uk) 6 2t + 1, as the vertices in each column have
the same neighbourhood in Hα

i,j(m,n) outside U1 ∪ · · · ∪Uk. Therefore, the result follows
by applying Lemma 13.
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We will also make use of the following lemma.

Lemma 15 (Courcelle and Olariu [7, Corollary 3.6]). For every graph G,

cwd(G) = max{cwd(H) | H ∈ Prime(G)}.

Thus we can assume that our arbitrary graph G is prime, and therefore connected,
since if it were not so, we could consider any prime subgraph H which has the same
clique-width.

4.1 Cluster graphs

Consider a connected graph G embedded in Pα such that its leftmost vertex is in column
Ca and rightmost vertex in column Ca+n−1. Let a left module of G∩Cj be a maximal set
of vertices in that column that are indistinguishable by vertices in G ∩Cj−1. Similarly, a
right module of G ∩ Cj is a maximal set of vertices that are indistinguishable by vertices
in G ∩ Cj+1. Thus the vertices of every column of G, except the leftmost and rightmost
columns, can be partitioned in two ways, as a set of left modules or as a set of right
modules.

Now consider an αj-link, Gj (the subgraph of G induced by the vertices of G ∩ Cj
and G ∩ Cj+1). For convenience, we will say Gj is in standard form if, without changing
the vertical order of the vertices, it is presented as an induced subgraph of Hα

1,j(m, 2)
with minimum m (i.e. taking out any superfluous gaps). Let Gs

j be the standard form
of Gj, noting that the (left and right) modules of Gj and Gs

j are identical. Suppose R
is the set of right modules of Gs

j ∩ Cj and L the set of left modules of Gs
j ∩ Cj+1. We

will say that two modules A and B overlap if the set of rows containing vertices of A has
non-zero intersection with the set of rows containing vertices of B. It can be seen that
a right module in R can only overlap with a left module in L on at most one row, for if
they overlapped on two rows then the two vertices in the left module would have different
neighbourhoods in the right module whatever the value of αj, which is a contradiction.
Furthermore, a right module in R cannot overlap with more than one left module in L
and vice-versa.

If a right module in R overlaps with a left module in L, the two modules can be
paired to form a cluster. This pairing process is well-defined and matches all such mod-
ules except for at most one unmatched right module in G ∩ Cj and one unmatched left
module in G∩Cj+1. These unmatched right/left modules have the characteristic they are
indistinguishable to all vertices in the column to the right/left respectively. We will refer
to them as right/left boundary modules and the vertices in them as right/left boundary
vertices respectively. We put each boundary vertex in its own cluster in Gj.

Hence, the clusters of Gj form a partition of the vertices of the αj-link. If αj is 0 or 1
then every cluster in Gj is either a horizontal pair of vertices or a boundary vertex. If αj
is 2 or 3 then each cluster is a complete bipartite induced subgraph of Gj or a boundary
vertex. When there are no boundary vertices, Gj is isomorphic to Hα

1,j(m, 2) consisting
of m clusters, each containing two vertices of a same row.
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At this stage, the vertices in the leftmost (G∩Ca) and rightmost (G∩Ca+n−1) columns
are each only in one cluster as they only appear in one αj-link. We now add two additional
columns of clusters, one to the left of G with a cluster for each vertex of G∩Ca, and one
to the right of G with a cluster for each vertex of column G ∩ Ca+n−1. Thus the vertices
of every column G ∩ Cj of G are now in two clusters.

With any finite induced subgraph G of Pα we associate an oriented graph which we
call the cluster graph B(G), whose vertices are each associated with one of the clusters of
G. The vertices of B(G) representing clusters of the same αj-link, Gj, we call a column
of B(G), and denote this by B(Gj). Of the two additional cluster columns defined in
the previous paragraph we will call the one on the left B(Ga−1) and the one on the right
B(Ga+n). For ease of exposition, we will always present the vertices of B(Gj) in the same
vertical order as in G.

In the following we denote the i-th cluster of Gj, counting from top to bottom, as Ki,j,
with corresponding vertex, ui,j in B(Gj). The edges of B(G) are defined as follows.

Type A If Kr,j has a vertex of G in common with cluster Ks,j+1 then B(G) has a directed
edge (ur,j, us,j+1) (i.e an edge oriented from ur,j to us,j+1). Note that if there was
more than one vertex of G in the intersection between two clusters of G, then these
form a module of size greater than one and G is not prime, a contradiction. Hence,
any two clusters of G have at most one vertex in the intersection. It follows that
each Type A edge of B(G) corresponds to a vertex of G.

Type B Let ui,j and ui+1,j be two consecutive vertices in a column of B(G). If αj = 2
then B(G) has a directed edge (ui,j, ui+1,j) and if αj = 3 then B(G) has a directed
edge (ui+1,j, ui,j).

Edges of type A are oriented from left to right and go between consecutive columns
of B(G) whilst edges of type B are oriented down when αj = 2 and up when αj = 3.
Drawing B(G) by arranging the vertices in columns in the same order as the respective
clusters of G it becomes clear that B(G) is a planar graph.

If we have a right boundary vertex in Cj then it will be in both a cluster in Gj−1, say
Kr,j−1, and a singleton cluster in Gj, say Ks,j. The two vertices, ur,j−1 and us,j in B(G)
associated with these clusters will be joined by a type A edge. However, there can be no
type A edge to the immediate right of us,j as Ks,j contains no vertex from column Cj+1.
Similarly for left boundary vertices, mutatis mutandis.

An example of a cluster graph is shown in Figure 4.
As we assume G is prime (from Lemma 15) and therefore connected, when it is em-

bedded in Pα it must occupy vertices in consecutive columns (i.e. if it has one or more
vertices in columns Cx and Cx+2 then it must also have at least one vertex in column
Cx+1). Suppose G straddles a set of columns including the k columns Cj, . . . , Cj+k−1 with
defining factor β = αjαj+1 · · ·αj+k−2. Let us denote the subgraph of G induced by these
columns G∗. The respective graph B(G∗) will be denoted by B∗; it has k + 1 columns
denoted by B1, . . . , Bk+1. It can be seen that if B∗ has k directed disjoint paths from
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Figure 4: For α = 010232 · · · , an illustration of the formation of a cluster graph.
From left to right: an embedding of G∗ in H1,1(7, 7), the clusters associ-
ated with this embedding, and the cluster graph B∗ = B(G∗), with type
B edges indicated by dotted lines.

column B1 to column Bk+1 then G∗ contains the forbidden subgraph Hα
1,1(k, k), although

the reverse is not necessarily true.
This leads to the following result:

Lemma 16. Let C be a proper subclass of Gα such that C ⊆ Free(Hα
1,j(k, k)) ⊂ Gα.

Furthermore, let G be any graph in C with induced subgraph G∗ and associated cluster
graph B∗ defined as above. Then B∗ can have at most k − 1 directed paths from column
B1 to column Bk+1.

4.2 Applying Menger’s Theorem

We will be using Menger’s Theorem to help us define a partition of the vertices of G on
which to apply Lemma 13. Menger’s Theorem is one of the cornerstones of graph theory.

Theorem 17 (Menger, see e.g. Diestel [9]). Let G be a directed graph and A,B ⊆ V (G).
Then the minimum number n of vertices separating A from B in G is equal to the maxi-
mum number of disjoint directed A→ B paths in G.

Corollary 18. If S is a set of n vertices forming such a separator, then there exists a
partition of V (G) \ S into two sets X and Y such that there are no edges directed from a
vertex in X to a vertex in Y .

Proof. Let X denote the set of vertices V (G)\S that can be reached from A by following
directed paths, and let Y denote the set of vertices of V (G) \ S from which there starts
a directed path that ends in a vertex of B. Now, X and Y are disjoint (by Menger’s
theorem). If there are any vertices of V (G) \S that lie in neither X nor Y , we can assign
them to either arbitrarily. Now every edge with one endpoint in X and the other in Y
must be oriented from Y to X, otherwise we find a directed path from A to B.

We can apply this to the cluster graph B∗ referred to in Lemma 16 with columns B1

and Bk+1 connected to each other by a set P of at most k − 1 disjoint paths. Denote
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s = |P |. The s paths of P cut B∗ into s+ 1 horizontal stripes, that is, subgraphs induced
by two consecutive paths in P and all the vertices between them (s− 1 such stripes) and
2 further stripes for the subgraphs induced by the top path and all vertices above it, and
the bottom path and all vertices below it.

From Menger’s Theorem these two columns can be separated from each other by a
set S of s 6 k − 1 vertices, containing exactly one vertex in each of the paths, such that
there are no paths from B1 to Bk+1 that avoid this set S. From Corollary 18 we have a
partition of the vertices of B∗ \ S into two sets XV (B∗) and YV (B∗) such that there are no
directed edges from a vertex in XV (B∗) to a vertex in YV (B∗). As B∗ is planar this means
we can draw a curve Ω between XV (B∗) and YV (B∗) such that this curve crosses B∗ at
precisely the set S and such that there are no directed edges crossing Ω from XV (B∗) to
YV (B∗). It follows that we can partition the Type A edges of B∗ into two sets XE(B∗) and
YE(B∗) either side of Ω, and as these Type A edges correspond to the vertices of G∗ then
we also have a partition of these vertices into two sets XV (G∗) and YV (G∗).

4.3 Almost periodic Gα graph classes are minimal of unbounded clique-width

We now come to the key result of Section 4.

Lemma 19. Let α be an infinite almost periodic word from the alphabet {0, 1, 2, 3} which
has at least one non-zero letter, and k a natural number at least 2. Further, let β =
αjαj + 1 · · ·αj+k−2 be a k − 1 letter factor of α such that β appears in every factor of α
of length L(β), so that Hα

1,j(k, k) is a graph in Gα whose edges correspond to the subword
β. Then any graph G in Gα that is Hα

1,j(k, k)-free has clique-width bounded by a constant
c(k,L(β)) that depends only on k and L(β).

Proof. Let G be a graph in Gα that is Hα
1,j(k, k)-free. In the following we refer to vertex

grid coordinates (x, y) of an embedding of G in Pα as described in Section 2.1. As before,
we assume G is prime (from Lemma 15) and therefore connected.

We define a partition {V1, . . . , Vn} of the vertices of G as follows. Let a be the first
column of Pα in which a vertex of G is embedded. Denoting the set of vertices of G in a
set of consecutive columns as a bar, let Vi be the bar of G in columns [a+(i−1)(L(β)+1)]
through to [(a− 1) + i(L(β) + 1)].

The corresponding subword for the graph induced by bar Vi is of length L(β) so must
contain a copy of β by definition. Let this copy of β correspond to columns Cy, . . . ,
Cy+k−1 of Pα. Following the same notation as Section 4.1 we define G∗ as the subgraph
of G induced by the columns Cy, . . . , Cy+k−1 and B∗ its respective cluster graph, with
columns B1, . . . , Bk+1. We define P , S, s, Ω, XE(B∗), YE(B∗), XV (G∗) and YV (G∗) as in
Section 4.2.

We now show that the partition XV (G∗)/YV (G∗) of the vertices of G∗ defined in Section
4.2 gives us a number of equivalence classes, µG∗(XV (G∗)) and µG∗(YV (G∗)), bounded by a
function of k. We consider this in 3 cases depending on the alphabet of β:

Case 1 β is a subword from the alphabet {0, 1}.
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A {0, 1} cluster graph B(G) contains only edges of type A and only horizontal paths.
Every cluster is either a horizontal pair of vertices or a boundary vertex. Each row
of B(G) is either a (left to right) directed path or a disjoint union of directed paths.
If a row is a disjoint union of paths then the gaps between the paths have either no
vertex or a boundary vertex immediately on either side.

It is easy to see that the curve Ω must traverse each stripe of B∗ by passing through
a gap in each row between the paths at the top and bottom of the stripe.

From Section 4.2 the XE(B∗)/YE(B∗) partition of the Type A edges of B∗ defined
by Ω gives a corresponding XV (G∗)/YV (G∗) partition of the vertices of G∗. We can
partition the edges of B∗ that correspond to vertices of a column Cj of G∗, into at
most 2s+ 1 subsets C1,j, . . . , C2s+1,j, as follows:

(i) The edges forming the paths of P (s edges/subsets).

(ii) The remaining edges in each stripe (at most s+ 1 subsets).

We claim that no vertex of YV (G∗) can distinguish the vertices of Ci,j ∩ XV (G∗).
Suppose to the contrary, that a vertex y ∈ YV (G∗) is not adjacent to x1 ∈ Ci,j∩XV (G∗)

but is adjacent to x2 ∈ Ci,j∩XV (G∗). Then x1 and x2 cannot be in the same cluster in
Gj, because they are on different rows, but one of them must be in the same cluster
as y. But this cluster is then not a boundary cluster as it contains two vertices and
hence the cluster must be on a path of P . But x1 and x2 are in different clusters
in Gj so cannot both be on the same path of P and so are in different subsets,
Ci,j ∩XV (G∗), a contradiction.

So the maximum number of equivalence classes in Cj ∩ XV (G∗) is 2s + 1 6 2k − 1
and hence µG∗(XV (G∗)) is at most the number of different Ci,j’s, which is at most
k(2s+ 1) 6 2k2 − k. Symmetrically, µG∗(YV (G∗)) 6 2k2 − k.

Case 2 β is a subword from the alphabet {2, 3}.
Without loss of generality, we may assume that no α-link Gj, where αj ∈ {2, 3},
contains a boundary vertex. For if such vertices exist, they will be positioned at
one extreme (top or bottom) of a column. It is then possible to add an additional
vertex in the opposite column to turn them into a cluster. Therefore, by adding at
most two vertices to each column of G, we can extend it to a graph G′ which has
no boundary vertices, contains G as an induced subgraph and is Hα

1,j(k+ 2, k)-free.

Observation 20. The curve Ω traverses each stripe of B∗ monotonically from left to
right or right to left, meaning that its x-coordinate changes within a stripe either
non-increasingly or non-decreasingly.

Proof of Observation. Suppose for a contradiction that Ω had an unavoidable local
maximum within a stripe, we would have a vertex v (to the left of the curve) that
causes this maximum x-coordinate. Obviously, v does not belong to Bk+1 (since
otherwise Bk+1 is not separated from B1), and v must have a neighbour to its right

the electronic journal of combinatorics 29(1) (2022), #P1.63 19



within the stripe (since there are no boundary vertices in G). But then the Type
A edge connecting v to that neighbour would cross Ω, which contradicts Corollary
18.

This observation allows us to conclude that whenever Ω separates the Type A edges
between two columns of B∗ within a stripe, the result is two intervals, one above Ω
and one below it.

From Section 4.2 the XE(B∗)/YE(B∗) partition of the Type A edges of B∗ defined
by Ω gives a corresponding XV (G∗)/YV (G∗) partition of the vertices of G∗. We can
partition the Type A edges of B∗ that correspond to vertices of a column Cj of G∗,
into at most 4s+ 1 6 4k − 3 subsets C1,j, . . . , C4s+1,j, as follow:

(i) The Type A edges intersecting the paths of P (s edges/subsets).

(ii) For each such edge e, the Type A edges that have a common vertex with e, at
most 2 subsets in each stripe (up to 2s subsets).

(iii) The remaining Type A edges in each stripe (at most s+ 1 subsets).

From Observation 20 the vertices of each Ci,j form an interval, i.e., they are con-
secutive in Cj. We claim that no vertex of YV (G∗) can distinguish the vertices of
Ci,j ∩XV (G∗). Suppose to the contrary, that a vertex y ∈ YV (G∗) is not adjacent to
x1 ∈ Ci,j ∩XV (G∗) but is adjacent to x2 ∈ Ci,j ∩XV (G∗). Without loss of generality
we assume that αj = 2, as the case αj = 3 follows by symmetry.

The vertices x1 and x2 cannot be in the same cluster in Gj because they are dis-
tinguished by y. Furthermore, as αj = 2 then y must be in column Cj+1 on a
row above that of x1 but below or level with the row of x2. We can assume that
y is in the same Gj cluster as x2 because if it is not, then it must be in a cluster
positioned between the cluster containing x2 and the cluster containing x1. As Ci,j
is an interval, this cluster must include some other vertex x3 ∈ Ci,j ∩ XV (G∗), and
we can proceed using x3 instead of x2. Let the cluster of Gj including y and x2 be
denoted Kr,j.

Let ur,j denote the vertex of B∗ corresponding to Kr,j. Also, let ex1 , ex2 , ey be the
edges of B∗ corresponding to vertices x1, x2, and y respectively. Since ex2 and ey
are incident to ur,j but separated by Ω, vertex ur,j lies on Ω and hence belongs to
the separator S. Therefore, ur,j belongs to a path from P . But then Ci,j is of the
second type and therefore ex1 must also be incident to ur,j. This contradicts the
fact that x1 does not belong to Kr,j. This contradiction shows that any two vertices
of Ci,j ∩XV (G∗) have the same neighbourhood in Y .

So µG∗(XV (G∗)) is at most the number of different Ci,js, which is at most k(4s+1) 6
4k2 − 3k. Symmetrically, µG∗(YV (G∗)) 6 4k2 − 3k.

Case 3 β is a subword from the alphabet {0, 1, 2, 3}.
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Each column Bi of cluster graph B∗ is associated with a letter of β. We can divide
B∗ into alternating {0, 1} bars and {2, 3} bars (reminder, a bar is a set of consecutive
columns). Suppose we label these bars D1, D2, . . . , Dm of lengths k1, k2, . . . , km so
that k1 + k2 + · · · + km = k − 1. Without loss of generality, we will say that if i is
odd, Di is a {0, 1} bar and if i is even Di is a {2, 3} bar.

Define the partition curve Ω as before. If Ω stays in only one {0, 1} or {2, 3} bar
then we can revert to Case 1 or Case 2. If Ω straddles several {0, 1} and {2, 3} bars
we can argue as follows.

It can be observed that, within each stripe, Ω can only pass at most once through
each bar in B∗. For if it passed twice through a column in a {2, 3} bar, in a given
stripe, with at least one vertex between the two sections of Ω then there must be
a Type B edge passing from XV (B∗) to YV (B∗) which contradicts Corollary 18 of
Menger’s Theorem.

Also, for the same reasons given in Case 2, within each stripe, the line Ω must pass
across {2, 3} bars monotonically in a left/right x-coordinate sense.

Using the same arguments as used in the {0, 1} and {2, 3} proofs we can partition the
vertices ofG∗ into setsXV (G∗) and YV (G∗) such that the maximum number of different
equivalence classes for a column XV (G∗)∩Cj is (2k−1) 6 (4k−3) for a {0, 1} column
and (4k − 3) for a {2, 3} column. So for k > 2 we have µG∗(XV (G∗)) 6 4k2 − 3k.
Symmetrically, µG∗(YV (G∗)) 6 4k2 − 3k.

Using this XV (G∗)/YV (G∗) partition of the vertices of G∗ we can create a partition of
Vi. All vertices in Vi in columns to the left of G∗ are added to the vertices of XV (G∗) and
all the vertices in Vi in columns to the right of G∗ are added to the vertices of YV (G∗) to
produce a partition of bar Vi into two parts Xi and Yi. Let Ui = Yi−1 ∪Xi. Each G[Ui]
has at most 2(L(β) + 1) columns. The subsets U1, . . .Un form a partition of the vertices
of G, such that for every i:

(a) using Corollary 14 the clique-width ofG[Ui] is at most 6(2L(β)+2)+3 = 12L(β)+15,
and

(b) µ(Ui) 6 2(4k2 − 3k) and µ(U1 ∪ · · · ∪ Ui) 6 2(4k2 − 3k).

Thus from Lemma 13 the clique-width of G is at most (12L(β) + 15)(8k2 − 6k).
Hence the clique-width of G is bounded by a constant that depends only on k and

L(β).

Theorem 21. Let α be an infinite almost periodic word over the alphabet {0, 1, 2, 3}
containing at least one non-zero letter. Then the class Gα is a minimal hereditary class
of graphs of unbounded clique-width.

Proof. If C is a proper hereditary subclass of Gα then there must exist a non-trivial finite
forbidden graph F that is in Gα but not in C. But F must be an induced subgraph of some
Hα

1,j(k, k) so C ⊆ Free(Hα
1,j(k, k) and Lemma 19 gives us a bound on the clique-width.

Hence, Gα is a minimal hereditary class of graphs of unbounded clique-width.
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4.4 Uncountably many minimal graph classes with unbounded clique-width

We now proceed to show that there is an uncountably infinite number of such graph
classes. To do this we will use the class of almost periodic sequences known as Sturmian.
One definition of a Sturmian sequence is a binary sequence that has complexity pα(n) =
n+ 1, where the complexity function pα(n) is the number of different factors of length n
in α [10].

An alternative characterisation of Sturmian sequences is as rotation sequences defined
by an irrational number, and hence it follows that the number of such sequences is un-
countably infinite. We say that two sequences are locally isomorphic if they have the same
factors. If two Sturmian sequences are locally isomorphic this means they have the same
n+ 1 factors of length n out of a possible 2n such factors [18]. Hence the set of Sturmian
sequences with a particular set of factors is countable in number and so it follows there
is an uncountable number of such sets with different factors.

We denote rev(β) as the sequence β in reverse order (mirror image).

Lemma 22. Let α be an infinite binary word and β a finite binary word of length k − 1
(k > 2) with at least one 1. Further, let Fβ be the graph Hβ

1,1(3, k).
Then Fβ can be embedded in Pα if and only if β or rev(β) is a factor of α.
Furthermore, if k > 3, such embedding is only possible in 3 rows and k consecutive

columns s, . . . , s+ k − 1 when β (or rev(β)) = αs · · ·αs+k−1.

Proof. Clearly, by its definition, Fβ can be embedded in Pα in the way described if β
(or rev(β)) is a factor of α. [To avoid much repetition in what follows we will just refer
to β to mean β or rev(β).] We prove that Fβ can only be embedded in Pα in the way
described, and only if β is a factor of α, by induction on k.

Firstly, if k = 2 then β = 1 and Fβ = C6, the cycle on 6 vertices. It is trivial to
see that this can be embedded in Pα only if there is at least one 1 in α. In fact, C6

can be embedded in two ways. Firstly, (Method 1) in the way described in the Lemma,
with 6 vertices from 3 rows and 2 consecutive columns, or secondly, (Method 2) over 4
consecutive columns with 1 vertex from the first and last column and 2 from each of the
middle columns.

If k = 3 then β must be 10, 01 or 11. Fβ still includes an induced subgraph C6, but
now the addition of 3 more vertices and corresponding edges means we can no longer use
Method 2. Hence, Fβ can only be embedded in Pα in the way described in the Lemma
(Method 1).

Next using the strong induction hypothesis, we assume that the Lemma is true for all
words of length less than k − 1. Thus if β contains a factor that is not a factor of α then
Fβ cannot embed in Pα.

If Fβ does embed in Pα then, if β− is the word β without its last letter, we must have
β− a factor of α where Fβ− can only embed in Pα by Method 1. Now it is straightforward
to see that this cannot be extended to Fβ if the next letter is not the same as the last
letter of β, and that if it is the same, it can only be done by Method 1.
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Theorem 23. There exists an uncountably infinite number of minimal hereditary classes
of graphs of unbounded clique-width.

Proof. There exists an uncountably infinite number of Sturmian binary sequences that
are not locally isomorphic. Suppose we have Sturmian words α1 and α2 that have unique
factors β1 and β2 respectively. Then using Lemma 22, the class Gα1 does not contain the
graph Fβ2 and the class Gα2 does not contain the graph Fβ1 . So Gα1 and Gα2 are different
graph classes. It follows from Theorem 21 each one defines a different minimal hereditary
class of graphs of unbounded clique-width.

5 Recurrent but not almost periodic words

We have seen that (with the exception of the all-zeros word) every almost periodic word α
over {0, 1, 2, 3} defines a minimal hereditary class Gα of unbounded clique width. At the
other extreme, if α is a word over {0, 1, 2, 3} that contains a factor β = αjαj+1 · · ·αj+k−2
that either does not repeat, or repeats only a finite number of times, then Gα cannot be a
minimal class of unbounded clique-width, as forbidding the induced subgraph Hα

1,j(k, k)
would leave a proper subclass that by Theorem 12 still has unbounded clique-width.

Thus, to complete the delineation between minimality and non-minimality (with re-
spect to having unbounded clique-width) of the classes Gα, it remains to consider words
α that are recurrent but not almost periodic, i.e. words in which each factor occurs in-
finitely many times, but where the gap between consecutive occurrences of a factor may
be arbitrarily large.

Fix a recurrent but not almost periodic word α over {0, 1, 2, 3}. Since α is recurrent,
any factor β of α must occur an infinite number of times, and we will call the factors
between any pair of consecutive occurrences of β the β-gap factors. Since α is not almost
periodic, there exists a factor β of length k − 1, say, such that the β-gap factors can be
arbitrarily long. Denote the sequence of β-gap factors by γ1, γ2, . . . . If, amongst these
gap factors, we find that for any integer m there exists some (indeed, infinitely many)
γi which has at least m letters that are not 0, then by the analysis in Section 3 there
exist graphs whose clique-width grows as a function of m. Thus, the proper subclass
C = Free(Hα

1,j(k, k)) ∩ Gα (where j denotes the start of the first occurrence of β in α)
contains graphs of arbitrarily large clique-width, and thus Gα is not minimal.

Now let Γ denote the collection of all recurrent words α over {0, 1, 2, 3} other than the
all-zeros word, with the property that for any factor β of α, the weight of every β-gap
factor is bounded. We now show that it is precisely the words in Γ that define minimal
classes of unbounded clique-width.

Theorem 24. Let γ be an infinite sequence over the alphabet {0, 1, 2, 3} other than the
all-zero sequence. Then Gγ is a minimal hereditary graph class of unbounded clique-width
if and only if γ ∈ Γ.

Proof. If Gγ is a minimal hereditary graph class of unbounded clique-width, and γ is not
almost periodic, then from the preamble to Section 5 we have already demonstrated that
γ ∈ Γ.
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To prove the converse, suppose γ ∈ Γ. In the case that γ is almost periodic, we may
appeal directly to Lemma 19. For this more general setting, we may proceed in an almost
identical manner.

If C is a proper hereditary subclass of Gγ then there must exist a non-trivial finite
forbidden graph F that is in Gγ but not in C. In turn, this graph F must be an induced
subgraph of some Hγ

1,j(k, k) for some k ∈ N. Any graph G in C must be Free(Hα
1,j(k, k))

for the fixed value of k > 2.
As before, let β = γjγj+1 · · · γj+k−2 and G∗ denote the subgraph of G induced by the

columns Cj . . . Cj+k−1. We can use the same cluster graph arguments to show that there is
a partition XVG/YVG of the vertices of G∗ such that µG∗(XVG) 6 4k2−3k. Symmetrically,
µG∗(YVG) 6 4k2 − 3.

We know that the factor β appears an infinite number of times in γ and that the
weight of the string between each copy of β is bounded by a constant, say, W (β).

Suppose the i-th copy of β in γ generates the subgraph G∗i of G, with corresponding
partition Xi/Yi, then we define Ui as the subgraph induced by the vertices of Yi−1, Xi

and all the vertices of G in columns between these two sets.
This gives us a partition of G such that for every i:

(a) by using Corollary 14 the clique-width of G(Ui) is at most 6(2k +W (β)) + 3, and

(b) µ(Ui) 6 (8k2 − 6k) and µ(U1 ∪ · · · ∪ Ui) 6 (8k2 − 6k),

So from Lemma 13 the clique-width of G is at most (6(2k +W (β)) + 3)× (8k2 − 6k).
But we know that k and W (β) are fixed dependent on the forbidden graph F and

hence the graph class C has bounded clique-width. Thus Gγ is a minimal hereditary
graph class of unbounded clique-width.

While Γ includes every periodic and almost periodic word over {0, 1, 2, 3}, it does also
contain other (recurrent) words. One simple way to generate sequences is by substitution,
and we use [10] as our reference work for this. For example, consider the infinite binary
word ψ generated by an iterative substitution σ, beginning with 1 such that σ(1) = 1010
and σ(0) = 0.

If we denote σn(1) as the n-th iteration beginning with σ0(1) = 1 then

σn(1) = σn−1(σ(1)) = σn−1(1) 0 σn−1(1) 0.

The first four iterates, and the start of ψ, are as follows.

σ1(1) = 1010

σ2(1) = 1010 0 1010 0

σ3(1) = 1010010100 0 1010010100 0

σ4(1) = 1010010100010100101000 0 1010010100010100101000 0

ψ = 1010010100010100101000010100101000101001010000010100101000 . . .

The word ψ has the following characteristics.
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(i) The number of ones doubles with each iteration and therefore ψ contains an infinite
number of ones.

(ii) ψ is a fixed point of σ (i.e. σ(ψ) = ψ).

(iii) By construction ψ is recurrent but is not almost periodic, because it contains arbi-
trarily long strings of zeros.

The following lemma shows that ψ ∈ Γ, and therefore provides us with the promised
counterexample to the conjecture of Collins et al [3].

Lemma 25. For any factor β of the word ψ, the weight of the β-gap factors is bounded,
and thus ψ ∈ Γ.

Proof. Suppose the longest subfactor of contiguous zeros in β is 0k. It can be observed
that σn(1) ends with the factor 0n. Hence β must have appeared by the (k+1)-th iteration,
σk+1(1) or it is not a factor of ψ. Since |σk+1(1)|1 = 2k+1, we have this as a bound on the
weight between any consecutive occurrences.

We can extend this idea to construct other recurrent but not almost periodic infinite
binary sequences in Γ. Indeed, any iterative substitution σγ where σγ(1) = δ and σγ(0) = 0
such that δ is a finite binary word whose first letter is 1, last letter is 0, and with |δ|1 > 2
will define a sequence γ. Now |σnγ (1)|1 = |δ|n1 and it follows using Lemma 25 that the
weight of the set of β-gap factors for every factor β is bounded, and hence γ ∈ Γ.

Finally, notice that Γ does not comprise all recurrent binary sequences. Indeed, for
any γ ∈ Γ that is recurrent but not almost periodic, then the sequence γ, formed as the
complement of γ (i.e. inverting the 1s and 0s), is a recurrent sequence that does not lie
in Γ, and so Gγ is not a minimal hereditary graph class of unbounded clique-width.

6 Concluding remarks

Linear clique-width The linear clique-width of a graph G is defined as the minimum
number of labels needed to construct G by means of the operations allowed for standard
clique-width, except for the disjoint union operation. Our minimality of unbounded clique-
width arguments rest on constructing partitions that satisfy the conditions in Lemma 13.
In fact, there exists a ‘linear’ analogue of this, see [3, Lemma 3], and it is likely that this
may be used in conjunction with our arguments above to show that Gα for any α ∈ Γ is
also minimal of unbounded linear clique-width.

Towards a characterisation of clique width for bipartite graphs While the ulti-
mate goal of characterising which hereditary graph classes have unbounded clique-width
remains somewhat remote, a nearer goal is the restriction of this characterisation to cover
classes of bipartite graphs.

The identification of the collection of words Γ represents a key step towards a fuller
classification: even though we now have uncountably many minimal classes, the collection
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Γ is relatively easily stated, and gives us the precise delineation between minimal and non-
minimal for the classes under consideration.

To extend our work to cover all bipartite graphs still faces a number of hurdles. First,
there exist minimal classes of bipartite graphs that are not of the form Gα for any α ∈ Γ
(for example, the bichain graphs of Atminas, Brignall, Lozin and Stacho [1]), so the
current four-letter alphabet {0, 1, 2, 3} is certainly not complete. Second, even with a
more complete construction of classes, one must prove that such a list is complete, taking
into account the pernicious issue of the class of square grids (which is bipartite and has
unbounded clique-width yet contains no minimal class).
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