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Abstract

We call a 4-cycle in Kn1,n2,n3 multipartite, denoted by Cmulti
4 , if it contains at

least one vertex in each part of Kn1,n2,n3 . The Turán number ex(Kn1,n2,n3 , C
multi
4 )
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(
respectively, ex(Kn1,n2,n3 , {C3, C

multi
4 })

)
is the maximum number of edges in a

graph G ⊆ Kn1,n2,n3 such that G contains no Cmulti
4

(
respectively, G contains neither

C3 nor Cmulti
4

)
. We call an edge-colored Cmulti

4 rainbow if all four edges of it have
different colors. The anti-Ramsey number ar(Kn1,n2,n3 , C

multi
4 ) is the maximum

number of colors in an edge-colored Kn1,n2,n3 with no rainbow Cmulti
4 . In this paper,

we determine that ex(Kn1,n2,n3 , C
multi
4 ) = n1n2 + 2n3 and ar(Kn1,n2,n3 , C

multi
4 ) =

ex(Kn1,n2,n3 , {C3, C
multi
4 }) + 1 = n1n2 + n3 + 1, where n1 > n2 > n3 > 1.

Mathematics Subject Classifications: 05C15, 05C35, 05C38

1 Introduction

We consider only nonempty simple graphs. Let G be such a graph, the vertex and edge
set of G is denoted by V (G) and E(G), the number of vertices and edges in G by ν(G)
and e(G), respectively. We denote the neighborhood of v in G by NG(v), and the degree
of a vertex v in G by dG(v), the size of NG(v). Let U1, U2 be vertex sets, denote by
eG(U1, U2) the number of edges between U1 and U2 in G. We write d(v) instead of dG(v),
N(v) instead of NG(v) and e(U1, U2) instead of eG(U1, U2) if the underlying graph G is
clear.

Given a graph family F , we call a graph H an F -free graph, if H contains no graph in
F as a subgraph. The Turán number ex(G,F) for a graph family F in G is the maximum
number of edges in a graph H ⊆ G which is F -free. If F = {F}, then we denote ex(G,F)
by ex(G,F ).

An old result of Bollobás, Erdős and Szemerédi [3] showed that ex(Kn1,n2,n3 , C3) =
n1n2 + n1n3 for n1 > n2 > n3 > 1 (also see [4, 2, 5]). Lv, Lu and Fang [8, 9] constructed
balanced 3-partite graphs which are C4-free and {C3, C4}-free respectively and showed
that ex(Kn,n,n, C4) = ( 3√

2
+ o(1))n3/2 and ex(Kn,n,n, {C3, C4}) > (1.82 + o(1))n3/2.

For further discussion, we need the definitions of the multipartite subgraphs and a
function f(n1, n2, . . . , nr).

Definition 1. [7] Let r > 3 and G be an r-partite graph with vertex partition V1, . . . , Vr,
we call a subgraph H of G multipartite, if there are at least three distinct parts Vi, Vj, Vk
such that V (H) ∩ Vi 6= ∅, V (H) ∩ Vj 6= ∅ and V (H) ∩ Vk 6= ∅. In particular, we denote a
multipartite H by Hmulti (see Figure 3 for an example of a Cmulti

4 in a 3-partite graph).

For r > 3 and n1 > n2 > · · · > nr > 1, let

f(n1, n2, . . . , nr) =

{
n1n2 + n3n4 + · · ·+ nr−2nr−1 + nr + r−1

2
− 1, r is odd;

n1n2 + n3n4 + · · ·+ nr−1nr + r
2
− 1, r is even.

Fang, Győri, Li and Xiao [7] recently showed that if G ⊆ Kn1,n2,...,nr and e(G) >
f(n1, n2, . . . , nr) + 1, then G contains a multipartite cycle. Furthermore, they proposed
the following conjecture.

Conjecture 2. [7] For r > 3 and n1 > n2 > · · · > nr > 1, if G ⊂ Kn1,n2,...,nr and
e(G) > f(n1, n2, . . . , nr) + 1, then G contains a multipartite cycle Cmulti of length at most
3
2
r.
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Figure 1: A Cmulti
4 in a 3-partite graph.

In this paper, we study the Turán numbers of Cmulti
4 and {C3, C

multi
4 } in complete

3-partite graphs and obtain the following results.

Theorem 3. For n1 > n2 > n3 > 1, ex(Kn1,n2,n3 , C
multi
4 ) = n1n2 + 2n3.

Theorem 4. For n1 > n2 > n3 > 1, ex(Kn1,n2,n3 , {C3, C
multi
4 }) = n1n2 + n3.

Notice that Theorem 4 confirms Conjecture 2 for the case when r = 3.
A subgraph of an edge-colored graph is rainbow, if all of its edges have different colors.

For graphs G and H, the anti-Ramsey number ar(G,H) is the maximum number of colors
in an edge-colored G with no rainbow copy of H. Erdős, Simonovits and Sós [6] first
studied the anti-Ramsey number in the case when the host graph G is a complete graph
Kn and showed the close relationship between it and the Turán number. In this paper,
we consider the anti-Ramsey number of Cmulti

4 in complete 3-partite graphs.

Theorem 5. For n1 > n2 > n3 > 1, ar(Kn1,n2,n3 , C
multi
4 ) = n1n2 + n3 + 1.

We prove Theorems 3 and 4 in Section 2 and Theorem 5 in Section 3, respectively. We
always denote the vertex partition of Kn1,n2,n3 by V1, V2 and V3, where |Vi| = ni, 1 6 i 6 3.

2 The Turán numbers of Cmulti
4 and {C3, C

multi
4 }

In this section, we first give the following lemma which will play an important role in our
proof.

Lemma 6. Let G be a 3-partite graph with vertex partition X, Y and Z, such that for all
x ∈ X, N(x) ∩ Y 6= ∅ and N(x) ∩ Z 6= ∅.
(i) If G is Cmulti

4 -free, then e(G) 6 |Y ||Z|+ 2|X|;
(ii) If G is {C3, C

multi
4 }-free, then e(G) 6 |Y ||Z|+ |X|.

Proof. (i) Since G is Cmulti
4 -free, G[N(x)] is K1,2-free for each x ∈ X. Therefore,

e(G[N(x)]) = e
(
N(x) ∩ Y,N(x) ∩ Z

)
6 min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
. (1)
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For x ∈ X, we let ex be the number of missing edges of G between N(x) ∩ Y and
N(x) ∩ Z. By (1), we have

ex = |N(x) ∩ Y | · |N(x) ∩ Z| − e
(
N(x) ∩ Y,N(x) ∩ Z

)
> |N(x) ∩ Y | · |N(x) ∩ Z| −min

{
|N(x) ∩ Y |, |N(x) ∩ Z|

}
(2)

> |N(x) ∩ Y |+ |N(x) ∩ Z| − 2,

where the last inequality holds since |N(x) ∩ Y | > 1 and |N(x) ∩ Z| > 1 for all x ∈ X.
By (2), we get∑

x∈X

ex >
∑
x∈X

(
|N(x) ∩ Y |+ |N(x) ∩ Z| − 2

)
= e(X, Y ) + e(X,Z)− 2|X|. (3)

Notice that for any two distinct vertices x1, x2 ∈ X, they cannot have common neighbors
in both Y and Z at the same time, otherwise we find a copy of Cmulti

4 in G. Thus each
missing edge between Y and Z is calculated at most once in the sum

∑
x∈X ex. Hence the

number of missing edges between Y and Z is at least
∑

x∈X ex. Then we have

e(Y, Z) 6 |Y ||Z| −
∑
x∈X

ex 6 |Y ||Z| − (e(X, Y ) + e(X,Z)− 2|X|). (4)

By (4), we get

e(G) = e(X, Y ) + e(X,Z) + e(Y, Z) 6 |Y ||Z|+ 2|X|.

(ii) Since G is C3-free, for each x ∈ X,

e
(
N(x) ∩ Y,N(x) ∩ Z

)
= 0. (5)

Since for each x ∈ X, |N(x) ∩ Y | > 1 and |N(x) ∩ Z| > 1 hold, by (5), the number of
missing edges between N(x) ∩ Y and N(x) ∩ Z is |N(x) ∩ Y | · |N(x) ∩ Z|. Notice that
for any two distinct vertices x1, x2 ∈ X, they cannot have common neighbors in both Y
and Z at the same time, otherwise we find a copy of Cmulti

4 in G. Hence, the number of
missing edges between Y and Z is at least

∑
x∈X |N(x) ∩ Y | · |N(x) ∩ Z|. Thus,

e(Y, Z) 6 |Y ||Z| −
∑
x∈X

|N(x) ∩ Y | · |N(x) ∩ Z|

6 |Y ||Z| −
∑
x∈X

(|N(x) ∩ Y |+ |N(x) ∩ Z| − 1) (6)

= |Y ||Z|+ |X| − e(X, Y )− e(X,Z),

the second inequality holds since |N(x) ∩ Y | > 1 and |N(x) ∩ Z| > 1 for x ∈ X.
By (6), we have e(G) = e(Y, Z) + e(X, Y ) + e(X,Z) 6 |Y ||Z|+ |X|.

Now we are ready to prove Theorems 3 and 4.
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V1 V2

V3

Figure 2: An example of Cmulti
4 -free graph with n1n2 + 2n3 edges.

Proof of Theorem 3. Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely
joined, V1 (respectively, V2) and V3 are joined by an n3-matching, see Figure 2. Clearly,
G is Cmulti

4 -free and e(G) = n1n2 + 2n3. Therefore, ex(Kn1,n2,n3 , C
multi
4 ) > n1n2 + 2n3.

Let G ⊆ Kn1,n2,n3 such that G is Cmulti
4 -free, now we are going to prove that e(G) 6

n1n2 + 2n3 by induction on n1 + n2 + n3.
For the base case n3 = 1, let V3 = {v}, we consider the following four subcases:

(i) N(v) ∩ V1 6= ∅ and N(v) ∩ V2 6= ∅. By Lemma 6, we have e(G) 6 n1n2 + 2.
(ii) N(v) ∩ V1 6= ∅ and N(v) ∩ V2 = ∅.

For any vertex x ∈ V2, we have e(x,N(v)) 6 1, otherwise there is a Cmulti
4 . Hence,

e(V2, N(v)) =
∑

x∈V2
e(x,N(v)) 6 n2. Therefore,

e(G) = e(V3, N(v)) + e(V2, N(v)) + e(V1 \N(v), V2)

6 d(v) + n2 +

(
n1 − d(v)

)
n2

6 n1n2 + 1.

(iii) N(v) ∩ V1 = ∅ and N(v) ∩ V2 6= ∅.
For any vertex x ∈ V1, we have e(x,N(v)) 6 1, otherwise there is a Cmulti

4 . Hence,
e(V1, N(v)) =

∑
x∈V1

e(x,N(v)) 6 n1. Therefore,

e(G) = e(V3, N(v)) + e(V1, N(v)) + e(V2 \N(v), V1)

6 d(v) + n1 + (n2 − d(v))n1

6 n1n2 + 1.

(iv) N(v) ∩ V1 = ∅ and N(v) ∩ V2 = ∅. We have e(G) = e(V1, V2) 6 n1n2.
Now let n3 > 2, and assume that the statement is true for order less than n1 +n2 +n3.

We distinguish the three cases depending on the equality of the numbers n1, n2, n3.
Case 1. n1 = n2 = n3 = n > 2.

If there exists one part, say V1, such that N(v) ∩ V2 6= ∅ and N(v) ∩ V3 6= ∅, for all
v ∈ V1, then by Lemma 6, we have e(G) 6 |V2||V3|+ 2|V1| = n2 + 2n.

Thus, we may assume that for all i ∈ [3] = {1, 2, 3}, there exist a vertex v ∈ Vi and
j ∈ [3] \ {i} such that N(v) ∩ Vj = ∅. We divide it into two subcases.
Case 1.1. There exist two parts, say V1 and V2, such that N(v1)∩V2 = ∅ and N(v2)∩V1 =
∅ for some vertices v1 ∈ V1 and v2 ∈ V2.
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Since G is Cmulti
4 -free, d(v1) + d(v2) 6 |V3| + 1 = n + 1. Without loss of generality,

let v3 ∈ V3 be the vertex such that N(v3) ∩ V1 = ∅. Then the number of edges incident
with {v1, v2, v3} in G is at most d(v1) + d(v2) + n− 1 6 2n. By the induction hypothesis,
e(G−{v1, v2, v3}) 6 (n−1)2 + 2(n−1). Thus, e(G) 6 (n−1)2 + 2(n−1) + 2n 6 n2 + 2n.
Case 1.2. There exist vertices v1 ∈ V1, v2 ∈ V2 and v3 ∈ V3 such that either N(v1)∩V2 =
∅, N(v2)∩V3 = ∅, N(v3)∩V1 = ∅ or N(v1)∩V3 = ∅, N(v3)∩V2 = ∅, N(v2)∩V1 = ∅ holds.

Without loss of generality, we assume that N(v1)∩V2 = ∅, N(v2)∩V3 = ∅, N(v3)∩V1 =
∅. If d(v1) + d(v2) + d(v3) 6 2n+ 1, then by the induction hypothesis, we have

e(G) 6 e(G− {v1, v2, v3}) + d(v1) + d(v2) + d(v3)

6 (n− 1)2 + 2(n− 1) + 2n+ 1

6 n2 + 2n.

Now we assume that d(v1)+d(v2)+d(v3) > 2n+2, hence, d(v1) > 1, d(v2) > 1, d(v3) > 1.
Since G is Cmulti

4 -free, each vertex in V1 \ {v1} can have at most one neighbor in N(v3),
we have e(V1 \ {v1}, N(v3)) 6 n − 1. Similarly, we have e(V3 \ {v3}, N(v2)) 6 n − 1 and
e(V2 \ {v2}, N(v1)) 6 n− 1.

Therefore,

e(V1, V2) = e(V1 \ {v1}, V2 \N(v3)) + e(V1 \ {v1}, N(v3)) 6 (n− d(v3))(n− 1) + (n− 1),

e(V1, V3) = e(V3 \ {v3}, V1 \N(v2)) + e(V3 \ {v3}, N(v2)) 6 (n− d(v2))(n− 1) + (n− 1),

e(V2, V3) = e(V2 \ {v2}, V3 \N(v1)) + e(V2 \ {v2}, N(v1)) 6 (n− d(v1))(n− 1) + (n− 1).

Thus,

e(G) = e(V1, V2) + e(V1, V3) + e(V2, V3)

6
(
3n− (d(v1) + d(v2) + d(v3))

)
(n− 1) + 3(n− 1)

6
(
3n− (2n+ 2)

)
(n− 1) + 3(n− 1)

6 n2 − 1.

Case 2. n1 > n2 = n3 = n > 2.
If there exists one vertex v0 ∈ V1 such that d(v0) 6 n, then by the induction hypothesis,

we have e(G) = e(G− v0) + d(v0) 6 (n1 − 1)n+ 2n+ n 6 n1n+ 2n. Otherwise, we have
d(v) > n+ 1 for all vertices v ∈ V1. Hence, N(v) ∩ V2 6= ∅ and N(v) ∩ V3 6= ∅ hold for all
v ∈ V1. By Lemma 6, we get e(G) 6 n2 + 2n1 6 n1n+ 2n.
Case 3. n1 > n2 > n3 > 2.

If there exists one vertex v0 ∈ V2 such that d(v0) 6 n1, by the induction hypothesis,
we have e(G) = e(G− v0) + d(v0) 6 n1(n2 − 1) + 2n3 + n1 6 n1n2 + 2n3. Otherwise, we
have d(v) > n1 + 1 for all vertices v ∈ V2. Hence, N(v) ∩ V1 6= ∅ and N(v) ∩ V3 6= ∅ for
all v ∈ V2. By Lemma 6, we get e(G) 6 n1n3 + 2n2 6 n1n2 + 2n3.

Proof of Theorem 4. Let G ⊆ Kn1,n2,n3 be a graph, such that V1 and V2 are completely
joined, V1 and V3 are joined by an n3-matching and there is no edge between V2 and
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V1 V2

V3

Figure 3: An example of {C3, C
multi
4 }-free graph with n1n2 + n3 edges.

V3, see Figure 3. Clearly, G is {C3, C
multi
4 }-free and e(G) = n1n2 + n3. Therefore,

ex(Kn1,n2,n3 , {C3, C
multi
4 }) > n1n2 + n3.

Let G ⊆ Kn1,n2,n3 such that G is {C3, C
multi
4 }-free, now we can prove e(G) 6 n1n2 +n3

by induction on n1 + n2 + n3 in the same way as we did in the proof of Theorem 3, just
the coefficients in the computation change a bit. For sake of brevity, we skip the details
of the proof.

3 The anti-Ramsey number of Cmulti
4

In this section, we study the anti-Ramsey number of Cmulti
4 in the complete 3-partite

graphs. Given an edge-coloring c of G, we denote the color of an edge e by c(e). For a
subgraph H of G, we denote C(H) = {c(e)|e ∈ E(H)}. We call a spanning subgraph
of an edge-colored graph a representing subgraph, if it contains exactly one edge of each
color.

Given graphs G1 and G2, we use G1 ∧ G2 to denote the graph consisting of G1 and
G2 sharing exactly one common vertex. We call a multipartite C6 in a 3-partite graph
non-cyclic if there exists a vertex v in C6 such that the two neigborhoods in C6 of v
belong to the same part. Let F be a graph family which consists of Cmulti

4 (see graph G1

in Figure 4), C3 ∧C3 (see graph G2 in Figure 4), the non-cyclic Cmulti
6 (see graphs G3, G4

in Figure 4) and C3∧C5 (see graphs G5, G6, G7 in Figure 4) and the Cmulti
8 which contains

at least two vertex-disjoint non-multipartite P3 (see graph G8 in Figure 4).
To find a rainbow Cmulti

4 in the edge-colored complete 3-partite graphs, we follow the
idea of Alon [1] and prove the lemma as follows..

Lemma 7. Let n1 > n2 > n3 > 1. For an edge-colored Kn1,n2,n3, if there is a rainbow
copy of some graph in F , then there is a rainbow copy of Cmulti

4 .

Proof. We separate the proof into three cases.
Case 1. An edge-colored Kn1,n2,n3 contains a rainbow copy of G2, G3 or G4.

Suppose there is a rainbow copy of G2 in Kn1,n2,n3 (see Figure 5), then whatever the
color of v1w2 is, at least one of v1uv2w2v1 and v1w2uw1v1 is a rainbow Cmulti

4 . Similarly,
with the help of the red edge that is showed in G3 and G4 (see Figure 5), there are two
Cmulti

4 ’s whose edge-intersection is the red edge, so one of the two Cmulti
4 ’s must be rainbow.

Case 2. An edge-colored Kn1,n2,n3 contains a rainbow copy of G5.
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G1 G2 G3 G4

G5 G6 G7 G8

Figure 4: F = {G1} ∪ {G2} ∪ {G3, G4} ∪ {G5, G6, G7} ∪ {G8}.

w1

w2
v1
v2

u

G2 G3 G4

Figure 5: Illustration of Case 1.
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Suppose there is a rainbow copy of G5 in Kn1,n2,n3 (see Figure 6). If v3w3uw2v3 is
not rainbow, then uw3 shares the same color with one of v3w3, v3w2 and uw2. Hence,
uv2w3u∪uv1w2u is a rainbow copy of G2, by Case 1, we can find a rainbow copy of Cmulti

4 .

v1
v2
v3 w3

w2
w1

u

G5

Figure 6: Illustration of Case 2.

Case 3. An edge-colored Kn1,n2,n3 contains a rainbow copy of G6, G7 or G8.

v1

v3
v2

w1

w2

u2u1

G6 G7 G8

Figure 7: Illustration of Case 3.

Suppose there is a rainbow copy of G6 in Kn1,n2,n3 (see Figure 7). If v2u1w1u2v2 is
not rainbow, then u2w1 shares the same color with one of v2u1, u1w1 and u2v2. Hence,
v1u1v3w2u2w1v1 is a rainbow copy of G4, by Case 1, we can find a rainbow copy of Cmulti

4 .
Similarly, with the help of the red edge that is showed in G7 and G8 (see Figure 7), one
can always find a rainbow copy of Cmulti

4 if there is a rainbow copy of G7 or G8.

Now we are able to prove Theorem 5.

Proof of Theorem 5. Lower bound: We color the edges of Kn1,n2,n3 as follows. First,
color all edges between V1 and V2 rainbow. Second, for each vertex v ∈ V3, color all the
edges between v and V1 with one new distinct color. Finally, assign a new color to all
edges between V2 and V3. In such way, we use exactly n1n2 + n3 + 1 colors, and there is
no rainbow Cmulti

4 .
Upper bound: We prove the upper bound by induction on n1 + n2 + n3. By Theo-

rem 3, we have ar(Kn1,n2,1, C
multi
4 ) 6 ex(Kn1,n2,1, C

multi
4 ) = n1n2 + 2, the conclusion holds

for n3 = 1. Let n3 > 2, suppose the conclusion holds for all integers less than n1 +n2 +n3.
We suppose there exists an (n1n2 + n3 + 2)-edge-coloring c of Kn1,n2,n3 such that there is
no rainbow Cmulti

4 in it. We take a representing subgraph G.

Claim 8. G contains two vertex-disjoint triangles.
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Proof of Claim 8. Recall that Theorem 4 says that ex(Kn1,n2,n3 , {C3, C
multi
4 }) = n1n2+n3.

Since e(G) = n1n2 + n3 + 2 and G contains no Cmulti
4 , G contains at least two triangles

T1 and T2. If |V (T1) ∩ V (T2)| = 2, then T1 ∪ T2 contains a Cmulti
4 , a contradiction. If

|V (T1) ∩ V (T2)| = 1, then T1 ∪ T2 is a copy of C3 ∧ C3. By Lemma 7, we can find a
rainbow Cmulti

4 , a contradiction. Thus, T1 and T2 are vertex-disjoint.

Let the two vertex-disjoint triangles be T1 = x1y1z1x1 and T2 = x2y2z2x2, where
{x1, x2} ⊆ V1, {y1, y2} ⊆ V2 and {z1, z2} ⊆ V3. Denote V0 = {x1, x2, y1, y2, z1, z2} and
U = (V1 ∪ V2 ∪ V3) \ V0.

Claim 9. e(G[V0]) 6 7.

Proof of Claim 9. If e(G[V0]) > 8, then e(V (T1), V (T2)) > 2. Without loss of gener-
ality, assume that x1y2 ∈ E(G), we claim that x1z2, x2z1, y1z2, y2z1 /∈ E(G), otherwise
x1y2x2z2x1, x1y2x2z1x1, x1y2z2y1x1 or x1y2z1y1x1 would be a rainbow Cmulti

4 . Thus,
we have x2y1 ∈ E(G). We claim that c(y1z2) = c(y2z2), otherwise at least one of
{x1y1z2y2x1, x2y1z2y2x2} is a rainbow Cmulti

4 . Thus, G[V0] − y2z2 + y1z2 is rainbow and
contains a C3 ∧ C3. By Lemma 7, we find a rainbow Cmulti

4 , a contradiction.

If U = ∅, that is n1 = n2 = n3 = 2, then 8 = e(G) = e(G[V0]) 6 7, by Claim 9, a
contradiction. Thus we may assume that U 6= ∅.

Claim 10. For all v ∈ U , e(v, V0) 6 2.

Proof of Claim 10. If there is a vertex v ∈ U , such that eG(v, V0) > 3, then G[V0 ∪ {v}]
contains a Cmulti

4 , a contradiction.

Claim 11. n3 > 3.

Proof of Claim 11. Suppose n3 = 2. Since U 6= ∅, we have n1 > 3 = n3 + 1. If there is a
vertex v ∈ V1 such that d(v) 6 n2, then e(G−v) = n1n2+n3+2−d(v) > (n1−1)n2+n3+2.
By the induction hypothesis, we have

|C(Kn1,n2,n3 − v)| > e(G− v) > (n1 − 1)n2 + n3 + 2 = ar(Kn1−1,n2,n3 , C
multi
4 ) + 1,

thus Kn1,n2,n3−v contains a rainbow Cmulti
4 , a contradiction. Thus we assume that d(v) >

n2 + 1 for all v ∈ V1. By Claim 8, we have e(V2, V3) > 2. Hence, we have

e(G) = e(V1, V2 ∪ V3) + e(V2, V3) =
∑
v∈V1

d(v) + e(V2, V3) > n1(n2 + 1) + 2 = n1n2 + n1 + 2,

and this contradicts to the fact that e(G) = n1n2 + n3 + 2.

Claim 12. e(G[V0]) + e(V0, U) > 2n1 + 2n2 − 1.
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Proof of Claim 12. If e(G[V0]) + e(V0, U) 6 2n1 + 2n2 − 2, then

e(G[U ]) = e(G)− (e(G[V0]) + e(V0, U)) > n1n2 + n3 + 2− (2n1 + 2n2 − 2)

= (n1 − 2)(n2 − 2) + (n3 − 2) + 2.

By Claim 11, n3 − 2 > 1. By the induction hypothesis, we have

|C(Kn1,n2,n3 − V0)| > e(G[U ]) > (n1 − 2)(n2 − 2) + (n3 − 2) + 2

= ar(Kn1−2,n2−2,n3−2, C
multi
4 ) + 1,

thus Kn1,n2,n3 − V0 contains a rainbow Cmulti
4 , a contradiction.

Denote U0 = {v ∈ U : e(v, V0) = 2}. By Claim 10, we have e(U, V0) 6 |U0| + |U |. By
Claim 9, we just need to consider the following two cases.
Case 1. e(G[V0]) = 7.

Without loss of generality, let x1z2 be the unique edge of G[V0] between T1 and T2.
By Claim 12, we have e(U, V0) > 2n1 + 2n2 − 1 − e(G[V0]) = 2n1 + 2n2 − 8. Since
|U | = n1 + n2 + n3 − 6 and e(U, V0) 6 |U0| + |U |, we have |U0| > n1 + n2 − n3 − 2 > 1.
Take a vertice v ∈ U0, we consider the following two subcases to show that G[V0 ∪ {v}]
contains one rainbow copy of some graph in F (see Figure 4). By Lemma 7, there is a
rainbow Cmulti

4 , a contradiction.
Case 1.1 v ∈ V1 ∪ V3.

Without loss of generality, we may assume that v ∈ V1, the orange edges in G[V0∪{v}]
(see Figure 8) forms a copy of some graph in F (see Figure 4).

v v v v v v

Figure 8: Illustration of Case 1.1.

Case 1.2 v ∈ V2.
The orange edges in G[V0 ∪ {v}] (see Figure 9) forms a copy of some graph in F (see

Figure 4).

v v v v v v

Figure 9: Illustration of Case 1.2.

Case 2. e(G[V0]) = 6.
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By Claim 12, we have e(U, V0) > 2n1 + 2n2 − 1 − e(G[V0]) = 2n1 + 2n2 − 7. Since
|U | = n1+n2+n3−6 and e(U, V0) 6 |U0|+ |U |, we have |U0| > n1+n2−n3−1 > n1−1 >
n1 − 2. Thus, U0 contains at least two vertices v1 and v2 which come from distinct parts.
Without loss of generality, assume that v1 ∈ V1 and v2 ∈ V2. We consider the following
three subcases to show that G[V0 ∪ {v1, v2}] contains one rainbow copy of some graph in
F (see Figure 4). By Lemma 7, there exists a rainbow Cmulti

4 , a contradiction.
Case 2.1 N(v1) ∩ V0 ⊂ V3.

The orange edges in G[V0 ∪ {v1, v2}] (see Figure 10) forms a copy of some graph in F
(see Figure 4).

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

Figure 10: Illustration of Case 2.1.

Case 2.2 |N(v1) ∩ V0 ∩ V2| = |N(v1) ∩ V0 ∩ V3| = 1.
If N(v1)∩V0 ⊂ V (T1) or N(v1)∩V0 ⊂ V (T2), then G[V (T1)∪{v1}] or G[V (T2)∪{v1}]

contains a Cmulti
4 . Thus, we assume that |N(v1) ∩ V (T1)| = |N(v1) ∩ V (T2)| = 1, the

orange edges in G[V0 ∪ {v1, v2}] (see Figure 11) forms a copy of some graph in F (see
Figure 4).

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

Figure 11: Illustration of Case 2.2.

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

v1

v2

Figure 12: Illustration of Case 2.3.

Case 2.3 N(v1) ∩ V0 ⊂ V3.
The orange edges in G[V0 ∪ {v1, v2}] (see Figure 12) forms a copy of some graph in F

(see Figure 4).
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