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Abstract

We demonstrate a method for proving precise concentration inequalities in uni-
formly random trees on n vertices, where n > 1 is a fixed positive integer. The
method uses a bijection between mappings f : {1, . . . , n} → {1, . . . , n} and doubly
rooted trees on n vertices. The main application is a concentration inequality for
the number of vertices connected to an independent set in a uniformly random tree,
which is then used to prove partial unimodality of its independent set sequence.
While inequalities for random trees often use combinatorial arguments, our argu-
ment is perhaps more probabilistic.

Mathematics Subject Classifications: 60C05,05C80,60E15,05C69

1 Introduction

Let f : {1, . . . , n} → {1, . . . , n} be a mapping with associated directed graph G(f) with
vertices {1, . . . , n} and directed edges {(x, f(x)) : 1 6 x 6 n}. It is well known that G(f)
can be written as a union of trees connected to the cycles of G(f). Deleting or rearranging
some edges within the cycles of G(f) can then produce a tree. For example, we could
remove one edge from each cycle in G(f) and then string each of these cycles together,
while maintaining the structure of all non-cyclic vertices (see Figure 2 below). If the
cycles are connected in a reversed order according to their smallest elements (as in Figure
3), then we get a bijection R between mappings f : {1, . . . , n} → {1, . . . , n} and doubly
rooted trees on n vertices. The two roots in a tree correspond to the beginning and the end
of the path of cycles, respectively. This bijection requires deleting about log n edges from
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the mapping directed graph G(f), with high probability (see Lemma 21). Consequently,
random quantities depending on edges in G(f) are essentially the same after the bijection
R is applied to f . So, e.g. a concentration inequality for G(f) depending on edges applies
essentially unchanged to the image of f under R. Thus, the existence of the bijection R
(Theorem 1) can lead to concentration inequalities for random trees (Lemma 2).

The main point of this paper is a demonstration of a method for proving concentration
inequalities on random trees by first proving an inequality for random mappings and then
transferring that inequality to random trees via the bijection R.

1.1 History of the Rényi-Joyal Bijection

Joyal’s bijection [15] between mappings from {1, . . . , n} to itself and doubly rooted trees
on n vertices used any bijection between linear orders and permutations, when specifying
the action of the mapping bijection on the core of the mapping. That is, if Sn denotes the
set of permutations on n elements, then any bijection π : Sn → Sn yields a corresponding
lifted bijection Rπ between mappings from {1, . . . , n} to itself and doubly rooted trees on
n vertices. Choosing π to be the Rényi bijection [18, page 11] between linear orderings
and permutations, described in the previous paragraph by arranging the cycles of a per-
mutation in reverse order of their smallest elements, seems most natural. Rényi’s bijection
π [18] is often attributed to Foata [9], e.g. it is referred to as Foata’s transition lemma in
https://en.wikipedia.org/wiki/Permutation, though Rényi’s preceding publication
[18] was pointed out by Stanley [21, page 106]. Given a doubly rooted tree (T, r1, r2),
with r1, r2 ∈ {1, . . . , n}, let ρ(T, r1, r2) := T be the un-rooted tree T . We then study the
properties of un-rooted tree ρ(Rπ(f)).

By adding an additional randomization to the Joyal bijection, the authors of [2, 4]
(and also [3]) define a coupling between random walks on mapping directed graphs and
random walks on trees. Their coupling also works for non-uniform distributions on the
set of functions f : {1, . . . , n} → {1, . . . , n}.

1.2 Concentration Inequalities on Random Trees

Our main goal is a concentration inequality on random trees with the best possible con-
stants. Some of these concentration inequalities appear in the literature, albeit with
sub-optimal constants for our particular application. Alternative approaches to proving
concentration inequalities on random trees include the following non-exhaustive list:

• Give direct bounds on a moment generating function [23, 19], to e.g. deduce a
central limit theorem,

• Using extensions of bounded difference inequalities to dependent random variables,
such as [17, Theorem 3.7], or

• Using martingales [12] (e.g. the Aldous-Broder algorithm [6, 1]) and the Azuma-
Hoeffding inequality, Lemma 18.
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In [23, 19], a moment generating function is manipulated to obtain bounds on all
moments of a so-called additive tree parameter, and a central limit theorem follows from
these moment bounds. The bounds on the moment generating function itself might imply
a concentration inequality we could use, though it is unclear to the author if the method
of [23, 19] extends to the function on trees we consider in this work.

The constants that appear in bounded difference inequalities such as McDiardmid’s
inequality are far from optimal in our application, so that approach seems unnatural for
proving our desired result. The latter approach proves concentration, but it is often sub-
optimal, since e.g. the Azuma-Hoeffding inequality is not sharp for random quantities
with small expected value. One might hope to somehow use Talagrand’s convex distance
inequality [14, Theorem 2.29] in place of the Azuma-Hoeffding inequality in order to
improve the constants in the inequality, but Talagrand’s inequality requires independence,
so it might not be clear how to apply this inequality to random trees.

In [12], martingales are used to prove a Central Limit Theorem for Lipschitz tree
parameters, and an inverse polynomial type error bound for this central limit theorem is
given. Since we require concentration inequalities with exponential bounds rather than
inverse polynomial bounds, it is unclear whether or not the argument of [12] could be
adapted to our setting.

For more on random mappings, see [22, 16] and the references therein.

1.3 Our Contribution

Below, we let E(·) denote the set of undirected edges of a graph, we let ∆ denote the
symmetric difference of sets, and we let c(f) denote the number of cycles in the mapping
directed graph of f : {1, . . . , n} → {1, . . . , n}.

Theorem 1. There exists a bijection R from the set

{f : {1, . . . , n} → {1, . . . , n}}

to the set of doubly rooted trees on n vertices such that for all maps f

|E(R(f)) ∆E(G(f))| 6 2c(f).

1.4 The Main Application

The following Chernoff-type bounds are used in [11] to prove partial unimodality of the
independent set sequence of uniformly random labelled trees, with high probability as the
number of vertices n goes to infinity. An independent set in a graph is a subset of vertices
no two of which are connected by an edge.

Lemma 2 (Main Application to Independent Sets). Let S ⊆ {1, . . . , n} with |S| =
o((n− |S|)2). Let T be a uniformly random tree on n vertices, conditioned on S being an
independent set. Let N be the number of vertices in Sc not connected to S. Let α := |S| /n.
Then

P(|N − EN | > sEN + 1) 6 e−min(s,s2)n(1−α)2e−α/(1−α)/3, ∀ s > 0.
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More generally,

P(N < (1− s)EN − 1) 6 e−s
2n(1−α)2e−α/(1−α)/2, ∀ 0 < s < 1,

P(N > (1 + s)EN + 1) 6 e−s
2n(1−α)2e−α/(1−α)/(2+s), ∀ s > 0.

When α ∈ (0, 1) is fixed, we have |S| = αn as n→∞ in Lemma 2. In the asymptotic
regime where α→ 1−, Lemma 2 is vacuous.

1.5 Sketch of the Proof of Lemma 2

Lemma 2 is proven using the following general strategy.

• Begin with a random variable N(G(f)) defined on random mappings

f : {1, . . . , n} → {1, . . . , n}

that is a function of the edges in the mapping directed graph G(f) of f .

• Apply the (variant of the) Joyal bijection R to f , to obtain a doubly rooted tree
R(f) on n vertices and a corresponding random variable N(R(f)) defined now on
R(f).

• Theorem 1 says that the value of the random variables N(G(f)) and N(R(f)) do
not differ too much. (In our particular example, these two quantities differ by at
most 1, and this accounts for adding and subtracting some 1’s in Lemma 2.)

• By the previous item, if N(G(f)) satisfies a concentration inequality, then so does
N(R(f)). Lemma 2 is the resulting concentration inequality for N(G(f)). (In
Lemma 2, N(G(f)) satisfies Chernoff bounds as in Lemma 17 by some properties
of negatively associated random variables.)

So, one could generalize Lemma 2 in the following way. Suppose N(G(f)) is a function
of the edges of a graph satisfying a concentration inequality, where f : {1, . . . , n} →
{1, . . . , n} is a random mapping. Then the doubly rooted random tree on n vertices
satisfies the same concentration inequality, up to an additive difference between N(G(f))
and N(R(f)) (which is bounded in the worst case by the number of cycles in f , by
Theorem 1.) To this end, we also present a classical concentration inequality for the
number of cycles of a random mapping, in Lemma 21. So, in this generality, we could
replace the 1’s appearing in Lemma 2 with log n terms, if we are willing to have a different
exponential term in Lemma 2 as well, coming from Lemma 21.

1.6 Organization

• Theorem 1 is stated and proved as Lemma 9 below.

• Joyal’s original bijection is presented in Lemma 6.
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• A restriction of Theorem 1 is required to prove the main application, Lemma 2.
That is, we need restrict R−1 to doubly rooted trees such that a fixed set of vertices
S is an independent set. This restriction is demonstrated in Lemma 11.

• Section 4 lists some concentration inequalities cited elsewhere in this paper.

• Section 5 gives an algorithmic interpretation of Theorem 1. That is, we specify an
algorithm for sampling uniformly random labelled trees on n vertices.

• The Appendix, Section 6, proves some concentration inequalities for the number
of cycles in a random map. Theorem 1 and Lemma 2 are proven without Section
6. Both Lemmas 21 and 24 explain the comment from the introduction that the
tree/endofunction bijection deletes about log n edges from the mapping directed
graph, with high probability. This property is rather crucial, since deleting too
many edges during the bijection can ruin the transfer of the concentration inequality
between the trees and endofunctions.

2 Tree/Endofunction Bijections

As a warmup to the more technical Section 2.3, we present the Joyal bijection and the
Renyi-Joyal bijection. In fact, we will use the details of the present section during the
more technical Section 2.3.

Let n be a positive integer. We refer to a function f : {1, . . . , n} → {1, . . . , n} as a
mapping or endofunction. A tree on n labelled vertices {1, . . . , n} is a connected,
undirected graph with no cycles and no self-loops. A doubly rooted tree is a tree
together with an ordered pair of roots (r1, r2) ∈ {1, . . . , n}2.

2.1 Joyal Bijection

We now describe the concepts from the introduction more precisely.

Definition 3 (Core). Let f : {1, . . . , n} → {1, . . . , n}. For any integer j > 1 let f j

denote the composition of f with itself j times. Define the core of the mapping f to be

M =M(f) := {x ∈ {1, . . . , n} : ∃ j > 1 such that f j(x) = x}.

Definition 4 (Mapping Directed Graph). Let f : {1, . . . , n} → {1, . . . , n}. Define the
directed edge set

E(f) := {(x, f(x)) : x ∈ {1, . . . , n}}.

The directed graph ({1, . . . , n}, E(f)) is called the mapping directed graph of f . This
graph has c(f) cycles, where c(f) is the number of cycles of the permutation f |M (using
Lemma 5).

the electronic journal of combinatorics 29(2) (2022), #P2.33 5



1

3

8

2

7

4

6

59

Figure 1: Example of the mapping directed
graph of f . In this example, f(1) = 3, f(2) =
7, f(3) = 8, f(4) = 6, f(5) = 2, f(6) = 1,
f(7) = 2, f(8) = 1 and f(9) = 6. Also
M = {1, 2, 3, 7, 8}.

When T is a tree, we let E(T ) denote
the set of (undirected) edges of the tree.

Lemma 5. Let f : {1, . . . , n} → {1, . . . , n}.
Then f |M is a permutation on M.

Proof. Denote ` := f |M. We denote gcd
as the greatest common divisor of a set of
positive integers. If `(x) = `(y) for some
x, y ∈M, then let j := gcd{q > 1: `q(x) =
x}, and let k := gcd{q > 1: `q(y) = y}.
Without loss of generality, j 6 k. Then
`j(x) = `j(y) = x. Applying `k−j to both
sides gives `k(x) = `k(y) = y = `k−j(x) =
`k−j(y), implying that k = j by minimality
of k, so that x = y. That is, ` is injective.
If x ∈M, then `(f j−1(x)) = x, so that ` is
surjective. (We set f 0(x) := x.)

Since the original Joyal bijection was
described in French [15], we present it below for completeness. This bijection will then be
improved in Lemma 9 below. (A partial translation and commentary of [15] is available
at http://ozark.hendrix.edu/~yorgey/pub/series-formelles.pdf)

Lemma 6 (Joyal Bijection, [15]). There exists a bijection J from the set of mappings
{f : {1, . . . , n} → {1, . . . , n}} to the set of doubly rooted trees on n vertices such that

|E(f) ∆E(J(f))| 6 2 |M(f)| − 1.

(When we compute this symmetric difference, we remove the directions on the edges E(f),
and we count multiple edges from E(f) as distinct.)

Proof. Let f : {1, . . . , n} → {1, . . . , n}. Let M be the core of f , as in Definition 3. Let
m := |M|. Denote M =: {s1, s2, . . . , sm} such that s1 < s2 < · · · < sm. Consider the
undirected graph on the vertices V := {1, . . . , n} with edge set

E := {{x, f(x)} : x ∈Mc}. (1)

(By definition of Mc in Definition 3, these edges are all distinct.) Since Mc = {x ∈
{1, . . . , n} : ∀ j > 1 f j(x) 6= x}, ∀ x ∈ Mc, ∃ y ∈ M, j > 1 such that f j(x) = y. For any
x ∈Mc, let j(x) denote the smallest positive integer j such that there exists y ∈M with
f j(x) = y. For any y ∈ M, let Ty := {x ∈ Mc : f j(x)(x) = y}. Then Mc is a disjoint
union ∪y∈MTy. For any y ∈M, the edge set {{x, f(x)} : x ∈ Ty} forms a (possibly empty)
tree. That is, ∪y∈MTy is a disjoint union of m trees. Consider now the edge set

E ′ := E ∪
m−1⋃
i=1

{f(si), f(si+1)}. (2)
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(If m = 1, let E ′ := E.) (Recall that E defined in (1) are disjoint edges, and by definition
of M and Lemma 5, all edges in (2) are distinct.) The graph T = (V,E ′) is then
a (connected) tree with n − 1 edges, and n vertices. More specifically, T is m trees
∪y∈MTy connected along the path {f(s1), . . . , f(sm)} of length m − 1. We define the
Joyal bijection J : {mappings} → {doubly rooted trees} by

J(f) := (T, f(s1), f(sm)).

It remains to show that J is in fact a bijection.

Proof of injectivity of J . Let f, g : {1, . . . , n} → {1, . . . , n}. Let M,N be the
cores of f and g, respectively. Suppose J(f) = J(g). By definition of J (i.e (1)), we have
M = N , Mc = N c, and f |Mc = g|N c . Also by definition of J (i.e. (2)), f |M = g|M.
That is, f = g.

Proof of surjectivity of J . Let (T, r1, r2) be a doubly rooted tree. Form the unique
path p of vertices in T starting at r1 and ending at r2. Let T ′ := T . Repeat the following
procedure until T ′ \ p = ∅:

• Choose one x ∈ T ′ \ p of degree 1, and define f(x) to be the label of the unique
vertex connected to x.

• Re-define T ′ by removing from T ′ the vertex x and the edge emanating from x.

In this way, f(x) is defined for all x ∈ T \p. Now, we define f on p. Label the elements of p
in the order they appear in the path as r1 = x1, x2, x3, . . . , xm = r2. Let ` : {x1, . . . , xm} →
{x1, . . . , xm} be the permutation defined so that x`(1) < x`(2) < · · · < x`(m). Then define
f so that

f(x`(i)) := xi, ∀ 1 6 i 6 m.

Then J(f) = (T, r1, r2) by (2), so that J is surjective.
Finally, comparing Definition 4 with (2) proves the desired inequality.

Example 7. Let f : {1, . . . , n} → {1, . . . , n} be such that f(i) = i for all 1 6 i 6 n.
ThenM = {1, . . . , n}, and J(f) is the path that respects the ordering on {1, 2, 3, . . . , n}.
The roots are r1 = {1} and r2 = {n}.

Example 8. Let f : {1, . . . , n} → {1, . . . , n} be such that f(i) = 1 for all 1 6 i 6 n.
Then M = {1}, and J(f) is a star graph with a single vertex of degree n− 1. The roots
are r1 = r2 = {1}.

2.2 Rényi-Joyal Bijection

For the Joyal bijection of Lemma 6, |E(f) ∆E(J(f))| is approximately
√
n with high

probability (with respect to a uniformly random choice of f : {1, . . . , n} → {1, . . . , n}),
since the core of a random mapping is of size approximately

√
n with high probability
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Figure 2: Example of the Joyal bijection. In this example, f(1) = 3, f(2) = 7, f(3) = 8,
f(7) = 2, and f(8) = 1. So, the chosen order of the core M = {1, 2, 3, 7, 8} in J(f) is
3, 7, 8, 2, 1. Also, r1 = f(1) = 3, r2 = f(8) = 1.

[10]. Our ultimate goal is to prove a concentration inequality for a random mapping
f , and then transfer it to a concentration inequality for a random tree. So, it is most
desirable to have a bijection R such that |E(f) ∆E(R(f))| as small as possible. Using
Rényi’s bijection within Joyal’s bijection, it is possible to design a bijection R satisfying
|E(f) ∆E(R(f))| 6 3 log n with high probability, as we describe in Lemma 9 below. The
idea is: the number of cycles of a random mapping is of size about log n, so removing one
edge from each cycle of the random mapping only changes about log n edges. In contrast,
the Joyal bijection could change essentially all edges in the core, resulting in about

√
n

edge changes.

Lemma 9 (Rényi-Joyal Bijection). There exists a bijection R from the set

{f : {1, . . . , n} → {1, . . . , n}}

to the set of doubly rooted trees on n vertices such that for all maps f ,

|E(f) ∆E(R(f))| = 2c(f)− 1.

(When we compute this symmetric difference, we remove the directions on the edges E(f),
and we count multiple edges from E(f) as distinct.)

Proof. We first repeat the definitions and reasoning from the proof of Lemma 6 before
(2), including the definitions of f,M,m,E and j(x).

From Lemma 5, recall that f |M is a permutation on M. We can then write M =

∪c(f)
i=1Mi, whereM1, . . . ,Mc(f) are subsets of vertices corresponding to the disjoint cycles

of f |M. For each 1 6 i 6 c(f), denoteMi = {mi1, . . . ,mik(i)}, where k(i) := |Mi|, mi1 is
the smallest element of Mi, and mi(j+1) = f(mij) for all 1 6 j < k(i). [That is, we can
write Mi in cycle notation as (mi1 · · ·mik(i)), for all 1 6 i 6 c(f).] We also choose the
ordering on M1, . . . ,Mc(f) such that mi1 > m(i+1)1 for all 1 6 i 6 c(f)− 1. [That is, we
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order the cycles in the reverse order of their smallest elements.] Consider now the edge
set

E ′ := E ∪
( c(f)⋃
i=1

k(i)−1⋃
j=1

{mij,mi(j+1)}
)
∪
c(f)−1⋃
i=1

{mik(i),m(i+1)1}. (3)

(If m = 1, let E ′ := E.) (Recall that E defined in (1) are disjoint edges, and by definition
of M and Lemma 5, all edges in (1) are distinct.) In words, we write each Mi in
cycle notation with the lowest number in each cycle appearing first, we remove the edge
connecting the first and last endpoints of the cycle, and we connect the last vertex of the
ith cycle to the first vertex of the (i + 1)st cycle, for all 1 6 i 6 c(f) − 1. The graph
T = (V,E ′) is then a (connected) tree with n− 1 edges, and n vertices. More specifically,
it is m trees connected along a path of length m− 1. The first element in the path is m11

and the last element in the path is mc(f)k(c(f)). We define the Rényi-Joyal bijection
R : {mappings} → {doubly rooted trees} by

R(f) := (T,m11,mc(f)k(c(f))).

It remains to show that R is one-to-one.

1
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8

2

7

4

6

59

R

3
8 = m23m11 = 2

7

6

9
4

5

M2M1

mapping directed graph of f

Figure 3: Example of the Rényi-Joyal bijection R. In this example, f(1) = 3, f(3) = 8,
and so on. Also, M = {1, 2, 3, 7, 8}, M1 = {2, 7}, M2 = {1, 3, 8}.

Proof of injectivity. Let f, g : {1, . . . , n} → {1, . . . , n}. LetM,N be the cores of f
and g, respectively. Suppose R(f) = R(g). By definition of R (i.e (1)), we haveM = N ,
Mc = N c. Also, f |Mc = g|Mc . It remains to show that f |M = g|M. Since R(f) = R(g),
both f and g have the same ordered path of their cores in R(f), R(g) respectively. (In
Figure 3, this ordering would be (2, 7, 1, 3, 8).) We can then e.g. recover the action of f
on the core (i.e. the permutation f |M) by creating cycles at the smallest elements of this
ordering, read from left to right. So, if the ordered path of the core is (s1, . . . , sm), let
k(1) > 1 be the largest integer k so that s1 < s2, s1 < s3, . . . , s1 < sk, and inductively
define k(i+ 1) to be the largest integer k 6 m such that sk(i)+1 < sk(i)+2, . . . , sk(i)+1 < sk.
It then follows by definition of R that f |M is a permutation in the cycle notation

(s1 · · · sk(1))(sk(1)+1 · · · sk(2)) · · · (sk(c(f)−1)+1 · · · sk(c(f))).
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Since R(f) = R(g), g|M is also a permutation with this same cycle notation. That is,
f |M = g|M. In conclusion, f = g.

Proof of surjectivity of R. Let (T, r1, r2) be a doubly rooted tree. Form the unique
path p of vertices in T starting at r1 and ending at r2. Let T ′ := T . Repeat the following
procedure until T ′ \ p = ∅:

• Choose one x ∈ T ′ of degree 1, and define f(x) to be the label of the vertex connected
to x.

• Re-define T ′ by removing from T ′ the vertex x and the edge emanating from x.

In this way, f(x) is defined for all x ∈ T \p. Now, we define f on p. Label the elements of p
in the order they appear in the path as r1 = s1, s2, s3, . . . , sm = r2. LetM := {s1, . . . , sm}.
Let k(1) > 1 be the largest integer k so that s1 < s2, s1 < s3, . . . , s1 < sk, and inductively
define k(i+ 1) to be the largest integer k 6 m such that sk(i)+1 < sk(i)+2, . . . , sk(i)+1 < sk.
Define f |M to be the following permutation (written in cycle notation)

(s1 · · · sk(1))(sk(1)+1 · · · sk(2)) · · · (sk(c(f)−1)+1 · · · sk(c(f))).

Then R(f) = (T, r1, r2), so that J is surjective.
Finally, comparing Definition 4 with (3) proves the desired edge inequality.

By removing the roots of the tree from the definition of R in Lemma 9, we arrive at
the following.

Corollary 10 (Rényi-Joyal Bijection with Roots Removed). There exists an n2-
to-one function R from the set

{f : {1, . . . , n} → {1, . . . , n}}

to the set of trees on n vertices such that for all maps f ,

|E(f) ∆E(R(f))| 6 2c(f).

(When we compute this symmetric difference, we remove the directions on the edges E(f),
and we count multiple edges from E(f) as distinct.)

2.3 Rényi-Joyal Bijection, Restricted

For the main application, Lemma 2, we also need to restrict the bijection in Lemma 9 to
a specific class of mappings.

Lemma 11 (Rényi-Joyal Bijection, Restricted). Let 1 6 k < n. Denote S :=

{1, . . . , k} and Sc := {k + 1, . . . , n}. There exists a bijection R̃ from the set

{f : {1, . . . , n} → {1, . . . , n}, f(S) ⊆ Sc} (4)
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to the set

{doubly rooted trees on n vertices such that S is an independent set in the tree

and the second root is in Sc},
(5)

such that for all maps f with f(S) ⊆ Sc,

|E(f) ∆E(R̃(f))| 6 2c(f).

(When we compute this symmetric difference, we remove the directions on the edges E(f),
and we count multiple edges from E(f) as distinct.)

Moreover, if NS denotes the number of vertices in the graph that do not belong to any
edge touching S, we have

|NS(R̃(f))−NS(f)| 6 1. (6)

Proof. Let R̃ be R from Lemma 9, restricted to the set (4). Since R itself is a bijection

by Lemma 9, R̃ is also injective. We therefore show that R̃ is surjective. Let (T, r1, r2) be
in the set (5), so that T is a tree, r1, r2 ∈ {1, . . . , n} and r2 ∈ Sc. From Lemma 9, there
exists a unique f : {1, . . . , n} → {1, . . . , n} such that R(f) = (T, r1, r2). As in Lemma

9, we write M = ∪c(f)
i=1Mi, where M1, . . . ,Mc(f) are subsets of vertices corresponding to

the disjoint cycles of f |M. For each 1 6 i 6 c(f), denote Mi = {mi1, . . . ,mik(i)}, where
k(i) := |Mi|, mi1 is the smallest element ofMi, and mi(j+1) = f(mij) for all 1 6 j < k(i).
[That is, we can write Mi in cycle notation as (mi1 · · ·mik(i)), for all 1 6 i 6 c(f).] We
also choose the ordering onM1, . . . ,Mc(f) such that mi1 > m(i+1)1 for all 1 6 i 6 c(f)−1.
[That is, we order the cycles in the reverse order of their smallest elements.]

Let 1 6 i 6 c(f). Since S = {1, . . . , k}, if Mi ∩ S 6= ∅, it follows that mi1 ∈ S, since
mi1 is the smallest element of Mi. Since f(S) ⊆ Sc, if mi1 ∈ S, then mik(i) /∈ S. And if
Mi ∩ S = ∅, then mi1 /∈ S and mik(i) /∈ S. In either case, we have

mik(i) /∈ S, ∀ 1 6 i 6 c(f). (7)

In particular r2 := mc(f)k(c(f)) /∈ S. Since S = {1, . . . , k} and m11 > m21 > · · · > mc(f)1,
there exists some integer z satisfying 0 6 z 6 c(f) such that

mi1 ∈ S ∀ z < i 6 c(f), and mi1 /∈ S ∀ 1 6 i 6 z. (8)

(In the case z = 0, we have mi1 ∈ S for all 1 6 i 6 c(f), and in the case z = c(f) we have
mi1 /∈ S for all 1 6 i 6 c(f).) That is, z is the number of cycles whose smallest element
is an element of Sc.

Since f(S) ⊆ Sc, S is an independent set in the mapping directed graph of f . So,
in order for S to be an independent set in R(f), we only need to check that R does
not add any edges from S to itself. That is, we need a guarantee that (3) does not add
an edge from S to itself. The only new edges added to R(f) are those specified in the
right-most term of (3), and none of these edges go from S to itself by (7). Therefore, S
is an independent set in R(f). We have already shown that r2 := mc(f)k(c(f)) /∈ S, so that
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R(f) is a doubly rooted tree whose second root is in Sc. It then remains to show that
(6) holds, but this again follows from (3) and (8). These equations imply that R deletes
exactly c(f)− z edges from S to Sc (one for each of the c(f)− z cyclesMz+1, . . . ,Mc(f)),
and it then adds exactly c(f) − max(z, 1) edges from S to Sc in the right-most term of
(3) (one for each term m(max(z,1))1, . . . ,mc(f)1).

Remark 12. It follows from the matrix-tree theorem that the number of labelled trees on
n > k vertices where vertices {1, . . . , k} form an independent set is

(n− k)k−1nn−k−1.

This fact also follows from Lemma 11. It is unclear if other consequences of the matrix-tree
theorem can also follow from Lemma 11.

3 Inequalities From Mappings to Trees

In this section we demonstrate that the (randomized) Joyal bijection can find the distri-
bution of some quantities on random trees.

As above, let S ⊆ {1, . . . , n}, and let k := |S|. Let α := k/n. The following proposition
is a corollary of the matrix-tree theorem, but it also follows from Lemma 9.

Proposition 13. Assume that |S| = o((n− |S|)2). Let T be a uniformly random tree on
n vertices, conditioned on S being an independent set. Let N be the number of vertices in
Sc not connected to S. Then

EN = n(1− α)2e−α/(1−α)(1 + on(1)).

Proof. Let f be a uniformly random mapping from {1, . . . , n} → {1, . . . , n} conditioned
on f(S) ⊆ Sc. For any x ∈ Sc, let Nx be 1 if x is not connected to S, and let Nx be 0
otherwise. Then

P(Nx = 1) =
(

1− 1

n− k

)k
(1− k/n), ∀x ∈ Sc.

So, using also |S| = o((n− |S|)2),

EN = E
∑
x∈Sc

Nx = (n− k)
(

1− 1

n− k

)k
(1− k/n)

= (1 + o(1))e−k/(n−k)n(1− α)2 = n(1− α)2e−α/(1−α)(1 + o(1)).

Lemma 11 then completes the proof.

Remark 14. With no constraints on f , we have

EN = (n− k)
(

1− 1

n

)k
(1− k/n) = n(1− α)2e−α(1 + o(1)).
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Remark 15. It follows from the Azuma-Hoeffding Inequality, Lemma 18 (using e.g. the
Aldous-Broder algorithm [6, 1] to construct a tree one edge at a time, as a martingale)
and Proposition 13 that ∀ t > 0,

P(|N − EN | > tEN |S is an independent set) 6 2e−
n2

n−1
t2(1−α)4e−2α/(1−α)

2
(1+on(1)). (9)

However, this inequality can be improved to Lemma 2, and this is important for our appli-
cation to independent sets in uniformly random labelled trees. Since Lemma 2 improves
on (9), we will not prove (9).

Below we will prove Lemma 2. We will use several properties of negatively associated
(NA) random variables from [13]. A function f : Rk → R is said to be increasing if for
any 1 6 i 6 k, and for any x1, . . . , xk, x

′
i ∈ R with xi 6 x′i, we have f(x1, . . . , xk) 6

f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xk). Real-valued random variables X1, . . . , Xk are said to be

negatively associated, denoted NA, if for any disjoint subsets A,B ⊆ {1, . . . , k}, and
for any increasing functions f : R|A| → R, g : R|B| → R such that the following expression
is well-defined,

Ef({Xi}i∈A)g({Xi}i∈B)− Ef({Xi}i∈A) · Eg({Xi}i∈B) 6 0.

An equivalent definition can be made by requiring both f and g to be decreasing.
Here are some properties of NA random variables, listed in [13, Page 288].

(i) A set of independent random variables is NA.

(ii) Increasing functions defined on disjoint subsets of a set of NA random variables
are NA. (Similarly, decreasing functions defined on disjoint subsets of a set of NA
random variables are NA.)

(iii) The disjoint union of independent families of NA random variables is NA.

Proof of Lemma 2. Let f : {1, . . . , n} → {1, . . . , n} be a uniformly random mapping, con-
ditioned on the event f(S) ⊆ Sc. Let V ′ := {1, . . . , n} \ (S ∪ f(S)) to be the vertices in
Sc that are not in the image of f(S). For any x ∈ Sc, let Nx := 1x∈V ′ . The distribution of
N ′ := |V ′| is well-known as the classical occupancy problem. It is also well known, that
the random variables {Nx}x∈Sc are NA [7, 5]. Now, for any x ∈ Sc, let Mx := 1f(x)/∈S.
Since f is a uniformly random mapping, the random variables {Mx}x∈Sc are independent
of each other, and independent of {Nx}x∈Sc . So, the random variables {Mx}x∈Sc are NA
by Property (i) and the union of the random variables {Nx}x∈Sc ∪{Mx}x∈Sc also is NA by
Property (iii). Since the minimum function is monotone decreasing, the random variables
{min(Nx,Mx)}x∈Sc are also NA by Property (ii). Finally, define

Ñ :=
∑
x∈Sc

min(Nx,Mx).

(If we started the proof with a random tree instead of a uniformly random mapping, then

N would be equal to Ñ .) Since Ñ is the sum of NA random variables, Ñ satisfies Chernoff
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bounds, i.e. the bounds of Lemma 17, by repeating the standard proof of Chernoff bounds,
as noted e.g. in [7, Proposition 29]. We then transfer this inequality to the random tree
by the last part of Lemma 11. (The computation of EN was done in Proposition 13.)

Remark 16. It is not obvious to the author how to apply the negative association property
directly to random trees. That is, we are not aware of a proof of Lemma 2 that uses the
negative association property for random variables on trees, the main difficulty being lack
of any obvious independence. So, at present it seems necessary to use the bijection from
Lemma 11 to prove Lemma 2.

4 Concentration Inequalities

These concentration inequalities are referenced elsewhere in the paper. We include them
here for the reader’s convenience.

Lemma 17 (Chernoff Bounds). Let N be a binomial random variable with parameters
n and p, or a sum of NA random variables [7, Proposition 29]. Then

P(|N − EN | > sEN) 6 e−min(s,s2)EN/3, ∀ s > 0,

P(N < (1− s)EN) 6 e−s
2EN/2, ∀ 0 < s < 1,

P(N > (1 + s)EN) 6 e−s
2EN/(2+s), ∀ s > 0.

Lemma 18 (Azuma-Hoeffding Inequality[20]). Let c > 0. Let Y0, . . . , Yn be a real-
valued martingale with Y0 constant and |Ym+1 − Ym| 6 c for all 0 6 m 6 n− 1. Then

P(|Yn − Y0| > t) 6 2e−
t2

2c2n , ∀ t > 0.

5 Algorithmic Interpretation of Bijection

The bijection R from Lemma 9 also gives an algorithm for sampling from uniformly
random trees on n vertices. Prüfer codes themselves give an elementary way to generate
random trees in O(n log n) time, though O(n) time is possible with a less elementary
implementation [24]. Algorithm 19 can generate a random tree in O(n) time. The Aldous-
Broder algorithm [6, 1] is perhaps the most elementary way to generate a uniformly
random labelled tree on n vertices, though its run time is O(n2) with its most naive
implementation. (However, a less naive implementation of the Aldous-Broder algorithm
has O(n) run time [12, Section 5].)

Algorithm 19 (Sampling a Uniformly Random Labelled Tree on n vertices).

• The input of the algorithm is a random mapping f : {1, . . . , n} → {1, . . . , n}, pre-
sented as a list (f(1), . . . , f(n)) of n independent identically distributed random
variables, each uniformly distributed in {1, . . . , n}.

• The output of the algorithm is a uniformly random labelled tree on n vertices.
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The algorithm proceeds as follows.

(i) Compute the core of f , via a standard algorithm such as Algorithm 20. The core is
the set of 1 6 k 6 n cycles of f , written as C1, . . . , Ck.

(ii) For each 1 6 i 6 k, the smallest element of Ci is given the left-most position in the
cycle notation for Ci. (so e.g. the cycle (365) is written rather than (653)).

(iii) Arrange the cycles in reverse age order, according to their smallest elements (so e.g.
we write two cycles in the ordering (365)(289) rather than (289)(365).)

(iv) Let C be the set of vertices in the core of f . Output the tree formed by the edges

{{x, f(x)} : x ∈ {1, . . . , n} \ C}

together with the path that passes through the cycles in the order specified by (iii).

The proof of Theorem 1, or more specifically the definition of the bijection R defined
in the proof, implies that the output of Algorithm 19 is a uniformly random labelled tree
on n vertices with run time O(n).

Algorithm 20 (Computing the Core of a Mapping).

• The input of the algorithm is a mapping f : {1, . . . , n} → {1, . . . , n}, presented as a
list (f(1), . . . , f(n)).

• The output of the algorithm is the set of 1 6 k 6 n cycles of f presented in cycle
notation as C1, . . . , Ck (so e.g. C1 = (245) indicates that f(2) = 4, f(4) = 5 and
f(5) = 2.)

The algorithm proceeds as follows. Let B := ∅, k := 0. While B 6= {1, . . . , n}, repeat
the following procedure.

• Let x ∈ {1, . . . , n} \B. Compute the sequence x, f(x), f(f(x)), f(f(f(x))), . . . until
one element of the sequence is repeated (so that f j(x) = fk(x) for some 0 6 j <
k 6 n). (We can find a repeated element in this sequence in O(k) time using either
a separate array or hash table to keep track of which elements of {1, . . . , n} have
appeared in the sequence.)

• Define Ck+1 := (f j(x), f j+1(x), . . . , fk−1(x)). This is the (k + 1)st cycle of f .

• Re-define k to be one more than its previous value. Also re-define B to be B union
with the set {x, f(x), f 2(x), . . . , fk(x)}.
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6 Appendix: Cycle Distributions

Let Cn(f) be the number of cycles in a mapping f : {1, . . . , n} → {1, . . . , n}. The following
Lemma is sketched in [10]. We give a detailed proof.

Lemma 21 (Cycle Distribution of a Random Mapping).

P(Cn > (1 + t) log n) 6 (1 + on(1))e−
t2

2+t
(logn)/4, ∀ t > 0.

Proof. Let Π be a uniformly random element of the group Sn of permutations on n
elements. As in [8, Lemma 2.2.9], let Xn,k(π) := 1 if a right parenthesis occurs after
entry k in the standard cycle notation of the permutation π ∈ Sn, and Xn,k(π) := 0
otherwise. Then Xn,1, . . . , Xn,n are independent random variables with P(Xn,k = 1) =
1/(n− k + 1). Let C(π) be the number of cycles in π ∈ Sn. Then C = Cn =

∑n
k=1Xn,k,

ECn =
∑n

k=1 EXn,k, and from Chernoff’s bound 17,

P(Cn(Π) > (1 + t)ECn(Π)) 6 e−
t2

2+t
ECn(Π), ∀ t > 0. (10)

When we condition a random mapping f : {1, . . . , n} → {1, . . . , n} such that its core size
|M| is constant, then f |M is a uniformly random permutation on |M| elements.

Let Yn(f) be the total number of vertices in all cycles of a uniformly random mapping

f : {1, . . . , n} → {1, . . . , n}. As in [10], P(Yn = k) = k(n−1)!
nk(n−k)

for all 0 6 k 6 n. Then, ∀
0 < a < b <

√
n,

P(a
√
n 6 Yn 6 b

√
n) = P(a <

Yn√
n
< b) =

b
√
n∑

k=a
√
n

k(n− 1)!

nk(n− k)

=
∑

j=a,a+1/
√
n,...,b

j
√
n(n− 1)!

nj
√
n(n− j

√
n)!

= (1 + o(1))
∑

j=a,a+1/
√
n,...,b

j
√
n

√
n− 1

n− j
√
n

(n− 1)n−1e−n+1

nj
√
n(n− j

√
n)n−j

√
ne−n+j

√
n

= (1 + o(1))
∑

j=a,a+1/
√
n,...,b

je1
√
n
(n− 1

n

)n−1/2(n− j√n
n

)−n+j
√
n−1/2

e−j
√
n

= (1 + o(1))
∑

j=a,a+1/
√
n,...,b

je1
√
n
(

1− 1

n

)n−1/2(
1− j√

n

)−n+j
√
n−1/2

e−j
√
n.

We write(
1− j√

n

)−n+j
√
n−1/2

= e[log(1−j/
√
n)](−n+j

√
n−1/2) = e[−j/

√
n−j2/(2n)+O(j/

√
n)3/2](−n+j

√
n−1/2)

= ej
√
n+j2/2−j2+O(1/

√
n) = ej

√
ne−j

2/2+O(1/
√
n).
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Therefore

P(a
√
n 6 Yn 6 b

√
n) = (1 + o(1))

∑
j=a,a+1/

√
n,...,b

jn−1/2e−j
2/2

= (1 + o(1))

∫ b

a

xe−x
2/2dx = (1 + o(1))(e−a

2/2 − e−b2/2).

If ε > 0, then

P(Yn /∈
√
n[
√
ε,
√

log(1/ε)]) = (1 + o(1))(1− e−ε/2 + e− log(1/ε)/2) = (1 + o(1))ε. (11)

So, recalling that Cn(f) is the number of cycles in a mapping f : {1, . . . , n} → {1, . . . , n},

P(Cn > (1 + t) log n) 6 (1 + o(1))(1 + ε)P
(
Cn > (1 + t) log n | Yn ∈

√
n[
√
ε,
√

log(1/ε)]
)

(10)

6 (1 + o(1))(1 + ε) sup
m∈
√
n
[√

ε,
√

log(1/ε)
] e− t2

2+t
logm 6 e−

t2

2+t
[logn−log(1/ε)]/2.

Choosing ε := 1/
√
n,

P(Cn > (1 + t) log n) 6 (1 + on(1))e−
t2

2+t
(logn)/4.

Remark 22. It is tempting to try to apply Talagrand’s convex distance inequality [14,
Theorem 2.29] to prove Lemma 21 but it is not obvious to the author how to make such
an argument.

6.1 Independent Set Case

Let S ⊆ {1, . . . , n}, and let k := |S|. Let α := k/n.
Let Cn(f) be the number of cycles in a mapping f : {1, . . . , n} → {1, . . . , n}.

Lemma 23. Let F be a uniformly random mapping from {1, . . . , n}\S → {1, . . . , n}\S.
Let G be a random mapping, uniformly distributed over all f : {1, . . . , n} → {1, . . . , n}
such that f(S) ⊆ Sc. Then the random variables

Cn−k(F ), Cn(G)

are identically distributed.

Proof. Define r(G) : {1, . . . , n} \ S → {1, . . . , n} \ S by

r(G)(x) =

{
G(x) if G(x) ∈ Sc

G(G(x)) if G(x) ∈ S.

Since G(S) ⊆ Sc, if G(x) ∈ S then G(G(x)) ∈ Sc, so that r(G) always takes values in Sc.
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Note that G and r(G) have the same number of cycles, since r(G) removes all elements
of S from all cycles of G, but each cycle in G must have at least one element in Sc. That
is, Cn(G) = Cn(r(G)).

Also, r(G) is a uniformly random mapping on {1, . . . , n} \ S. To see this, denote
S =: {s1, . . . , sk}, let x1, . . . , xk ∈ {1, . . . , n} \S and let y1, . . . , yk ∈ {1, . . . , n}. Then the
conditional probability

P(r(G)(si) = xi ∀ 1 6 i 6 k | G(xj) = yj ∀ 1 6 j 6 k)

does not depend on x1, . . . , xk, y1, . . . , yk. So, we can remove the conditioning and conclude
that

P(r(G)(si) = xi ∀ 1 6 i 6 k)

does not depend on x1, . . . , xk. That is, r(G) is a uniformly random element of mappings
from {1, . . . , n} \ S to itself. Re-labeling r(G) as F completes the proof.

Lemma 24 (Cycle Distribution of a Restricted Random Mapping).

P(Cn(f) > (1 + t) log(n− k) | f(S) ⊆ Sc) 6 (1 + on(1)e−
t2

2+t
(log(n−k))/4, ∀ t > 0.

Proof. Combine Lemmas 21 and 23.
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