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Abstract

We examine the relationship between two measures of uncolourability of cubic
graphs – their resistance and flow resistance. The resistance of a cubic graph G,
denoted by r(G), is the minimum number of edges whose removal results in a 3-
edge-colourable graph. The flow resistance of G, denoted by rf (G), is the minimum
number of zeroes in a 4-flow on G. Fiol et al. [Electron. J. Combin. 25 (2018),
#P4.54] made a conjecture that rf (G) 6 r(G) for every cubic graph G. We disprove
this conjecture by presenting a family of cubic graphs Gn of order 34n, where n > 3,
with resistance n and flow resistance 2n. For n > 5 these graphs are nontrivial
snarks.

Mathematics Subject Classifications: 05C

1 Introduction

Snarks are 2-connected cubic graphs whose edges cannot be properly coloured with three
colours. The significance of this class of graphs derives mainly from the fact that it may
contain counterexamples to several important and long-standing conjectures in graph
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theory, such as the cycle double cover conjecture, the 5-flow conjecture, Fulkerson’s con-
jecture, and others. While most of these conjectures are easy for 3-edge-colourable graphs,
they are exceedingly difficult for snarks in general. On the other hand, a number of re-
cent results confirm that some of these conjectures become tractable for snarks that are
in a certain sense close to 3-edge-colourable graphs, see for example [6, 10, 15]. In this
situation it is natural to focus on the study of invariants of cubic graphs that express – in
various ways – to what extent a graph differs from a 3-edge-colourable graph. Such invari-
ants are called measures of uncolourability. A deeper examination of relations between
various uncolourability measures may provide new insights into the studied conjectures
and lead to interesting partial results. An excellent survey on this topic, by Fiol et al. [4],
is available and highly recommended.

One of the most prominent uncolourability measures is the resistance of a cubic graph.
It is defined as the smallest number of edges (or, equivalently, vertices) whose removal
from a graph results in a 3-edge-colourable graph [13, 14]; we denote the resistance of
graph G by r(G). Clearly, r(G) = 0 if and only if G is 3-edge-colourable. Moreover,
r(G) > 2 whenever G is not 3-edge-colourable.

A similar measure of uncolourability is obtained by regarding snarks as cubic graphs
that do not admit a nowhere-zero 4-flow. The flow resistance of a cubic graph G, denoted
by rf (G), is the smallest number of zero-valued edges that any integer 4-flow on G can
have. Like resistance, rf (G) = 0 if and only if G is 3-edge-colourable. The similarity
of these two measures is underscored by the fact that a cubic graph admits an integer
nowhere-zero 4-flow if and only if it admits a nowhere-zero Z2 × Z2-flow, and the lat-
ter coincides with a proper 3-edge-colouring where colours are the non-zero elements of
Z2 × Z2.

In contrast to resistance, however, flow resistance can take value 1. In fact, cubic
graphs with flow resistance 1 are very common, while those with flow resistance greater
than 1, introduced by Jaeger [7, 8] as strong snarks, appear to be rare. The complete
list of all cyclically 4-edge-connected snarks with girth at least 5 on up to 36 vertices
generated by Brinkmann et al. [2] contains 64 326 024 items, only 32 of which are strong
snarks, all with flow resistance 2. At the same time, all snarks in the list have resistance 2
(these facts easily follow from [2, Observations 4.10 and 4.14] and the definition of a strong
snark).

The importance of flow resistance for the study of snarks is quite obvious because
it offers a natural approach to Tutte’s 5-flow-conjecture. A similar approach to Tutte’s
3-flow conjecture has recently been taken by DeVos et al. [3] where the authors proved
that every 3-edge-connected graph admits a 3-flow in which at most one sixth of the edges
carries value zero.

In spite of these facts, flow resistance has so far attracted surprisingly little attention.
The only explicit mention of flow resistance in the literature occurs in the cited survey [4],
with Section 4.1 being completely devoted to this invariant. The authors of [4] note
that flow resistance can be equivalently defined as the minimum number of edges that
have to be contracted in order to obtain a graph that admits a nowhere-zero 4-flow [4,
Theorem 33]. Moreover, they show in [4, Proposition 29] that rf (G) is bounded above by
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the minimum number of edges that any two perfect matchings of G can have, which is
another useful uncolourability measure (denoted in [4] by γ2(G)). They also propose the
following interesting conjecture (Conjecture 51).

Conjecture 1. (Fiol et al. [4]) If G is a bridgeless cubic graph, then rf (G) 6 r(G).

Intuitively, every individual zero-valued edge e of a Z2 × Z2-flow on a cubic graph G
generates two faulty vertices of the corresponding 3-edge-colouring, the end-vertices of e.
After removing one edge at each of the vertices a proper 3-edge-colouring is obtained.
This observation seems to speak in favour of the conjecture. Nevertheless, the conjecture
is false, as follows from the main result of the present paper.

Theorem 2. For every integer n > 3 there exists a cubic graph Gn on 34n vertices with
r(Gn) = n and rf (Gn) = 2n. Moreover, if n > 5, then Gn is cyclically 4-edge-connected
and has girth 5.

2 Preliminaries

A semi-graph G is a pair G = (V,E) which consists of a set of vertices V = V (G) and a
set E = E(G) ⊆ P2(V ) ∪ P1(V ) consisting of edges and semi-edges; here Pi(A) denotes
the set of all i-element subsets of a set A. In E(G), the 2-element sets are called edges
(as expected) while the 1-element sets are called semi-edges. Note that if E contains no
elements from P1(V ), then G is simply a graph.

We denote the edge {u, v} as uv and the semi-edge {u} as (u). Furthermore, we define
the join between two semi-edges (u) and (v) as the removal of semi-edges (u) and (v),
and the addition of the edge uv. A semi-edge (u) and a vertex v may also join to form an
edge uv, with semi-edge (u) being removed. The degree of a vertex v in a semi-graph G
is defined as the combined total number of edges and semi-edges incident with v. Thus a
cubic semi-graph is a semi-graph with each vertex having degree 3.

Essentially, semi-edges behave like edges except that they are associated with one
vertex instead of two, with each vertex having at most one semi-edge. We say that
a semi-graph G contains a semi-graph G′ if V (G′) ⊆ V (G), uv ∈ E(G′) implies that
uv ∈ E(G), semi-edge (u) ∈ E(G′) implies semi-edge (u) ∈ E(G′) or there is an edge
uv ∈ E(G), and for every vertex u ∈ V (G′) the degree of u in G is greater than or equal
to the degree of u in G′.

Let G be a semi-graph. An edge colouring of G is an assignment of colours to the
elements of E(G) such that adjacent elements receive distinct colours; such colourings are
often termed proper. An edge colouring that uses k colours is a k-edge-colouring.

It is well known that every cubic graph can be properly edge-coloured with three or
four colours. A snark is a 2-connected cubic graph that admits no proper 3-edge-colouring.
Snarks with small edge cuts and short circuits are usually considered trivial. A snark is
called nontrivial if it is cyclically 4-edge-connected and has no circuits of length smaller
than 5. Recall that a connected graph is cyclically k-edge-connected if it contains no
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subset S ⊆ E(G) of size |S| < k such that G − S is disconnected and has at least two
components containing a circuit.

Let A be an abelian group. An A-flow on G is a pair (D,φ) where φ is an assignment
of elements of A to the elements of E(G), and D is an assignment of one of two directions
to the elements of E(G) such that, for every vertex v in G, the sum of values flowing into
v equals the sum of values flowing out of v (Kirchhoff’s law). A nowhere-zero A-flow is
one which does not assign the zero element of A to any edge or semi-edge of G. Note
that the choice of D is immaterial since one can reverse the orientation of any edge e and
replace the value φ(e) with −φ(e) without violating the Kirchhoff law. Moreover, if each
element x ∈ A satisfies x = −x, then the assignment of an orientation can be omitted
from the definition altogether. It is well known that the latter condition is satisfied if and
only if A ∼= Zn

2 for some n > 1.
An A-flow (D,φ) where A = Z and φ(e) ∈ {0,±1, . . . ,±(k − 1)} for all e ∈ E(G) is

called an integer k-flow. A well-known useful result on flows is the following: A graph
admits a nowhere-zero A-flow, for some finite abelian group A, if and only if it admits a
nowhere-zero integer |A|-flow [11, 16]. In particular, a cubic semi-graph admits an integer
4-flow with m zeros if and only if it admits a Z2×Z2-flow with m zeros. This observation
offers an additional advantage that in the study of flow resistance we do not need to
bother with orientations of the graph in question.

It is easy to see that a nowhere zero Z2 × Z2-flow on a cubic graph G corresponds
exactly to a 3-edge-colouring. That is, if the assignment of elements of Z2 × Z2 to the
edges of G is interpreted as an edge colouring, and no edge is assigned the zero element,
then the edge colouring is proper. This is easily seen to be true for semi-graphs as well.
Furthermore, given any A-flow on a semi-graph, the sum of the flow values of its semi-
edges must be zero. If G is cubic and A = Z2×Z2, the latter amounts to what is generally
known as the Parity Lemma. These facts will be used implicitly throughout this paper.

3 Main result

Let X denote the semi-graph created from the Petersen graph by the removal of two
adjacent vertices; it is shown in Figure 1. The semi-edges of X occur in two pairs a, b
and c, d, each of them arising by the removal of the same vertex of the Petersen graph.
The following properties of X, stated in Lemma 1, are well known. In fact, they easily
follow from the Kirchhoff law and the fact that the Petersen graph is the smallest snark.

b d

a c

Figure 1: The semi-graph X
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Lemma 3. The following statements hold for the semi-graph X depicted in Figure 1.

(i) r(X) = 0.

(ii) If f is a proper 3-edge-colouring of X, then f(a) = f(b) and f(c) = f(d).

Figure 2 depicts a semi-graph Y constructed from two instances X1 and X2 of X and
from three additional vertices p, q, and r as follows. Denoting by xi the semi-edge of Xi

corresponding to the semi-edge x of X, with x ∈ {a, b, c, d}, we join c1 and a2 to p, next
we join d1 and b2 to q, and finally we add the edges pr, qr, and the semi-edge (r) = e.
We relabel the semi-edges a1 and b1 as a and b, respectively, and relabel the semi-edges
c2 and d2 as c and d, respectively.

b

a

q

p

r

c

d

e

Figure 2: The semi-graph Y

Lemma 4. The following statements hold for the semi-graph Y depicted in Figure 2.

(i) r(Y ) = 1.

(ii) rf (Y ) = 1.

Proof. (i): We first show that r(Y ) > 1. It is clearly sufficient to prove that Y is not
3-edge-colourable. Suppose the contrary. Recall that Y contains two instances X1 and X2

of X, where X1 is the one containing the semi-edges a and b and X2 is the one containing
the semi-edges c and d. The other two semi-edges of X1 are c1 and d1 and those of X2

are a2 and b2. By Lemma 3, every proper 3-edge-colouring of Y assigns the same colour
to c1 and d1 and the same colour to a2 and b2. As a consequence, the end-vertex of the
semi-edge e of Y has two edges with the same colour, a contradiction. Thus Y is not
3-edge-colourable. On the other hand, Y becomes 3-edge-colourable after removing either
of the two edges adjacent to e, which implies that r(Y ) = 1.

(ii): Suppose to the contrary that rf (Y ) = 0. Then Y admits a nowhere-zero Z2 × Z2-
flow. Since Y is cubic, the flow is also a proper 3-edge-colouring, and therefore r(Y ) = 0,
contradicting Statement (i). Hence, rf (Y ) > 1. It is easy to see that there exists a
Z2 × Z2-flow on Y with e being the only zero edge. Therefore rf (Y ) = 1.

the electronic journal of combinatorics 29(1) (2022), #P1.44 5



Figure 3 displays a semi-graph Z constructed from an instance X1 of X, an instance Y2
of Y , and four additional vertices p, q, r, and s in a similar manner as Y was constructed
from two instances of X. If we use the same convention for indices as before, then p, q,
and r get the same incidences as previously. The semi-edges e1 of X1 and e2 of Y2 are
then joined to the vertex s and a new semi-edge (s) = e is added. As before, we relabel
the semi-edges of Z inherited from X1 and Y2 as a, b, c, and d. The instance of X which
contains the edge f , as seen in Figure 3, is called the central instance of X.

b

a

q
f

p

r

s

e

c

d

Figure 3: The semi-graph Z

Lemma 5. The following statements hold for the semi-graph Z depicted in Figure 3.

(i) r(Z) = 1.

(ii) rf (Z) = 2.

Proof. (i): Since Z contains a copy of Y and r(Y ) = 1, from Lemma 4 (i) we readily
obtain that r(Z) > 1. Moreover, Z − f is 3-edge-colourable for the edge f indicated in
Figure 3, whence r(Z) = 1.

(ii): Lemma 4 (ii) implies that rf (Z) > 1. Suppose that rf (Z) = 1 and let φ be a
Z2 × Z2-flow on Z with one zero. The zero-valued element of E(Z) must be contained in
the central instance of X, otherwise there would be an instance of Y which contains no
zero edges, contradicting Lemma 4 (ii). By Lemma 3 and the fact that a nowhere-zero
Z2 × Z2-flow on a semi-graph corresponds to a proper 3-edge-colouring, we have that
φ(a) = φ(b) and φ(c) = φ(d). Consequently, φ(a) + φ(b) = 0 and φ(c) + φ(d) = 0. Since
the sum of the values assigned to the five semi-edges in Z must be zero, we conclude that
φ(e) = 0. This contradicts the assumption that rf (Z) = 1. Furthermore, it is not difficult
to find a Z2×Z2-flow on Z with f and e being the only zero edges. Hence, rf (Z) = 2.

Following on from this, it is straightforward to construct nontrivial snarks with flow
resistance equal to twice their resistance. For each integer n > 3 we define a graph Gn on
34n vertices as follows: Let Gn contain n instances of Z, called Z0, Z1, . . . , Zn−1. In Zi, let
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ai, bi, ci, di, and ei denote the semi-edges corresponding, respectively, to the semi-edges
a, b, c, d, and e of Z, and let fi be the edge of Zi corresponding to the edge f of Z shown
in Figure 3. For each Zi we also add the vertices ui, vi, and wi to the graph Gn. The
semi-edge ai is then joined to the vertex ui, the semi-edge bi is joined to the vertex vi, and
the semi-edge ei is joined to the vertex wi. The edge uivi is added. Finally, the semi-edge
ci is joined to ui+1, the semi-edge di is joined to vi+1, and the vertex wi is joined to the
vertex wi+1, where the subscripts are reduced modulo n. The graph G4 is illustrated in
Figure 4.

Z0

Z3

Z2

Z1

u0

v0

u3

v3

u1

v1

u2

v2

w0

w3

w2

w1

Figure 4: Graph G4.

Theorem 6. For every integer n > 3 there exists a cubic graph Gn on 34n vertices with
r(Gn) = n and rf (Gn) = 2n. If n > 5, then Gn is a nontrivial snark.

Proof. Clearly, Gn has girth 5 unless n 6 4. It is straightforward to check that if n > 4,
then Gn is cyclically 4-edge-connected. Indeed, from the construction of Gn it is clear
that Gn has no bridges, 2-edge-cuts, and nontrivial 3-edge-cuts. Thus the smallest cycle-
separating edge-cut is of size at least 4 (and one of size 4 can be easily identified). The
details are left to the reader.

We now prove that each Gn has the stated values of resistance and flow resistance.
Since Gn contains n disjoint instances of Z, Lemma 5 (i) implies that r(Gn) > n.

Moreover, since Zi−fi is 3-edge-colourable for each i, it is easily seen that Gn−{f1, . . . , fn}
is 3-edge-colourable, whence r(Gn) = n.
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To prove that rf (Gn) > 2n, observe that between any two instances of Z there exists
at least one vertex. Therefore rf (Gn) > 2n, otherwise there would be an instance of
Z with fewer than two zero edges, contradicting Lemma 5. Furthermore, since each Zi

admits a 4-flow with the only zero edges being fi and ei for each i, it is easy to find a
4-flow on Gn with the only zero edges being from {f1, . . . , fn} and from the set of n edges
which join wi to Zi for each i. Therefore, rf (Gn) = 2n.

4 Remarks

4.1. Flow resistance is an uncolourability measure which certainly merits further study.
One possible direction, motivated by an obvious approach to the 5-flow conjecture of
Tutte [16], is bounding the number of zeros in a 4-flow. This line of research relates
the 5-flow conjecture to other important conjectures in the area, in particular to the
celebrated conjecture of Fulkerson [5]. Recall that Fulkerson’s conjecture suggests that
every bridgeless cubic graph admits a list of six perfect matchings that together cover
every edge exactly twice. It is easy to see that once a bridgeless cubic graph fulfils the
conjecture, it has a pair of perfect matchings whose intersection covers at most 1/15 of the
number of edges. Now we can use the inequality between rf and γ2 proved Proposition 29
of [4] to conclude that

rf (G) 6 γ2(G) 6 m/15 (1)

where m is the number of edges. Moreover, the Petersen graph certifies that this bound
is the best that one can hope for general bridgeless cubic graphs.

On the other hand, Kaiser et al. in [9] employ Edmonds’ perfect matching polytope
theorem [12, Theorem 25.1] to prove that every bridgeless cubic graph contains two perfect
matchings M1 and M2 that together cover at least 3m/5 edges. It follows that

rf (G) 6 γ2(G) 6 |M1 ∩M2| 6 2m/3− 3m/5 = m/15

without assuming Fulkerson’s conjecture to be true. Thus the bound (1) holds for every
bridgeless cubic graph, a fact in support of the validity of Fulkerson’s conjecture.

4.2. Let G be a cubic graph. A 1-reduction of G is a graph obtained by the removal
of adjacent vertices u and v from G, and the subsequent addition of edges to restore
3-regularity. In [1, Conjecture 1], it was conjectured that there exists a 1-reduction G′ of
every bridgeless cubic graph G with r(G) > 2, such that r(G) > r(G′). The graphs Gn

for n > 3 as defined in this paper are counterexamples to this conjecture. Consider G3,
for example. Each of the three instances of Z contribute to the resistance by 1. Then,
any 1-reduction of G3 which could potentially reduce resistance must be contained in an
instance of Z. Furthermore, the edge in the instance of Z which is being 1-reduced must
be contained in the central instance of X, otherwise there remains an instance of Y , and
resistance would not be affected. However, assuming that resistance is reduced after a
1-reduction in the central instance of X in an instance of Z, a nowhere-zero Z2×Z2-flow,
denoted by φ, would violate Kirchhoff’s Law. Indeed, from Lemma 3 we would have
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Figure 5: A counterexample to Conjecture 1 on 50 vertices, with cyclic connectivity 3,
resistance 2, and flow resistance 3.

φ(a) = φ(b) and φ(c) = φ(d), implying that φ(e) = 0, which contradicts the assumption
that resistance has been reduced in that instance of Z. Therefore, Gn is a counterexample
to the conjecture for n > 3.

4.3. The smallest nontrivial snark that provides a counterexample to Conjecture 1 and
arises from the construction preceding Theorem 6 is the graph G5, which has 170 vertices.
A significantly smaller counterexample can be constructed in a manner similar to Gn for
n = 2, with the only difference that the semi-edges e1 of Z1 and e2 of Z2 are not joined
to the vertices w1 and w2, respectively, but instead are joined directly to each other. The
resulting graph has 66 vertices, resistance 2, flow resistance 3, and is clearly a nontrivial
snark. The number of vertices can be further decreased to 50 if we do not insist that the
counterexample be a nontrivial snark, see Figure 5. Arguments are similar to those in the
proof of Theorem 6.

Problem 7. Determine the smallest order of a snarkG (trivial or nontrivial) with rf (G) >
r(G).

Another related question to ask is the following.

Problem 8. Can the ratio of rf (G) to r(G) be arbitrarily large?
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[2] G. Brinkmann, J. Goedgebeur, J. Hägglund, and K. Markström. Generation and
properties of snarks. J. Combinatorial Theory, Ser. B, 103:468–488, 2013.

[3] M. DeVos, J. McDonald, I. Pivotto, E. Rollová, and R. Šámal. 3-Flows with large
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