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Abstract

Let m be a positive integer whose smallest prime divisor is denoted by p, and let
Zm denote the cyclic group of residues modulo m. For a set B = {x1, x2, . . . , xm}
of m integers satisfying x1 < x2 < · · · < xm, and an integer j satisfying 2 ≤ j ≤ m,
define gj(B) = xj − x1. Furthermore, define fj(m, 2) (define fj(m, Zm)) to be the
least integer N such that for every coloring ∆ : {1, . . . ,N} → {0, 1} (every coloring
∆ : {1, . . . ,N} → Zm), there exist two m-sets B1, B2 ⊂ {1, . . . ,N} satisfying: (i)
max(B1) < min(B2), (ii) gj(B1) ≤ gj(B2), and (iii) |∆(Bi)| = 1 for i = 1, 2 (and
(iii)

∑
x∈Bi

∆(x) = 0 for i = 1, 2). We prove that fj(m, 2) ≤ 5m − 3 for all j, with
equality holding for j = m, and that fj(m, Zm) ≤ 8m + m

p − 6. Moreover, we show

that fj(m, 2) ≥ 4m − 2 + (j − 1)k, where k =
⌊(

−1 +
√

8m−9+j
j−1

)
/2

⌋
, and, if m

is prime or j ≥ m
p + p − 1, that fj(m, Zm) ≤ 6m − 4. We conclude by showing

fm−1(m, 2) = fm−1(m, Zm) for m ≥ 9.

1 Introduction

Let [a, b] denote the set of integers between a and b, inclusive. For a set S, an S-coloring

of [1, N ] is a function ∆ : [1, N ] → S. If S = {0, 1, . . . , r−1}, then we call ∆ an r-coloring.

The following is the Erdős-Ginzburg-Ziv (EGZ) theorem, [1] [14] [30].

Theorem 0. Let m be a positive integer. If ∆ : [1, 2m − 1] → Zm, then there exist

distinct integers x1, x2, . . . , xm ∈ [1, 2m− 1] such that
m∑

i=1

∆(xi) = 0. Moreover, 2m− 1 is

the smallest number for which the above assertion holds.
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The EGZ theorem can be viewed as a generalization of the pigeonhole principle for

2 boxes (since the m-term zero-sum subsequences of a sequence consisting only of 0’s

and 1’s are exactly the monochromatic m-term subsequences). As such, several theorems

of Ramsey-type have been generalized similarly by considering Zm-colorings and zero-

sum configurations rather than 2-colorings and monochromatic configurations. When

in such a theorem the size of the configuration needed to guarantee a monochromatic

sub-configuration equals the size of the configuration needed to guarantee a zero-sum

sub-configuration (as it does for the pigeonhole principle versus EGZ), we say that the

theorem zero-sum generalizations. The most well known such theorem is the zero-trees

theorem [17] [33]. Two surveys of related results and open problems appear in [3] [12],

and some examples of other various extensions of EGZ appear in [10] [11] [16] [18] [19]

[20] [21] [27] [31] [32].

One of the first Ramsey-type problems considered with respect to zero-sum gener-

alizations was the nondecreasing diameter problem introduced by Bialostocki, Erdős,

and Lefmann [8]. For a set B = {x1, x2, . . . , xm} of m positive integers satisfying

x1 < x2 < · · · < xm, and an integer j satisfying 2 ≤ j ≤ m, let gj(B) = xj − x1.

Note that when j = m, then gm(B) is the diameter of the set B. Let fj(m, 2) (let

fj(m, Zm)) be the least integer N such that for every coloring ∆ : [1, N ] → {0, 1} (for

every coloring ∆ : [1, N ] → Zm), there exist two m-sets B1, B2 ⊂ [1, N ] satisfying (i)

max(B1) < min(B2), (ii) gj(B1) ≤ gj(B2), and (iii) |∆(Bi)| = 1 for i = 1, 2 (and (iii)∑
x∈Bi

∆(x) = 0 for i = 1, 2). Bialostocki, Erdős, and Lefmann introduced the functions

fm(m, 2) and fm(m, Zm) and showed that fm(m, 2) = fm(m, Zm) = 5m − 3, thus obtain-

ing one of the first 2-color zero-sum generalizations for a Ramsey-type problem [8]. They

also introduced a notion of zero-sum generalization for Ramsey-type problems involving

arbitrary r-colorings (not just 2-colorings), and showed that the corresponding 3-color

version of the nondecreasing diameter problem for two m-sets also zero-sum generalized.

Recently, the four color case was shown to zero-sum generalize [24], but the cases with

r > 4 remain open and difficult.

In this paper we introduce and study the functions fj(m, 2) and fj(m, Zm) with j < m,

thus studying the nondecreasing diameter problem by varying the notion of diameter by

the parameter j. One of our main tools is an improvement to a recent generalization (The-

orem 2.7) of results of Mann [29], Olson [31], Bollobás and Leader [10], and Hamidoune

[26], that was developed by the first author [23] while studying the original nondecreasing

diameter problem for four colors [24].

For a positive integer m, let F (m, 2) = max{fj(m, 2) | 2 ≤ j ≤ m} and let F (m, Zm) =

max{fj(m, Zm) | 2 ≤ j ≤ m}. This project was begun when A. Bialostocki suggested the

following two conjectures [2].

Conjecture 1.1.

lim inf
m→∞

F (m, Zm)

F (m, 2)
= 1.
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Conjecture 1.2. If j ≥ 2 is an integer, then

lim inf
m→∞

fj(m, Zm)

fj(m, 2)
= 1,

and

lim inf
m→∞

fm−j(m, Zm)

fm−j(m, 2)
= 1,

Among other results, we support Conjecture 1.1, proving that lim inf
m→∞

F (m,Zm)
F (m,2)

≤ 1.2.

Furthermore, we prove the case j = 1 for the second part of Conjecture 1.2 by showing

that

fm−1(m, 2) = fm−1(m, Zm) = 5m − 4 for m ≥ 9.

The paper is organized as follows. Section 2 contains definitions, terminology, and re-

sults used in Sections 3 and 4, which contain results addressing Conjectures 1.1 and 1.2,

respectively.

2 Preliminaries

We recall some theorems from additive number theory, but first we need to introduce

terminology used in [23] and [30]. If G is an abelian group and A, B ⊆ G, then their

sumset is A + B = {a + b | a ∈ A, b ∈ B}. A set A ⊆ G is said to be H-periodic,

if it is the union of H-cosets for some nontrivial subgroup H of G, and otherwise, A is

called aperiodic. We say that A is maximally H-periodic, if A is H-periodic, and H is the

maximal subgroup for which A is periodic; in this case, H = {x ∈ G | x+A = A}, and H

is sometimes referred to as the stabilizer of A. If S is a sequence of elements from G, then

an n-set partition of S is a partition of the sequence S into n nonempty subsequences,

A1, . . . , An, such that the terms in each subsequence Ai are all distinct (thus allowing

each subsequence Ai to be considered a set). A sequence of elements from Zm is zero-sum

if the sum of its terms is zero. An affine transformation is any map γ : Zm → Zm given

by γ(x) = kx + b, where k, b ∈ Zm and gcd(k, m) = 1. Furthermore, |S| denotes the

cardinality of S, if S is a set, and the length of S, if S is a sequence. If S is an ordered set

and r is an integer satisfying |S| ≥ r, then elements y1 < y2 < · · · < yr ∈ S are said to be a

final segment if yi = max(S \ {yi+1, yi+2, . . . , yr}) for i = 1, 2, . . . , r. Analogously, integers

y1 < y2 < · · · < yr ∈ S are said to be an initial segment if yi = min(S\{yi−1, yi−2, . . . , y1})
for i = 1, 2, . . . , r. Finally, for j ∈ Zm, we denote by j the least non-negative integer

representative of j.

Next, we introduce helpful notation and terminology dealing specifically with our

problem. Let S1 and S2 be sequences. Then S1 ∪S2 denotes the concatenation of S1 with

S2, and if S2 is a subsequence of S1, then S1 \ S2 denotes the sequence obtained from S1

by deleting the terms from S2. Let ∆ : S → C be a C-coloring of the set S. If S ′ ⊆ S,
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then we will regard ∆(S ′) as a set, and if x ∈ S, then we regard ∆(x) as an element.

The sequence of colors given by ∆ will often be abbreviated as a string using exponential

notation (e.g. the sequence given by the coloring ∆([1, 3]) = {1}, ∆([4, 7]) = {2} is

abbreviated by 1324). We use ∆S to denote the sequence of colors for S given by ∆

(hence ∆[1, 7] = 1324 in the previous example). If c ∈ C and ∆−1(c) = {x1, x2, . . . , xs},
where x1 < x2 < · · · < xs, then for an integer r ≤ s, define

Π(r, c) = xr and q (r, c) = xs−r+1.

Let ∆ : S → Zm be a coloring of the set S. A set B ⊂ S is zero-sum if
∑

x∈B ∆(x) = 0.

Further, ∆ is said to reduce to monochromatic if either |∆(S)| ≤ 2 or there exists B ⊂ S

such that |B| ≤ m − 1 and |∆(S \ B)| = 1. Observe that in either case there exists a

natural induced coloring ∆∗ : S → {0, 1} such that every m-element monochromatic set

under ∆∗ is zero-sum under ∆. Finally, let m and j be integers satisfying 2 ≤ j ≤ m, and

let ∆ : S → {0, 1} (let ∆ : S → Zm) be a coloring. Then two m-sets B1, B2 ⊂ S are said

to be an (m, j)-solution (an (m, j, Zm)-solution) if max(B1) < min(B2), gj(B1) ≤ gj(B2),

and |∆(B1)| = |∆(B2)| = 1 (and
∑

x∈Bi
∆(x) = 0 for i = 1, 2).

First we state a theorem, which is an easy consequence of the Pigeonhole Principle,

sometimes referred to as the Caveman Theorem since its roots extend back so far [15].

Theorem 2.1. Let S be a sequence of elements from a finite abelian group G. If |S| = |G|,
then there exists a nonempty zero-sum subsequence consisting of consecutive terms of S.

The following theorem is the Cauchy-Davenport Theorem [30] [13].

Theorem 2.2. Let m be a prime and let n be a positive integer. If A1, A2, . . . , An is a

collection of subsets of Zm, then∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ ≥ min{m,

n∑
i=1

|Ai| − n + 1}.

Next, we will need the following slightly stronger form of the EGZ theorem [12].

Theorem 2.3. Let k, m be positive integers such that k|m. If ∆ : [1, m + k − 1] → Zm,

then there exist distinct integers x1, x2, . . . , xm ∈ [1, m + k − 1] such that
∑m

i=1 ∆(xi) ≡ 0

mod k. Moreover, m + k − 1 is the smallest number for which the above assertion holds.

The following theorem turns out to be useful. The proofs of parts (a) and (b) appear

in [5] and [9] [7], respectively.

Theorem 2.4. Let m ≥ 4 be an integer, and let ∆ : S → Zm be a coloring of a set of

integers S for which |∆(S)| ≥ 3.

(a) If |S| = 2m−2, then there exist distinct integers x1, . . . , xm such that
∑m

i=1 ∆(xi) = 0.

(b) If |S| = 2m−3, and there are not distinct integers x1, . . . , xm such that
∑m

i=1 ∆(xi) =

0, then ∆(S) = {a, b, c}, where |∆−1(a)| = m − 1, |∆−1(b)| = m − 3, and |∆−1(c)| = 1;

moreover, up to affine transformation we may assume that a = 0, b = 1, and c = 2.
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The following simple proposition will be helpful [7].

Proposition 2.5. Let S be a sequence of elements from a finite abelian group G, and let

A = A1, . . . , An be an n-set partition of S, where |
n∑

i=1

Ai| = r > 1. Then there exists a

subsequence S ′ of S and an n′-set partition A′ = Aj1 , . . . , Ajn′ of S ′, which is a subsequence

of the n-set partition A = A1, . . . , An, such that n′ ≤ r − 1 and |
n′∑

i=1

Aji
| = r.

Before stating the next two theorems, we provide a few remarks to clarify an otherwise

nebulous and complicated time-line. The main result from [23] along with its corollary

first appeared, in a slightly weaker form, in the first author’s undergraduate thesis. Subse-

quently, Theorem 2.7 was obtained for this collaborative article as a means of augmenting

the weaker version of the corollary in [23]. Later, the strengthening for both results from

[23] was found by the first author and incorporated into the final version of [23]. How-

ever, the new proofs for the result from [23] almost immediately gave a generalization of

Theorem 2.7, as noted in [22]. Unfortunately, due to the idiosyncracies of the publishing

world, the results in [23] and [22], despite being historically newer, were both published

before this article, which predate them. Consequently, the original (and much more com-

plicated) proof of Theorem 2.7 now seems unnecessary, and has been omitted. Instead we

derive Theorem 2.7 from Theorem 2.6 [22].

Theorem 2.6. Let S ′ be a subsequence of a finite sequence S of terms from an abelian

group G of order m, let P = P1, . . . , Pn be an n-set partition of S ′, let ai ∈ Pi for

i ∈ {1, . . . , n}, and let p be the smallest prime divisor of m. If n ≥ min{m
p
−1, |S′|−n+1

p
−1},

then either:

(i) there is an n-set partition A = A1, . . . , An of a subsequence S ′′ of S with |S ′| = |S ′′|,
n∑

i=1

Pi ⊆
n∑

i=1

Ai, ai ∈ Ai for i ∈ {1, . . . , n}, and

∣∣∣∣∣
n∑

i=1

Ai

∣∣∣∣∣ ≥ min{m, |S ′| − n + 1},

(ii) there is a proper, nontrivial subgroup Ha of index a, a coset α + Ha such that all

but e terms of S are from α + Ha, where

e ≤ min{a − 2,

⌊ |S ′| − n

|Ha|
⌋
− 1},

an n-set partition A = A1, . . . , An of of subsequence S ′′ of S with |S ′′| = |S ′|,
n∑

i=1

Pi ⊆
n∑

i=1

Ai,

ai ∈ Ai for i ∈ {1, . . . , n}, and

∣∣∣∣
n∑

i=1

Ai

∣∣∣∣ ≥ (e+1)|Ha|, and an n-set partition B = B1, . . . , Bn

of a subsequence S ′′
0 of S, with all terms of S ′′

0 from α + Ha and |S ′′
0 | ≤ n + |Ha| − 1, such

that
n∑

i=1

Bi = nα + Ha.
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Theorem 2.7. Let S be a sequence of elements from an abelian group G of order m with

an n-set partition P = P1, . . . , Pn, and let p be the smallest prime divisor of m. Suppose

that n′ ≥ m
p
− 1, that |S| ≥ m + m

p
+ p− 3, and that P has at least n− n′ cardinality one

sets. Then either:

(i) there exists an n-set partition A = A1, A2, . . . , An of S with at least n−n′ cardinality

one sets, such that:

|
n∑

i=1

Ai| ≥ min {m, |S| − n + 1} ;

(ii) (a) there exists α ∈ G and a nontrivial proper subgroup Ha of index a such that

all but at most min{a − 2,
⌊
|S|−n
|Ha|

⌋
− 1} terms of S are from the coset α + Ha; and (b)

there exists an n-set partition A1, A2, . . . , An of the subsequence of S consisting of terms

from α + Ha such that
n∑

i=1

Ai = nα + Ha.

Proof. Let S ′ be the sequence partitioned by the n′-set partition P1, . . . , Pn′. Apply

Theorem 2.6 to S ′ with n′ = n. If Theorem 2.6(i) holds, then (i) follows by appending the

remaining n−n′ elements of S as singleton sets. Otherwise, Theorem 2.6(ii) implies (ii) by

replacing the elements of S removed from the Bi and appending on n− n′ elements from

the coset α+Ha as singleton sets (possible in view of the existence of the set partition A,

in fact, the proof of Theorem 2.6 obtains the set partition B by removing elements from

a set partition satisfying Theorem 2.7(ii)).

3 General upper and lower bounds

Theorem 3.1. Let m, j be integers with 2 ≤ j ≤ m, and let k =
⌊(

−1 +
√

8m−9+j
j−1

)
/2

⌋
.

Then fj(m, 2) ≥ 4m − 2 + (j − 1)k.

Proof. Consider the coloring ∆ : [1, 4m− 3 + (j − 1)k] → {0, 1} given by

0m−1−(j−1)
k(k+1)

2 (1j−10k(j−1))(1j−10(k−1)(j−1)) · · · (1j−102(j−1))(1j−10j−1)12m−10m−1 .

Using the quadratic formula, it can be easily verified that k is the greatest integer such

that
∑k

i=1(j − 1)i = (j − 1)k(k+1)
2

≤ m − 1. Thus,

∣∣∆−1(0) ∩ [1, m − 1 + (j − 1)k]
∣∣ = m − 1,

and ∣∣∆−1(1) ∩ [1, m − 1 + (j − 1)k]
∣∣ = (j − 1)k ≤ m − 1.

Suppose there exist sets B1, B2 which are an (m, j)-solution. Notice that ∆(B1) 6= {0},
since otherwise |[max(B1) + 1, 4m − 3 + (j − 1)k]| ≤ m − 2. Similarly, ∆(B2) 6= {0}.
Thus ∆(Bi) = {1} for i = 1, 2. Furthermore, given any m-set B with ∆(B) = {1}, there
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exists an m-set B∗ with ∆(B∗) = {1} satisfying max(B∗) ≤ max(B), gj(B
∗) ≤ gj(B), and

(j−1)|gj(B
∗) (simply compress the set B inwards until the first j integers are consecutive

with the exception of one gap of length t(j − 1) where a single block of zero’s prevents

further compression). Therefore we may assume gj(B1) = j − 1 + t(j − 1) for some

t ∈ {0, 1, . . . , k}. Since max(B1) < min(B2), it follows that B2 is contained within the

last 2m − 1 + t(j − 1) − m integers colored by 1, i.e. that

B2 ⊂ ∆−1(1) ∩ [q (m − 1 + (j − 1)t, 1) , 4m − 3 + (j − 1)k] .

Hence, since |∆−1(1) ∩ [1, m − 1 + (j − 1)k]| = (j−1)k ≤ m−1 forces B2 to be contained

in the block of 2m − 1 consecutive integers colored by 1, it follows that

gj(B2) ≤ (j − 1) + (m − 1 + (j − 1)t) − m = (t + 1)(j − 1) − 1.

Consequently, gj(B1) > gj(B2), a contradiction.

Remark: Theorem 3.1 yields the lower bounds fm(m, 2) ≥ 5m − 3 and fm−1(m, 2) ≥
5m−4. It is shown in [8] that the former lower bound is sharp, and we show in this paper

that the latter lower bound is sharp for m ≥ 9 as well. Therefore, the construction given

in Theorem 3.1 is the best possible in some (though not all) cases.

Lemma 3.2. Let m, j be integers satisfying 2 ≤ j ≤ m. If ∆ : [1, 3m− 2] → {0, 1} is an

arbitrary coloring, then one of the following holds:

(i) there exists a monochromatic m-set B ⊂ [1, 3m − 2] satisfying gj(B) ≥ m + j − 2,

(ii) there exists an (m, j)-solution,

(iii) the coloring ∆ is given (up to symmetry) by 1r0H, for some r ∈ [j, m−1], and there

exists a monochromatic m-set B ⊂ 0H for which gj(B) ≥ m + 2j − r − 3.

Proof. Assume w.l.o.g. ∆(1) = 1. If |∆−1(1)| < m, then |∆−1(0)| ≥ 2m − 1, whence (i)

follows. So |∆−1(1)| ≥ m. Let S = [m+j−1, 3m−2]. Since ∆(1) = 1 and |∆−1(1)| ≥ m,

it follows that if |∆−1(1) ∩ S| ≥ m− j + 1, then (i) follows. Hence |∆−1(1) ∩ S| ≤ m− j,

whence ∣∣∆−1(0) ∩ S
∣∣ ≥ m. (1)

Let y2 < y3 < · · · < ym ∈ ∆−1(0) ∩ S be a final segment. Observe, since |∆−1(1) ∩ S| ≤
m − j, that yj ≥ m + 2j − 2. Hence, if there exists i ∈ [1, j] such that ∆(i) = 0, then

(i) follows. Consequently, ∆(i) = 1 for i ∈ [1, j]. However, if ∆(i) = 1 for i ∈ [1, m],

then (ii) follows in view of (1). Therefore, there exists a minimal i ∈ [j + 1, m] such

that ∆(i) = 0. Define r = i − 1. Then the set B = {r + 1, y2, . . . , ym} satisfies gj(B) ≥
m + 2j − 2 − (r + 1) = m + 2j − r − 3, whence (iii) follows.

Theorem 3.3. Let m, j be integers satisfying 2 ≤ j ≤ m. Then fj(m, 2) ≤ 5m − 3.
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Proof. Let ∆ : [1, 5m − 3] → {0, 1} be an arbitrary coloring. Apply Lemma 3.2 to the

interval [2m, 5m − 3]. If Lemma 3.2(ii) holds, then the proof is complete, and if Lemma

3.2(i) holds, then by applying the pigeonhole principle to [1, 2m − 1] the proof is also

complete. Thus we may assume Lemma 3.2(iii) holds, so that w.l.o.g.

∆[2m, 5m − 3] = 1r0H,

where r and H are as in Lemma 3.2(iii), and that there is a monochromatic subset

B ⊂ [2m + r, 5m − 3] with gj(B) ≥ m + 2j − r − 3. Let S = [1, 2j − 1].

Case 1: |∆−1(1) ∩ S| ≥ j.

Since r ≤ m − 1, it follows that gj(B) ≥ 2j − 2. Hence we may assume

∣∣∆−1(1) ∩ [1, 2m + r − 1]
∣∣ ≤ m − 1.

But then since ∆([2m, 2m + r − 1]) = {1}, it follows that

∣∣∆−1(1) ∩ [2j, 2m − 1]
∣∣ ≤ m − j − r − 1, (2)

implying, since j ≤ r, that

∣∣∆−1(0) ∩ [2j, 2m − 1]
∣∣ ≥ m − j + r + 1 ≥ m.

Let y1, y2, . . . , ym ∈ ∆−1(0) ∩ [2j, 2m − 1] be an initial segment. Then by (2), it follows

that B1 = {y1, . . . , ym} is a monochromatic m-set with gj(B1) ≤ m− r− 2, whence B1, B

are an (m, j)-solution.

Case 2: |∆−1(0) ∩ S| ≥ j.

It follows, as in Case 1, that

∣∣∆−1(0) ∩ [1, 2m + r − 1]
∣∣ ≤ m − 1. (3)

Let d be the positive integer such that r is contained in the interval

m + j − 1 − m − 1

d
≤ r < m + j − 1 − m − 1

d + 1
; (4)

note, since

lim
d→∞

(m + j − 1 − m − 1

d
) = m + j − 1 > m,

and since in view of Lemma 3.2(iii) we have j ≤ r < m, it follows that such a d exists.

Also note that if j ≥ m
d
, then (4) implies m − 1 < r, a contradiction. Hence we may

assume j < m
d
. From (3) and (4), it follows that

∣∣∆−1(1) ∩ [1, 2m + r − 1]
∣∣ ≥ m + r ≥ m + (m + j − 1 − m − 1

d
). (5)
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But then, letting b be the m− j + 1 greatest integer colored by 1 in [1, 2m + r − 1], since

j < m
d
, it follows from (5) that

∣∣∆−1(1) ∩ [1, b]
∣∣ ≥ m + j − 1 − m

d
+ j = (d − 1)

m

d
+ 2(j − 1) + 1 ≥ (d + 1)(j − 1) + 1.

Hence let z1 < z2 < · · · < zm−j ∈ {∆−1(1) ∩ [1, 2m + r − 1]} be a final segment, and let

y1 < y2 < · · · < y(d+1)(j−1)+1 ∈ {∆−1(1) ∩ [1, 2m + r − 1]} be an initial segment. If for

some index i ∈ [0, d]

∣∣∆−1(0) ∩ [yi(j−1)+1, y(i+1)(j−1)+1]
∣∣ ≤ m + j − r − 2,

then B1 = {yi(j−1)+1, yi(j−1)+2, . . . , y(i+1)(j−1)+1, z1, z2, . . . , zm−j} is a monochromatic m-set

with gj(B1) ≤ m+2j− r−3 = gj(B), whence B1, B are an (m, j)-solution, and the proof

is complete. Therefore, we may assume that

∣∣∆−1(0) ∩ [yi(j−1)+1, y(i+1)(j−1)+1]
∣∣ ≥ m + j − r − 1 for i = 0, 1, . . . , d.

But then the above inequalities and (4) imply that

∣∣∆−1(0) ∩ [1, 2m + r − 1]
∣∣ ≥ (d + 1)(m + j − r − 1) > m − 1,

contradicting (3), and completing the proof.

Corollary 3.4. F (m, 2) = 5m − 3.

Proof. Theorem 3.1 with j = m implies that fm(m, 2) ≥ 5m−3, whence F (m, 2) ≥ 5m−3.

Theorem 3.3 implies that F (m, 2) ≤ 5m − 3, as needed.

Lemma 3.5. Let m, j be integers satisfying 2 ≤ j ≤ m, and let ∆ : [1, 4m− 3] → Zm be

an arbitrary coloring.

(i) If m is prime, then there exists a zero-sum m-set B ⊂ [1, 4m−3] with gj(B) ≥ m+j−2;

(ii) If j ≥ m
p
+p−1, where p is the smallest prime divisor of m, then there exists a zero-sum

m-set B ⊂ [1, 4m − 3] with gj(B) ≥ m + j − 2.

Proof. Consider the interval S = [m + 1, 4m − 3]. If there does not exist a (2m − 2)-set

partition of the sequence ∆S with m− 1 sets of cardinality 2, then since |S| = 3m− 3, it

follows that there exists a ∈ Zm such that

∣∣∆−1(a) ∩ S
∣∣ ≥ 2m − 1 and

∣∣∆−1(Zm \ {a}) ∩ S
∣∣ ≤ m − 2.

Let y1 < y2 < · · · < y2m−1 ∈ ∆−1(a) ∩ S and B = {y1, . . . , yj−1, ym+j−1, ym+j, . . . , y2m−1}.
Then gj(B) ≥ m + j − 2, and the proof is complete. So we may assume that there exists

a (2m − 2)-set partition P of the sequence ∆S with (m − 1) sets of cardinality 2.

Suppose first that m is prime. Define x1 = 1. Applying the Cauchy-Davenport

theorem to P , it follows that there exist integers x2 < x3 < · · · < xm ∈ S such that
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∑m
i=2 ∆(xi) = −∆(x1). Thus, (x1, . . . , xm) is zero-sum. Furthermore, by definition of

the xi’s, we have xj ≥ m + 1 + (j − 2) = m + j − 1, so that B = {x1, . . . , xm} satisfies

gj(B) ≥ m + j − 2, and (i) follows.

To prove (ii), suppose j ≥ m
p

+ p − 1, where p is the smallest prime divisor of m.

Applying Theorem 2.7 to P , it follows that either Theorem 2.7(i) holds and there exist

integers x2, . . . , xm ∈ S such that (1, x2, x3 . . . , xm) is zero-sum (note the resulting (2m−
2)-set partition from Theorem 2.7(i) will have at most m− 1 sets with cardinality greater

than one; hence since by Theorem 2.7(i) we have that the cardinality of the sumset of that

(2m−2)-set partition is at least m, then given any one of the m elements from Zm it follows

that we can find a selection of m− 1 terms from the resulting set partition, including one

from each set with cardinality greater than one, which sum to the additive inverse of that

element), whence the proof is complete as above; or else Theorem 2.7(ii) holds and there

exists a coset, which w.l.o.g. we may assume by translation is a subgroup, say aZm, such

that all but at most a−2 terms of the sequence ∆S are elements of Ha, whence it follows

from Theorem 2.3 that any subset T ⊂ S satisfying |T | ≥ m + m
a
− 1 + (a − 2) contains

a zero-sum m-tuple. Let

S1 = [m + 1, m +
m

p
+ p − 2] and S2 = [3m − 1, 4m − 3].

Since |S1 ∪ S2| = m + m
p

+ p − 3 ≥ m + m
a
− 1 + (a − 2), it follows that there exist m

integers x1 < x2 < · · · < xm ∈ S1 ∪ S2 such that
∑m

i=1 ∆(xi) = 0. Since |S2| = m − 1, we

must have x1 ∈ S1. Furthermore, since |S1| = m
p

+ p − 2 ≤ j − 1, we must have xj ∈ S2.

Hence it follows that B = {x1, . . . , xm} is a zero-sum m-set satisfying gj(B) ≥ m + j − 2,

whence (ii) is satisfied.

Lemma 3.6. Let m, j be positive integers satisfying 2 ≤ j ≤ m, let p be the smallest

prime divisor of m, and let ∆ : [1, 6m + m
p
− 5] → Zm be an arbitrary coloring. Then one

of the following holds:

(i) there exists a zero-sum m-set B ⊂ [1, 6m + m
p
− 5] satisfying gj(B) ≥ m + j − 2;

(ii) there exists an (m, j, Zm)-solution.

Proof. Let D be the sequence
(
∆

(
m + m

p

)
, ∆

(
m + m

p
+ 1

)
, . . . , ∆

(
4m + m

p
− 4

))
. In

view of the arguments from the third paragraph of the proof of Lemma 3.5, applied to

the interval [m + m
p
, 4m + m

p
− 4] rather than [m + 1, 4m− 3], we may assume that there

exists a subgroup, say aZm, such that all but at most a − 2 terms of D are all elements

of Ha, and, furthermore, that there exists a (2m − 2)-set partition P1 of the terms of D

which are elements of Ha such that the sumset of P1 is Ha. Finally, from Theorem 2.1 it

follows that from among the sequence

(∆(1), ∆(2), ∆(3), · · · , ∆(a))

we can find a subsequence D1 of length 1 ≤ q ≤ a whose terms are consecutive and whose

sum is an element h ∈ Ha.
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Case 1: q < j.

From Proposition 2.5 it follows, by selectively deleting terms from P1, that we can find

an (m − q)-set partition P2 of a subsequence D2 of D such that the sumset of P2 is still

Ha. Consequently, we can find an m− q terms of D2 with sum −h, which, together with

the terms of D1, gives an m-element zero-sum subset B with gj(B) ≥ m + j − 2.

Case 2: q ≥ j.

By the arguments in Case 1, we can find an m-element zero-sum set B1 ⊂ [1, 4m+m
p
−4]

which includes all q ≥ j consecutive elements of D1, and hence gj(B1) ≤ j−1. By Theorem

0, there exists an m-element zero-sum set B2 ⊂ [4m + m
p
− 3, 6m + m

p
− 5]. Since B1, B2

are an (m, j, Zm)-solution, the proof is complete.

Theorem 3.7. Let m, j be integers satisfying 2 ≤ j ≤ m.

(i) If m is prime, then fj(m, Zm) ≤ 6m − 4.

(ii) If j ≥ m
p

+p−1, where p is the smallest prime divisor of m, then fj(m, Zm) ≤ 6m−4.

(iii) fj(m, Zm) ≤ 8m + m
p
− 6.

Proof. Let s ∈ {6m − 4, 8m + m
p
− 6}, and let ∆ : [1, s] → Zm be an arbitrary coloring.

By Theorem 0, there exists a zero-sum m-set B ⊂ [1, 2m− 1], and, furthermore, we have

gj(B) ≤ m + j − 2. The proof of (i) and (ii) is complete by letting s = 6m − 4 and

applying Lemma 3.5 (i) or (ii) to [2m, s], respectively. To show (iii), set s = 8m + m
p
− 6,

and apply Lemma 3.6 to [2m, s].

Corollary 3.8. lim inf
m→∞

F (m,Zm)
F (m,2)

≤ 1.2.

Proof. The result follows from Corollary 3.4 and Theorem 3.7(i).

4 Determination of fm−1(m, 2) and fm−1(m, Zm)

For notational convenience, let f(m, 2) and f(m, Zm) denote fm−1(m, 2) and fm−1(m, Zm),

respectively. Furthermore, let g denote the function gm−1. Finally, we use the terminology

m-solution and (m, Zm)-solution for (m, m − 1)-solution and (m, m − 1, Zm)-solution,

respectively.

Lemma 4.1. Let m ≥ 3 be an integer, and let ∆ : [1, 3m − 3] → {0, 1} be a coloring.

Then one of the following holds:

(i) there exists a monochromatic m-set B ⊂ [1, 3m − 3] with g(B) ≥ 2m − 4;

(ii) there exists an m-solution;

(iii) the coloring ∆ is given (up to symmetry) by 1m−102m−31 or 1m−102m−410.

Proof. The proof is similar to that of Lemma 3.2 with j = m − 1, and we omit it.

Lemma 4.2. Let m ≥ 9 be an integer, and let ∆ : [1, 3m− 3] → Zm be a coloring. Then

one of the following holds:
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(i) there exists a zero-sum m-set B ⊂ [1, 3m − 3] with g(B) ≥ 2m − 3;

(ii) there exists an (m, Zm)-solution;

(iii) ∆ is given by 1m−221m−20m, 1m−121m−30m or 1m−321m−10m, up to affine transfor-

mation;

(iv) ∆ is given up to affine transformation by 1m−10H, and there exists B ⊂ 0H satisfying

g(B) = 2m − 4;

(v) ∆ reduces to monochromatic.

Proof. Define S1 = {1, 3m− 4, 3m− 3} and observe that if there exists a zero-sum m-set

which uses all the elements of S1, then (i) follows. Let S = [1, 3m− 3] \ S1, and let D be

the sequence ∆(2), ∆(3), . . . , ∆(3m−5). First, we will prove (in Case 1) the lemma under

a very special coloring, and then we will show that the general problem can be reduced

to this special case.

Case 1: ∆([1, 3m − 3]) = {0, 1, 2} and |∆−1(2)| = 1.

Note that |∆−1(1)| ≥ m − 2, as otherwise (v) follows. Therefore there is a zero-sum

m-set B satisfying |B ∩ ∆−1(2)| = 1, |B ∩ ∆−1(1)| = m − 2, and |B ∩ ∆−1(0)| = 1

that contains {1, a, b}, for all distinct a, b ∈ [2m − 2, 3m − 3] such that at most one of

the elements of {1, a, b} is colored by zero. Hence either g(B) ≥ 2m − 3 yielding (i),

or else every such triple {1, a, b} has two of its elements colored by zero. However, this

latter case implies either that there exists a monochromatic m-set B with 1 ∈ B and

|B ∩ [2m− 2, 3m− 3]| = m− 1 yielding (i) (if ∆(1) = 0), or that ∆[2m− 2, 3m− 3] = 0m,

whence ∆(1) ∈ {1, 2}. Suppose |∆−1(0)| = m. Then it is easy to see that (iii) holds unless

there are m consecutive 1’s, in which case (ii) follows. Therefore, we may assume that

|∆−1(0)| ≥ m + 1. Then 0 /∈ ∆([1, m− 1]) as otherwise (i) follows. Thus 2 /∈ ∆([1, m]) as

otherwise (ii) follows (take for your first set m − 1 consecutive integers from [1, m] that

include an integer colored by 2 along with Π(1, 0), and for your second set choose any

other m integers colored by 0). Hence ∆(i) = 1 for i ∈ [1, m − 1] and ∆(m) = 0, whence

(iv) follows with B = {m} ∪ [2m − 1, 3m − 3].

Case 2: There does not exist Q ⊆ [1, 3m−3] with |Q| = m+1 and |∆([1, 3m−3]\Q)| = 1.

Suppose there does not exist x ∈ S such that |∆(S \ x)| = 2. Hence, from the

assumption of the case it follows that we can find a (2m− 5)-set partition P of the terms

of D which has at least (m−2) sets of cardinality 1, and consequently at most m−3 sets

with cardinality greater than one. Applying Theorem 2.7 to P , we conclude that either

Theorem 2.7(i) holds—whence the cardinality of the sumset of the resulting (2m− 5)-set

partition will be m, allowing us to choose a selection of m − 3 terms (including one from

every set with cardinality greater than one) whose sum is the additive inverse of the sum

of terms from S1, yielding (i)—or else that Theorem 2.7(ii) holds, whence all but at most

a − 2 + 3 of the elements of [1, 3m − 3] are colored by elements from the same coset

α + aZm of Zm. Hence, Theorem 2.3 implies that any subset of [1, 3m− 3] of cardinality

(m + m
a
− 1 + a + 1) must contain a zero-sum m-set. Thus there is a zero-sum m-set

B ⊆ [1, m − 2] ∪ [3m − 4 − a − m

a
, 3m − 3],
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and as m
a

+ a + 2 ≤ m − 1 for m ≥ 9, it follows that

g(B) ≥ 3m − 5 − a − m

a
≥ 2m − 2,

whence (i) follows.

So we may assume that there exists x ∈ S such that |∆(S \ x)| = 2 (i.e., that S is

essentially dichromatic). One of the sets S2 = {2, 3m−5, 3m−6}, S3 = {3, 3m−5, 3m−6},
S4 = {2, 3m − 7, 3m − 6} or S5 = {2, 3m − 7, 3m − 5}, say S3, does not contain x. Let

∆(S) = {α1, α2, ∆(x)} and let S ′ = [1, 3m−3]\S3. Apply the arguments of the preceding

paragraph to S ′. If some αi, say α1, colors at most one term in S ′, then α1 colors at most

1+|S3|+|S1| = 7 integers in total, whence α2 colors all but 8 ≤ m−1 integers, yielding (v).

Thus we can assume otherwise. Hence, since x ∈ S ′, it follows that [1, 3m− 3] \ {x} must

be colored by the two residue classes α1 and α2, since otherwise (i) follows. Furthermore,

we conclude that ∆(x) = β /∈ {α1, α2} as otherwise (v) again follows.

Let α1−α2 = a. If (a, m) 6= 1, then Theorem 2.3 implies that any subset of [1, 3m−3]

of cardinality m + m
a
− 1 + 1 contains a zero-sum m-set, whence the proof is complete by

the arguments at the end of the first paragraph of Case 2. So, (a, m) = 1, and hence by

an affine transformation we may assume that {α1, α2} = {0, 1}. Furthermore, if ∆(x) is

not equal to 2 or −1, then there will be a zero-sum m-set B satisfying |B ∩ {x}| = 1,

|B ∩ ∆−1(1)| = m − ∆(x) ≥ 2, and |B ∩ ∆−1(0)| = ∆(x) − 1 ≥ 2 that contains {1, a, b}
for some distinct a, b ∈ [2m − 1, 3m − 3], and hence gj(B) ≥ 2m − 2, unless every pair

{a, b} satisfies ∆(1) = ∆(a) = ∆(b), in which case B = {1} ∪ [2m − 1, 3m − 3] is a

monochromatic m-set B with gj(B) ≥ 2m − 2. In both cases (i) follows. Hence, by the

affine transformation exchanging 0 and 1 if ∆(x) = −1, this reduces to Case 1.

Case 3: There exists Q ⊆ [1, 3m− 3] such that |Q| = m+1 and |∆([1, 3m− 3] \Q)| = 1.

Assume w.l.o.g. ∆([1, 3m − 3] \ Q) = {0}. Let R denote a sequence of m − 1 0’s.

Define C = Q \ ∆−1(0). Observe that if |C| ≤ m − 1, then (v) follows.

First assume that |C| = m. Let S1 range over all possible subsequences of ∆C of length

m−2. Hence, since |∆(C)| ≥ 2 else (v) follows, then applying Theorem 2.4 to each S1∪R,

it follows that there exists a zero-sum subset C ′ ⊂ C such that 1 < |C ′| ≤ m − 2, unless

w.l.o.g. ∆(C) = {1, 2} and |∆−1(2)∩C| = 1, which reduces to Case 1. So we may assume

such C ′ exists.

Let y1 = Π(1, 0), y2 = q(2, 0), and y3 = q(1, 0). Notice that there will be a

monochromatic m-set B with g(B) ≥ 2m − 3 unless at least m − 1 elements of C lie

in [1, y1−1]∪ [y2 +1, 3m−3]. Hence, since 2 ≤ |C ′| ≤ m−2, it follows that C ′ in addition

to m − |C ′| elements colored by zero, including y1, y2 and y3 (if |C ′| < m − 2) or y1 and

y3 (if |C ′| = m− 2, max(C ′) > y2), or y2 and y3 (if |C ′| = m− 2, max(C ′) < y2) will form

a zero-sum m-set B satisfying g(B) ≥ 2m − 3, yielding (i).

So assume that |C| = m + 1. As above, we may assume that there exists a zero-sum

subset C ′ ⊂ C such that 2 ≤ |C ′| ≤ m−2. If |C ′| ≥ 3, then, as in the previous paragraph,

it follows that C ′ in addition to m−|C ′| elements colored by zero, including y1, y2 and y3
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(if |C ′| < m−2) or y1 and y3 (if |C ′| = m−2, max(C ′) > y2), or y2 and y3 (if |C ′| = m−2,

max(C ′) < y2) will form a zero-sum m-set B satisfying g(B) ≥ 2m − 3, yielding (i). So

we can assume all such zero-sum subsets C ′ of C have cardinality two.

Since m − 2 ≥ 4, and since all zero-sums C ′ have cardinality two, it follows that any

two such zero-sums must intersect (else the union of two disjoint ones would give a zero-

sum of size 4 ≤ m − 2). Suppose the intersection of all the 2-term zero-sum subsets of

C is empty. Hence there must be exactly three 2-term zero-sums that pairwise intersect

each other with empty three-fold intersection (there can be no more, else there are two

disjoint ones, and no fewer, else we contradict the previous sentence). Since this is only

possible if all three of these zero-sums are monochromatic in m
2
, it follows that there are

exactly three integers x1, x2 and x3 colored by m
2

(there can be no more, else we have

a 4-term zero-sum consisting of four elements colored by m
2
). Let Y = C \ {x1, x2, y},

where y ∈ C is such that ∆(y) 6= m
2
. Then Y is colored by at least two distinct residues,

including m
2
. Hence applying Theorem 2.4 to R ∪ Y yields a zero-sum C ′′ ⊆ Y ⊆ C with

2 ≤ |C ′′| ≤ |Y | = m − 2. However, since x1, x2 /∈ C ′′, it follows that C ′′ must be distinct

from the original three zero-sum subsets, contradicting that C contained exactly three

zero-sum subsets of size at most m − 2. So we may assume there is a term z ∈ C such

that z is contained in every zero-sum subset C ′ ⊆ C with 2 = |C ′| ≤ m − 2.

Applying the arguments of the second paragraph of Case 3 to C \{z}, we contract the

uniqueness of z ∈ C ′, or we conclude w.l.o.g. that ∆(C \{z}) ⊆ {1, 2} and |∆−1(2)∩ (C \
{z})| ≤ 1. Since z is one element of a two element zero-sum set, it follows that we must

have ∆(z) = −1 or ∆(z) = −2. If ∆(z) = −2, then we can find C ′ with ∆C ′ = −212,

and this reduces to the case |C ′| ≥ 3. So we can assume ∆(z) = −1. Furthermore, we

can assume |∆−1(2) ∩ C| = 1, else the affine transformation exchanging 0 and 1 reduces

to the hypotheses of Case 1. Thus C is colored (up to order) by the sequence 1m−1(−1)2.

Let z′ be the element colored by 2.

Hence the pair {z, c} is zero-sum for every c ∈ C \ {z, z′}. Let z1 < z2 be the first

two elements from C, and let z3 < z4 < z5 be the last three elements of C. As noted

before, at least m − 1 elements of C lie in [1, y1 − 1] ∪ [y2 + 1, 3m − 3], so that at most

2 elements of C can lie in [y1, y2]. Since m − 1 ≥ 7, it follows that one of [1, y1 − 1] and

[y2 + 1, 3m − 3] must contain at least 4 elements of C. Hence, if [1, y1 − 1] contains at

least 4 elements from C, then y2 ≥ (3m− 3)− (m + 1− 4)− 2 + 1 = 2m− 1, and we can

choose C ′ so that it contains z1 or z2, whence C ′ in addition to m − 2 elements colored

by zero, including y1, y2 and y3, will form a zero-sum m-set B such that min B ≤ 2 and

g(B) ≥ 2m− 3, yielding (i). Therefore we can assume otherwise, whence [y2 + 1, 3m− 3]

must contain at least 4 elements of C.

In this case, if |C ∩ [y1, y2]| = 2, then we can choose C ′ so that it contains one of z5

or z4, whence C ′ in addition to m − 2 elements colored by zero, including y1, y2 and y3,

will form a zero-sum m-set B satisfying g(B) ≥ 2m − 3, yielding (i). Therefore we can

assume |C ∩ [y1, y2]| ≤ 1. Hence there must be at least m elements of C outside [y1, y2],

at most three less than y1 (from the conclusion of the last paragraph), and consequently
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at least m−4 ≥ 5 elements of C greater than y2. Thus zi ≥ y2 +3 for i ≥ 3, and we must

have z ≤ y2 + 2, else we can choose C ′ so that it contains z and one of z3 or z4 or z5 that

is distinct from z, forming, along with m − 2 integers colored by zero that include y1, y2

and y3, a zero-sum m-set B satisfying g(B) ≥ 2m − 3, yielding (i). Hence, since there

are at least five elements of C greater than y2, it follows that at least two of y5, y4, and

y3 must be colored by 1, say yl1 and yl2 . But then the m-set consisting of yl1, yl2 , m − 4

additional elements colored by 1, y1, and z′ (recall ∆(z′) = 2), forms a zero-sum subset

B with g(B) ≥ 2m − 3, completing the proof.

Lemma 4.3. Let m ≥ 5 be an integer and let ∆ : [1, 5m − 4] → Zm be an arbitrary

coloring. If there exists an integer γ ≥ 2m such that ∆([γ, γ + m− 4]) = {z}, a zero-sum

m-set B2 ⊂ [γ, 5m− 4] with g(B2) ≥ 2m− 4, a zero-sum m-set B3 ⊂ [γ + 1, 5m− 4] with

g(B3) ≥ 2m − 5, a zero-sum m-set B4 ⊂ [γ +
⌊

m
2

⌋
, 5m − 4] with g(B4) ≥ m + dm

2
e − 4,

an integer r ≥ γ + m− 3 such that ∆(r) = z, and a zero-sum m-set B5 ⊂ [r + 1, 5m− 4],

then there exists an (m, Zm)-solution.

Proof. We may w.l.o.g. assume z = 0. Let S = [γ−2m+1, γ−1], S1 = [γ−2m+2, γ−1]

and S2 = [γ−2m+1, γ−3]∪{γ−1}. Since g(B2) ≥ 2m−4, we can assume that neither

S1 nor S2 contains a zero-sum m-set, whence Theorem 2.4(a) implies that |∆(S)| = 2.

Let S3 = [γ − 2m + 4, γ]. Since g(B3) ≥ 2m − 5, we conclude that there does not exist a

zero-sum m-set in S3, whence, since |∆(S)| = 2, in view of Theorem 2.4 (we remark that

the roles/multiplicities of 0, 1 and 2 are not as they are in Theorem 2.4) it follows w.l.o.g.

that ∆(S) = {1, 2} or ∆(S) = {0, b}.
Suppose first that ∆(S) = {1, 2}. Let δ be the maximal integer such that

s =

γ−1∑
i=δ

∆(i) ≥ m.

Then γ − m ≤ δ ≤ γ − dm
2
e. Notice that s ∈ {m, m + 1}. Furthermore, if s = m, then

B1 = {δ, δ + 1, . . . , δ + m − 1} satisfies g(B1) = m − 2, whence B1, B4 are an (m, Zm)-

solution.

Therefore we may assume that s = m+1. Suppose there exists j ∈ [δ, γ−1] such that

∆(j) = 1. If m is even, then δ < γ − dm
2
e. On the other hand, if m is odd, then since

s = m + 1, it follows that there are at least two integers colored by 1 in [δ, γ − 1], whence

δ < γ − dm
2
e as well. Thus B1 = {δ, δ + 1, . . . , δ + m} \ {j} is a zero-sum m-set satisfying

g(B1) = m − 1, which together with B4 yields an (m, Zm)-solution.

So we may assume that ∆(j) = 2 for j ∈ [δ, γ − 1], whence m is odd as s = m + 1.

Now, we may assume that there exists a maximal integer γ − m ≤ β ≤ γ − 1 such that

∆(β) = 1, since otherwise B1 = {γ−m, γ−m+1, . . . , γ−1} is a zero-sum m-set satisfying

g(B1) ≤ m−2, and the proof is complete as in the preceding paragraph. If β ≥ γ−m+1,

then there exists a zero-sum m-set B ⊂ [β, γ − 1 + m−1
2

] satisfying g(B) ≤ 3m−7
2

. But

then B, B4 are an (m, Zm)-solution. Therefore, we may assume that β = γ − m, whence
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∆[γ −m+1, γ −1] = 2m−1. Hence, since B2 ⊂ [γ, 5m−4] is such that g(B2) ≥ 2m−4, it

follows that ∆(j) = 1 for j ∈ [γ−2m+3, γ−m]. But then B1 = [γ−2m+3, γ−m+1]∪{γ}
satisfies g(B1) = m − 2, whence B1 and B4 form an (m, Zm)-solution.

So we may assume that ∆(S) = {0, b}. By Theorem 0, there exists a zero-sum m-set

B ⊂ [γ − 2m + 1, γ − 1]. Since g(B2) ≥ 2m − 4, we may assume that g(B) = 2m − 3,

whence ∆(γ−2m+1) = ∆(γ−2) = ∆(γ−1) and |∆−1(∆(γ−1))| = m. If ∆(γ−1) = 0,

then B1 = {γ − 2, γ − 1, . . . , γ + m − 4, r} and B5 are an (m, Zm)-solution. So we may

assume that ∆(γ−1) = b. Let y1 < y2 < · · · < ym−1 ∈ ∆−1(0)∩ [γ−2m+2, γ−3]. Then

B1 = {y1, y2, . . . , ym−1, γ} and B3 are an (m, Zm)-solution.

Theorem 4.4. If m ≥ 9 is an integer, then f(m, Zm) = f(m, 2) = 5m − 4.

Proof. Since f(m, 2) ≤ f(m, Zm) holds trivially, in view of Theorem 3.1 it suffices for us

to show f(m, Zm) ≤ 5m − 4. Let ∆ : [1, 5m − 4] → Zm be an arbitrary coloring. By

Theorem 0, there exists a zero-sum m-set B ⊂ [1, 2m−1] with g(B) ≤ 2m−3. Therefore,

applying Lemma 4.2 to S = [2m, 5m − 4], we may assume that neither (i) nor (ii) hold.

If (iii) holds, then the proof is complete by Lemma 4.3 with γ = 2m. If (iv) holds, then

the proof is again complete by Lemma 4.3 with γ = 2m (let B = Bi for all i ∈ [1, 5]).

Thus, we may assume that conclusion (v) of Lemma 4.2 holds when applied to S. Let

∆∗ : S → {0, 1} be the natural induced coloring whose monochromatic m-sets are all

zero-sum under ∆.

Then we may apply Lemma 4.1 to S and ∆∗ and assume that conclusion (ii) does not

hold. Suppose first that conclusion (iii) of Lemma 4.1 holds. Then

∆∗S = 0m−112m−401 or ∆∗S = 0m−112m−30,

implying w.l.o.g., since each color class is used at least m times, that

∆S = 0m−1a2m−40a or ∆S = 0m−1a2m−30, (6)

where a ∈ Zm. From (6) the proof is complete by Theorem 2.4 applied to [m + 2, 3m− 2]

unless ∆([m + 2, 2m− 1]) = {b}, where b 6= 0, or w.l.o.g. ∆([m + 2, 2m− 1] \ {x}) = {1},
∆(x) = 2, for some x ∈ [m + 2, 2m− 1]. In the latter case, it can be checked that there is

an m-element zero-sum subset B′ ⊂ [m+2, 3m−1] with 3m−1 ∈ B′, and g(B′) ≤ m−1.

Likewise, in the former case if b 6= a, then it can be checked that there is an m-element

zero-sum subset B′ ⊂ [m + 2, 3m− 1] with g(B′) ≤ m − 2. Then, since 2m− 6 ≥ m − 1,

it follows from (6) that the proof is complete. So ∆([m + 2, 2m− 1]) = {a}.
If [5, m+1]∩∆−1(a) 6= ∅, then there will be an m-element monochromatic (in a) subset

B′ ⊂ [5, 3m−1], with g(B′) ≤ 2m−6, and from (6) the proof will be complete. Hence, in

view of Theorem 2.4(b) applied to [5, 2m + 1], it follows that ∆([5, m + 1]) = {0}, or else

there exists an m-element zero-sum subset B′ ⊆ [5, 2m + 1] with g(B′) ≤ 2m− 5, whence

from (6) the proof is complete. So ∆([5, m + 1]) = {0}. Likewise, if ∆([1, 4]) * {0, a},
then the proof will be complete by applying Theorem 2.4(b) to both [1, 2m − 4] ∪ {2m}
and [1, 2m− 3]. So we can conclude ∆([1, 2m − 1]) ⊆ {0, a}.
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If there exist integers j1 < j2 ∈ [1, 4] such that ∆(ji) = 0 for i = 1 and i = 2,

then B1 = {j1, j2, 5, 6, 7, . . . , m + 1, 2m} is a monochromatic m-set with g(B1) ≤ m,

and once more the proof is complete from (6). Therefore, we can assume that there

exist integers j1 < j2 < j3 ∈ [1, 4] such that ∆(ji) = a for i = 1, 2, 3, whence B1 =

{j1, j2, j3, m + 2, m + 3, . . . , 2m − 2} is a monochromatic m-set with g(B1) ≤ 2m − 4.

However, since ∆(2m − 1) = a, it follows from (6) that there exists a monochromatic

m-set B2 ⊂ {2m − 1} ∪ [4m − 3, 5m − 4] such that g(B2) ≥ 2m − 4, and the proof is

complete.

So we may assume that conclusion (i) of Lemma 4.1 holds. We consider two cases.

Case 1: There exists c ∈ {0, 1} such that |∆∗−1(c)| ≤ m − 1.

Without loss of generality c = 1. It follows that |∆∗−1(0)| ≥ 2m − 2. Furthermore,

we may assume that the first 2m − 3 of the integers colored by 0 are consecutive, since

otherwise under ∆ we obtain a zero-sum m-set B2 satisfying g(B2) ≥ 2m − 3, which

together with B completes the proof. Applying Lemma 4.3 with γ = min{∆−1(b) ∩ S},
where b is the color such that |∆−1(b)| ≥ 2m − 2, completes Case 1.

Case 2: There does not exist c ∈ {0, 1} such that |∆∗−1(c)| ≤ m − 1.

In this case |∆(S)| ≤ 2 and w.l.o.g. we may assume ∆(S) = {0, a} and that there exist

two integers i1, i2 ∈ [5m−6, 5m−4] such that ∆(i1) = ∆(i2) = a. Hence x = min{∆−1(a)∩
S} satisfies x ≥ 3m − 2, as otherwise there will be an m-set B2 monochromatic in a

satisfying g(B2) ≥ 2m−3, which along with B completes the proof. Notice that x ≤ 3m−1

as otherwise [2m, 3m − 1] is a monochromatic m-set which along with any m elements

colored by a form an (m, Zm)-solution. But then since conclusion (i) of Lemma 4.1 holds

for [2m, 5m − 4], and since (5m − 6) − (3m − 1) = 2m − 5 ≥ m + dm
2
e − 4, it follows, in

view of Lemma 4.4 with γ = 2m that the proof is complete.
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