Turán Numbers and Anti-Ramsey Numbers for Short Cycles in Complete 3-Partite Graphs

Chunqiu Fang*
School of Computer Science and Technology
Dongguan University of Technology
Dongguan, Guangdong 523808, China
chunqiu@ustc.edu.cn

Ervin Győri ${ }^{\dagger}$
Alfréd Rényi Institute of Mathematics
Central European University Budapest, Hungary

gyori.ervin@renyi.mta.hu

Chuanqi Xiao

School of Science
Nanjing University of Posts and Telecommunications
Nanjing, China
Central European University
Budapest, Hungary
xiao_chuanqi@outlook.com
Jimeng Xiao ${ }^{\ddagger}$
Department of Mathematics
Southern University of Science and Technology
Shenzhen, Guangdong 518055, China
Xi'an-Budapest Joint Research Center for Combinatorics
Northwestern Polytechnical University
Xi'an, Shaanxi 710129, China
xiaojimeng@mail.nwpu.edu.cn
Submitted: Aug 6, 2021; Accepted: Jan 3, 2023; Published: Jun 2, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We call a 4-cycle in $K_{n_{1}, n_{2}, n_{3}}$ multipartite, denoted by $C_{4}^{\text {multi }}$, if it contains at least one vertex in each part of $K_{n_{1}, n_{2}, n_{3}}$. The Turán number ex $\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)$

[^0](respectively, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}},\left\{C_{3}, C_{4}^{\text {multi }}\right\}\right)$) is the maximum number of edges in a graph $G \subseteq K_{n_{1}, n_{2}, n_{3}}$ such that G contains no $C_{4}^{\text {multi }}$ (respectively, G contains neither C_{3} nor $C_{4}^{\text {multi }}$). We call an edge-colored $C_{4}^{\text {multi }}$ rainbow if all four edges of it have different colors. The anti-Ramsey number $\operatorname{ar}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)$ is the maximum number of colors in an edge-colored $K_{n_{1}, n_{2}, n_{3}}$ with no rainbow $C_{4}^{\text {multi }}$. In this paper, we determine that $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)=n_{1} n_{2}+2 n_{3}$ and $\operatorname{ar}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)=$ $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}},\left\{C_{3}, C_{4}^{\text {multi }}\right\}\right)+1=n_{1} n_{2}+n_{3}+1$, where $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$.
Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

We consider only nonempty simple graphs. Let G be such a graph, the vertex and edge set of G is denoted by $V(G)$ and $E(G)$, the number of vertices and edges in G by $\nu(G)$ and $e(G)$, respectively. We denote the neighborhood of v in G by $N_{G}(v)$, and the degree of a vertex v in G by $d_{G}(v)$, the size of $N_{G}(v)$. Let U_{1}, U_{2} be vertex sets, denote by $e_{G}\left(U_{1}, U_{2}\right)$ the number of edges between U_{1} and U_{2} in G. We write $d(v)$ instead of $d_{G}(v)$, $N(v)$ instead of $N_{G}(v)$ and $e\left(U_{1}, U_{2}\right)$ instead of $e_{G}\left(U_{1}, U_{2}\right)$ if the underlying graph G is clear.

Given a graph family \mathcal{F}, we call a graph H an \mathcal{F}-free graph, if H contains no graph in \mathcal{F} as a subgraph. The Turán number $\operatorname{ex}(G, \mathcal{F})$ for a graph family \mathcal{F} in G is the maximum number of edges in a graph $H \subseteq G$ which is \mathcal{F}-free. If $\mathcal{F}=\{F\}$, then we denote $\operatorname{ex}(G, \mathcal{F})$ by $\operatorname{ex}(G, F)$.

An old result of Bollobás, Erdős and Szemerédi [3] showed that ex $\left(K_{n_{1}, n_{2}, n_{3}}, C_{3}\right)=$ $n_{1} n_{2}+n_{1} n_{3}$ for $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$ (also see [4, 2, 5]). Lv, Lu and Fang [8, 9] constructed balanced 3-partite graphs which are C_{4}-free and $\left\{C_{3}, C_{4}\right\}$-free respectively and showed that ex $\left(K_{n, n, n}, C_{4}\right)=\left(\frac{3}{\sqrt{2}}+o(1)\right) n^{3 / 2}$ and $\operatorname{ex}\left(K_{n, n, n},\left\{C_{3}, C_{4}\right\}\right) \geqslant(1.82+o(1)) n^{3 / 2}$.

For further discussion, we need the definitions of the multipartite subgraphs and a function $f\left(n_{1}, n_{2}, \ldots, n_{r}\right)$.
Definition 1. [7] Let $r \geqslant 3$ and G be an r-partite graph with vertex partition V_{1}, \ldots, V_{r}, we call a subgraph H of G multipartite, if there are at least three distinct parts V_{i}, V_{j}, V_{k} such that $V(H) \cap V_{i} \neq \emptyset, V(H) \cap V_{j} \neq \emptyset$ and $V(H) \cap V_{k} \neq \emptyset$. In particular, we denote a multipartite H by $H^{\text {multi }}$ (see Figure 3 for an example of a $C_{4}^{\text {multi }}$ in a 3-partite graph).

For $r \geqslant 3$ and $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{r} \geqslant 1$, let

$$
f\left(n_{1}, n_{2}, \ldots, n_{r}\right)= \begin{cases}n_{1} n_{2}+n_{3} n_{4}+\cdots+n_{r-2} n_{r-1}+n_{r}+\frac{r-1}{2}-1, & r \text { is odd; } \\ n_{1} n_{2}+n_{3} n_{4}+\cdots+n_{r-1} n_{r}+\frac{r}{2}-1, & r \text { is even. }\end{cases}
$$

Fang, Győri, Li and Xiao [7] recently showed that if $G \subseteq K_{n_{1}, n_{2}, \ldots, n_{r}}$ and $e(G) \geqslant$ $f\left(n_{1}, n_{2}, \ldots, n_{r}\right)+1$, then G contains a multipartite cycle. Furthermore, they proposed the following conjecture.

Conjecture 2. [7] For $r \geqslant 3$ and $n_{1} \geqslant n_{2} \geqslant \cdots \geqslant n_{r} \geqslant 1$, if $G \subset K_{n_{1}, n_{2}, \ldots, n_{r}}$ and $e(G) \geqslant f\left(n_{1}, n_{2}, \ldots, n_{r}\right)+1$, then G contains a multipartite cycle $C^{\text {multi }}$ of length at most $\frac{3}{2} r$.

Figure 1: A $C_{4}^{\text {multi }}$ in a 3 -partite graph.

In this paper, we study the Turán numbers of $C_{4}^{\text {multi }}$ and $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$ in complete 3 -partite graphs and obtain the following results.

Theorem 3. For $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)=n_{1} n_{2}+2 n_{3}$.
Theorem 4. For $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}},\left\{C_{3}, C_{4}^{\text {multi }}\right\}\right)=n_{1} n_{2}+n_{3}$.
Notice that Theorem 4 confirms Conjecture 2 for the case when $r=3$.
A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors. For graphs G and H, the anti-Ramsey number $\operatorname{ar}(G, H)$ is the maximum number of colors in an edge-colored G with no rainbow copy of H. Erdős, Simonovits and Sós [6] first studied the anti-Ramsey number in the case when the host graph G is a complete graph K_{n} and showed the close relationship between it and the Turán number. In this paper, we consider the anti-Ramsey number of $C_{4}^{\text {multi }}$ in complete 3-partite graphs.

Theorem 5. For $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$, $\operatorname{ar}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)=n_{1} n_{2}+n_{3}+1$.
We prove Theorems 3 and 4 in Section 2 and Theorem 5 in Section 3, respectively. We always denote the vertex partition of $K_{n_{1}, n_{2}, n_{3}}$ by V_{1}, V_{2} and V_{3}, where $\left|V_{i}\right|=n_{i}, 1 \leqslant i \leqslant 3$.

2 The Turán numbers of $C_{4}^{\text {multi }}$ and $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$

In this section, we first give the following lemma which will play an important role in our proof.

Lemma 6. Let G be a 3-partite graph with vertex partition X, Y and Z, such that for all $x \in X, N(x) \cap Y \neq \emptyset$ and $N(x) \cap Z \neq \emptyset$.
(i) If G is $C_{4}^{\text {multi }}$-free, then $e(G) \leqslant|Y||Z|+2|X|$;
(ii) If G is $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$-free, then $e(G) \leqslant|Y||Z|+|X|$.

Proof. (i) Since G is $C_{4}^{\text {multi }}$-free, $G[N(x)]$ is $K_{1,2}$-free for each $x \in X$. Therefore,

$$
\begin{equation*}
e(G[N(x)])=e(N(x) \cap Y, N(x) \cap Z) \leqslant \min \{|N(x) \cap Y|,|N(x) \cap Z|\} . \tag{1}
\end{equation*}
$$

For $x \in X$, we let e_{x} be the number of missing edges of G between $N(x) \cap Y$ and $N(x) \cap Z$. By (1), we have

$$
\begin{align*}
e_{x} & =|N(x) \cap Y| \cdot|N(x) \cap Z|-e(N(x) \cap Y, N(x) \cap Z) \\
& \geqslant|N(x) \cap Y| \cdot|N(x) \cap Z|-\min \{|N(x) \cap Y|,|N(x) \cap Z|\} \tag{2}\\
& \geqslant|N(x) \cap Y|+|N(x) \cap Z|-2,
\end{align*}
$$

where the last inequality holds since $|N(x) \cap Y| \geqslant 1$ and $|N(x) \cap Z| \geqslant 1$ for all $x \in X$.
By (2), we get

$$
\begin{equation*}
\sum_{x \in X} e_{x} \geqslant \sum_{x \in X}(|N(x) \cap Y|+|N(x) \cap Z|-2)=e(X, Y)+e(X, Z)-2|X| . \tag{3}
\end{equation*}
$$

Notice that for any two distinct vertices $x_{1}, x_{2} \in X$, they cannot have common neighbors in both Y and Z at the same time, otherwise we find a copy of $C_{4}^{\text {multi }}$ in G. Thus each missing edge between Y and Z is calculated at most once in the sum $\sum_{x \in X} e_{x}$. Hence the number of missing edges between Y and Z is at least $\sum_{x \in X} e_{x}$. Then we have

$$
\begin{equation*}
e(Y, Z) \leqslant|Y||Z|-\sum_{x \in X} e_{x} \leqslant|Y||Z|-(e(X, Y)+e(X, Z)-2|X|) \tag{4}
\end{equation*}
$$

By (4), we get

$$
e(G)=e(X, Y)+e(X, Z)+e(Y, Z) \leqslant|Y||Z|+2|X| .
$$

(ii) Since G is C_{3}-free, for each $x \in X$,

$$
\begin{equation*}
e(N(x) \cap Y, N(x) \cap Z)=0 . \tag{5}
\end{equation*}
$$

Since for each $x \in X,|N(x) \cap Y| \geqslant 1$ and $|N(x) \cap Z| \geqslant 1$ hold, by (5), the number of missing edges between $N(x) \cap Y$ and $N(x) \cap Z$ is $|N(x) \cap Y| \cdot|N(x) \cap Z|$. Notice that for any two distinct vertices $x_{1}, x_{2} \in X$, they cannot have common neighbors in both Y and Z at the same time, otherwise we find a copy of $C_{4}^{\text {multi }}$ in G. Hence, the number of missing edges between Y and Z is at least $\sum_{x \in X}|N(x) \cap Y| \cdot|N(x) \cap Z|$. Thus,

$$
\begin{align*}
e(Y, Z) & \leqslant|Y||Z|-\sum_{x \in X}|N(x) \cap Y| \cdot|N(x) \cap Z| \\
& \leqslant|Y||Z|-\sum_{x \in X}(|N(x) \cap Y|+|N(x) \cap Z|-1) \tag{6}\\
& =|Y||Z|+|X|-e(X, Y)-e(X, Z),
\end{align*}
$$

the second inequality holds since $|N(x) \cap Y| \geqslant 1$ and $|N(x) \cap Z| \geqslant 1$ for $x \in X$.
By (6), we have $e(G)=e(Y, Z)+e(X, Y)+e(X, Z) \leqslant|Y||Z|+|X|$.
Now we are ready to prove Theorems 3 and 4 .

Figure 2: An example of $C_{4}^{\text {multi }}$-free graph with $n_{1} n_{2}+2 n_{3}$ edges.

Proof of Theorem 3. Let $G \subseteq K_{n_{1}, n_{2}, n_{3}}$ be a graph, such that V_{1} and V_{2} are completely joined, V_{1} (respectively, V_{2}) and V_{3} are joined by an n_{3}-matching, see Figure 2. Clearly, G is $C_{4}^{\text {multi }}$-free and $e(G)=n_{1} n_{2}+2 n_{3}$. Therefore, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right) \geqslant n_{1} n_{2}+2 n_{3}$.

Let $G \subseteq K_{n_{1}, n_{2}, n_{3}}$ such that G is $C_{4}^{\text {multi }}$-free, now we are going to prove that $e(G) \leqslant$ $n_{1} n_{2}+2 n_{3}$ by induction on $n_{1}+n_{2}+n_{3}$.

For the base case $n_{3}=1$, let $V_{3}=\{v\}$, we consider the following four subcases:
(i) $N(v) \cap V_{1} \neq \emptyset$ and $N(v) \cap V_{2} \neq \emptyset$. By Lemma 6, we have $e(G) \leqslant n_{1} n_{2}+2$.
(ii) $N(v) \cap V_{1} \neq \emptyset$ and $N(v) \cap V_{2}=\emptyset$.

For any vertex $x \in V_{2}$, we have $e(x, N(v)) \leqslant 1$, otherwise there is a $C_{4}^{\text {multi }}$. Hence, $e\left(V_{2}, N(v)\right)=\sum_{x \in V_{2}} e(x, N(v)) \leqslant n_{2}$. Therefore,

$$
\begin{aligned}
e(G) & =e\left(V_{3}, N(v)\right)+e\left(V_{2}, N(v)\right)+e\left(V_{1} \backslash N(v), V_{2}\right) \\
& \leqslant d(v)+n_{2}+\left(n_{1}-d(v)\right) n_{2} \\
& \leqslant n_{1} n_{2}+1
\end{aligned}
$$

(iii) $N(v) \cap V_{1}=\emptyset$ and $N(v) \cap V_{2} \neq \emptyset$.

For any vertex $x \in V_{1}$, we have $e(x, N(v)) \leqslant 1$, otherwise there is a $C_{4}^{\text {multi }}$. Hence, $e\left(V_{1}, N(v)\right)=\sum_{x \in V_{1}} e(x, N(v)) \leqslant n_{1}$. Therefore,

$$
\begin{aligned}
e(G) & =e\left(V_{3}, N(v)\right)+e\left(V_{1}, N(v)\right)+e\left(V_{2} \backslash N(v), V_{1}\right) \\
& \leqslant d(v)+n_{1}+\left(n_{2}-d(v)\right) n_{1} \\
& \leqslant n_{1} n_{2}+1
\end{aligned}
$$

(iv) $N(v) \cap V_{1}=\emptyset$ and $N(v) \cap V_{2}=\emptyset$. We have $e(G)=e\left(V_{1}, V_{2}\right) \leqslant n_{1} n_{2}$.

Now let $n_{3} \geqslant 2$, and assume that the statement is true for order less than $n_{1}+n_{2}+n_{3}$. We distinguish the three cases depending on the equality of the numbers n_{1}, n_{2}, n_{3}.
Case 1. $n_{1}=n_{2}=n_{3}=n \geqslant 2$.
If there exists one part, say V_{1}, such that $N(v) \cap V_{2} \neq \emptyset$ and $N(v) \cap V_{3} \neq \emptyset$, for all $v \in V_{1}$, then by Lemma 6 , we have $e(G) \leqslant\left|V_{2}\right|\left|V_{3}\right|+2\left|V_{1}\right|=n^{2}+2 n$.

Thus, we may assume that for all $i \in[3]=\{1,2,3\}$, there exist a vertex $v \in V_{i}$ and $j \in[3] \backslash\{i\}$ such that $N(v) \cap V_{j}=\emptyset$. We divide it into two subcases.
Case 1.1. There exist two parts, say V_{1} and V_{2}, such that $N\left(v_{1}\right) \cap V_{2}=\emptyset$ and $N\left(v_{2}\right) \cap V_{1}=$ \emptyset for some vertices $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$.

Since G is $C_{4}^{\text {multi }}$-free, $d\left(v_{1}\right)+d\left(v_{2}\right) \leqslant\left|V_{3}\right|+1=n+1$. Without loss of generality, let $v_{3} \in V_{3}$ be the vertex such that $N\left(v_{3}\right) \cap V_{1}=\emptyset$. Then the number of edges incident with $\left\{v_{1}, v_{2}, v_{3}\right\}$ in G is at most $d\left(v_{1}\right)+d\left(v_{2}\right)+n-1 \leqslant 2 n$. By the induction hypothesis, $e\left(G-\left\{v_{1}, v_{2}, v_{3}\right\}\right) \leqslant(n-1)^{2}+2(n-1)$. Thus, $e(G) \leqslant(n-1)^{2}+2(n-1)+2 n \leqslant n^{2}+2 n$. Case 1.2. There exist vertices $v_{1} \in V_{1}, v_{2} \in V_{2}$ and $v_{3} \in V_{3}$ such that either $N\left(v_{1}\right) \cap V_{2}=$ $\emptyset, N\left(v_{2}\right) \cap V_{3}=\emptyset, N\left(v_{3}\right) \cap V_{1}=\emptyset$ or $N\left(v_{1}\right) \cap V_{3}=\emptyset, N\left(v_{3}\right) \cap V_{2}=\emptyset, N\left(v_{2}\right) \cap V_{1}=\emptyset$ holds.

Without loss of generality, we assume that $N\left(v_{1}\right) \cap V_{2}=\emptyset, N\left(v_{2}\right) \cap V_{3}=\emptyset, N\left(v_{3}\right) \cap V_{1}=$ \emptyset. If $d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right) \leqslant 2 n+1$, then by the induction hypothesis, we have

$$
\begin{aligned}
e(G) & \leqslant e\left(G-\left\{v_{1}, v_{2}, v_{3}\right\}\right)+d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right) \\
& \leqslant(n-1)^{2}+2(n-1)+2 n+1 \\
& \leqslant n^{2}+2 n .
\end{aligned}
$$

Now we assume that $d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right) \geqslant 2 n+2$, hence, $d\left(v_{1}\right) \geqslant 1, d\left(v_{2}\right) \geqslant 1, d\left(v_{3}\right) \geqslant 1$. Since G is $C_{4}^{\text {multi }}$-free, each vertex in $V_{1} \backslash\left\{v_{1}\right\}$ can have at most one neighbor in $N\left(v_{3}\right)$, we have $e\left(V_{1} \backslash\left\{v_{1}\right\}, N\left(v_{3}\right)\right) \leqslant n-1$. Similarly, we have $e\left(V_{3} \backslash\left\{v_{3}\right\}, N\left(v_{2}\right)\right) \leqslant n-1$ and $e\left(V_{2} \backslash\left\{v_{2}\right\}, N\left(v_{1}\right)\right) \leqslant n-1$.

Therefore,

$$
\begin{aligned}
& e\left(V_{1}, V_{2}\right)=e\left(V_{1} \backslash\left\{v_{1}\right\}, V_{2} \backslash N\left(v_{3}\right)\right)+e\left(V_{1} \backslash\left\{v_{1}\right\}, N\left(v_{3}\right)\right) \leqslant\left(n-d\left(v_{3}\right)\right)(n-1)+(n-1), \\
& e\left(V_{1}, V_{3}\right)=e\left(V_{3} \backslash\left\{v_{3}\right\}, V_{1} \backslash N\left(v_{2}\right)\right)+e\left(V_{3} \backslash\left\{v_{3}\right\}, N\left(v_{2}\right)\right) \leqslant\left(n-d\left(v_{2}\right)\right)(n-1)+(n-1), \\
& e\left(V_{2}, V_{3}\right)=e\left(V_{2} \backslash\left\{v_{2}\right\}, V_{3} \backslash N\left(v_{1}\right)\right)+e\left(V_{2} \backslash\left\{v_{2}\right\}, N\left(v_{1}\right)\right) \leqslant\left(n-d\left(v_{1}\right)\right)(n-1)+(n-1) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
e(G) & =e\left(V_{1}, V_{2}\right)+e\left(V_{1}, V_{3}\right)+e\left(V_{2}, V_{3}\right) \\
& \leqslant\left(3 n-\left(d\left(v_{1}\right)+d\left(v_{2}\right)+d\left(v_{3}\right)\right)\right)(n-1)+3(n-1) \\
& \leqslant(3 n-(2 n+2))(n-1)+3(n-1) \\
& \leqslant n^{2}-1
\end{aligned}
$$

Case 2. $n_{1}>n_{2}=n_{3}=n \geqslant 2$.
If there exists one vertex $v_{0} \in V_{1}$ such that $d\left(v_{0}\right) \leqslant n$, then by the induction hypothesis, we have $e(G)=e\left(G-v_{0}\right)+d\left(v_{0}\right) \leqslant\left(n_{1}-1\right) n+2 n+n \leqslant n_{1} n+2 n$. Otherwise, we have $d(v) \geqslant n+1$ for all vertices $v \in V_{1}$. Hence, $N(v) \cap V_{2} \neq \emptyset$ and $N(v) \cap V_{3} \neq \emptyset$ hold for all $v \in V_{1}$. By Lemma 6, we get $e(G) \leqslant n^{2}+2 n_{1} \leqslant n_{1} n+2 n$.
Case 3. $n_{1} \geqslant n_{2}>n_{3} \geqslant 2$.
If there exists one vertex $v_{0} \in V_{2}$ such that $d\left(v_{0}\right) \leqslant n_{1}$, by the induction hypothesis, we have $e(G)=e\left(G-v_{0}\right)+d\left(v_{0}\right) \leqslant n_{1}\left(n_{2}-1\right)+2 n_{3}+n_{1} \leqslant n_{1} n_{2}+2 n_{3}$. Otherwise, we have $d(v) \geqslant n_{1}+1$ for all vertices $v \in V_{2}$. Hence, $N(v) \cap V_{1} \neq \emptyset$ and $N(v) \cap V_{3} \neq \emptyset$ for all $v \in V_{2}$. By Lemma 6 , we get $e(G) \leqslant n_{1} n_{3}+2 n_{2} \leqslant n_{1} n_{2}+2 n_{3}$.
Proof of Theorem 4. Let $G \subseteq K_{n_{1}, n_{2}, n_{3}}$ be a graph, such that V_{1} and V_{2} are completely joined, V_{1} and V_{3} are joined by an n_{3}-matching and there is no edge between V_{2} and

Figure 3: An example of $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$-free graph with $n_{1} n_{2}+n_{3}$ edges.
V_{3}, see Figure 3. Clearly, G is $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$-free and $e(G)=n_{1} n_{2}+n_{3}$. Therefore, $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}},\left\{C_{3}, C_{4}^{\text {multi }}\right\}\right) \geqslant n_{1} n_{2}+n_{3}$.

Let $G \subseteq K_{n_{1}, n_{2}, n_{3}}$ such that G is $\left\{C_{3}, C_{4}^{\text {multi }}\right\}$-free, now we can prove $e(G) \leqslant n_{1} n_{2}+n_{3}$ by induction on $n_{1}+n_{2}+n_{3}$ in the same way as we did in the proof of Theorem 3 , just the coefficients in the computation change a bit. For sake of brevity, we skip the details of the proof.

3 The anti-Ramsey number of $C_{4}^{\text {multi }}$

In this section, we study the anti-Ramsey number of $C_{4}^{\text {multi }}$ in the complete 3-partite graphs. Given an edge-coloring c of G, we denote the color of an edge e by $c(e)$. For a subgraph H of G, we denote $C(H)=\{c(e) \mid e \in E(H)\}$. We call a spanning subgraph of an edge-colored graph a representing subgraph, if it contains exactly one edge of each color.

Given graphs G_{1} and G_{2}, we use $G_{1} \wedge G_{2}$ to denote the graph consisting of G_{1} and G_{2} sharing exactly one common vertex. We call a multipartite C_{6} in a 3-partite graph non-cyclic if there exists a vertex v in C_{6} such that the two neigborhoods in C_{6} of v belong to the same part. Let \mathcal{F} be a graph family which consists of $C_{4}^{\text {multi }}$ (see graph G_{1} in Figure 4), $C_{3} \wedge C_{3}$ (see graph G_{2} in Figure 4), the non-cyclic $C_{6}^{\text {multi }}$ (see graphs G_{3}, G_{4} in Figure 4) and $C_{3} \wedge C_{5}$ (see graphs G_{5}, G_{6}, G_{7} in Figure 4) and the $C_{8}^{\text {multi }}$ which contains at least two vertex-disjoint non-multipartite P_{3} (see graph G_{8} in Figure 4).

To find a rainbow $C_{4}^{\text {multi }}$ in the edge-colored complete 3 -partite graphs, we follow the idea of Alon [1] and prove the lemma as follows..

Lemma 7. Let $n_{1} \geqslant n_{2} \geqslant n_{3} \geqslant 1$. For an edge-colored $K_{n_{1}, n_{2}, n_{3}}$, if there is a rainbow copy of some graph in \mathcal{F}, then there is a rainbow copy of $C_{4}^{\text {multi }}$.

Proof. We separate the proof into three cases.
Case 1. An edge-colored $K_{n_{1}, n_{2}, n_{3}}$ contains a rainbow copy of G_{2}, G_{3} or G_{4}.
Suppose there is a rainbow copy of G_{2} in $K_{n_{1}, n_{2}, n_{3}}$ (see Figure 5), then whatever the color of $v_{1} w_{2}$ is, at least one of $v_{1} u v_{2} w_{2} v_{1}$ and $v_{1} w_{2} u w_{1} v_{1}$ is a rainbow $C_{4}^{\text {multi }}$. Similarly, with the help of the red edge that is showed in G_{3} and G_{4} (see Figure 5), there are two $C_{4}^{\text {multi }}$ s whose edge-intersection is the red edge, so one of the two $C_{4}^{\text {multi }}$ s must be rainbow. Case 2. An edge-colored $K_{n_{1}, n_{2}, n_{3}}$ contains a rainbow copy of G_{5}.

Figure 4: $\mathcal{F}=\left\{G_{1}\right\} \cup\left\{G_{2}\right\} \cup\left\{G_{3}, G_{4}\right\} \cup\left\{G_{5}, G_{6}, G_{7}\right\} \cup\left\{G_{8}\right\}$.

Figure 5: Illustration of Case 1.

Suppose there is a rainbow copy of G_{5} in $K_{n_{1}, n_{2}, n_{3}}$ (see Figure 6). If $v_{3} w_{3} u w_{2} v_{3}$ is not rainbow, then $u w_{3}$ shares the same color with one of $v_{3} w_{3}, v_{3} w_{2}$ and $u w_{2}$. Hence, $u v_{2} w_{3} u \cup u v_{1} w_{2} u$ is a rainbow copy of G_{2}, by Case 1 , we can find a rainbow copy of $C_{4}^{\text {multi }}$.

Figure 6: Illustration of Case 2.
Case 3. An edge-colored $K_{n_{1}, n_{2}, n_{3}}$ contains a rainbow copy of G_{6}, G_{7} or G_{8}.

Figure 7: Illustration of Case 3.
Suppose there is a rainbow copy of G_{6} in $K_{n_{1}, n_{2}, n_{3}}$ (see Figure 7). If $v_{2} u_{1} w_{1} u_{2} v_{2}$ is not rainbow, then $u_{2} w_{1}$ shares the same color with one of $v_{2} u_{1}, u_{1} w_{1}$ and $u_{2} v_{2}$. Hence, $v_{1} u_{1} v_{3} w_{2} u_{2} w_{1} v_{1}$ is a rainbow copy of G_{4}, by Case 1 , we can find a rainbow copy of $C_{4}^{\text {multi }}$. Similarly, with the help of the red edge that is showed in G_{7} and G_{8} (see Figure 7), one can always find a rainbow copy of $C_{4}^{\text {multi }}$ if there is a rainbow copy of G_{7} or G_{8}.

Now we are able to prove Theorem 5.
Proof of Theorem 5. Lower bound: We color the edges of $K_{n_{1}, n_{2}, n_{3}}$ as follows. First, color all edges between V_{1} and V_{2} rainbow. Second, for each vertex $v \in V_{3}$, color all the edges between v and V_{1} with one new distinct color. Finally, assign a new color to all edges between V_{2} and V_{3}. In such way, we use exactly $n_{1} n_{2}+n_{3}+1$ colors, and there is no rainbow $C_{4}^{\text {multi }}$.

Upper bound: We prove the upper bound by induction on $n_{1}+n_{2}+n_{3}$. By Theorem 3, we have $\operatorname{ar}\left(K_{n_{1}, n_{2}, 1}, C_{4}^{\text {multi }}\right) \leqslant \operatorname{ex}\left(K_{n_{1}, n_{2}, 1}, C_{4}^{\text {multi }}\right)=n_{1} n_{2}+2$, the conclusion holds for $n_{3}=1$. Let $n_{3} \geqslant 2$, suppose the conclusion holds for all integers less than $n_{1}+n_{2}+n_{3}$. We suppose there exists an $\left(n_{1} n_{2}+n_{3}+2\right)$-edge-coloring c of $K_{n_{1}, n_{2}, n_{3}}$ such that there is no rainbow $C_{4}^{\text {multi }}$ in it. We take a representing subgraph G.
Claim 8. G contains two vertex-disjoint triangles.

Proof of Claim 8. Recall that Theorem 4 says that $\operatorname{ex}\left(K_{n_{1}, n_{2}, n_{3}},\left\{C_{3}, C_{4}^{\text {multi }}\right\}\right)=n_{1} n_{2}+n_{3}$. Since $e(G)=n_{1} n_{2}+n_{3}+2$ and G contains no $C_{4}^{\text {multi }}, G$ contains at least two triangles T_{1} and T_{2}. If $\left|V\left(T_{1}\right) \cap V\left(T_{2}\right)\right|=2$, then $T_{1} \cup T_{2}$ contains a $C_{4}^{\text {multi }}$, a contradiction. If $\left|V\left(T_{1}\right) \cap V\left(T_{2}\right)\right|=1$, then $T_{1} \cup T_{2}$ is a copy of $C_{3} \wedge C_{3}$. By Lemma 7 , we can find a rainbow $C_{4}^{\text {multi }}$, a contradiction. Thus, T_{1} and T_{2} are vertex-disjoint.

Let the two vertex-disjoint triangles be $T_{1}=x_{1} y_{1} z_{1} x_{1}$ and $T_{2}=x_{2} y_{2} z_{2} x_{2}$, where $\left\{x_{1}, x_{2}\right\} \subseteq V_{1},\left\{y_{1}, y_{2}\right\} \subseteq V_{2}$ and $\left\{z_{1}, z_{2}\right\} \subseteq V_{3}$. Denote $V_{0}=\left\{x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}\right\}$ and $U=\left(V_{1} \cup V_{2} \cup V_{3}\right) \backslash V_{0}$.
Claim 9. $e\left(G\left[V_{0}\right]\right) \leqslant 7$.
Proof of Claim 9. If $e\left(G\left[V_{0}\right]\right) \geqslant 8$, then $e\left(V\left(T_{1}\right), V\left(T_{2}\right)\right) \geqslant 2$. Without loss of generality, assume that $x_{1} y_{2} \in E(G)$, we claim that $x_{1} z_{2}, x_{2} z_{1}, y_{1} z_{2}, y_{2} z_{1} \notin E(G)$, otherwise $x_{1} y_{2} x_{2} z_{2} x_{1}, x_{1} y_{2} x_{2} z_{1} x_{1}, x_{1} y_{2} z_{2} y_{1} x_{1}$ or $x_{1} y_{2} z_{1} y_{1} x_{1}$ would be a rainbow $C_{4}^{\text {multi }}$. Thus, we have $x_{2} y_{1} \in E(G)$. We claim that $c\left(y_{1} z_{2}\right)=c\left(y_{2} z_{2}\right)$, otherwise at least one of $\left\{x_{1} y_{1} z_{2} y_{2} x_{1}, x_{2} y_{1} z_{2} y_{2} x_{2}\right\}$ is a rainbow $C_{4}^{\text {multi }}$. Thus, $G\left[V_{0}\right]-y_{2} z_{2}+y_{1} z_{2}$ is rainbow and contains a $C_{3} \wedge C_{3}$. By Lemma 7 , we find a rainbow $C_{4}^{\text {multi }}$, a contradiction.

If $U=\emptyset$, that is $n_{1}=n_{2}=n_{3}=2$, then $8=e(G)=e\left(G\left[V_{0}\right]\right) \leqslant 7$, by Claim 9 , a contradiction. Thus we may assume that $U \neq \emptyset$.
Claim 10. For all $v \in U, e\left(v, V_{0}\right) \leqslant 2$.
Proof of Claim 10. If there is a vertex $v \in U$, such that $e_{G}\left(v, V_{0}\right) \geqslant 3$, then $G\left[V_{0} \cup\{v\}\right]$ contains a $C_{4}^{\text {multi }}$, a contradiction.

Claim 11. $n_{3} \geqslant 3$.
Proof of Claim 11. Suppose $n_{3}=2$. Since $U \neq \emptyset$, we have $n_{1} \geqslant 3=n_{3}+1$. If there is a vertex $v \in V_{1}$ such that $d(v) \leqslant n_{2}$, then $e(G-v)=n_{1} n_{2}+n_{3}+2-d(v) \geqslant\left(n_{1}-1\right) n_{2}+n_{3}+2$. By the induction hypothesis, we have

$$
\left|C\left(K_{n_{1}, n_{2}, n_{3}}-v\right)\right| \geqslant e(G-v) \geqslant\left(n_{1}-1\right) n_{2}+n_{3}+2=\operatorname{ar}\left(K_{n_{1}-1, n_{2}, n_{3}}, C_{4}^{\text {multi }}\right)+1
$$

thus $K_{n_{1}, n_{2}, n_{3}}-v$ contains a rainbow $C_{4}^{\text {multi }}$, a contradiction. Thus we assume that $d(v) \geqslant$ $n_{2}+1$ for all $v \in V_{1}$. By Claim 8, we have $e\left(V_{2}, V_{3}\right) \geqslant 2$. Hence, we have
$e(G)=e\left(V_{1}, V_{2} \cup V_{3}\right)+e\left(V_{2}, V_{3}\right)=\sum_{v \in V_{1}} d(v)+e\left(V_{2}, V_{3}\right) \geqslant n_{1}\left(n_{2}+1\right)+2=n_{1} n_{2}+n_{1}+2$,
and this contradicts to the fact that $e(G)=n_{1} n_{2}+n_{3}+2$.
Claim 12. $e\left(G\left[V_{0}\right]\right)+e\left(V_{0}, U\right) \geqslant 2 n_{1}+2 n_{2}-1$.

Proof of Claim 12. If $e\left(G\left[V_{0}\right]\right)+e\left(V_{0}, U\right) \leqslant 2 n_{1}+2 n_{2}-2$, then

$$
\begin{aligned}
e(G[U])=e(G)-\left(e\left(G\left[V_{0}\right]\right)+e\left(V_{0}, U\right)\right) & \geqslant n_{1} n_{2}+n_{3}+2-\left(2 n_{1}+2 n_{2}-2\right) \\
& =\left(n_{1}-2\right)\left(n_{2}-2\right)+\left(n_{3}-2\right)+2 .
\end{aligned}
$$

By Claim 11, $n_{3}-2 \geqslant 1$. By the induction hypothesis, we have

$$
\begin{aligned}
\left|C\left(K_{n_{1}, n_{2}, n_{3}}-V_{0}\right)\right| \geqslant e(G[U]) & \geqslant\left(n_{1}-2\right)\left(n_{2}-2\right)+\left(n_{3}-2\right)+2 \\
& =\operatorname{ar}\left(K_{n_{1}-2, n_{2}-2, n_{3}-2}, C_{4}^{\text {multi }}\right)+1
\end{aligned}
$$

thus $K_{n_{1}, n_{2}, n_{3}}-V_{0}$ contains a rainbow $C_{4}^{\text {multi }}$, a contradiction.
Denote $U_{0}=\left\{v \in U: e\left(v, V_{0}\right)=2\right\}$. By Claim 10, we have $e\left(U, V_{0}\right) \leqslant\left|U_{0}\right|+|U|$. By Claim 9, we just need to consider the following two cases.
Case 1. $e\left(G\left[V_{0}\right]\right)=7$.
Without loss of generality, let $x_{1} z_{2}$ be the unique edge of $G\left[V_{0}\right]$ between T_{1} and T_{2}. By Claim 12, we have $e\left(U, V_{0}\right) \geqslant 2 n_{1}+2 n_{2}-1-e\left(G\left[V_{0}\right]\right)=2 n_{1}+2 n_{2}-8$. Since $|U|=n_{1}+n_{2}+n_{3}-6$ and $e\left(U, V_{0}\right) \leqslant\left|U_{0}\right|+|U|$, we have $\left|U_{0}\right| \geqslant n_{1}+n_{2}-n_{3}-2 \geqslant 1$. Take a vertice $v \in U_{0}$, we consider the following two subcases to show that $G\left[V_{0} \cup\{v\}\right]$ contains one rainbow copy of some graph in \mathcal{F} (see Figure 4). By Lemma 7, there is a rainbow $C_{4}^{\text {multi }}$, a contradiction.
Case $1.1 v \in V_{1} \cup V_{3}$.
Without loss of generality, we may assume that $v \in V_{1}$, the orange edges in $G\left[V_{0} \cup\{v\}\right]$ (see Figure 8) forms a copy of some graph in \mathcal{F} (see Figure 4).

Figure 8: Illustration of Case 1.1.

Case $1.2 v \in V_{2}$.
The orange edges in $G\left[V_{0} \cup\{v\}\right]$ (see Figure 9) forms a copy of some graph in \mathcal{F} (see Figure 4).

Figure 9: Illustration of Case 1.2.

Case 2. $e\left(G\left[V_{0}\right]\right)=6$.

By Claim 12, we have $e\left(U, V_{0}\right) \geqslant 2 n_{1}+2 n_{2}-1-e\left(G\left[V_{0}\right]\right)=2 n_{1}+2 n_{2}-7$. Since $|U|=n_{1}+n_{2}+n_{3}-6$ and $e\left(U, V_{0}\right) \leqslant\left|U_{0}\right|+|U|$, we have $\left|U_{0}\right| \geqslant n_{1}+n_{2}-n_{3}-1 \geqslant n_{1}-1>$ $n_{1}-2$. Thus, U_{0} contains at least two vertices v_{1} and v_{2} which come from distinct parts. Without loss of generality, assume that $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$. We consider the following three subcases to show that $G\left[V_{0} \cup\left\{v_{1}, v_{2}\right\}\right]$ contains one rainbow copy of some graph in \mathcal{F} (see Figure 4). By Lemma 7, there exists a rainbow $C_{4}^{\text {multi }}$, a contradiction.
Case $2.1 N\left(v_{1}\right) \cap V_{0} \subset V_{3}$.
The orange edges in $G\left[V_{0} \cup\left\{v_{1}, v_{2}\right\}\right]$ (see Figure 10) forms a copy of some graph in \mathcal{F} (see Figure 4).

Figure 10: Illustration of Case 2.1.

Case 2.2 $\left|N\left(v_{1}\right) \cap V_{0} \cap V_{2}\right|=\left|N\left(v_{1}\right) \cap V_{0} \cap V_{3}\right|=1$.
If $N\left(v_{1}\right) \cap V_{0} \subset V\left(T_{1}\right)$ or $N\left(v_{1}\right) \cap V_{0} \subset V\left(T_{2}\right)$, then $G\left[V\left(T_{1}\right) \cup\left\{v_{1}\right\}\right]$ or $G\left[V\left(T_{2}\right) \cup\left\{v_{1}\right\}\right]$ contains a $C_{4}^{\text {multi. }}$. Thus, we assume that $\left|N\left(v_{1}\right) \cap V\left(T_{1}\right)\right|=\left|N\left(v_{1}\right) \cap V\left(T_{2}\right)\right|=1$, the orange edges in $G\left[V_{0} \cup\left\{v_{1}, v_{2}\right\}\right]$ (see Figure 11) forms a copy of some graph in \mathcal{F} (see Figure 4).

Figure 11: Illustration of Case 2.2.

Figure 12: Illustration of Case 2.3.

Case 2.3 $N\left(v_{1}\right) \cap V_{0} \subset V_{3}$.
The orange edges in $G\left[V_{0} \cup\left\{v_{1}, v_{2}\right\}\right]$ (see Figure 12) forms a copy of some graph in \mathcal{F} (see Figure 4).

Acknowledgements

We are grateful to the reviewers for giving us valuable comments to help improve the presentation.

References

[1] N. Alon. On a Conjecture of Erdős, Simonovits and Sós Concerning Anti-Ramsey Theorems. J. Graph Theory, 7(1):91-94, 1983.
[2] P. Bennett, S. English, and M. Talanda-Fisher. Weighted Turán problems with applications. Discrete Math., 342(8):2165-2172, 2019.
[3] B. Bollobás. Extremal Graph Theory. Academic Press, New York, 1978.
[4] B. Bollobás, P. Erdős, and E. Szemerédi. On complete subgraphs of r-chromatic graphs. Discrete Math., 13(2):97-107, 1975.
[5] J. De Silva, K. Heysse, A. Kapilow, A. Schenfisch, and M. Young. Turán numbers of vertex-disjoint cliques in r-partite graphs. Discrete Math, 341(2):492-496, 2018.
[6] P. Erdős, M. Simonovits, and V. T. Sós. Anti-Ramsey theorems. Infinite and finite sets, in: Colloq. Math. Soc. Janos Bolyai. North Holland, 10:633-643, 1975.
[7] C. Fang, E. Győri, B. Li, and J. Xiao. The anti-Ramsey numbers of C_{3} and C_{4} in the complete r-partite graphs. Discrete Math., 344:112540, 2021.
[8] Z. Lv, M. Lu, and C. Fang. A note on 3-partite graphs without 4-cycles. J. Comb. Des., 28:753-757, 2020.
[9] Z. Lv, M. Lu, and C. Fang. Density of balanced 3-partite graphs without 3-cycles or 4-cycles. Electron. J. Combin., 29(4):\#P4.44, 2022.

[^0]: *Partially supported by NSFC (No. 12171452).
 ${ }^{\dagger}$ Partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, K116769.
 ${ }^{\ddagger}$ Partially supported by Shenzhen Science and Technology Program (No. RCBS20221008093102011) and NSFC (No. 12071370).

