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Abstract

We study the integer decomposition property of lattice polytopes associated to
n-dimensional smooth complete fans with at most n + 3 rays. Using the classifi-
cation of smooth complete fans by Kleinschmidt and Batyrev and a reduction to
lower dimensional polytopes, we prove the integer decomposition property for lattice
polytopes in this setting.

Mathematics Subject Classifications: 52B20, 14M25

1 Introduction

A lattice polytope in Rn is the convex hull of a finite number of points in the lattice Zn. A
lattice polytope P is said to satisfy the integer decomposition property (or the IDP
for short) if for all integers k ⩾ 1 and every x ∈ kP ∩ Zn there exist x1, . . . , xk ∈ P ∩ Zn

such that x = x1 + · · · + xk. Following [HH17], we say a pair of lattice polytopes (P,Q)
has the IDP if

(P ∩ Zn) + (Q ∩ Zn) = (P + Q) ∩ Zn,

where the addition is the Minkowski sum. We can see that P has the IDP if and only if
every pair (P, kP ) has the IDP for all integers k ⩾ 1.

Since Oda [Oda08] introduced the question of identifying the polytopes with the IDP,
these polytopes have captured the attention of researchers in integer programming, graph
theory, commutative algebra, and toric geometry. The IDP does not hold for any general
pair of lattice polytopes P and Q, even in the special case when P = Q (see [CLS11,
Example 2.2.11]). However, we know that the IDP holds in the following situations:

• Let R be a n-dimensional lattice polytope. Let P = kdR,Q = ldR for k, l ∈ N and
d ⩾ n− 1 [EW91] (see also [LTZ93], [BGT97, Theorem 1.3.3]).

• Let R be a unimodular simplex or parallelepiped or zonotope or a centrally sym-
metric 3-dimensional smooth polytope. Let P = kR,Q = lR for k, l ∈ N [BHH+19,
Proposition 1.2, Theorem 1.4].
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• Let R be a lattice polytope of dimension n and suppose every edge has lattice length
2n(n + 1). Let P = kR,Q = lR for k, l ∈ N [HH17, Corollary 6]. We should point
out that this bound 2n(n + 1) is an improvement over the prior one 4n(n + 1) in
[Gub12, Theorem 1.3].

The above results suggest that if P,Q are a big enough dilation of a lattice polytope
R, then the pair (P,Q) has the IDP. Apart from the above cases, the following conjecture
has received special interest.

Conjecture 1 (Oda’s Conjecture). [Oda08, Problem 3] Let P,Q ⊆ Rn be two lattice
polytopes. Suppose that P is smooth and its normal fan refines the one of Q. Then the
pair (P,Q) has the IDP.

Fakhruddin [Fak02] and Ogata [Oga06] give two independent proofs of IDP, for the
condition when P is a smooth lattice polygon and the normal fan of P is a refinement
of the normal fan of Q. Even if we drop the assumption that P is smooth, IDP holds
[HNPS08]. But if we drop the assumption on the normal fan, the IDP does not hold in
general (see Figure 1). In Figure 2, we draw the normal fan of P + Q and a minimal
smooth refinement. We can see that it has 8 rays. This motivates our research question
to study the lowest possible cases that fail to satisfy the IDP. Notice that in 2 dimensions
one has a unique minimal smooth refinement, however in higher dimensions this is no
longer true.

+ =

Figure 1: An example of polytopes that do not have IDP
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Figure 2: Refining the normal fan into a smooth fan

In general, from a given complete normal fan in Rn we can construct a simplicial fan
by triangulating the maximal cones. By subdividing those cones further, we can construct
a smooth complete fan with n + k rays. We can then ask the following question:
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Question 2. Let P,Q be two lattice polytopes and Σ be the normal fan of P+Q. Suppose
we refined Σ to a minimal smooth complete fan Σ′. Can we find a bound on k so that if
Σ′ has only n + k rays then the pair (P,Q) always has the IDP?

Alternatively, we can start from a smooth complete fan Σ in Rn with n + k rays and
study all lattice polytopes cut out by half spaces from all or some of these rays. All of
these lattice polytopes can be studied in terms of convex support functions on Σ. See
Section 2 for details. Hence, we can rephrase Question 2 as follows.

Question 3. Let Σ be a smooth complete fan in Rn with n + k rays and let P,Q be
two lattice polytopes associated with two convex support functions for Σ. Does the pair
(P,Q) have the IDP?

The answer to Question 3 is known to be positive when k = 1 or 2, see Theorem 12.
In this paper, we will prove that the IDP holds for the case k = 3.

Theorem 4. If P,Q are two lattice polytopes whose coarsest common refinement of nor-
mal fans has at most n + 3 rays in Rn, then the pair (P,Q) has the IDP.

It is worth noting that normal fan of a smooth lattice polytope in Rn with n+k facets
is a smooth complete fan in Rn with n + k rays. Hence, as a corollary to Theorem 4, we
observe that Conjecture 1 is true if P is a smooth lattice polytope in Rn with at most
n + 3 facets. In particular, this implies that every smooth lattice polytope with at most
n + 3 facets has the IDP. An application of the result can be seen in [Rob22, Theorem
2.1].

On the other hand, one can ask what the answer for Question 1.3 is in the particular
situation where n = 2. Our result shows that as long as Σ has 5 or fewer rays IDP holds.
However, the example in Figure 1 shows that there exists a smooth complete fan in R2

with 8 rays which has a negative answer to Question 3. We ask the following question:

Question 5. Let P,Q be two lattice polygons and suppose that the normal fan of P +Q
can be refined to a smooth fan in R2 of 6 or 7 rays. Does the pair (P,Q) have the IDP?

We believe the answer is yes, but do not have a proof. We intend to address this
question in future research.

This paper is organized as follows. In Section 2, we give the preliminary details about
fans and lattice polytopes. We also recall the classification of smooth complete fans in Rn

with n + 3 rays. We prove the Theorem 4 in Section 3.

2 Preliminaries

In this section, we fix notation and recall some basic facts about fans. For details see
[CLS11, Chapter 3]. We also recall the classification of smooth complete fans in Rn with
n + 3 rays by Batyrev [Bat91].

All cones in this work are assumed to be rational polyhedral, i.e., subsets of Rn of the
form σ = {

∑m
i=1 λiui : λi ⩾ 0} for some u1, . . . , um ∈ Zn. A fan Σ in Rn is said to be
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complete if the union of all cones in Σ is Rn. Moreover, Σ is said to be smooth if every
cone σ ∈ Σ is generated by part of a basis of Zn. Let Σ be a smooth complete fan in Rn

with n + m rays. We denote the rays of Σ by Σ(1). Given a ray ρ ∈ Σ(1), we denote by
uρ the primitive generator in Zn of ρ.

Two fans Σ1 and Σ2 are said to be unimodular equivalent if there exists a unimod-
ular transformation L : Rn → Rn that preserves Zn and maps the cones of Σ1 bijectively
to the cones of Σ2. The unimodularity condition is motivated by algebraic geometry: the
toric varieties associated with the unimodularly equivalent fans are isomorphic. We will
consider fans up to unimodular equivalence. For every smooth complete fan, there is a
unimodularly equivalent fan with one of the maximal cones generated by the standard
basis {e1, . . . , en} of Rn.

Let Σ be a smooth complete fan in Rn with n + m rays. Let A be the (n + m) × n
matrix whose rows represent the primitive ray generators of Σ in terms of the standard
basis {e1, . . . , en} of Rn. If necessary by rearranging the ordering of rays, A has the

form

[
I
B

]
where I is the identity matrix and B is an integer matrix. We denote by

{f1, . . . , fn+m} the standard basis of Rn+m. If we are not specifying the ordering of the
rays, then we alternatively denote the standard basis of Rn+m by {fρ : ρ ∈ Σ(1)}. Then
it is easy to see that {Ae1, . . . , Aen} can be extended to a Z-basis of Zn+m by adding the
vectors fn+1, . . . , fn+m. Therefore, we can identify Zm+n/AZn with Zm, and we get the
following short exact sequence:

0−→Zn A−→ Zn+m −→ Zm → 0. (1)

To any h ∈ Zn+m, we can associate a (possibly empty) polytope P (A, h) ⊆ Rn defined
by

P (A, h) = {x ∈ Rn : Ax ⩾ −h}.
If h − h′ = Ax for some x ∈ Zn, then P (A, h) is a translation of P (A, h′) by an integral
vector. Since translations by integral vectors preserve the IDP, it is enough to study the
polytopes up to the image of AZn.

A support function on Σ is a function φ : Rn → R that is linear on each cone of Σ
and is Z-valued on Zn. To any h ∈ Zn+m, we define a function φh such that

φh(uρ) = −hρ for all ρ ∈ Σ(1), (2)

where hρ is the ρth coordinate of h. Since Σ is smooth, φh can be extended uniquely to a
support function of Σ. We say φh is convex if

φ(x + y) ⩾ φ(x) + φ(y)

for all x, y ∈ Rn. Moreover, we say φh is strictly convex if

φ(x + y) > φ(x) + φ(y)

for all x, y ∈ Rn not lying on the same maximal cone of Σ. If h ∈ Zn+m defines a convex
support function φh, then P (A, h) is a lattice polytope. Conversely, if Q is a lattice
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polytope whose normal fan can be refined into a smooth complete fan Σ, then there exists
a convex support function φh on Σ such that P (A, h) is equal to Q. If φh, φh′ are two
convex support functions on Σ, then

P (A, h + h′) = P (A, h) + P (A, h′), (3)

where the addition of polytopes is the Minkowski sum.
In terms of support functions, we can state Conjecture 1 as follows.

Conjecture 6. Let Σ be a smooth projective fan, and A be the matrix representa-
tion of Σ. Suppose that φh is strictly convex, and φh′ is convex on Σ. Then the pair
(P (A, h), P (A, h′)) has the IDP.

Now we will discuss the definition of primitive collections introduced by Batyrev, which
makes the classifications and computations easier.

Definition 7. Let Σ be a fan. A subset P = {ρ1, ρ2, . . . , ρk} ⊂ Σ(1) is called a primitive
collection if P is not contained in a single cone of Σ, but every proper subset is. Let
P be a primitive collection and σ ∈ Σ be the cone of the smallest dimension containing
uρ1 + · · · + uρk . Then there exists a unique expression

uρ1 + · · · + uρk =
∑

ρ∈σ(1)

cρuρ, cρ ∈ Z>0. (4)

The equation (4) is called the primitive relation of P.

Definition 8. A fan is called a splitting fan if there is no intersection between any two
primitive collections.

It is easy to check whether φh is convex or not using primitive collections.

Theorem 9 ([Bat91, Theorem 2.15]). Let Σ be a smooth projective fan in Rn and h ∈
Z(n+m). Then φh is convex if and only if it satisfies

φh(uρ1 + · · · + uρk) ⩾ φh(uρ1) + · · · + φh(uρk)

for all primitive collections P = {ρ1, . . . , ρk} of Σ. Similarly, φh is strictly convex if and
only if it satisfies

φh(uρ1 + · · · + uρk) > φh(uρ1) + · · · + φh(uρk)

for all primitive collections P = {ρ1, . . . , ρk} of Σ.

We also point out that these results hold in a broader context (see [CvR09, Theorem
1.4] and [CLS11, Theorem 6.4.9]). For the rest of this section we discuss the classification
of smooth complete fans in Rn with at most n + 3 rays.
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Example 10. Let Σ be a smooth complete fan in Rn with n+1 rays. It is easy to see that
there is only one unimodular equivalent class. The ray generators of Σ can be written in
the matrix A as follows:

A =

ρ1
...

ρn
ρn+1 −1 −1

I


n columns

. (5)

It has only one primitive collection that consists of all rays and the primitive relation is
given by

uρ1 + · · · + uρn+1 = 0.

The support function φh is convex if and only if

φh(uρ1 + · · · + uρn+1) ⩾ φh(uρ1) + · · · + φh(uρn+1).

Simplifying the inequality, we get

φh(0) ⩾ −
∑

ρ∈Σ(1)

hρ,

i.e., h is convex support function if and only if
∑

ρ∈Σ(1) hρ ⩾ 0.

Kleinschmidt classified smooth complete n-dimensional fans with n + 2 rays. It is
known that a smooth complete fan in Rn of at most n + 2 rays is a splitting fan.

Theorem 11 ([Kle88, Theorem 1]). Let Σ be a smooth complete fan Rn with n + 2 rays.
In our setting, the generators of the smooth complete fan in Rn with n + 2 rays can be
written in the matrix A as follows:

A =


ρ1
...

ρk
ρk+1

...
ρn

ρn+1 −1 −1 0 0
ρn+2 a1 ak −1 −1

I 0

0 I



n columns

(6)

where 1 ⩽ k ⩽ n − 1 and ak ⩽ · · · ⩽ a1 ⩽ 0. The primitive collections are given by
{ρ1, . . . , ρk, ρn+1} and {ρk+1, . . . , ρn, ρn+2}.

Theorem 12 ([Ike09, Corollary 4.2]). If Σ is a smooth complete splitting fan and φh, φh′

are convex support functions of Σ, then the pair (P (A, h), P (A, h′)) has the IDP. In par-
ticular, if Σ is a smooth complete fan in Rn with at most n + 2 rays then the statement
holds.

Batyrev classified smooth complete n-dimensional fans with n + 3 rays in terms of
primitive collections. Batyrev showed that the number of primitive collections of its rays
is 3 or 5 [Bat91, Theorem 5.7]. The case of 3 primitive collections is a splitting fan. The
case of 5 primitive collections is as in the following theorem.
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Figure 3

Theorem 13 ([Bat91, Theorem 6.6]). Let Xα = Xα ∪Xα+1, where α ∈ Z/5Z,

X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},
X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},

and p0 + p1 + p2 + p3 + p4 = n + 3. It is convenient to use a picture of a pentagon with
the vertices ιeι2πα/5 in the complex plane (see Figure 3). Then any smooth complete n-
dimensional fan Σ with the set of generators

⋃
Xα and five primitive collections Xα can

be described up to a symmetry of the pentagon by the following primitive relations with
nonnegative integral coefficients c2, . . . , cp2 , b1, . . . , bp3:

v1 + · · · + vp0 + y1 + · · · + yp1 = c2z2 + · · · + cp2zp2 + (b1 + 1)t1 + · · · + (bp3 + 1)tp3 ,

y1 + · · · + yp1 + z1 + · · · + zp2 = u1 + · · · + up4 ,

z1 + · · · + zp2 + t1 + · · · + tp3 = 0,

t1 + · · · + tp3 + u1 + · · · + up4 = y1 + · · · + yp1 ,

u1 + · · · + up4 + v1 + · · · + vp0 = c2z2 + · · · + cp2zp2 + b1t1 + · · · + bp3tp3 .

In Theorem 13 we can identify the set

{v1, . . . , vp0 , u2, . . . , up4 , y2, . . . , yp1 , t1, . . . , tp3 , z2, . . . , zp2}

with the standard basis {e1, . . . , en} of Zn. Thus z1, u1, y1 are defined by

z1 = −z2 − · · · − zp2 − t1 − · · · − tp3 ,

u1 = −v1 − · · · − vp0 − u2 − · · · − up4 + b1t1 + · · · + bp3tp3 + c2z2 + · · · + cp2zp2 ,

y1 = −v1 − · · · − vp0 − y2 − · · · − yp1 + (b1 + 1)t1 + · · · + (bp3 + 1)tp3+

c2z2 + · · · + cp2zp2 .

Let Σ be a fan as in Theorem 13. By arranging the primitive ray generators in rows
of a matrix we will get a matrix A of the following form

the electronic journal of combinatorics 31(1) (2024), #P1.1 7



A =



v1
...

vp0
u1 −1 −1 −1 −1 0 0 b1 bp3 c2 cp2
u2

...
up4
y1 −1 −1 0 0 −1 −1 (b1+1) (bp3+1) c2 cp2
y2
...

yp1
t1
...

tp3
z2
...

zp2
z1 0 0 0 0 0 0 −1 −1 −1 −1

I 0 0 0 0

0 I 0 0 0

0 0 I 0 0

0 0 0 I 0

0 0 0 0 I



n columns

. (7)

Note that A has the block matrix form

[
F G
0 H

]
. Here H corresponds to the matrix

of a smooth complete fan in Rp2+p3−1 with p2 + p3 rays (see Example 10).

3 Main result

The goal of this section is to prove Theorem 4. Our results enlarge the collection of
polytopes satisfying the integer decomposition property. Before proving Theorem 4, we
introduce some notations and outline the general strategy of the proof.

Let A be a matrix as in (5). We will study the polytopes of the form P (A, h), where
h ∈ Zn+3 defines a convex support function. We have seen that if h′ = h + Ax for some
x ∈ Zn, then P (A, h′) is a translation of P (A, h) by a lattice vector. Hence, it is enough to
consider h ∈ Zn+3 modulo the columns of A. It is easy to see that {Ae1, . . . , Aen} ∪ {fρ :
ρ = v1, u1, z1} is a Z-basis of Zn+3. Therefore, we will study h of the following form

hρ =


d, if ρ = v1

f, if ρ = u1

e, if ρ = z1

0, otherwise

for any d, e, f ∈ Z.
The next step is to determine when φh is convex. Using Theorem 9 we obtain that φh

is convex if and only if φh satisfies the following inequalities

φh(v1 + · · · + vp0 + y1 + · · · + yp1) ⩾ φh(v1) + · · · + φh(vp0) + φh(y1) + · · · + φh(yp1),

φh(y1 + · · · + yp1 + z1 + · · · + zp2) ⩾ φh(y1) + · · · + φh(yp1) + φh(z1) + · · · + φh(zp2),

φh(z1 + · · · + zp2 + t1 + · · · + tp3) ⩾ φh(z1) + · · · + φh(zp2) + φh(t1) + · · · + φh(tp3),

φh(t1 + · · · + tp3 + u1 + · · · + up4) ⩾ φh(t1) + · · · + φh(tp3) + φh(u1) + · · · + φh(up4),

φh(u1 + · · · + up4 + v1 + · · · + vp0) ⩾ φh(u1) + · · · + φh(up5) + φh(v1) + · · · + φh(vp0).
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Recall the construction of φh from (2). We use the associated primitive relations in
Theorem 13 to obtain a more concrete characterization. It follows that φh is convex if
and only if

0 ⩾ −d,

−f ⩾ −e,

0 ⩾ −e,

0 ⩾ −f,

0 ⩾ −f − d.

That is d, e, f ⩾ 0 and e ⩾ f . Hence, we can consider h of the following form

hρ =


d, if ρ = v1

f, if ρ = u1

e + f, if ρ = z1

0, otherwise

(8)

for any d, e, f ∈ Z⩾0.
In the following paragraphs, using (5), we identify projections onto dilations of the

standard simplex where the IDP is well-known. We can next verify the IDP for a pair
of polytopes by carefully examining the fibers of these projections. First, we will discuss
some additional notations.

Let J,K, S, T be index sets given by

J = {t1, . . . , tp3 , z2, . . . , zp2},
K = J ∪ {z1},
S = {v1, . . . , vp0 , u2, . . . , up4 , y2, . . . , yp1},
T = S ∪ {u1, y1}.

Now consider the projection maps to respective coordinates given by the index sets as
follows:

Rn+3 Rn

R|T | R|K| R|S| R|J |

πT

πK

πS

πJ

Given a lattice polytope P = P (A, h), we can write it as

P =

{
(xS, xJ) = x ∈ Rn :

[
F G
0 H

]
.

[
xS

xJ

]
⩾

[
−hT

−hK

]}

where xS = πS(x), xJ = πJ(x) and hT = πT (h), hK = πK(h). First, consider the polytope
P∆ defined by

P∆ := P (H, hK) ⊆ R|J |.
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It is worth noting that P∆ = (e + f)∆|J |, where ∆|J | = Conv(0, en+1−|J |, . . . , en) is the
standard |J |-simplex. We can also look at P∆ from a geometrical viewpoint: indeed, we
can show that P∆ = πJ(P ). It is easy to see that πJ(P ) ⊆ P (H, hK). Conversely, if
xJ ∈ P (H, hK), then (0, xJ) ∈ P .

Let α ∈ P ∩ Zn. Set θ(α) = πT (h) + GαJ and define a new polytope

P̃ (α) := P (F, θ(α)) ⊆ R|S|.

By construction, if xS ∈ P̃ (α), then (xS, αJ) ∈ P . Hence, we can also write

P̃ = πS(π−1
J (αJ) ∩ P ).

Geometrically, P̃ (α) is constructed by intersecting the original polytope P with hy-
perplane sections defined by xj = αj for j ∈ J and projecting into R|S|. See Figure 4 for
the three-dimensional interpretation.

P P∆

0

f

f + e

P̃

Figure 4: Projection of a polytope

Using the construction of the above polytopes we will now use the following algorithm.

• Given two lattice polytopes P = P (A, h), Q = P (A, h′) and their Minkowski sum
(P + Q) = P (A, h + h′).

• We find projection to R|J | and construct P∆, Q∆, (P + Q)∆. Note that the pair
(P∆, Q∆) has the IDP.

• For every αJ ∈ (P +Q)∩Z|J | find all possible βJ ∈ P ∩Z|J | and γJ ∈ Q∩Z|J | such
that βJ + γJ = αJ .

• Analyze the fibers of αJ , βJ and γJ by using the construction P̃ (βJ), Q̃(γJ) and
˜(P + Q)(αJ).

• For all (αS, αJ) ∈ π−1
J (αJ) ∩ (P + Q) ∩ Zn find (βJ , βS) ∈ π−1

J (βJ) ∩ P ∩ Zn and
(γJ , γS) ∈ π−1

J (γJ) ∩Q ∩ Zn such that (βS, βJ) + (γs, γJ) = (αS, αJ).
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With the following example, we will illustrate how to use the construction of P∆ and
P̃ to prove the IDP.

Example 14. Let

A =


v1 1 0 0
v2 0 1 0
u1 −1 −1 1
y1 −1 −1 2
t1 0 0 1
z1 0 0 −1

, h =


0
0
3
0
0
4

 , h′ =


2
0
1
0
0
3

 ,

and P = P (A, h), Q = P (A, h′). Then P + Q = P (A, h + h′). We will show that
P ∩ Z3 + Q ∩ Z3 = (P + Q) ∩ Z3. In Figure 5, we have drawn the polytopes P∆, Q∆ and
(P + Q)∆ and it is easy to see that P∆ + Q∆ = (P + Q)∆ and (P∆, Q∆) has the IDP.
Hence, for every αt1 ∈ (P + Q)∆ ∩ Z, we can find βt1 ∈ P∆ ∩ Z, γt1 ∈ Q∆ ∩ Z such that
βt1 + γt1 = αt1 .

Let

F =


v1 1 0
v2 0 1
u1 −1 −1
y1 −1 −1

, θ(βt1) =


0
0

3 + βt1

2βt1

 , θ(γt1) =


2
0

1 + γt1
2γt1

 .

Then P̃ (βt1) = P (F, θ(βt1)), Q̃(γt1) = P (F, θ(γt1)) and ˜(P + Q)(αt1) = P (F, θ(αt1)). Let
(αv1 , αv2 , αt1) ∈ (P +Q)∩Z3. The basic idea is to show that for every αt1 ∈ (P +Q)∆∩Z,
we can find βt1 , γt1 additionally satisfying the following two conditions:

1. P̃ (βt1) + Q̃(γt1) = ˜(P + Q)(αt1).

2. (P̃ (βt1), Q̃(γt1)) has the IDP.

Suppose such a choice exists. Since (αv1 , αv2) ∈ ˜(P + Q)(αt1) we can find (βv1 , βv2) ∈
P̃ (βt1) ∩ Z2 and (γv1 , γv2) ∈ P̃ (γt1) ∩ Z2 such that

(βv1 , βv2) + (γv1 , γv2) = (αv1 , αv2).

Then we conclude the proof in this case by noticing that

(βv1 , βv2 , βt1) + (γv1 , γv2 , γt1) = (αv1 , αv2 , αt1).

Hence, it is enough to show that choices of βt1 , γt1 additionally satisfying the extra
two conditions. We proceed by two cases depending on 0 ⩽ αt1 ⩽ 4 or 4 ⩽ αt1 ⩽ 7.

Case 1. If 4 ⩽ αt1 ⩽ 7, then choose 3 ⩽ βt1 ⩽ 4, βt1 ∈ Z and 1 ⩽ γt1 ⩽ 3, γt1 ∈ Z
such that αt1 = βt1 + γt1 . The case αt1 = 7, is shown in Figure 6. Note that the half-

space generated by the ray u1 is not a supporting half-space for ˜(P + Q)(αt1). Our choice
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of βt1 , γt1 ensure that the half-space generated by the ray u1 is also not a supporting

half-space for P̃ (βt1) and Q̃(γt1). Hence, we have P̃ = P (F̃ , θ̃), Q̃ = P (F̃ , θ̃′), where

F̃ =

v1 1 0
v2 0 1
y1 −1 −1

, θ̃ =

 0
0

2βt1

 , θ̃′ =

 2
0

2γt1

 .

Since F̃ corresponds to a smooth complete splitting fan in R2 and θ̃, θ̃′ are convex support

functions we have P̃ + Q̃ = P̃ + Q and (P̃ , Q̃) has IDP.
Case 2. If 0 ⩽ αt1 ⩽ 4, then choose 0 ⩽ βt1 ⩽ 3, βt1 ∈ Z and 0 ⩽ γt1 ⩽ 1, γt1 ∈ Z

such that αt1 = βt1 + γt1 . The case αt1 = 4, is shown in Figure 7 and the case αt1 = 0, is
shown in Figure 8. Note that the half-space generated by the ray y1 is not a supporting

half-space for ˜(P + Q)(αt1). Our choice of βt1 , γt1 ensure that the half-space generated

by the ray y1 is also not a supporting half-space for P̃ (βt1) and Q̃(γt1). Hence, we have

P̃ = P (F̃ , θ̃), Q̃ = P (F̃ , θ̃′), where

F̃ =

v1 1 0
v2 0 1
u1 −1 −1

, θ̃ =

 0
0

βt1 + 3

 , θ̃′ =

 2
0

γt1 + 1

 .

Since F̃ corresponds to a smooth complete splitting fan in R2 and θ̃, θ̃′ are convex support

functions we have P̃ + Q̃ = P̃ + Q and (P̃ , Q̃) has IDP.

Remark 15. If we use a similar type of construction for a general lattice polytope, P̃ (α)
does not have to be a lattice polytope. However, in our case, we can associate it with
a smooth complete fan and a convex support function (see cases 1,2,3,4 in the Proof of
Theorem 1.4). As a result, it is always a lattice polytope.

0

3

4

+

0

1

3

=

0

4

7

Figure 5: Polytopes P∆, Q∆, (P + Q)∆

the electronic journal of combinatorics 31(1) (2024), #P1.1 12



+

(0, 0) (7, 0)

(0, 7)

=

(−2, 0) (4, 0)

(−2, 6)

(−2, 0) (11,0)

(−2, 13)

Figure 6: P̃ (4), Q̃(3), ˜(P + Q)(7)

(0, 0) (6, 0)

(0, 6)

+

(−2, 0) (2, 0)

(−2, 4)

=

(−2, 0) (8, 0)

(−2, 10)

Figure 7: P̃ (3), Q̃(1), ˜(P + Q)(4)

(0, 0)

+

(−2, 0) (0, 0)

(−2, 2)
=

(−2, 0) (0, 0)

(−2, 2)

Figure 8: P̃ (0), Q̃(0), ˜(P + Q)(0)
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Proof of Theorem 4. Let Σ be a smooth complete fan in Rn. Suppose Σ has at most n+2
rays or a splitting fan with n + 3 rays. Then the result follows from Theorem 12. Hence
we can assume P = P (A, h) and Q = P (A, h′), where A is a matrix as in (5) and h, h′

are convex support functions as in (8). Then we have P + Q = P (A, h + h′) by (3). Our
goal is to show that the pair (P,Q) has the IDP. Let α ∈ (P + Q) ∩ Zn. We will find
β ∈ P ∩ Zn and γ ∈ Q ∩ Zn such that β + γ = α. We will use the projection technique
discussed in the beginning of this section.

Let

P∆ = P (H, hK), Q∆ = P (H, h′
K), (P + Q)∆ = P (H, (h + h′)K).

Since P∆ = (e + f)∆|J |, Q
∆ = (e′ + f ′)∆|J | and (P + Q)∆ = (e + e′ + f + f ′)∆|J | we have

(P∆ ∩ Z|J |) + (Q∆ ∩ Z|J |) = (P + Q)∆ ∩ Z|J |.

Also notice that αJ ∈ (P+Q)∆∩Z|J |. Hence, we can find βJ ∈ P∆∩Z|J | and γJ ∈ Q∆∩Z|J |

such that αJ = βJ + γJ . Furthermore, we will consider two subcases depending on the
value of

∑
i∈X3

αi.

• If 0 ⩽
∑

i∈X3
αi ⩽ f + f ′, we can choose βJ , γJ such that 0 ⩽

∑
i∈X3

βi ⩽ f and
0 ⩽

∑
i∈X3

γi ⩽ f ′.

• Similarly, if f + f ′ ⩽
∑

i∈X3
αi ⩽ f + f ′ + e + e′, we can choose βJ , γJ such that

f ⩽
∑

i∈X3
βi ⩽ f + e and f ′ ⩽

∑
i∈X3

γi ⩽ f ′ + e′.

Now consider polytopes

P̃ = P (F, θ), Q̃ = P (F, θ′), P̃ + Q = P (F, (θ + θ′)).

Note that F is an (|S| + 2) × |S| matrix. Depending on the values of p1 and p4, we will
consider four cases. In each case, we will consider two subcases depending on the value
of
∑

i∈X3
αj. Further to that, in every subcase, we can find an alternative description of

P̃ , Q̃ and P̃ + Q as

P̃ = P (F̃ , θ̃), Q̃ = P (F̃ , θ̃′), P̃ + Q = P (F̃ , θ̃ + θ̃′),

where F̃ is associated to a smooth complete splitting fan Σ̃ and θ̃, θ̃′ are convex support
functions for Σ̃. Then by Theorem 12 we have

P̃ ∩ Z|S| + Q̃ ∩ Z|S| = P̃ + Q ∩ Z|S|.

Hence, we can find βL ∈ P̃ ∩ Z|S| and γL ∈ Q̃ ∩ Z|S| such that αL = βL + γL. Finally,
we can complete the proof by noticing that (βL, βJ) ∈ P ∩ Zn, (γL, γJ) ∈ Q ∩ Zn and
(βL, βJ) + (γL, γJ) = (αL, αJ).
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Here are the four cases.
Case 1. If p1 = p4 = 1, then we have

F =


v1

...
vp0
u1 −1 −1
y1 −1 −1

I



p0 columns

,
θ + θ′ =


v1 d

...
...

vp0 0
u1 f +

∑
i∈X3

biαi +
∑

j∈X2\{z1} cjαj

y1
∑

i∈X3
(bi + 1)αi +

∑
j∈X2\{z1} cjαj

,

θ =



v1 d
...

...
vp0 0

u1 f +
∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

y1
∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj


, θ′ =



d′

...
0

f ′ +
∑
i∈X3

biγi +
∑

j∈X2\{z1}

cjγj∑
i∈X3

(bi + 1)γi +
∑

j∈X2\{z1}

cjγj


.

As discussed in the previous paragraph, we need to associate the above data to
a smooth complete fan and convex support functions. We first analyze the polytope
˜(P + Q)(α) = P (F, θ + θ′).

It is clear that depending on the sum
∑

i∈X3
αi one of the equations from the rows

u1, y1 is redundant.

• If 0 ⩽
∑

i∈X3
αi ⩽ f + f ′, we choose βJ , γJ such that 0 ⩽

∑
i∈X3

βi ⩽ f and

0 ⩽
∑

i∈X3
γi ⩽ f ′. In this case, we construct F̃ , θ̃, θ̃′, θ̃ + θ′ from F, θ, θ′, θ + θ′ by

removing the row u1. Then we have

P̃ (β) = P (F̃ , θ̃), Q̃(γ) = P (F̃ , θ̃′), ˜(P + Q)(α) = P (F̃ , θ̃ + θ′).

• If f + f ′ ⩽
∑

i∈X3
αi ⩽ f + e + f ′ + e′, we choose βJ , γJ such that f ⩽

∑
i∈X3

βi ⩽

f + e and f ′ ⩽
∑

i∈X3
γi ⩽ f ′ + e′. In this case, we construct F̃ , θ̃, θ̃′, θ̃ + θ′ from

F, θ, θ′, θ + θ′ by removing the row y1. Then we have

P̃ (β) = P (F̃ , θ̃), Q̃(γ) = P (F̃ , θ̃′), ˜(P + Q)(α) = P (F̃ , θ̃ + θ′).

Note that in both cases F̃ is the same. Consider the smooth complete splitting fan Σ in
Rp0 with p0 + 1 rays (see Example 10). Then the matrix representing the ray generators

of Σ is equal to F̃ . Also note that entries in θ̃, θ̃′ are nonnegative. Hence, it follows that
they define convex support functions on Σ (see Example 10).

the electronic journal of combinatorics 31(1) (2024), #P1.1 15



Case 2. If p1, p4 ⩾ 2, then we have

F =



v1
...

vp0
u1 −1 −1 −1 −1 0 0
u2

...
up4

y1 −1 −1 0 0 −1 −1
y2

...
yp1

I 0 0

0 I 0

0 0 I



p0+p1+p4−2 columns

,

θ =



v1 d
...

...
vp0 0

u1 f +
∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

u2 0
...

...
up4 0

y1
∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

y2 0
...

...
yp1 0



, θ′ =



d′

...
0

f ′ +
∑
i∈X3

biγi +
∑

j∈X2\{z1}

cjγj

0
...
0∑

i∈X3

(bi + 1)γi +
∑

j∈X2\{z1}

cjγj

0
...
0



.

Consider two fans Σ1,Σ2 with the rays coming from the rows of of F but with
different primitive collections. For Σ1, we consider the primitive collections given by
{v1, . . . , vp0 , u1, . . . , up4}, {y1, . . . , yp1}. The primitive relations are given by

v1 + · · · + vp0 + u1 + · · · + up4 = 0

y1 + · · · + yp1 = u1 + · · · + up4 .

The support function φθ is convex with respect to Σ1 if and only if

φθ(v1 + · · · + vp0 + u1 + · · · + up4) ⩾ φθ(v1) + · · · + φθ(vp0) + φθ(u1) + · · · + φθ(up4)

φθ(y1 + · · · + yp1) ⩾ φθ(y1) + · · · + φθ(yp1).
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Simplifying the first inequality gives

0 ⩾ −d−

(
f +

∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
,

which holds in this case because d, bi, cj, βj are all non-negative. If we simplify the second
inequality, we get

−

(
f +

∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
⩾ −

(∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)

which holds if and only if
∑

i∈X3
βi ⩾ f . Similarly, we get φθ′ is convex if and only if∑

i∈X3
γi ⩾ f ′ and φ(θ+θ′) is convex if and only if

∑
i∈X3

αi ⩾ f + f ′. As a result, if

f + f ′ ⩽
∑
i∈X3

αi ⩽ f + e + f ′ + e′,

we find βJ , γJ ∈ Z|J | such that

f ⩽
∑
i∈X3

βi ⩽ f + e, f ′ ⩽
∑
i∈X3

γi ⩽ f ′ + e′.

We have seen that θ, θ′ are convex in this case.
For the fan Σ2, we consider the primitive collections given by {v1, . . . , vp0 , y1, . . . , yp1},

{u1, . . . , up4}. The primitive relations are given by

v1 + · · · + vp0 + y1 + · · · + yp1 = 0

u1 + · · · + up4 = y1 + · · · + yp1 .

The support function φθ is convex with respect to Σ1 if and only if

φθ(v1 + · · · + vp0 + y1 + · · · + yp1) ⩾ φθ(v1) + · · · + φθ(vp0) + φθ(y1) + · · · + φθ(yp4)

φθ(u1 + · · · + up4) ⩾ φθ(u1) + · · · + φθ(up4).

Simplifying the first inequality gives

0 ⩾ −d−

(
f +

∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)
,

which holds in this case because d, bi, cj, βj are all non-negative. If we simplify the second
inequality, we get

−

(∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)
⩾ −

(
f +

∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
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which holds if and only if
∑

i∈X3
βi ⩽ f . Similarly, we get φθ′ is convex if and only if∑

i∈X3
γi ⩽ f ′ and φ(θ+θ′) is convex if and only if

∑
i∈X3

αi ⩽ f + f ′. As a result, if

0 ⩽
∑
i∈X3

αi ⩽ f + f ′,

we find βJ , γJ ∈ Z|J | such that 0 ⩽
∑

i∈X3
βi ⩽ f and 0 ⩽

∑
i∈X3

γi ⩽ f ′. We have seen
that θ, θ′ are convex in this case.

Case 3. If p1 > p4 = 1, then we have

F =



v1
...

vp0
u1 −1 −1 0 0
y1 −1 −1 −1 −1
y2

...
yp1

I 0

0 I



p0+p1−1 columns

,

θ =



v1 d
...

...
vp0 0

u1 f +
∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

y1
∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

y2 0
...

...
yp1 0


, θ′ =



d′

...
0

f ′ +
∑
i∈X3

biγi +
∑

j∈X2\{z1}

cjγj∑
i∈X3

(bi + 1)γi +
∑

j∈X2\{z1}

cjγj

0
...
0


.

In this case, we consider the fan Σ with ray generators given by the rows of F and
primitive collections given by {v1, . . . , vp0 , u1}, {y1, . . . , yp1}. The primitive relations are
given by

v1 + · · · + vp0 + u1 = 0

y1 + · · · + yp1 = u1.

It is a smooth complete fan in Rp0+p1−1 with p0 + p1 + 1 rays. Next, we will determine
when φθ, φθ′ , φ(θ+θ′) are convex with respect to the fan Σ. The support function φθ is
convex if and only if
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φθ(v1 + · · · + vp0 + u1) ⩾ φθ(v1) + · · ·φθ(vp0) + φθ(y1)

φθ(y1 + · · · + yp1) ⩾ φθ(y1) + · · · + φθ(yp1).

Simplifying the first inequality gives

0 ⩾ −d−

(∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
,

which holds in this case because d, bi, cj, βj are all non-negative. If we simplify the second
inequality, we get

−

(
f +

∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
⩾ −

(∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)
,

which holds if and only if
∑

i∈X3
βi ⩾ f . Similarly, we get φθ′ is convex if and only if∑

i∈X3
γi ⩾ f ′ and φ(θ+θ′) is convex if and only if

∑
i∈X3

αi ⩾ f + f ′. As a result, if

f + f ′ ⩽
∑
i∈X3

αi ⩽ f + e + f ′ + e′,

we find βJ , γJ ∈ Z|J | such that f ⩽
∑

i∈X3
βi ⩽ f + e and f ′ ⩽

∑
i∈X3

γi ⩽ f ′ + e′. We
have seen that θ, θ′ are convex in this case.

But if 0 ⩽
∑

j∈J αj < f + f ′ then θ + θ′ is not convex. Nonetheless, we can see that
the half-space defined by row u1 is not a supporting half-space for the polytope, so we
translate it without altering the polytope and construct a convex support function. Define

θ̃j =

{
θy1 if j = u1

θj otherwise,

θ̃′j =

{
θ′y1 if j = u1

θ′j otherwise,

˜(θ + θ′)j =

{
(θ + θ′)y1 if j = u1

(θ + θ′)j otherwise.

It easy to see that θ̃, θ̃′ are convex and

P̃ = P (F, θ̃), Q̃ = P (F, θ̃′), P̃ + Q = P (F, θ̃ + θ̃′).

Case 4. If p4 > p1 = 1, then we have
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F =



v1
...

vp0
u1 −1 −1 −1 −1
u2

...
up4

y1 −1 −1 0 0

I 0

0 I



p0+p4−1 columns

,

θ =



v1 d
...

...
vp0 0

u1 f +
∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

u2 0
...

...
up4 0

y1
∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj


, θ′ =



d′

...
0

f ′ +
∑
i∈X3

biγi +
∑

j∈X2\{z1}

cjγj

0
...
0∑

i∈X3

(bi + 1)γi +
∑

j∈X2\{z1}

cjγj


.

In this case, we consider the fan Σ with ray generators given by the rows of F and
primitive collections given by {v1, . . . , vp0 , y1}, {u1, . . . , up4}. The primitive relations are
given by

v1 + · · · + vp0 + y1 = 0

u1 + · · · + up4 = y1.

It is a smooth complete fan in Rp0+p4−1 with p0 + p4 + 1 rays. Next, we will determine
when φθ, φθ′ , φ(θ+θ′) are convex with respect to the fan Σ. The support function φθ is
convex if and only if

φθ(v1 + · · · + vp0 + y1) ⩾ φθ(v1) + · · ·φθ(vp0) + φθ(y1)

φθ(u1 + · · · + up4) ⩾ φθ(u1) + · · · + φθ(up4).

Simplifying the first inequality gives

0 ⩾ −d−

(∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)
,

the electronic journal of combinatorics 31(1) (2024), #P1.1 20



which holds in this case because d, bi, cj, βj are all non-negative. If we simplify the second
inequality, we get

−

(∑
i∈X3

(bi + 1)βi +
∑

j∈X2\{z1}

cjβj

)
⩾ −

(
f +

∑
i∈X3

biβi +
∑

j∈X2\{z1}

cjβj

)
,

which holds if and only if
∑

i∈X3
βi ⩽ f . Similarly, we get φθ′ is convex if and only if∑

i∈X3
γi ⩽ f ′ and φ(θ+θ′) is convex if and only if

∑
i∈X3

αi ⩽ f + f ′. As a result, if

0 ⩽
∑
i∈X3

αi ⩽ f + f ′,

we find βJ , γJ ∈ Z|J | such that 0 ⩽
∑

i∈X3
βi ⩽ f and 0 ⩽

∑
i∈X3

γi ⩽ f ′. We have seen
that θ, θ′ are convex in this case.

But if f +f ′ <
∑

j∈J αj ⩽ f +e+f ′ +e′ then θ+θ′ is not convex. Nonetheless, we can
see that the half-space defined by row y1 is not a supporting half-space for the polytope,
so we translate it without altering the polytope and construct a convex support function.
Define

θ̃j =

{
θu1 if j = y1

θj otherwise,

θ̃′j =

{
θ′u1

if j = y1

θ′j otherwise,

˜(θ + θ′)j =

{
(θ + θ′)u1 if j = y1

(θ + θ′)j otherwise.

It easy to see that θ̃, θ̃′ are convex and

P̃ = P (F, θ̃), Q̃ = P (F, θ̃′), P̃ + Q = P (F, θ̃ + θ̃′).

Remark 16. We can use the strategy of elimination variables together with induction to
give a different proof for the fact that IDP holds for any smooth complete splitting fan.
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