Weighted Modulo Orientations of Graphs and Signed Graphs

Jianbing Liu
Department of Mathematics University of Hartford
West Hartford, CT 06117, U.S.A.
jianliu@hartford.edu

Miaomiao Han*
College of Mathematical Science
Tianjin Normal University
Tianjin 300387, P.R.C.
mmhan2018@hotmail.com

Hong-Jian Lai
Department of Mathematics
West Virginia University
Morgantown, WV 26506, U.S.A.
hjlai@math.wvu.edu

Submitted: Sep 20, 2021; Accepted: Nov 29, 2022; Published: Dec 16, 2022
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Given a graph G and an odd prime p, for a mapping $f: E(G) \rightarrow \mathbb{Z}_{p} \backslash\{0\}$ and a \mathbb{Z}_{p}-boundary b of G, an orientation D is called an $(f, b ; p)$-orientation if the net out f-flow is the same as $b(v)$ in \mathbb{Z}_{p} at each vertex $v \in V(G)$ under orientation D. This concept was introduced by Esperet et al. (2018), generalizing mod p-orientations and closely related to Tutte's nowhere zero 3 -flow conjecture. They proved that $\left(6 p^{2}-14 p+8\right)$-edge-connected graphs have all possible ($\left.f, b ; p\right)$-orientations. In this paper, the framework of such orientations is extended to signed graph through additive bases. We also study the ($f, b ; p$)-orientation problem for some (signed) graphs families including complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families.

Mathematics Subject Classifications: 05C21, 05C22

1 Introduction

In this paper, our terms and notation follow [2], and graphs considered are loopless and finite with possible parallel edges. As in [2], $\alpha^{\prime}(G), \kappa(G)$ and $\kappa^{\prime}(G)$ denote the matching

[^0]number, the connectivity and the edge-connectivity of a graph G, respectively. For $v \in$ $V(G)$, let $N_{G}(v)$ be the vertices adjacent to v in G. For vertex subsets $S, T \subseteq V(G)$, define $[S, T]_{G}=\{s t \in E(G) \mid s \in S, t \in T\}$, and we also use $\partial_{G}(S)=[S, V(G)-S]_{G}$ for convenience. We often omit subscript whenever no confusion occurs. As in [2], (s, t) in a digraph D is an arc directed from s to t, and we denote
$$
E_{D}^{-}(s)=\{(t, s) \in A(D): t \in V(D)\} \text { and } E_{D}^{+}(s)=\{(s, t) \in A(D): t \in V(D)\}
$$

Let \mathbb{Z}_{k} denote the (additive) cyclic group of order $k>1$ with additive identity 0 , and let $\mathbb{Z}_{k}^{*}=\mathbb{Z}_{k} \backslash\{0\}$. A \mathbb{Z}_{k}-boundary of a graph G is a mapping $b: V(G) \rightarrow \mathbb{Z}_{k}$ satisfying $\sum_{s \in V(G)} b(s) \equiv 0(\bmod k)$. The collection of all \mathbb{Z}_{k}-boundaries of G is denoted by $Z\left(G, \mathbb{Z}_{k}\right)$. For $A \subseteq \mathbb{Z}_{k}$, we define $F(G, A)=\{f: E(G) \rightarrow A\}$. Fix an orientation $\tau=\tau(G)$ for a graph G. For any $f \in F\left(G, \mathbb{Z}_{k}\right)$, define $\partial_{\tau}(f): V(G) \rightarrow \mathbb{Z}_{k}$ as, for any vertex $s \in V(G)$,

$$
\partial_{\tau}(f)(s)=\sum_{e \in E_{\tau}^{+}(s)} f(e)-\sum_{e \in E_{\tau}^{-}(s)} f(e) .
$$

For convenience, we sometimes omit the subscript τ in the notation above and write ∂f for $\partial_{\tau}(f)$. A mapping $f \in F\left(G, \mathbb{Z}_{k}\right)$ if a \mathbb{Z}_{k}-flow if $\partial f=0$. It is known that ∂f is always a \mathbb{Z}_{k}-boundary for any $f \in F\left(G, \mathbb{Z}_{k}\right)$. Jaeger et al. [9] defined group connectivity as follows. A graph G is \mathbb{Z}_{k}-connected if for any $b \in Z\left(G, \mathbb{Z}_{k}\right)$, there exist a mapping $f \in F\left(G, \mathbb{Z}_{k}^{*}\right)$ and an orientation $\tau(G)$ such that $\partial_{\tau} f=b$ in \mathbb{Z}_{k}. The following conjecture is proposed in [9] and remains unsolved as of today.

Conjecture 1. (i) If a graph G satisfies $\kappa^{\prime}(G) \geqslant 3$, then G is \mathbb{Z}_{5}-connected.
(ii) If a graph G satisfies $\kappa^{\prime}(G) \geqslant 5$, then G is \mathbb{Z}_{3}-connected.

Given a \mathbb{Z}_{k}-boundary b of a graph G, an orientation $\tau=\tau(G)$ is a \boldsymbol{b}-orientation of G if for the constant mapping $f=1$, we have $\partial f \equiv b(\bmod k)$. In particular, when $b=0$, any b-orientation is a mod \boldsymbol{k}-orientation of G. The studies of group connectivity and modulo orientation of graphs are motivated by the most fascinating nowhere zero flow conjectures of Tutte, as shown in the surveys [8, 15], among others. Some of the recent breakthroughs are the following.

Theorem 2. (Lovász et al. [20]) Every $6 k$-edge-connected graph G admits a b-orientation for any $\mathbb{Z}_{2 k+1}$-boundary b of G.

Theorem 3. (Han et al. [7] and Li [16])
(i) If $k \geqslant 3$, then there exist $4 k$-edge-connected graphs admitting no $\bmod (2 k+1)$ orientation.
(i) If $k \geqslant 5$, then there exist $(4 k+1)$-edge-connected graphs admitting no $\bmod (2 k+1)$ orientation.

In particular, Theorem 3 disproved the Circular Flow Conjecture, in which Jaeger [8] conjectured that all $4 k$-edge-connected graphs admit $\bmod (2 k+1)$-orientations. Further expository of the problem can be found in the informative monograph by Zhang [21].

Aiming at extending Theorem 2, Esperet et al. in [5] defined a mod $k \boldsymbol{f}$-weighted \boldsymbol{b} orientation of a graph G, for given $b \in Z\left(G, \mathbb{Z}_{k}\right)$ and mapping $f \in F\left(G, \mathbb{Z}_{k}\right)$, to be an orientation $\tau=\tau(G)$ satisfying $\partial_{\tau}(f) \equiv b(\bmod k)$. Throughout the rest of this paper, we shall abbreviate a mod $k f$-weighted b-orientation as an $(\boldsymbol{f}, \boldsymbol{b} ; \boldsymbol{k})$-orientation. Esperet et al indicated in [5] that to investigate $(f, b ; k)$-orientation of graphs, it is necessary to assume that k is an odd prime number, and they proved the following.

Theorem 4. (Esperet, De Verclos, Le and Thomassé, [5]) Given an odd prime p, if G is a $\left(6 p^{2}-14 p+8\right)$-edge-connected graph, then for any $b \in Z\left(G, \mathbb{Z}_{p}\right)$ and any mapping $f \in F\left(G, \mathbb{Z}_{p}^{*}\right), G$ admits an $(f, b ; p)$-orientation.

The current study is motivated by Theorems 2,3 and 4 . We are to investigate the relationship between the edge-connectivity of graphs in certain graph families and the $(f, b ; p)$-orientability of these graphs over the finite field \mathbb{Z}_{p}. In Section 2, we prepare some of the tools for our arguments in the proofs. We then will show improved edgeconnectivity bounds in certain graph families in Sections 3-4. In Section 5, we generalize the framework to the study of signed graph, in which we introduce the $(f, b ; p)$-orientation of signed graphs and show that every $\left(12 p^{2}-28 p+15\right)$-edge-connected signed graph admits an $(f, b ; p)$-orientation. Further discussions and conjectures are presented in the last section.

2 Preliminaries

Let \mathbb{F} denote a finite field and let $p \geqslant 3$ be a prime number throughout the rest of this paper. It has been noted that the concept of modulo orientation is closely related to additive bases over finite fields. Given a subset $S \subseteq \mathbb{F}$, an S-additive basis of \mathbb{F}^{n} is a multiset $\left\{x_{1}, x_{2}, \cdots, x_{m}\right\}$ of the n-dimensional vectors such that for every $x \in \mathbb{F}^{n}$, there are scalars $c_{i} \in S$ such that $x=\sum_{i=1}^{m} c_{i} x_{i}$, which is called an S-linear-combination of x. An additive basis of \mathbb{F}^{n} is a $\{0,1\}$-additive basis.

Let B_{1}, \ldots, B_{t} be a collection of bases of \mathbb{F}^{n}. Define $\uplus_{i=1}^{t} B_{i}$ to be the (multiset) union with possible repetitions of B_{1}, \ldots, B_{t}. Let $c(n, \mathbb{F})$ be the smallest positive integer m such that for any m bases B_{1}, \ldots, B_{m} of \mathbb{F}^{n}, the multiset $\uplus_{i=1}^{m} B_{i}$ forms an additive basis of \mathbb{F}^{n}. Define $c(n, p)=c\left(n, \mathbb{Z}_{p}\right)$. Alon, Linial and Meshulam [1] obtained a theorem below, indicating the existence of $c(n, p)$, where the logarithm function is of base 2 .

Theorem 5. (Alon et al. [1]) $c(n, p) \leqslant(p-1) \log n+p-2$.
Lemma 6. (Lemma 9 of Esperet et al.[5]) Let $k \geqslant 1$ be an integer and $p=2 k+1$ be a prime. Let $\tau(G)=D=(V, A)$ be a digraph obtained from the orientation τ of a graph G. A 2-list L is to assign two distinct elements of $\mathbb{Z}_{2 k+1}$ to $L(e)$ for each arc $e \in A(D)$. The following are equivalent.
(i) For any $\mathbb{Z}_{2 k+1}$-boundary b and any mapping $f: E \rightarrow \mathbb{Z}_{2 k+1}-\{0\}$, the undirected graph G has an $(f, b ; p)$-orientation.
(ii) For any 2-list L and any $\mathbb{Z}_{2 k+1}$-boundary b, D has a $\mathbb{Z}_{2 k+1}$-flow g satisfying $\partial g=b$ and $g(e) \in L(e)$, for any $e \in A(D)$.

Let $m G$ denote the graph formed by replacing every edge of G with m parallel edges. For an odd prime p, let \mathcal{O}_{p} be the family of graphs such that a graph $G \in \mathcal{O}_{p}$ if and only if it admits an $(f, b ; p)$-orientation for any $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and any \mathbb{Z}_{p}-boundary b. The lemma below summarizes some basic properties of the graphs admitting $(f, b ; p)$-orientations. The proofs are slight modifications of those in $[12,14]$ justifying the corresponding results for modulo orientations and strong group connectivity of graphs.

Lemma 7. ([18, 19]) The following properties of \mathcal{O}_{p} hold:
(i) $K_{1} \in \mathcal{O}_{p}$.
(ii) If $G \in \mathcal{O}_{p}$, then $G / e \in \mathcal{O}_{p}$ for any $e \in E(G)$.
(iii) For $H \subseteq G$, if $G / H \in \mathcal{O}_{p}$ and $H \in \mathcal{O}_{p}$, then $G \in \mathcal{O}_{p}$.
(iv) $G \in \mathcal{O}_{p}$ if and only if every block of G is in \mathcal{O}_{p}.
(v) Every graph in \mathcal{O}_{p} contains ($p-1$) edge-disjoint spanning trees.
(vi) $m K_{2} \in \mathcal{O}_{p}$ if and only if $m \geqslant p-1$.

Assume that D is an $(f, b ; p)$-orientation of a graph G for some given $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and $b \in Z\left(G, \mathbb{Z}_{p}\right)$. Let $e_{0}=s t \in E(G)$ such that $(s, t) \in A(D)$, and $f^{\prime} \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ be a mapping satisfying $f^{\prime}\left(e_{0}\right)=-f\left(e_{0}\right)$ and $f^{\prime}(e)=f(e)$ in \mathbb{Z}_{p} whenever $e \neq e_{0}$. Define D^{\prime} to be the orientation of G by reversing the orientation of e_{0} from (s, t) to (t, s). Then by definition, D^{\prime} is an $\left(f^{\prime}, b ; p\right)$-orientation of G. This leads to the following observation.
Observation 8. If for any $b \in Z\left(G, \mathbb{Z}_{p}\right)$ and any $f: E(G) \rightarrow\left\{1,2, \ldots, \frac{p-1}{2}\right\}, G$ always admits an $(f, b ; p)$-orientation, then $G \in \mathcal{O}_{p}$.

Definition 9. For $H \subseteq G$, the \mathcal{O}_{p}-closure of H in G, denoted by $\operatorname{cl}_{G}(H)$, is the maximal subgraph of G that contains H such that $V\left(c l_{G}(H)\right)-V(H)$ can be ordered as a sequence $\left\{v_{1}, v_{2}, \cdots, v_{t}\right\}$ such that there are at least $p-1$ edges joining v_{1} and vertices in H, and for each i with $1 \leqslant i \leqslant t-1$, there are at least $p-1$ edges joining v_{i+1} and $V(H) \cup\left\{v_{1}, v_{2}, \cdots, v_{i}\right\}$.

As a corollary of Lemma 7(iii) and (vi), we have the following.

$$
\begin{equation*}
\text { If } H \in \mathcal{O}_{p} \text {, then } c l_{G}(H) \in \mathcal{O}_{p} \tag{1}
\end{equation*}
$$

Lemma 10. Let T be a connected spanning subgraph of G. If for each edge $e \in E(T), G$ has a subgraph $H_{e} \in \mathcal{O}_{p}$ with $e \in E\left(H_{e}\right)$, then $G \in \mathcal{O}_{p}$.

Proof. We prove by induction on $|V(G)|$. Since $K_{1} \in \mathcal{O}_{p}$, the lemma is true when $|V(G)|=1$. Assume $|V(G)|>1$ and pick an arbitrary edge $e_{1} \in E(T)$. Then G has a subgraph $H_{1} \in \mathcal{O}_{p}$ such that $e_{1} \in E\left(H_{1}\right)$. Denote $G_{1}=G / H_{1}$ and define $T_{1}=$ $T /\left(E\left(H_{1}\right) \cap E(T)\right)$. Clearly, T_{1} is a connected spanning subgraph of G_{1} as it is obtained by contracting a connected graph T. Moreover, every edge e in $E\left(T_{1}\right)$ is also an edge in $E(T)$. From the assumption, G contains a subgraph $H_{e} \in \mathcal{O}_{p}$ with $e \in E\left(H_{e}\right)$. It follows by Lemma 7 (ii) that $\Gamma_{e}=H_{e} /\left(E\left(H_{e}\right) \cap E\left(H_{1}\right)\right) \in \mathcal{O}_{p}$ and $e \in \Gamma_{e} \subseteq G_{1}$. Therefore by induction $G_{1} \in \mathcal{O}_{p}$. As $H_{1} \in \mathcal{O}_{p}$ and $G_{1}=G / H_{1} \in \mathcal{O}_{p}$, it follows by Lemma 7 (iii) that $G \in \mathcal{O}_{p}$ as well.

3 Weighted Modulo Orientations of Certain Graphs

In this section, we first investigate the edge connectivity of complete graphs in \mathcal{O}_{p} and then apply it to study chordal graphs. We also determine, in Section 3.3, a sharp edge connectivity bound for series-parallel graphs to be in \mathcal{O}_{p}.

3.1 Complete Graphs

The main result of this subsection is the following theorem.
Theorem 11. If $n \geqslant 2(p-1)(5+3 \log (p-1))-1$, then the complete graph K_{n} belongs to \mathcal{O}_{p}.

To justify Theorem 11, we start with a lemma.
Lemma 12. Let G be a graph of order n with $c(n-1, p)$ edge-disjoint spanning trees. Then $G \in \mathcal{O}_{p}$.
Proof. Let $T_{1}, \ldots, T_{c(n-1, p)}$ be edge-disjoint spanning trees of G, and $H=G\left[\cup_{i=1}^{c(n-1, p)} E\left(T_{i}\right)\right]$ be the subgraph induced by the edge subset $\cup_{i=1}^{c(n-1, p)} E\left(T_{i}\right)$. As T_{i} 's are spanning trees of G, H is a spanning subgraph of G. We shall first show that $H \in \mathcal{O}_{p}$ using Lemma 6 , that is, for any 2 -list L and any \mathbb{Z}_{p}-boundary b, we shall show that H has a \mathbb{Z}_{p}-flow g satisfying $\partial g=b$ and $g(e) \in L(e)$ for each $e \in E(H)$.

For any \mathbb{Z}_{p}-boundary $b, b\left(v_{n}\right)=-\left(b\left(v_{1}\right)+\cdots+b\left(v_{n-1}\right)\right)$ and so one can view b as a vector $\left(b\left(v_{1}\right), \ldots, b\left(v_{n-1}\right)\right)$ in \mathbb{Z}_{p}^{n-1}. Choose $T \in\left\{T_{1}, T_{2}, \ldots, T_{c(n-1, p)}\right\}$ and assign to H an arbitrary orientation $D=D(H)$. Thus every subgraph of H is a subdigraph of D under this given orientation, and each $e \in E(H)$ is now an arc in $A(D)$. Since $|V(H)|=n$, we denote $A(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$. For each $e \in A(T)$, set $L(e)=\left\{a_{e}, b_{e}\right\}$ for two distinct elements $a_{e}, b_{e} \in \mathbb{Z}_{p}$.

Define a mapping $f_{0}: E(H) \rightarrow \mathbb{Z}_{p}$ by $f_{0}(e)=a_{e}$ for any $e \in E(T)$, and $f_{0}\left(e^{\prime}\right)=0$ if $e^{\prime} \notin E(T)$. Let $b_{0}(v)=\partial f_{0}(v)$ and $b^{\prime}(v)=b(v)-b_{0}(v)$, for any $v \in V(G)$. As b and b_{0} are \mathbb{Z}_{p}-boundaries, b^{\prime} is also a \mathbb{Z}_{p}-boundary of G. For any $e=\left(v_{i}, v_{j}\right) \in A(T)$, set $L^{\prime}(e)=\left\{0, b_{e}-a_{e}\right\}$ and define $x_{e}=\left(x_{1}^{e}, x_{2}^{e}, \ldots, x_{n}^{e}\right)$ with

$$
x_{t}^{e}= \begin{cases}b_{e}-a_{e} & \text { if } t=i, \\ a_{e}-b_{e} & \text { if } t=j, \\ 0 & \text { otherwise }\end{cases}
$$

By the definition of x_{e}, one can see that x_{e} is a \mathbb{Z}_{p}-boundary and so x_{e} can be viewed as a vector in \mathbb{Z}_{p}^{n-1}. As T is a spanning tree and $|E(T)|=n-1, B(T)=\left\{x_{e}: e \in A(T)\right\}$ is a base of \mathbb{Z}_{p}^{n-1}. For each i with $1 \leqslant i \leqslant n$, let $B_{i}=B\left(T_{i}\right)$. Then by the definition of $c(n-1, p)$, the union $B_{1} \cup \cdots \cup B_{c(n-1, p)}$ forms an additive basis of \mathbb{Z}_{p}^{n-1}. Hence there exist scalars $\lambda_{e} \in\{0,1\}$, where $e \in E\left(T_{1} \cup \cdots \cup T_{c(n-1, p)}\right)$, such that $\sum \lambda_{e} x_{e}=b-b_{0}$. Define $g_{0}: E(H) \rightarrow \mathbb{Z}_{p}$ by

$$
g_{0}(e)= \begin{cases}0 & \text { if } \lambda_{e}=0 \\ b_{e}-a_{e} & \text { if } \lambda_{e}=1\end{cases}
$$

Next we show that $\partial g_{0}=\sum \lambda_{e} x_{e}$. For any $v_{i} \in V(G)$,

$$
\begin{aligned}
\partial g_{0}\left(v_{i}\right) & =\sum_{e \in E^{+}\left(v_{i}\right)} g_{0}(e)-\sum_{e \in E^{-}\left(v_{i}\right)} g_{0}(e) \\
& =\sum_{e \in E^{+}\left(v_{i}\right)} \lambda_{e}\left(b_{e}-a_{e}\right)-\sum_{e \in E^{-}\left(v_{i}\right)} \lambda_{e}\left(b_{e}-a_{e}\right) \\
& =\sum_{e \in E^{+}\left(v_{i}\right)} \lambda_{e}\left(b_{e}-a_{e}\right)+\sum_{e \in E^{-}\left(v_{i}\right)} \lambda_{e}\left(a_{e}-b_{e}\right) .
\end{aligned}
$$

This shows that $\partial g_{0}\left(v_{i}\right)$ is the i-th entry of $\sum \lambda_{e} x_{e}$. By the arbitrary of v_{i}, one has $\partial g_{0}=\sum \lambda_{e} x_{e}=b-b_{0}$. Define $g(e)=g_{0}(e)+f_{0}(e)$, for any $e \in E(H)$. So $\partial g=$ $\partial g_{0}+\partial f_{0}=b-b_{0}+b_{0}=b$. Since $g(e)=g_{0}(e)+f_{0}(e)=g_{0}(e)+a_{e} \in\left\{a_{e}, b_{e}\right\}$ for each $e \in E\left(T_{1} \cup \cdots \cup T_{c(n-1, p)}\right)$, by Lemma 6 (ii), H has an $(f, b ; p)$-orientation. As f and b are arbitrarily given, $H \in \mathcal{O}_{p}$. Since H is spanning in G, it follows by Lemma 7 (i) and (iii) that $G \in \mathcal{O}_{p}$.

Proof of Theorem 11. When $p=3$, a graph $G \in \mathcal{O}_{p}$ which is equivalent to G is \mathbb{Z}_{3}-connected. It is known that K_{n} is \mathbb{Z}_{3}-connected if $n \geqslant 5$ (see Proposition 3.6 of [11]), and so theorem holds for $p=3$. In the following we assume $p \geqslant 5$.

Let $\phi(p)=2+2 \log (p-1)-\sqrt{2 \log (2 p-2)}$. Then as $\phi(2)=2-\sqrt{2}>0$ and when $p \geqslant 5$, the derivative of ϕ at p is greater than 0 , that is $\phi^{\prime}(p)>0$, it follows that $2+2 \log (p-1) \geqslant \sqrt{2 \log (2 p-2)}$, and so algebraic manipulation leads to $5+3 \log (p-1) \geqslant$ $\log (p-1)+\sqrt{2 \log (2(p-1))}+3=\log (2(p-1))+\sqrt{2 \log (2(p-1))}+2$. Consequently,

$$
\begin{align*}
n-1 & \geqslant 2(p-1)(5+3 \log (p-1)) \\
& \geqslant 2(p-1)(\log (2(p-1))+\sqrt{2 \log (2(p-1))}+1)+2(p-1) \tag{2}
\end{align*}
$$

Set

$$
x=\frac{(n-1)-2(p-1)}{2(p-1)}, \text { and } y=x-\log (2(p-1)) .
$$

By (2),

$$
\begin{align*}
& x=\frac{(n-1)-2(p-1)}{2(p-1)} \geqslant \log (2(p-1))+\sqrt{2 \log (2(p-1))}+1, \text { and } \tag{3}\\
& y \geqslant \sqrt{2 \log (2(p-1))}+1
\end{align*}
$$

By $(3),(y-1)^{2} \geqslant 2 \log (2(p-1))$, and so $1+y+\frac{1}{2}(y-1)^{2} \geqslant \log (2(p-1))+y+$ 1. Let $\psi(y)=2^{y}-\left(1+y+\frac{1}{2}(y-1)^{2}\right)$. When $y \geqslant 3$, we have $\psi(3)=2>0$ and $\psi^{\prime}(y)=2^{y} \ln (2)-y>0$. It follows that as long as $y \geqslant 3,2^{y} \geqslant 1+y+\frac{1}{2}(y-1)^{2}$. Since $p \geqslant 5$, it follows by (3) that $y \geqslant \sqrt{2 \log (2(p-1))}+1 \geqslant \sqrt{6}+1>3$, and so we substitute $y-1$ by $\sqrt{2 \log (2(p-1))}$ in the inequality $2^{y} \geqslant 1+y+\frac{1}{2}(y-1)^{2}$ to
obtain $2^{y} \geqslant \log (2(p-1))+y+1$. Hence $y \geqslant \log (\log (2(p-1))+y+1)$, and so, as $x=\log (2(p-1))+y, y \geqslant \log (\log (2(p-1))+y+1)=\log (1+x)$. This implies that $x=\log (2(p-1))+y \geqslant \log (2(p-1))+\log (1+x)=\log (2(p-1)(1+x))=\log (2(p-$ $1)+2(p-1) x)$. Since $(n-1)-2(p-1)=2(p-1) x$, one has $x \geqslant \log (n-1)$. So $n-1=2(p-1) x+2(p-1) \geqslant 2(p-1) \log (n-1)+2(p-1) \geqslant 2(p-1) \log (n-1)+2(p-2)$. By Theorem 5, $\frac{n-1}{2} \geqslant(p-1) \log (n-1)+(p-2) \geqslant c(n-1, p)$. As K_{n} has $\frac{n}{2}$ edge-disjoint spanning trees, by Lemma 10 , we conclude that if $n-1 \geqslant 2(p-1)(5+3 \log (p-1))$, then $K_{n} \in \mathcal{O}_{p}$.

3.2 Chordal Graphs

A simple graph G is chordal if every cycle of length greater than 3 possesses a chord. Equivalently speaking, a simple graph G is chordal if every induced cycle of G has length 3. We need the following structure property of chordal graphs.

Lemma 13. (Lemma 2.1.2 of [10]) A simple graph G is chordal if and only if every minimal vertex-cut induces a clique of G.

The rest of this subsection is to show the following theorem.
Theorem 14. Every simple chordal graph G with $\kappa(G) \geqslant 2(p-1)(5+3 \log (p-1))-1$ is in \mathcal{O}_{p}.

Proof. Let G be a chordal graph with $\kappa(G) \geqslant 2(p-1)(5+3 \log (p-1))-1$. If G is a complete graph, say $G \cong K_{n}$, then $n \geqslant \kappa(G)+1 \geqslant 2(p-1)(5+3 \log (p-1))$ and $G \in \mathcal{O}_{p}$ by Theorem 11. Thus we assume G is not a clique.

Let $e=x y \in E(G)$ be an arbitrary edge. By Lemma 10, it suffices to prove that e lies in a subgraph H_{e} of G with $H_{e} \in \mathcal{O}_{p}$. We shall show that in any case, a subgraph $H_{e} \in \mathcal{O}_{p}$ with $e \in E\left(H_{e}\right)$ can always be found.

In the first case, we assume that either $N_{G}(x) \neq V(G) \backslash\{x\}$ or $N_{G}(y) \neq V(G) \backslash\{y\}$. Then by symmetry, we assume $N_{G}(x) \neq V(G) \backslash\{x\}$. So there exists a vertex $z \in$ $V(G)-\left(N_{G}(x) \cup\{x\}\right)$. Since $\kappa(G) \geqslant k \geqslant 2$ and G is not a clique, $N_{G}(x)$ contains a minimal vertex-cut X of G separating x and z. By Lemma 13, $G[X]$ is a clique, and so $G[X \cup\{x\}] \cong K_{m_{x}}$ with $m_{x}=|X|+1 \geqslant \kappa(G)+1 \geqslant 2(p-1)(5+3 \log (p-1))$. By Lemma 11, $G[X \cup\{x\}] \in \mathcal{O}_{p}$. If $y \in X$, then as $G[X \cup\{x\}] \in \mathcal{O}_{p}$, we are done with $H_{e}=G[X \cup\{x\}]$. Hence we assume that

$$
\begin{equation*}
\text { for any minimal vertex cut } X \subseteq N_{G}(x) \text { separating } x \text { from } \tag{4}
\end{equation*}
$$

$$
V(G) \backslash\left\{N_{G}(x) \cup\{x\}\right\}, y \notin X .
$$

If there exists $t \in N_{G}(y) \cap\left(V(G) \backslash\left(N_{G}(x) \cup\{x\}\right)\right)$, then there is a minimal vertex cut of $N_{G}(x)$ containing y which separates x and t, contrary to (4). It follows that $N_{G}(y) \subseteq N_{G}(x) \cup\{x\}$. Since $z \in V(G) \backslash\left(N_{G}(x) \cup\{x\}\right)$, we have $y z \notin E(G)$, and so $N_{G}(y)$ contains a minimal vertex cut separating y and z.

Let Y be an arbitrarily chosen minimal vertex cut in $N_{G}(y)$ separating y and z. By Lemma 13 and as $\kappa(G) \geqslant 2(p-1)(5+3 \log (p-1))-1, G[Y \cup y] \cong K_{m_{y}}$ with
$m_{y}=|Y|+1 \geqslant \kappa(G)+1 \geqslant 2(p-1)(5+3 \log (p-1))$. By Lemma 11, $G[Y \cup\{y\}] \in \mathcal{O}_{p}$. We may further assume that $x \notin Y$, as otherwise we are done with $H_{e}=G[Y \cup\{y\}] \in \mathcal{O}_{p}$. Thus $x y \in E(G-Y)$ and so x and y are in the same component of $G-Y$. It follows that $H_{e}=G[Y \cup\{x, y\}]$ is a complete graph with order $|Y|+2 \geqslant \kappa(G)+2 \geqslant 2(p-1)(5+$ $3 \log (p-1))+1$. By Lemma 11, $H_{e} \in \mathcal{O}_{p}$, and so this justifies the first case.

Otherwise, we may assume that both $N_{G}(x)=V(G) \backslash\{x\}$ and $N_{G}(y)=V(G) \backslash\{y\}$. Since G itself is not a complete graph, G contains vertices $v, v^{\prime} \in V(G)-\{x, y\}$ such that $v v^{\prime} \notin E(G)$. Therefore, $N(v)$ contains a minimal vertex cut X^{\prime} separating v and v^{\prime} in G. By Lemma 13 and as $\kappa(G) \geqslant 2(p-1)(5+3 \log (p-1))-1, G\left[X^{\prime} \cup\{v\}\right]$ is a complete graph of order at least $2(p-1)(5+3 \log (p-1))$, and so by Lemma 11 , it is in \mathcal{O}_{p}. Let $H_{e}=G\left[X^{\prime} \cup\{v\}\right]$. Since $N_{G}(x)=V(G) \backslash\{x\}$ and $N_{G}(y)=V(G) \backslash\{y\}$, both x and y must be in X^{\prime}, and so $e=x y \in E\left(H_{e}\right)$. This completes the proof of the lemma.

3.3 Series-parallel graphs

For a graph G, if K_{4} can not be obtained from G by contraction, then G is called $K_{4^{-}}$ minor free. In this section, we will present a sharp lower bound of edge-connectivity for a K_{4}-minor free graph to be in \mathcal{O}_{p}. The following is a theorem of Dirac [4].

Theorem 15. (Dirac [4]) If G is a simple K_{4}-minor free graph, then $\delta(G) \leqslant 2$.
Corollary 16. Let G be a K_{4}-minor free graph. If $\kappa^{\prime}(G) \geqslant 2 p-3$, then $G \in \mathcal{O}_{p}$.
Proof. Let G be a $(2 p-3)$-edge-connected K_{4}-minor free graph, and let G_{0} be the underlying simple graph of G (see p. 47 of [2]). By Lemma $7(\mathrm{i}), K_{1} \in \mathcal{O}_{p}$. Hence we assume that $|V(G)|>1$ and let G be a minimal counterexample with $|V(G)|$ minimized.

Since G is K_{4}-minor free, we have G_{0} is also K_{4}-minor free. By Theorem 15 , there is a vertex $w \in V\left(G_{0}\right)$ with degree 1 or 2 . If $d_{G_{0}}(w)=1$, since $\kappa^{\prime}(G) \geqslant 2 p-3$, we have a subgraph $H \subseteq G$ such that $H \cong(2 p-3) K_{2}$. If $d_{G_{0}}(w)=2$, let e_{1} and e_{2} be two edges incident with w in G_{0}. By $\kappa^{\prime}(G) \geqslant 2 p-3$, at least one of e_{1} and e_{2} must be contained in a subgraph $H \subseteq G$ with $H \cong(p-1) K_{2}$. In either case, by Lemma $7(\mathrm{vi}), H \in \mathcal{O}_{p}$. Since G is K_{4}-minor free, we have G / H is also K_{4}-minor free. By the property of contractions, we have $\kappa^{\prime}(G / H) \geqslant \kappa^{\prime}(G)$. By the minimality of G, we obtain $G / H \in \mathcal{O}_{p}$. Since $H \in \mathcal{O}_{p}$ and by Lemma 7 (iii), $G \in \mathcal{O}_{p}$, and so the corollary is complete.

4 Complete Bipartite Graphs and Graphs with Small Matching Number

In this section we will determine sufficient conditions for a complete bipartite graph to be in \mathcal{O}_{p}. From definition, a graph G is \mathbb{Z}_{3}-connected if and only if it is in \mathcal{O}_{3}. As Theorem 4.6 of [3] characterizes all complete bipartite graphs in \mathcal{O}_{3}, we shall, throughout this section, assume that $p \geqslant 5$ is an odd prime. Using the arguments similar to those justifying Theorem 3.2 of [13], the following lifting lemma can be routinely verified from the definition of graphs in \mathcal{O}_{p}.

Lemma 17 (Lifting). Let G be a graph and $p>0$ be an odd prime. For every function $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and any \mathbb{Z}_{p}-boundary b of G, let $v_{1} v_{2}, v_{1} v_{3}$ be two edges of G with $f\left(v_{1} v_{2}\right)=$ $f\left(v_{1} v_{3}\right)$. Let $G_{\left[v_{1}, v_{2} v_{3}\right]}$ be the graph obtained from G by deleting $v_{1} v_{2}, v_{1} v_{3}$ and adding a new edge $e=v_{2} v_{3}$, and $f^{\prime} \in F\left(G_{\left[v_{1}, v_{2} v_{3}\right]}, \mathbb{Z}_{p}^{*}\right)$ be formed from the restriction of f to $E-\left\{v_{1} v_{2}, v_{1} v_{3}\right\}$ by defining $f^{\prime}\left(v_{2} v_{3}\right)=f\left(v_{1} v_{2}\right)$. If $G_{\left[v_{1}, v_{2} v_{3}\right]}$ has an $\left(f^{\prime}, b ; p\right)$-orientation, then G has an $(f, b ; p)$-orientation.

G

$$
G_{\left[v_{1}, v_{2} v_{3}\right]}
$$

Figure 1: $G_{\left[v_{1}, v_{2} v_{3}\right]}$ is the graph by lifting two edges $v_{1} v_{2}, v_{1} v_{3}$.
Proof. Let $\left(v_{2}, v_{3}\right)$ be an arc in D and let $\left(v_{2}, v_{1}\right)$ and $\left(v_{1}, v_{3}\right)$ be two arcs in D. By assumption, $G_{\left[v_{1}, v_{2} v_{3}\right]}$ has an $\left(f^{\prime}, b ; p\right)$-orientation, say D^{\prime}. Without loss of any generality, assume that the direction of $v_{2} v_{3}$ is $\left(v_{2}, v_{3}\right)$ as in Figure 1. Then define an orientation D of the graph G as follows: D is the same as D^{\prime} restricted on $E(G)-\left\{v_{1} v_{2}, v_{1} v_{3}\right\}$ and the directions of $\left\{v_{1} v_{2}, v_{1} v_{3}\right\}$ are $\left(v_{2}, v_{1}\right)$ and $\left(v_{1}, v_{3}\right)$, see Figure 1. Since $f^{\prime}\left(v_{2} v_{3}\right)=f\left(v_{1} v_{2}\right)=$ $f\left(v_{1} v_{3}\right)$, one can verify that D is an $(f, b ; p)$-orientation of G.

Definition 18. Let G be a graph, $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and b be any given \mathbb{Z}_{p}-boundary of G. Fix two vertices $u_{1}, u_{2} \in V(G)$ such that $N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)$ contains a subset $W=\left\{v_{1}, \ldots, v_{p-1}\right\} \subseteq N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right)$ satisfying that $f\left(u_{1} v_{i}\right)=f\left(u_{2} v_{i}\right)$ for each $i \in\{1, \ldots, p-1\}$. We obtain a new graph $G_{u_{1}, u_{2}, W}^{L}$ from G by lifting each edge pair in $\left\{u_{1} v_{1}, u_{2} v_{1}\right\}, \ldots,\left\{u_{1} v_{p-1}, u_{2} v_{p-1}\right\}$. For notational convenience, when u_{1}, u_{2} and W are understood from the context, we simply use G^{L} for $G_{u_{1}, u_{2}, W}^{L}$, and we say that G^{L} is obtained by performing the L-operation on G at $\left\{u_{1}, u_{2}\right\}$. By definition, G^{L} contains a subgraph $L_{u_{1}, u_{2}}$ with vertex set $\left\{u_{1}, u_{2}\right\}$ and with at least $(p-1)$ multiple edges between u_{1}, u_{2}.

By Lemmas $7(\mathrm{vi}), L_{u_{1}, u_{2}} \in \mathcal{O}_{p}$ and so by Lemma 17,

$$
\begin{equation*}
\text { if } G^{L} / L_{u_{1}, u_{2}} \in \mathcal{O}_{p} \text {, then } G \in \mathcal{O}_{p} \tag{5}
\end{equation*}
$$

If $p=3$, then an $(f, b ; p)$-orientation is equivalent to \mathbb{Z}_{3}-connectivity and $K_{m, n} \in \mathcal{O}_{p}$ if and only if $m \geqslant n \geqslant 4$ from [3]. In the rest of this section, let $p \geqslant 5$ be a prime and we define

$$
\begin{equation*}
n_{1}=\frac{1}{2}(p-1)(p-2)+1 \tag{6}
\end{equation*}
$$

$$
n_{2}=\frac{1}{2} n_{1}\left(n_{1}-1\right)(p-1)
$$

Lemma 19. Let $p>0$ be an odd prime, $G=K_{n_{1}, n}$ be a complete bipartite graph with vertex bipartition (U, V), where

$$
\begin{equation*}
U=\left\{u_{1}, \ldots, u_{n_{1}}\right\} \text { and } V=\left\{v_{1}, \ldots, v_{n}\right\} \tag{7}
\end{equation*}
$$

Let $b \in Z\left(G, \mathbb{Z}_{p}\right)$ and $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ be given such that (by Observation 8),

$$
\begin{equation*}
\text { for any } e \in E(G), f(e) \in\left\{1, \ldots, \frac{p-1}{2}\right\} \tag{8}
\end{equation*}
$$

Let $K_{n_{1}}$ be the complete graph with $V\left(K_{n_{1}}\right)=U$ and $E\left(K_{n_{1}}\right)=\left\{e_{1}, \ldots, e_{m}\right\}$, where $m:=m(|U|)=\frac{|U|(|U|-1)}{2}$. Define a new bipartite graph $B=B(G)$ with a vertex partition $\left(W_{1}, W_{2}\right)$, where $W_{1}=V$ and $W_{2}=E\left(K_{n_{1}}\right)$, such that v_{j} is adjacent to $e_{i}=u_{i_{1}} u_{i_{2}}$ if and only if $f\left(v_{j} u_{i_{1}}\right)=f\left(v_{j} u_{i_{2}}\right)$. (Thus an element $e_{i} \in W_{2}$ represents both an edge in the complete graph $K_{n_{1}}$ as well as a vertex in $V \subset V(B)$.) If $|U|=n_{1}>\frac{p-1}{2}$ and $|V|=n \geqslant m(p-2)+2$, then each of the following holds.
(i) For any $v_{j} \in V, d_{B}\left(v_{j}\right) \geqslant 1$.
(ii) There exists an $e_{i} \in W_{2}$ with $d_{B}\left(e_{i}\right) \geqslant p-1$.

Proof. For any $v_{j} \in V$, by (8) and as $|U|=n_{1}>\frac{p-1}{2}$, there exist distinct $u_{i_{1}}, u_{i_{2}} \in U$ such that $f\left(v_{j} u_{i_{1}}\right)=f\left(v_{j} u_{i_{2}}\right)$. Hence every vertex v_{j} is incident with at least one edge $e \in E(G)$, and so $d_{B}\left(v_{j}\right) \geqslant 1$. Counting the number of edges in B, we have

$$
\begin{equation*}
\sum_{v \in W_{1}} d_{B}(v)=|E(B)|=\sum_{e \in W_{2}} d_{B}(e) \tag{9}
\end{equation*}
$$

As $n>m(p-2)+1$ and by (9), we conclude that there must be an $e_{i} \in W_{2}$ with $d_{B}\left(e_{i}\right) \geqslant p-1$. This justifies Lemma 19.

The bipartite graph $B=B(G)$ defined in Lemma 19 will be referred as to the associate bipartite graph of G.

Theorem 20. Suppose n_{1}, n_{2} are integers satisfying (6). Let $G=K_{n_{1}, n_{2}}$ and $p \geqslant 5$ be a prime integer. For every function $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and every \mathbb{Z}_{p}-boundary b of G, G has an ($f, b ; p$)-orientation. Consequently, $K_{n_{1}, n} \in \mathcal{O}_{p}$ for every $n \geqslant n_{2}$.

Proof. Let (U, V) denote the bipartition of G using the notation in (7), and let $b \in$ $Z\left(G, \mathbb{Z}_{p}\right)$ and $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ be given. We shall show that $K_{n_{1}, n_{2}}$ has an $(f, b ; p)$-orientation. By Observation 8, we may assume that (8) holds. In the arguments below, we let $K_{n_{1}}$ be the complete graph with $V\left(K_{n_{1}}\right)=U$ and $E\left(K_{n_{1}}\right)=\left\{e_{1}, \ldots, e_{m}\right\}$, where $m=\frac{n_{1}\left(n_{1}-1\right)}{2}$, and let B be the associate bipartite graph of G as defined in Lemma 19.

By (6), $|U|=n_{1}>\frac{p-1}{2},|V|=n_{2} \geqslant m(p-2)+2$, and so Lemma 19 is applicable.
Assume that $e_{i}=u_{i_{1}} u_{i_{2}}$ is the edge assured in Lemma 19 (ii), and $N_{B}\left(e_{i}\right)$ contains $Q_{1}=\left\{v_{j_{1}}, \ldots, v_{j_{p-1}}\right\} \subseteq W_{1}$. By the definition of B,

$$
\begin{equation*}
\text { for any } \ell \in\{1, \ldots, p-1\}, f\left(u_{i_{1}} v_{j_{\ell}}\right)=f\left(u_{i_{2}} v_{j_{\ell}}\right) \tag{10}
\end{equation*}
$$

Let $G^{L}=G_{u_{i_{1}}, u_{i_{2}}, Q_{1}}^{L}$ and $L_{u_{i_{1}}, u_{i_{2}}}$ be the graphs arising in the process of performing L-operations to G, as defined in Definition 18. Define $G_{1}=G^{L} / L_{u_{i_{1}}, u_{i_{2}}}$ and $v_{L_{1}}$ be the vertex in G_{1} onto which $L_{u_{i_{1}}, u_{i_{2}}}$ is contracted, and $G_{1}^{\prime}=G_{1}-Q_{1}$. Then G_{1}^{\prime} is again a complete bipartite graph with bipartition $\left(U_{1}, V_{1}\right)$ where $U_{1}=\left(U-\left\{u_{i_{1}}, u_{i_{2}}\right\}\right) \cup\left\{v_{L_{1}}\right\}$ and $V_{1}=V-Q_{1}$. Thus we have

$$
\left|U_{1}\right|=n_{1}-1 \text { and }\left|V_{1}\right|=(m-1)(p-1) \geqslant m_{1}(p-1) \geqslant m_{1}(p-2)+2,
$$

where $m_{1}:=\frac{\left|U_{1}\right|\left(\left|U_{1}\right|-1\right)}{2}$.
Assume that for some j with $1 \leqslant j \leqslant \frac{1}{2}(p-1)(p-3)$, the complete bipartite graph $G_{j}^{\prime}=\left(U_{j}, V_{j}\right)$ is defined such that

$$
\begin{equation*}
\left|U_{j}\right|=n_{1}-j \text { and }\left|V_{j}\right|=(m-j)(p-1) \geqslant m_{j}(p-1) \geqslant m_{j}(p-2)+2, \tag{11}
\end{equation*}
$$

where $m_{j}:=\frac{\left|U_{j}\right|\left(\left|U_{j}\right|-1\right)}{2}$. Define the associate bipartite graph $B\left(G_{j}^{\prime}\right)$ as defined in Lemma 19. By (6) and $j \leqslant \frac{1}{2}(p-1)(p-3)$, we have $\left|U_{j}\right|=n_{1}-j=\frac{1}{2}(p-1)(p-2)+1-j>\frac{1}{2}(p-1)$. Hence by replacing G with G_{j}^{\prime}, there exists a vertex $e_{j}=u_{j_{1}} u_{j_{2}} \in E\left(K_{\left|V_{j}\right|}\right)$ of degree at least $p-1$ in $B\left(G_{j}^{\prime}\right)$, then a subset $Q_{j+1} \subseteq N_{B\left(G_{j}^{\prime}\right)}\left(e_{j}\right) \subseteq V_{j}$ is identified with $\left|Q_{j+1}\right|=p-1$. Let $G_{j}^{L}=\left(G_{j}^{\prime}\right)^{L}{ }_{u_{j_{1}}, u_{j_{2}}, Q_{j+1}}$ with $L_{j+1}=L_{u_{j_{1}}, u_{j_{2}}}$ be the graphs arising in the process of performing L-operations to G_{j}^{\prime}. Let $G_{j+1}=\left(G_{j}^{\prime}\right)^{L} / L_{j+1}$, and $G_{j+1}^{\prime}=G_{j+1}-Q_{j+1}$. With the same arguments, G_{j+1}^{\prime} is also a complete bipartite graph with the bipartition $\left(U_{j+1}, V_{j+1}\right)$. As G is finite, this process must end at $j=\ell$ for some integer $\ell>0$, and so no further L-operations can be performed in the way above on the bipartite graph G_{ℓ}^{\prime}. Let $\left(U_{\ell}, V_{\ell}\right)$ be the bipartition of G_{ℓ}^{\prime}. It follows $\left|U_{\ell}\right| \leqslant \frac{p-1}{2}$.

By Definition 18, there exists a sequence of ordered pairs

$$
\left(L_{1}, Q_{1}\right),\left(L_{2}, Q_{2}\right), \ldots,\left(L_{\ell}, Q_{\ell}\right)
$$

arising in the process of the L-operations to obtain G_{ℓ}, and satisfying both (S1) and (S2) below.
(S1) Let $U_{0}=U$. For $i=1,2, \ldots, \ell$, each L_{i} is spanned by a $(p-1) K_{2}$, with $V\left(L_{i}\right)$ consisting of two vertices in U_{i-1}, formed by, for $i>1$, identifying the two vertices in $V\left(L_{i-1}\right)$ in U_{i-2}.
(S2) Let $Q_{0}=\emptyset$. For $i=1,2, \ldots, \ell,\left|Q_{i}\right|=p-1, Q_{i} \subseteq V-\left(\cup_{j<i} Q_{j}\right)$, and no edges joining vertices in Q_{i} to the contraction image of L_{i}.

Let G^{\prime} be the graph obtained from G by recursively applying the L-operation at the two vertices of each L_{i}, and then contract the edges in $E\left(L_{i}\right)$, recursively for each $i=1,2, \ldots, \ell$. As all the contractions are taken with vertices in U, G^{\prime} is a graph whose vertex set is a disjoint union of V and U_{ℓ}. Since $|U|=\frac{1}{2}\left(p^{2}-3 p+4\right)=\frac{1}{2}(p-1)(p-2)+1$, by (S1) and $\left|U_{\ell}\right| \leqslant \frac{p-1}{2}$, there must be a vertex $u^{\prime} \in U_{\ell}$ which is obtained by identifying at least $p-1$ vertices in U.
 $\left(\cup_{j=1}^{\ell} Q_{j}\right)$. By (S2) and (6), and as $\ell \leqslant p-2<m$, we have $n^{\prime}=\left|V^{\prime}\right| \geqslant n_{2}-\ell(p-1) \geqslant p-1$. It follows that for every $v^{\prime} \in V^{\prime}$, there are at least $(p-1)$ parallel edges joining u^{\prime} and v^{\prime}
in G^{\prime}. Hence we may write $V^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ such that for any i with $1 \leqslant i \leqslant n^{\prime}-1$, there are at least $p-1$ edges in G^{\prime} joining v_{i+1} to $\left\{u^{\prime}, v_{1}^{\prime}, \ldots, v_{i}^{\prime}\right\}$. It follows by Definition 9 , $V^{\prime} \subseteq V(J)$. By (S2), any vertex in V^{\prime} is adjacent to every vertex in U_{ℓ}. Since $\left|V^{\prime}\right| \geqslant p-1$, it follows by Definition 9 , that $U_{\ell} \subseteq V(J)$. By (S2) again, every $v \in V$ is in at most one Q_{j} 's, and so by $p \geqslant 5, d_{G^{\prime}}\left(v^{\prime}\right) \geqslant d_{G}(v)-2=n_{1}-2 \geqslant p-1$. Therefore we must have $G^{\prime}=J$ and so by (1), $G^{\prime} \in \mathcal{O}_{p}$.

Let $G^{\prime \prime}$ be the graph obtained from G by recursively performing the L-operation at the two vertices of each L_{i}, recursively for each $i=1,2, \ldots, \ell$. Then by Definition 18, $G^{\prime \prime}$ is a bipartite graph with bipartition (U, V) as G with $E\left(G^{\prime \prime}\right)-\cup_{j=1}^{\ell} E\left(L_{j}\right) \subset E(G)$. Fix j with $1 \leqslant j \leqslant \ell$, for each edge $e_{j} \in E\left(L_{j}\right)$, by (10), there exists a pair of edges $e_{j}^{\prime}, e_{j}^{\prime \prime} \in E_{G}(v)$ for some $v \in V$ with $f\left(e_{j}^{\prime}\right)=f\left(e_{j}^{\prime \prime}\right)$ such that in the lifting process, e_{j}^{\prime} and $e_{j}^{\prime \prime}$ become e_{j} in $G^{\prime \prime}$. Define

$$
\begin{equation*}
f^{\prime \prime}\left(e_{j}\right)=f\left(e_{j}^{\prime}\right), \text { for each edge } e_{j} \in E\left(L_{j}\right), \text { where } 1 \leqslant j \leqslant \ell \tag{12}
\end{equation*}
$$

Recall that $b \in Z\left(G, \mathbb{Z}_{p}\right)$ and $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ are given with f satisfying (8). Define $b^{\prime}=b \in Z\left(G, \mathbb{Z}_{p}\right)$, and $f^{\prime}: E\left(G^{\prime \prime}\right) \rightarrow \mathbb{Z}_{p}^{*}$ by utilizing (12) as follows:

$$
f^{\prime}(e)= \begin{cases}f(e) & \text { if } e \in E(G)-\cup_{j=1}^{\ell} E\left(L_{j}\right), \\ f^{\prime \prime}(e) & \text { if } e \in \cup_{j=1}^{\ell} E\left(L_{j}\right) .\end{cases}
$$

By Lemma 7 (iii) and (vi), and since $G^{\prime} \in \mathcal{O}_{p}$, we conclude that $G^{\prime \prime} \in \mathcal{O}_{p}$. Hence $G^{\prime \prime}$ has an $\left(f^{\prime}, b ; p\right)$-orientation D^{\prime}. By repeated application of Lemma 17, we conclude that G has an $(f, b ; p)$-orientation, as desired.

By applying contraction of $K_{n_{1}, n_{2}}$ from $K_{n_{1}, n}$ with $n \geqslant n_{2}$ and Lemma 7 (i), one concludes that $K_{n_{1}, n} \in \mathcal{O}_{p}$.

For positive integers m and n, let $K_{m, n}$ be the complete bipartite graph with bipartition $U=\left\{u_{1}, \ldots, u_{m}\right\}$ and $V=\left\{v_{1}, \ldots, v_{n}\right\}$. For any subset $\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\}$ of \mathbb{Z}_{m}, where $t_{1} \leqslant t_{2} \ldots \leqslant t_{\ell}$, let $K\left(t_{1}, t_{2}, \ldots, t_{\ell}\right)$ be the graph obtained from $K_{m, n}$ by identifying $u_{1}, \ldots, u_{t_{1}}$, identifying $u_{t_{i}+1}, \ldots, u_{t_{i+1}}$ for each $1 \leqslant i \leqslant \ell-1$ and identifying $u_{t_{\ell}+1}, \ldots, u_{m}$, respectively. Define

$$
\mathcal{K}^{*}(m, n)=\left\{K\left(t_{1}, t_{2}, \ldots, t_{\ell}\right):\left\{t_{1}, t_{2}, \ldots, t_{\ell}\right\} \subseteq \mathbb{Z}_{m}\right\}
$$

Since identifying two nonadjacent vertices u, v in a graph G amounts to the operation $(G+u v) / u v$. By Lemma 7(iii) and (ii), $G \in \mathcal{O}_{p}$ implies that $(G+u v) / u v \in \mathcal{O}_{p}$. Combining Theorem 20, leads to the following seemingly more general corollary.

Corollary 21. Let $G \in \mathcal{K}^{*}\left(n_{1}, n_{2}\right)$ be a graph and $p>0$ be an odd prime. Then $G \in \mathcal{O}_{p}$.

As an application of corollary above, we present that if a family of graphs has a bounded matching number, then after certain reduction operations, there are only finitely many $\frac{1}{2}\left(p^{2}-3 p+4\right)$-edge-connected graphs not in \mathcal{O}_{p}. To state our theorem formally, we shall first introduce the concept of \mathcal{O}_{p}-reduction below.

As $K_{1} \in \mathcal{O}_{p}$ by definition, for every graph G, any vertex is contained in a maximal subgraph in \mathcal{O}_{p}. Let $H_{1}, H_{2}, \cdots, H_{c}$ be the family of all maximal subgraphs of G which all in \mathcal{O}_{p}. Define $G^{\prime}=G /\left(\cup_{i=1}^{c} E\left(H_{i}\right)\right)$ to be the \mathcal{O}_{p}-reduction of G, or G is \mathcal{O}_{p}-reduced to G^{\prime}. A graph G is called trivially \mathcal{O}_{p}-reduced if G has no non-trivial subgraph in \mathcal{O}_{p}. Our main result can be stated below.

Theorem 22. Let G be a graph, $p>0$ be an odd prime and $s>0$ be an integer. Then for every function $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and every \mathbb{Z}_{p}-boundary b of G, there is a finite graph family $\mathcal{G}(p, s)$ such that every graph G with $\kappa^{\prime}(G) \geqslant \frac{1}{2}\left(p^{2}-3 p+4\right)$ and $\alpha^{\prime}(G) \leqslant s$ has an $(f, b ; p)$-orientation if and only if the \mathcal{O}_{p}-reduction of G is not in $\mathcal{G}(p, s)$.

To obtain this theorem, we also need the following elementary counting lemma, see [6, II. 5^{*}].

Lemma 23. ([6]) Let $\ell, n>0$ be integers. Then there are $\binom{n+\ell-1}{\ell-1}$ non-negative integral solutions ($x_{1}, x_{2}, \ldots, x_{\ell}$) for the equation $x_{1}+x_{2}+\cdots+x_{\ell}=n$.

Denote $N(p, s)=n_{2} \cdot\binom{2 s+n_{1}-1}{2 s-1}+2 s$, where $n_{1}=\frac{1}{2}\left(p^{2}-3 p+4\right), n_{2}=\frac{1}{2} n_{1}\left(n_{1}-1\right)(p-1)$. Let $\mathcal{F}(p, s)$ be the family of all n_{1}-edge-connected \mathcal{O}_{p}-reduced graphs of order between 2 and $N(p, s)$ with matching number at most s. Then each graph in $\mathcal{F}(p, s)$ has edge multiplicity at most $p-2$ by Lemma 7 (vi). So there are finitely many graphs in $\mathcal{F}(p, s)$. We will show the following stronger theorem, which implies Theorem 22 by Lemma 7(i), (iii) and Corollary 21.

Theorem 24. Let G be a $\frac{1}{2}\left(p^{2}-3 p+4\right)$-edge-connected graph with $\alpha^{\prime}(G) \leqslant s$. Then $G \in \mathcal{O}_{p}$ if and only if G cannot be \mathcal{O}_{p}-reduced to a member in $\mathcal{F}(p, s)$.

Proof. If $G \in \mathcal{O}_{p}$, then G is \mathcal{O}_{p}-reduced to $K_{1} \notin \mathcal{F}(p, s)$ by Lemma 7 (vi). We shall show the converse that if G cannot be \mathcal{O}_{p}-reduced to a member in $\mathcal{F}(p, s)$, then $G \in \mathcal{O}_{p}$.

Let G be a counterexample and let G^{\prime} be the \mathcal{O}_{p}-reduction of G. Then $G^{\prime} \notin \mathcal{F}(p, s)$ and it leads to

$$
\begin{equation*}
\left|V\left(G^{\prime}\right)\right|>N(p, s)=n_{2} \cdot\binom{2 s+n_{1}-1}{2 s-1}+2 s \tag{13}
\end{equation*}
$$

By the definition of G^{\prime}, we achieve $\alpha^{\prime}\left(G^{\prime}\right) \leqslant \alpha^{\prime}(G) \leqslant s$. Let $M=\left\{w_{1} w_{2}, w_{3} w_{4}, \ldots\right.$, $\left.w_{2 d-1} w_{2 d}\right\}$ be a maximum matching of G^{\prime}, where $d \leqslant s$. Denote $W=\left\{w_{1}, \ldots, w_{2 d}\right\}$. Then $Z=V\left(G^{\prime}\right)-W$ is an independent vertex set of G^{\prime}. Since G^{\prime} is n_{1}-edge-connected, we have $\left|[z, W]_{G^{\prime}}\right| \geqslant n_{1}$ for any $z \in Z$. Pick arbitrary n_{1} edges from $[z, W]_{G^{\prime}}$, denoted by $H(z)$, for each $z \in Z$. Let $G_{1}^{\prime}=\cup_{z \in Z} H(z)$ be the graph induced by the edge set $\cup_{z \in Z} H(z)$ in G^{\prime}.

We claim that there exists a member of $\mathcal{K}^{*}\left(n_{1}, n_{2}\right)$ in G_{1}^{\prime}, therefore in G^{\prime}. This will lead to a contradiction to the fact that G^{\prime} is a \mathcal{O}_{p}-reduced graph by Theorem 21.

For any $w \in W$ and $z \in Z$, denote $x(w, z)=\left|[w, z]_{G_{1}^{\prime}}\right|$ to be the number of edges between w and z in $H(z)$. Note that $x(w, z)=0$ if w is not in the graph $H(z)$. Since $H(z)$ consists of n_{1} edges, we have, for each $z \in Z$,

$$
x\left(w_{1}, z\right)+x\left(w_{2}, z\right)+\cdots+x\left(w_{2 d}, z\right)=n_{1} .
$$

By (13) and $d \leqslant s,|Z|=\left|V\left(G^{\prime}\right)\right|-2 d>N(p, s)-2 s \geqslant n_{2}\binom{2 s+n_{1}-1}{2 s-1}$. By Lemma 23 and the Pigeon-Hole Principle, there exists a subset $Z_{1} \subset Z$ of size n_{2} such that, for any $z, z^{\prime} \in Z_{1}$,

$$
\left(x\left(w_{1}, z\right), x\left(w_{2}, z\right), \ldots, x\left(w_{2 d}, z\right)\right)=\left(x\left(w_{1}, z^{\prime}\right), x\left(w_{2}, z^{\prime}\right), \ldots, x\left(w_{2 d}, z^{\prime}\right)\right)
$$

Denote $x_{1}, \ldots, x_{\ell+1}$ to be all the nonzero coordinates in $\left(x\left(w_{1}, z\right), x\left(w_{2}, z\right), \ldots, x\left(w_{2 d}, z\right)\right)$. Then the graph $\left[Z_{1}, Y\right]_{G_{1}^{\prime}} \cong K\left(t_{1}, t_{2}, \ldots, t_{\ell}\right)$ is a member of $\mathcal{K}^{*}\left(n_{1}, n_{2}\right)$, where $t_{1}=x_{1}$, $t_{\ell+1}=\left(n_{1}\right)-t_{\ell}$ and $t_{i}-t_{i-1}=x_{i}$ for $2 \leqslant i \leqslant \ell$. This proves the claim as well as the theorem.

5 Signed graphs

A signed graph is an ordered pair (G, σ) consisting of a graph G with a mapping $\sigma: E(G) \rightarrow\{1,-1\}$. An edge $e \in E(G)$ is positive if $\sigma(e)=1$ and negative if $\sigma(e)=-1$. The mapping σ, called the signature of G, is sometimes implicit in the notation of a signed graph and will be specified when needed. Both negative and positive loops are allowed in signed graphs. Define $E_{\sigma}^{+}(G)=\sigma^{-1}(1)$ and $E_{\sigma}^{-}(G)=\sigma^{-1}(-1)$. If no confusion occurs, we simply use E^{+}for $E_{\sigma}^{+}(G)$ and E^{-}for $E_{\sigma}^{-}(G)$. An orientation τ assigns each edge of (G, σ) as follows: if $e=x y \in E^{+}(G)$, then e is either oriented from x and to y or bi-direction; if $e=x y \in E^{-}(G)$, then e is oriented either away from both x and y or towards both x and y. We call $e=x y$ a sink edge (a source edge, respectively) if it is oriented away from (towards, respectively) both x and y.

Let τ be an orientation of (G, σ). For each vertex $v \in V(G)$, let $H_{G}(v)$ be the set of half edges incident with v. Define $\tau(h)=1$ if the half edge $h \in H_{G}(v)$ is oriented away from v, and $\tau(h)=-1$ if the half edge $h \in H_{G}(v)$ is oriented towards v. Denote $d_{\tau}^{+}(v)=$ $\left|H_{G, \tau}^{+}(v)\right|\left(d_{\tau}^{-}(v)=\left|H_{G, \tau}^{-}(v)\right|\right.$, respectively) to be the outdegree (indegree, respectively) of (G, σ) under orientation τ, where $E_{\tau}^{+}(v)\left(E_{\tau}^{-}(v)\right.$, respectively) denotes the set of outgoing (ingoing, respectively) half edges incident with v.

An edge cut of (G, σ) is just an edge cut of G. The switch operation $\zeta=\zeta_{S}$ on an edge-cut S is a mapping $\zeta: E(G) \rightarrow\{-1,1\}$ such that $\zeta(e)=-1$ if $e \in S$ and $\zeta(e)=1$ otherwise. Two signatures σ and σ^{\prime} are equivalent if there exists an edge-cut S such that $\sigma(e)=\sigma^{\prime}(e) \zeta(e)$ for every edge $e \in E(G)$, where ζ is the switch operation on some edge-cut S of G. For a signed graph (G, σ), let χ denote the collection of all signatures equivalent to σ. The negativeness of (G, σ) is denoted by $\epsilon_{N}(G, \sigma)=\min \left\{\left|E_{\sigma^{\prime}}^{-}(G)\right|: \forall \sigma^{\prime} \in \chi\right\}$. We use ϵ_{N} for short if the signed graph (G, σ) is understood from the context. A signed graph is called \boldsymbol{k}-unbalanced if $\epsilon_{N} \geqslant k$, and a 1-unbalanced signed graph is also known as an unbalanced signed graph.

We follow [17], to define signed graph contractions. For an edge $e \in E(G)$, the contraction G / e is the signed graph obtained from G by identifying the two ends of e, and then deleting the resulting positive loop if $e \in E^{+}$, but keeping the resulting negative loop if $e \in E^{-}$. For $X \subseteq E(G)$, the contraction G / X is the signed graph obtained from G by contracting each edge in X. If H is a subgraph of G, then we use G / H for $G / E(H)$. By definition, for any edge subset X of $G, \epsilon_{N}(G / X) \leqslant \epsilon_{N}(G)$.

Let A be an abelian (additive) group. Define $2 A=\{2 \alpha: \forall \alpha \in A\}$, and $A^{*}=A-\{0\}$. For a signed graph (G, σ), we still denote $F(G, A)=\{f \mid f: E(G) \rightarrow A\}$. Let τ be an orientation of (G, σ). For each $f \in F\left(G, A^{*}\right)$, the boundary of f is the function $\partial f: V(G) \rightarrow A$ defined by

$$
\partial f=\sum_{h \in H_{G}(v)} \tau(h) f\left(e_{h}\right),
$$

where e_{h} is the edge of G containing h and the summation is taken in A. If $\partial f=0$, then (τ, f) is an A-flow of G. In addition, (τ, f) is a nowhere-zero A-flow if both $f \in F\left(G, A^{*}\right)$ and $\partial f=0$. For any $f \in F\left(G, A^{*}\right)$, each positive edge contributes 0 , each sink edge e contributes $2 f(e)$, and each source edge e contributes $-2 f(e)$ to $\sum_{v \in V(G)} \partial f(v)$. Thus one has

$$
\sum_{v \in V(G)} \partial f(v)=\sum_{e \text { is a sink edge }} 2 f(e)-\sum_{e \text { is a source edge }} 2 f(e) \in 2 A .
$$

In [17], the authors introduced the definition of group connectivity of signed graphs. We extend this notation to a mod $\boldsymbol{k} \boldsymbol{f}$-weighted \boldsymbol{b}-orientation (an $(f, \boldsymbol{b} \boldsymbol{;})$-orientation) of signed graphs.

Let (G, σ) be a 2-unbalanced signed graph. A mapping $b: V(G) \rightarrow \mathbb{Z}_{k}$ is called an \mathbb{Z}_{k}-boundary of (G, σ) if

$$
\sum_{v \in V(G)} b(v)=2 \alpha \text { for some } \alpha \in \mathbb{Z}_{k}
$$

Let $Z\left(G, \mathbb{Z}_{k}\right)$ be the collection of all \mathbb{Z}_{k}-boundaries. Given a signed graph (G, σ), for every $b \in Z\left(G, \mathbb{Z}_{k}\right)$ and every $f \in F\left(G, \mathbb{Z}_{k}^{*}\right)$, an orientation τ of (G, σ) is an $(\boldsymbol{f}, \boldsymbol{b} ; \boldsymbol{k})$ orientation if for every vertex $v \in V(G)$,

$$
\partial f(v)=\sum_{h \in H_{G}(v)} \tau(v) f\left(e_{h}\right)=b(v) .
$$

As graphs are signed graphs with negativeness zero, it is again necessary to assume k to be a prime when studying $(f, b ; k)$-orientations of signed graphs. Let $p>1$ be a prime. For notational simplification, we continue using \mathcal{O}_{p} to denote the signed graph family \mathcal{O}_{p} such that $(G, \sigma) \in \mathcal{O}_{p}$ if and only if (G, σ) admits an $(f, b ; p)$-orientation for any $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and any $b \in Z\left(G, \mathbb{Z}_{p}\right)$. To avoid triviality, throughout the rest of this section, we always assume signed graphs under discussion with negativeness at least one.

Lemma 25. Weighted modulo orientability is invariant under the switch operation.
Proof. Let (G, σ) be a 2 -unbalanced signed graph such that $(G, \sigma) \in \mathcal{O}_{p}$. As every switching operation can be composed from the switching operations on trivial edge-cut, it suffices to verify this lemma for the switch operation ζ_{u} on the trivial edge-cut $S=E_{G}(u)$ for any given vertex u. We fix a vertex u and let $\zeta=\zeta_{u}$ in the discussion below. Then
$\sigma^{\prime}=\sigma \zeta$ is an signature equivalent to σ. We are to show that for any $f^{\prime} \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and any $b^{\prime} \in Z\left(G, \mathbb{Z}_{p}\right)$, the signed graph $\left(G, \sigma^{\prime}\right)$ also admits an $\left(f^{\prime}, b^{\prime} ; p\right)$-orientation.

Let $f=f^{\prime}$ and define $b: V(G) \rightarrow \mathbb{Z}_{p}$ by setting $b(u)=-b^{\prime}(u)$ and $b(v)=b^{\prime}(v)$ for any $v \in V(G) \backslash\{u\}$. As $b^{\prime} \in Z\left(G, \mathbb{Z}_{p}\right)$, we also have

$$
\sum_{v \in V(G)} b(v)=-b^{\prime}(u)+\sum_{v \in V(G) \backslash\{u\}} b^{\prime}(v)=\sum_{v \in V(G)} b^{\prime}(v)-2 b^{\prime}(u) \in 2 \mathbb{Z}_{p} .
$$

Thus $b \in Z\left(G, \mathbb{Z}_{p}\right)$ is also an \mathbb{Z}_{p}-boundary of (G, σ). Since (G, σ) admits an $(f, b ; p)$ orientation, there exists an orientation τ such that, for every vertex $v \in V(G)$,

$$
\partial f(v)=\sum_{h \in H_{G}(v)} \tau(h) f\left(e_{h}\right)=b(v) .
$$

Let τ^{\prime} be the orientation of $\left(G, \sigma^{\prime}\right)$ such that $\tau^{\prime}(h)=-\tau(h)$ if $h \in H_{G}(u)$ and $\tau^{\prime}(h)=$ $\tau(h)$ otherwise. Hence, we have $\partial f^{\prime}(v)=\partial f(v)=\sum_{h \in H_{G}(v)} \tau^{\prime}(h) f\left(e_{h}\right)=b(v)=b^{\prime}(v)$ for any vertex $v \in V(G) \backslash\{u\}$. In addition,

$$
\partial f^{\prime}(u)=-\partial f(u)=\sum_{h \in H_{G}(u)} \tau^{\prime}(h) f\left(e_{h}\right)=\sum_{h \in H_{G}(u)}-\tau(h) f\left(e_{h}\right)=-b(u)=b^{\prime}(u) .
$$

Therefore, $\partial f^{\prime}=b^{\prime}$ in the signed graph $\left(G, \sigma^{\prime}\right)$ with orientation τ^{\prime}.
Lemma 26. Let K_{1}^{-t} be the graph obtained from K_{1} by attaching t negative loops to it. Then $K_{1}^{-t} \in \mathcal{O}_{p}$ if and only if $t \geqslant p-1$.

Proof. Let $V\left(K_{1}^{-t}\right)=\{v\}, H=t K_{2}$ be the signed graph with $V(H)=\left\{v, v^{\prime}\right\}$ such that there are t positive edges joining v and v^{\prime}. Note that $E(H)=E\left(K_{1}^{-t}\right)$.

Assume first that $t \geqslant p-1$. Let $f \in F\left(K_{1}^{-t}, \mathbb{Z}_{p}^{*}\right)$ be an arbitrary mapping and $b(v) \in 2 \mathbb{Z}_{p}$ by an arbitrary \mathbb{Z}_{p}-boundary of K_{1}^{-t}. Since $b(v) \in 2 \mathbb{Z}_{p}$, there exists an element $\beta \in \mathbb{Z}_{p}$ such that $b(v)=2 \beta$. Define $b_{H} \in Z\left(H, \mathbb{Z}_{p}\right)$ by setting $b_{H}(v)=\beta$ and $b_{H}\left(v^{\prime}\right)=-\beta$. As $t \geqslant p-1$, by Lemma $7(\mathrm{vi})$, there exists an orientation τ of H such that $\sum_{h \in H_{G}(v)} \tau(h) f\left(e_{h}\right)=\beta$ and $\sum_{h \in H_{G}\left(v^{\prime}\right)} \tau(h) f\left(e_{h}\right)=-\beta$. Since K_{1}^{-t} can be obtained from H by identifying v and v^{\prime}, the orientation of K_{1}^{-t} is obtained from τ of H by taking the oppositive direction of every half edge in $H_{G}\left(v^{\prime}\right)$. Thus $K_{1}^{-t} \in \mathcal{O}_{p}$.

Conversely, we argue by contradiction and assume $K_{1}^{-t} \in \mathcal{O}_{p}$ but $t<p-1$. By Lemma 7 (iv), there exists an element $\beta \in \mathbb{Z}_{p}$, a mapping $b^{\prime} \in Z\left(H, \mathbb{Z}_{p}\right)$ with $b^{\prime}(v)=\beta$ and $b^{\prime}\left(v^{\prime}\right)=-\beta$, and a mapping $f \in F\left(H, \mathbb{Z}_{p}^{*}\right)$ such that H admits no $\left(f, b^{\prime} ; p\right)$-orientations. Let $b \in Z\left(K_{1}^{-t}, \mathbb{Z}_{p}\right)$ be the mapping with $b(v)=2 \beta$. As $f \in F\left(K_{1}^{-t}, \mathbb{Z}_{p}^{*}\right)$ also, if K_{1}^{-t} has an $(f, b ; p)$-orientation τ^{\prime}, then τ^{\prime} also gives rise to an $\left(f, b^{\prime} ; p\right)$-orientation of H, contrary to the fact that H admits no $\left(f, b^{\prime} ; p\right)$-orientations. This contradiction indicates that we must have $t \geqslant p-1$.

Thus we have the following observation immediately.
Observation 27. If $(G, \sigma) \in \mathcal{O}_{k}$ is an unbalanced signed graph, then $\epsilon_{N} \geqslant k-1$.

Lemma 28. Let k be a positive integer and let (H, σ) be a signed graph. Assume that either $E_{\sigma}^{-}(H)=\emptyset$ and $H \in \mathcal{O}_{k}$ is as an ordinary graph or $(H, \sigma) \in \mathcal{O}_{k}$ is as a $(k-1)$ unbalanced signed graph. If $\left(G, \sigma^{\prime}\right)$ is a $(k-1)$-unbalanced signed graph containing (H, σ) as a subgraph, then $\left(G, \sigma^{\prime}\right) \in \mathcal{O}_{k}$ if and only if $\left(G / H, \sigma^{\prime \prime}\right) \in \mathcal{O}_{k}$.

Proof. For the unsigned graphs, the necessity can be proved following Lemma 7 (ii). One can prove the necessity of signed graphs analogously. It remains to prove the sufficiency.

In the sequel, for simplicity, we will use G / H to denote the signed graph $\left(G / H, \sigma^{\prime \prime}\right)$. Let $f \in F\left(G, \mathbb{Z}_{k}^{*}\right)$ and $b \in Z\left(G, \mathbb{Z}_{k}\right)$ be given, and let v_{H} be the vertex in G / H onto which H is contracted. For notational convenience, let $E_{\sigma}^{-}(H)$ denote the set of all negative edges of (H, σ), as well as the set of negative loops incident with v_{H} in G / H obtained by contracting H. Let $f_{1} \in F\left(G / H, \mathbb{Z}_{k}^{*}\right)$ be the restriction of f on $E(G / H)$, and define $b_{1}\left(v_{H}\right)=\sum_{v \in V(H)} b(v)$ and $b_{1}(v)=b(v)$ if $v \in V(G / H)-\left\{v_{H}\right\}$. Direct verification shows that $b_{1} \in Z\left(G / H, \mathbb{Z}_{k}\right)$. Since $G / H \in \mathcal{O}_{k}$, there exists an $\left(f_{1}, b_{1} ; p\right)$-orientation τ_{1} of G / H, and so $\partial f_{1}=b_{1}$.

For each vertex $v \in V(H)$, let $X_{1}(v)$ be the set of half edges incident with v in $E(G)-E(H)$, and $X_{2}(v)$ be the set of half edges incident with v in $E_{\sigma}^{-}(H)$. Define $b_{2}: V(H) \rightarrow \mathbb{Z}_{k}$ by

$$
\begin{equation*}
b_{2}(v)=b(v)-\sum_{h \in X_{1}(v)} \tau(h) f_{1}\left(e_{h}\right) . \tag{14}
\end{equation*}
$$

Since $\partial f_{1}=b_{1}$ in G / H, we have

$$
\sum_{v \in V(H)} \sum_{h \in X_{1}(v) \cup X_{2}(v)} \tau(h) f_{1}\left(e_{h}\right)=\partial f_{1}\left(v_{H}\right)=b_{1}\left(v_{H}\right)=\sum_{v \in V(H)} b(v) .
$$

By (14),

$$
\begin{aligned}
\sum_{v \in V(H)} b_{2}(v) & =\sum_{v \in V(H)} b(v)-\sum_{v \in V(H)} \sum_{h \in X_{1}(v)} \tau(h) f_{1}\left(e_{h}\right) \\
& =\sum_{v \in V(H)} \sum_{h \in X_{2}(v)} \tau(h) f_{1}\left(e_{h}\right)=\sum_{e \in E_{\sigma}^{-}(H)} \pm 2 f_{1}(e) \in 2 \mathbb{Z}_{k}
\end{aligned}
$$

In the case when $E_{\sigma}^{-}(H)=\emptyset, b_{2}$ is a zero sum function, and so we always have $b_{2} \in$ $Z\left(H, \mathbb{Z}_{k}\right)$. Let $f_{2} \in F\left(H, \mathbb{Z}_{k}^{*}\right)$ be the restriction of f in $E(H)$. Since $H \in \mathcal{O}_{k}$, there exists an orientation τ_{2} of H such that $\partial f_{2}=b_{2}$. Let $\tau=\tau_{1} \cup \tau_{2}$ be the orientation of G formed by combing the orientation τ_{2} of H and the orientation τ_{1} of G / H. Then, for each vertex $v \in V(H)$, it follows from (14) that

$$
\begin{aligned}
\partial f(v) & =\partial f_{1}(v)+\partial f_{2}(v) \\
& =\sum_{h \in X_{1}(v)} \tau(h) f_{1}\left(e_{h}\right)+b_{2}(v) \\
& =\sum_{h \in X_{1}(v)} \tau(h) f_{1}\left(e_{h}\right)+\left[b(v)-\sum_{h \in X_{1}(v)} \tau(h) f_{1}\left(e_{h}\right)\right]=b(v) .
\end{aligned}
$$

Therefore, τ is an $(f, b ; k)$-orientation of $\left(G, \sigma^{\prime}\right)$. By definition, $\left(G, \sigma^{\prime}\right) \in \mathcal{O}_{k}$.
Lemma 28 leads to a reduction method for verifying weighted modulo orientability of unbalanced signed graphs, which is an extension of Lemma 7(iii) for unsigned graphs. The following lemma follows Lemma 26 and Lemma 28.

Lemma 29. An unbalanced signed graph $(G, \sigma) \in \mathcal{O}_{p}$ if and only if it can be contracted to K_{1}^{-t} for some integer $t \geqslant p-1$ by contracting its subgraphs in \mathcal{O}_{p} recursively.

Lemma 30 below is a consequence by combining Lemma 28 and Lemma 29.
Lemma 30. Let (G, σ) be a $(p-1)$-unbalanced signed graph. If $G\left[E^{+}\right]$is spanning and $G\left[E^{+}\right] \in \mathcal{O}_{p}$ is as an ordinary graph, then $(G, \sigma) \in \mathcal{O}_{p}$.

The following theorems are our main results of this section.
Theorem 31. Let p be an odd prime and let (G, σ) be a $(p-1)$-unbalanced signed graph with $\kappa^{\prime}(G) \geqslant 12 p^{2}-28 p+15$. Then $(G, \sigma) \in \mathcal{O}_{p}$.

Proof. Pick any $f \in F\left(G, \mathbb{Z}_{p}^{*}\right)$ and any \mathbb{Z}_{p}-boundary b. Since p is prime, we have $2 \mathbb{Z}_{p}=\mathbb{Z}_{p}$ and $\sum_{v \in V(G)} b(v)$ can be any element in \mathbb{Z}_{p}. By Lemma 25 , we may assume that $\left|E_{\sigma}^{-}(G)\right|=\epsilon_{N}$. Since (G, σ) is a $\left(12 p^{2}-28 p+15\right)$-edge-connected signed graph with minimal number of negative edges in the switch equivalent class, $\left|S \cap E_{\sigma}^{-}(G)\right| \leqslant \frac{1}{2}|S|$ for each edge-cut S. Therefore $G\left[E_{\sigma}^{+}(G)\right]$ is $\left(6 p^{2}-14 p+8\right)$-edge-connected and hence $G\left[E^{+}\right] \in \mathcal{O}_{p}$ by Theorem 4. By Lemma 30, one has $(G, \sigma) \in \mathcal{O}_{p}$.

Theorem 32. Let p be an odd prime and let (G, σ) be a $(p-1)$-unbalanced signed seriesparallel graph with $\kappa^{\prime}(G) \geqslant 4 p-7$. Then $(G, \sigma) \in \mathcal{O}_{p}$.
Proof. We prove by induction on $|V(G)|$. The statement clearly holds for $|V(G)|=1$ by Lemma 26. Assume $|V(G)| \geqslant 2$. The underlying simple graph H of G is K_{4}-minorfree, and so contains a vertex v of degree at most 2. Denote $N_{H}(v)=\{x, y\}$ if v has two neighbors and $N_{H}(v)=\{x\}$ if v has a unique neighbor. In the signed graph G, by the edge connectivity $\kappa^{\prime}(G) \geqslant 4 p-7$, we have $\left|[v, x]_{G}\right|+\left|[v, y]_{G}\right| \geqslant 4 p-7$. Hence $\max \left\{\left|[v, x]_{G},\left|[v, y]_{G}\right|\right\} \geqslant 2 p-3\right.$. We may, with out loss of generality, assume $\left|[v, x]_{G}\right| \geqslant$ $2 p-3$. (In the case $N_{H}(v)=\{x\}$, we have $\left|[v, x]_{G}\right| \geqslant 4 p-7 \geqslant 2 p-3$ as well.) By Lemma 25 , by possible some switching operation at least half of edges in $[v, x]_{G}$ are positive, and so there are at least $p-1$ parallel positive edges, denoted by M, in $[v, x]_{G}$. Thus by Lemma 7 (iv), those parallel positive edges M in $[v, x]_{G}$ is in \mathcal{O}_{p}. Moreover, $G / M \in \mathcal{O}_{p}$ by induction, and so $(G, \sigma) \in \mathcal{O}_{p}$ by Lemma 28 .

6 Conclusion

In this paper, we reduce the edge-connectivity $\left(6 p^{2}-14 p+8\right)$ in Theorem 4 for some graph families, and we extend the ($f, b ; p$)-orientation framework to signed graph. Viewing the results in this paper and in literatures, we believe that it is possible that a linear function of p would suffice for the existence of such $(f, b ; p)$-orientations. We conclude this paper with the following conjectures.

Conjecture 33. There exists a constant c independent of p such that every $c p$-edgeconnected graph is in \mathcal{O}_{p}.

Conjecture 34. There exists a constant c independent of p such that every $c p$-edgeconnected $(p-1)$-unbalanced signed graph is in \mathcal{O}_{p}.

In fact, by Lemma 30 those two conjecture are equivalent (regardless of the constant c).

Acknowledgements

The authors would like to thank the referees for suggesting improvements on the presentation of this paper.

References

[1] N. Alon, N. Linial and R. Meshulam, Additive bases of vector spaces over prime fields. J. Combin. Theory Ser. A, 57:203-210, 1991.
[2] J. A. Bondy and U. S. R. Murty, Graph theory, Springer, New York, 2008.
[3] J. Chen, E. Eschen and H.-J. Lai, Group connectivity of certain graphs, Ars Combinatoria, 89:141-158, 2008.
[4] G.A. Dirac, A property of 4-chromatic graphs and some remarks on critical graphs, J. Lond. Math. Soc., 27:85-92, 1952.
[5] L. Esperet, R. J. De Verclos, T. N. Le and S. Thomassé, Additive Bases and Flows in Graphs, SIAM J. Discrete Math., 32(1):534-542, 2018.
[6] W. Feller, An Introduction to Probability Theory and Its Applications Vol. 1 (3rd Edition), John Wiley \& Sons, Inc., 1968.
[7] M. Han, J. Li, Y. Wu and C.-Q. Zhang. Counterexamples to Jaeger's circular flow conjecture, J. Combin. Theory, Ser. B, 131:1-11, 2018.
[8] F. Jaeger, Nowhere-zero Flow Problems. In Selected Topics in Graph Theory (L. Beineke and R. Wilson, Eds.), Vol. 3, pages 91-95. Academic Press, London/New York, 1988.
[9] F. Jaeger, N. Linial, C. Payan and M. Tarsi, Group connectivity of graphs-A nonhomogeneous analogue of nowhere-zero flow properties, J. Combin. Theory, Ser. B, 56:165-182, 1992.
[10] T. Kloks, Treewidth, Computations and Approximations, Springer-Verlag, New York, 1994.
[11] H.-J. Lai, Group connectivity of 3-edge-connectied chordal graphs, Graphs and Combinatorics, 16:165-176, 2000.
[12] H.-J. Lai, Mod ($2 p+1$)-orientations and $K_{1,2 p+1}$-decompositions, SIAM J. of Discrete Math., 21:844-850, 2007.
[13] H.-J. Lai, X. Li, Y. H. Shao and M. Zhan, Group Connectivity and Group Colorings of Graphs-A survey, Acta Mathematica Sinica, English Series, 27:405-434, 2011.
[14] H.-J. Lai, Y. Liang, J. Liu, Z. Miao, J. Meng, Y. Shao and Z. Zhang, On Strongly $Z_{2 s+1}$-connected Graphs, Discrete Applied Math., 174:73-80, 2014.
[15] H.-J. Lai, R. Luo and C. Q. Zhang, Integer flow and orientation. In Topics in Chromatic Graph Theory (L. Beineke and R. Wilson, Eds.), Vol. 156, pages 181198. Encyclopedia of Mathematics and Its Applications, 2015.
[16] J. Li, Group Connectivity and Modulo Orientations of Graphs, PhD Dissertation, West Virginia University, 2018.
[17] J. Li, R. Luo, H. Ma and C.-Q. Zhang, Flow-contractible configurations and group connectivity of signed graphs, Discrete Math., 341:3227-3236, 2018.
[18] J.-B. Liu, P. Li, J. Li and H.-J. Lai, On weighted modulo orientation of graphs, European J. Combin., 89:103163, 2020.
[19] J.-B Liu, Weighted modulo orientations of graphs, PhD Dissertation, West Virginia University, 2020.
[20] L. M. Lovasz, C. Thomassen, Y. Wu and C. Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory, Ser. B, 103:587-598, 2013.
[21] C.-Q. Zhang, Integer Flows and Cycle Covers of Graphs, Marcel Dekker Inc., New York, ISBN: 0-8247-9790-6, 1997.

[^0]: *Corresponding Author. Miaomiao Han is supported by National Natural Science Foundation of China (No. 11901434).

