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Abstract

We classify cocovers of a given element of the double affine Weyl semigroup
WT with respect to the Bruhat order, specifically when WT is associated to a
finite root system that is irreducible and simply laced. We do so by introducing
a graphical representation of the length difference set defined by Muthiah and Orr
and identifying the cocovering relations with the corners of those graphs. This new
method allows us to prove that there are finitely many cocovers of each x ∈ WT .
Further, we show that the Bruhat intervals in the double affine Bruhat order are
finite.

Mathematics Subject Classifications: 05E99, 20F55, 06A07

1 Introduction

The double affine Bruhat order was first introduced by Braverman, Kazhdan, and Patnaik
[2] in their study of Iwahori-Hecke algebras for affine Kac-Moody groups. They called it
the Bruhat preorder and conjectured that it was an order (it was already known that it
is an order in the finite and affine cases). In [10] it was shown that the preorder is in fact
an order, and in [12] it was shown that the order coincides with the order generated by
relations involving the length function on the double affine Weyl semigroup WT , which
was defined in [10].

The double affine Bruhat order is an extension of the Bruhat order on the (single)
affine Weyl group, but when working in the double affine case, one cannot rely on Coxeter
theory. This makes it more difficult to extend key ideas. However, recent progress has been
made by Muthiah and Orr. In [12] they related the cocover and cover relationships to a
difference in lengths when the finite root system in question is simply laced. Additionally,
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Muthiah [11] has made use of the results in this paper to make further advances in the
field.

This paper focuses on classifying cocovers under the double affine Bruhat order. For
x ∈ WT , a cover of x is defined to be an element y ∈ WT such that x < y under the
Bruhat order and there is no z ∈ WT such that x < z < y. Similarly, y is said to be a
cocover of x if y < x and there is no z ∈ WT such that y < z < x.

Our classification allows us to better understand the intervals that arise from the order.
Specifically, we show that these intervals are finite. To do so, we develop a new technique
for representing covering relations by introducing a graphical representation of the length
difference set defined by Muthiah and Orr [12] and identifying cocovers as “corners” of
these graphs.

Proposition 1. (Proposition 21 below) If y = sαx is a cocover of x, then α must corre-
spond to a corner in the graph Γx,fin(α).

Using this new technique, and extending the work done by Lam and Shimozono [6]
and further strengthened by Milićević [9], who classified cocovers in the affine case, we
are able to fully classify cocovers under the double affine Bruhat order:

Theorem 2. (Theorem 28 below) Let x = X ṽζw̃ and y = sαx where α = −ṽα̃ + jπ is a
positive double affine root and 〈ζ, αi〉 > 2 for i = 0, 1, . . . , n. Then y is a cocover of x if
and only if one of the following holds:

1. `(ṽ) = `(ṽsα̃) + 1 and j = 0.

2. `(ṽ) = `(ṽsα̃) + 1− 〈α̃, 2ρ〉 and j = 1.

3. `(w̃−1ṽsα̃) = `(w̃−1ṽ) + 1 and j = 〈ζ, α̃〉.

4. `(w̃−1ṽsα̃) = `(w̃−1ṽ) + 1− 〈α̃, 2ρ〉 and j = 〈ζ, α̃〉 − 1.

Further, we show that there are finitely many corners of the length difference graphs,
and thus, finitely many cocovers for each element of WT . This leads to the following
theorem concerning the Bruhat intervals.

Theorem 3. (Theorem 25 below) Let x, y ∈ WT such that y 6 x. Then the double affine
Bruhat interval [y, x] is finite.

We end by mirroring the work done by Lam and Shimozono [6] and Milićević [9] in
the affine case to create a relationship between cocovers in the double affine setting and
the affine quantum Bruhat graph.
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2 Background

Before we begin, we must introduce our notation. We note that the finite and single affine
objects and notation mostly follows that of Kac’s [5] and Humphreys’ [4]. For the double
affine case, we follow the work of Muthiah and Orr [10], [12].

Let Wfin denote our finite Weyl group with associated root system Φfin irreducible and
simply laced. Let Waff denote the affine Weyl group created from the semidirect product
of the translation group associated to Q = ZΦfin with Wfin. Let {αi | 0 6 i 6 n} be the
simple roots such that Waff is generated by the affine reflections sαi for 0 6 i 6 n, and
let δ = α0 + θ, where θ is the highest root in Φfin. Commonly, δ is referred to as the null
root. Because Φfin is simply laced, we have a pairing 〈 , 〉 such that 〈α, α〉 = 2 for all
α ∈ Φfin. This allows us to identify Φfin with Φ∨fin, the set of coroots.

Let Pfin be the finite weight lattice. We choose the weight Λ0 so that 〈Λ0, αi〉 = 0 for
0 < i 6 n and 〈Λ0, δ〉 = 1. Let X = Pfin ⊕ Zδ ⊕ ZΛ0, the affine weight lattice. Given
ζ = µ+mδ+ lΛ0 ∈ X, we call l the level of ζ and denote it by lev(ζ) = l. The level of the
element is preserved under the action of Waff on X. Let λ ∈ Q and w ∈ Wfin. We denote
a typical element of Waff as w̃ = Y λw where Y λ is the translation by λ. The action of
Waff on X is defined by

Y λw(µ+mδ + lΛ0) = w(µ) + lλ+ (m− 〈w(µ), λ〉 − l 〈λ, λ〉
2

)δ + lΛ0.

Let Xdom be the set of all dominant elements of X. That is, let Xdom contain all ζ ∈ X
such that 〈ζ, αi〉 > 0 for 0 6 i 6 n. Then the Tits cone T is given by

T =
⋃

w∈Waff

w(Xdom).

Note that the Tits cone is the subset of X containing all elements that can be made
dominant by some element of Waff . Alternatively, we can view the Tits cone as a union
of two sets, with one set containing elements of level zero and the other containing the
elements with positive level:

T = {mδ : m ∈ Z} ∪ {µ+mδ + lΛ0 : µ ∈ Pfin, m ∈ Z, l ∈ Z>0},

where Z>0 represents the positive integers. Under this decomposition, we see that T
contains all the imaginary roots (roots of the form mδ) and all the roots with l > 0, but
it contains no elements with a negative level.

The double affine Weyl semigroup [2] [10], which we denote by WT , is the semidirect
product of the the translation semigroup associated to T with Waff :

WT = T oWaff

= {Xζw̃ : ζ ∈ T , w̃ ∈ Waff}
= {XζY λw : ζ ∈ T , λ ∈ Q,w ∈ Wfin}.

For simplicity, we will use lev(x) to denote the level of the X-weight of x ∈ WT (i.e.
if x = XζY λw ∈ WT then lev(x) = lev(ζ)). As WT contains no elements with lev(x) < 0,
we see that WT is a semigroup, but not a group.
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2.1 Roots and Reflections

Let Qdaff = ZΦfin⊕Zδ⊕Zπ, where π is an additional null root that arises from the double
affinization (see [2] and [10]). The set of double affine roots is a subset of Qdaff given by

Φ = {ν + rδ + jπ : ν ∈ Φfin, r, j ∈ Z}.

Like the affine roots, the double affine root system can be divided into positive and
negative roots. Recall that we consider an affine root α̃ to be positive if α̃ = ν+ rδ where
ν is a positive root in Φfin and r > 0 or ν is a negative root and r > 0. Otherwise, we
say α̃ is negative. For the double affine roots, this follows similarly. We say that a double
affine root α = α̃+jπ is positive if α̃ is a positive affine root and j > 0 or if α̃ is a negative
affine root and j > 0. Otherwise, we say α is negative.

Also by analogy with the affine case, each double affine root α = ν + rδ + jπ can be
associated to a reflection sα. Let α̃ = ν + rδ. Then define:

sα = sα̃+jπ

= X−jα̃sν+rδ

= X−jα̃Y −rνsν .

We note that our notation for roots and reflections differs from that in [12] by a sign
(see [12, (7) and (8)]). We also note that if α = ν + rδ + jπ is a double affine root,
and j 6= 0, then sα is not an element of WT . Instead, sα is an element of X o Waff ,
which contains WT as a sub-semigroup. However, when we consider x = Xζw̃ ∈ WT with
lev(x) > 0, then xsν+rδ+jπ ∈ WT .

Because the semigroup WT is not generated by reflections, we cannot use Coxeter
theory for the double affine Bruhat order, which makes it more difficult to extend from
the affine to the double affine case. Consider x = Xµ+mδ+lΛ0 ∈ WT with lev(x) > 0. Then
x cannot be written as a product of reflections because the reflections contain no X lΛ0

part.
Let ζ ∈ X and w̃ ∈ Waff . We define an action of X oWaff on Φ by

Xζw̃(α̃ + jπ) = w̃(α̃) + (j − 〈ζ, w̃(α̃)〉)π.

This is similar to the action defined for Waff on Φaff . Letting ζ = µ + mδ + lΛ0 and
w̃ = Y λw, we can expand this to

XζY λw(α + rδ + jπ) = Y λw(α + rδ) + (j − 〈µ,w(α)〉 − l(r − 〈λ,w(α)〉))π.

If α and β are double affine roots, then sα(β) as defined by the action above is the same
as

sα(β) = β − 〈α, β〉α.
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2.2 Length Function

When considering elements of WT , it no longer makes sense to define a length function
based on reduced words (as is done for Wfin or Waff) because we lack the notion of simple
reflections. Instead, we use the length function defined in [10].

Let ρ be the sum of the affine fundamental weights, which we choose now and keep
consistent throughout the paper. Let x = Xζw̃ be an element of WT . We denote by
Inv(w̃) the set of inversions of w̃ ∈ Waff . That is, the set of positive affine roots α̃ such
that w̃(α̃) is a negative root. Then the length of x is defined by [10] to be

`(x) = 〈ζ+, 2ρ〉+ |{α̃ ∈ Inv(w̃−1) : 〈ζ, α̃〉 6 0}| − |{α̃ ∈ Inv(w̃−1) : 〈ζ, α̃〉 > 0}|,

where ζ+ is the dominant element associated to ζ and α̃ = ν+rδ is an affine root. Here we
see why we must use T and not all of X when defining WT because we need the X-weight
of x ∈ WT to be made dominant.

In the affine case, this definition is consistent with `aff , the Coxeter length function
on Waff . For w̃ = Y λw ∈ WT , `(w̃) = `(X0w̃) = `aff(w̃). For convenience, the length
function is split into big and small parts by defining the big length as

`big(x) = 〈ζ+, 2ρ〉

and the small length as

`small(x) = |{α̃ ∈ Inv(w̃−1) : 〈ζ, α̃〉 6 0}| − |{α̃ ∈ Inv(w̃−1) : 〈ζ, α̃〉 > 0}|.

Before ending our discussion of the length function, we need a proposition that splits
the length of an element x ∈ WT into the sum of two lengths, the first considering only
the translation part of x and the second considering only the affine part of x. This
way of re-writing the length function will be fundamental when proving our classification
theorem.

We say ζ ∈ T is regular if 〈ζ, α̃〉 6= 0 for all α̃ ∈ Φaff . The following proposition is an
extension of work done by Lam and Shimozono [6, Lem 3.4].

Proposition 4. Let propositionζ ∈ T be regular and dominant and let x = X ṽζw̃ where
w̃, ṽ ∈ Waff . Then

`(x) = `(Xζ)− `(ṽ−1w̃) + `(ṽ)

= 〈ζ, 2ρ〉 − `(w̃−1ṽ) + `(ṽ).

Before we can prove Proposition 4, we need the following lemmas.

Lemma 5. [7, proof of (2.2.4)] Let x, y ∈ Waff . Then

`(xy) = `(x) + `(y)− 2|{Inv(y) ∩ −y−1 Inv(x)}|
= `(x) + `(y)− 2|{α ∈ Inv(y) : α /∈ Inv(xy)}|.

Proof. Let α ∈ Inv(xy). There are two possibilities:
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1. α > 0, y(α) < 0, and xy(α) < 0

2. α > 0, y(α) > 0, and xy(α) < 0.

So Inv(xy) ⊂ y−1 Inv(x) t Inv(y) (this is a disjoint union because if α ∈ y−1 Inv(x),
then y(α) > 0 and so α /∈ Inv(y)). In general, this is a proper subset because there could
be α ∈ Inv(y) such that −y(α) ∈ Inv(x) (so α /∈ Inv(xy)), or there could be α < 0 such
that y(α) ∈ Inv(x) (so α ∈ y−1 Inv(x) but α /∈ Inv(xy)).

Thus | Inv(xy)| 6 |y−1 Inv(x)| + | Inv(y)|, and to find an exact representation of
| Inv(xy)|, we must subtract |{α ∈ Inv(y) : −y(α) ∈ Inv(x)}| = | Inv(y) ∩ −y−1 Inv(x)|
and |{α < 0 : y(α) ∈ Inv(x)}| = |{β > 0 : −y(β) ∈ Inv(x)}| = | Inv(y) ∩ −y−1 Inv(x)|.

Using | Inv(x)| = |y−1 Inv(x)|, we have

| Inv(xy)| = | Inv(x)|+ | Inv(y)| − 2| Inv(y) ∩ −y−1 Inv(x)|
= | Inv(x)|+ | Inv(y)| − 2|{α ∈ Inv(y) : α /∈ Inv(xy)}|.

Lemma 6. Let x, y be elements of Waff . Then

`(xy) = `(x) + `(y)− 2| Inv(x) ∩ Inv(y−1)|.

Proof. Using Lemma 5, this is equivalent to showing | Inv(x)∩ Inv(y−1)| = |{γ ∈ Inv(y) :
−y(γ) ∈ Inv(x)}|. We create a bijection by mapping γ ∈ {γ ∈ Inv(y) : −y(γ) ∈ Inv(x)}
to −y(γ) ∈ Inv(x) ∩ Inv(y−1), so the sets have the same size.

Proof of Proposition 4. We have

`(X ṽζw̃) = `big(X ṽζw̃) + `small(X
ṽζw̃)

= 〈ζ, 2ρ〉+ |{γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 6 0}| − |{γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 > 0}|.

We need to show that `(ṽ)− `(w̃−1ṽ) = `small(X
ṽζw̃). Note that 〈ṽζ, γ〉 = 〈ζ, ṽ−1(γ)〉

and since ζ is dominant and regular, 〈ζ, ṽ−1(γ)〉 > 0 if and only if ṽ−1(γ) > 0. Similarly,
〈ζ, ṽ−1(γ)〉 < 0 if and only if ṽ−1(γ) < 0 (since ζ is regular, we know 〈ζ, ṽ−1(γ)〉 6= 0).

So {γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 6 0} = Inv(w̃−1) ∩ Inv(ṽ−1) and {γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 >
0} = {γ ∈ Inv(w̃−1) : ṽ−1(γ) > 0}.

By Lemma 6, `(w̃−1ṽ) = `(w̃−1) + `(ṽ) − 2| Inv(w̃−1) ∩ Inv(ṽ−1)| so 2| Inv(w̃−1) ∩
Inv(ṽ−1)| − `(w̃−1) = `(ṽ)− `(w̃−1ṽ). Therefore,

`small(X
ṽζw̃) = |{γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 6 0}| − |{γ ∈ Inv(w̃−1) : 〈ṽζ, γ〉 > 0}|

= | Inv(w̃−1) ∩ Inv(ṽ−1)| − |{γ ∈ Inv(w̃−1) : ṽ−1(γ) > 0}|
= | Inv(w̃−1) ∩ Inv(ṽ−1)| − (| Inv(w̃−1)| − | Inv(w̃−1) ∩ Inv(ṽ−1)|)
= 2| Inv(w̃−1) ∩ Inv(ṽ−1)| − `(w̃−1)

= `(ṽ)− `(w̃−1ṽ).
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2.3 Bruhat Order

Given x ∈ WT with lev(x) > 0 and α a positive double affine root, [2, 5 Section B.2] defined
x→ xsα if x(α) > 0. They defined the double affine Bruhat preorder to be the preorder
generated by these relations, (that is, x 6 y if there is some chain x→ xsα1 → · · · → y),
and they conjectured that it was an order. In [10] it was shown that the preorder is in
fact an order, and in [12] it was shown that this order coincides with the order generated
by the relations: x → xsα if `(x) 6 `(xsα). Note x ∈ WT with lev(x) = 0 is excluded
because in that case xsα is not always in WT . When multiplying on the left, we use the
relation x→ sαx if x−1(α) > 0.

We are interested in classifying cocovers for a fixed x ∈ WT where the associated
finite root system Φfin is irreducible and simply laced. Muthiah and Orr [12] proved the
following theorem that will allow us to identify cocovers by a difference in length.

Theorem 7. [12, Thm 1.6] For α a positive double affine root associated to an irreducible
and simply laced finite root system and x ∈ WT with lev(x) > 0, xsα is a cover of x if
and only if `(x) = `(xsα)− 1.

We can similarly say that xsα is a cocover of x if and only if `(x) = `(xsα) + 1.

3 Classifying Cocovers

Recall that we are assuming lev(x) > 0 whenever considering x ∈ WT , and we are
restricting Φfin to be irreducible and simply laced.

Theorem 8 (MO). Let x = Xζw̃ with ζ ∈ T and w̃ ∈ Waff . Let α be a positive double
affine root such that x−1(α) < 0. Then y = sαx 6 x with respect to the Bruhat order by
definition, and

`(y) = `(x)− |{β ∈ Φ+ : x−1(β) < 0, sα(β) < 0, x−1sα(β) > 0}|.

In particular, Lx,α := {β ∈ Φ+ : x−1(β) < 0, sα(β) < 0, x−1sα(β) > 0} is finite.

We call Lx,α the length difference set for x and y = sαx, and note that y is a cocover
of x if and only if Lx,α = {α}. This is because y is a cocover if and only if the length
difference is 1, and α is always in Lx,α if y = sαx 6 x.

Example 9. Let Waff be of type Ã2, x = Xα1+α2+δ+Λ0Y α2 , and α = α1 − 2δ + π. With
this setup,

Lx,α = {α, θ − 3δ + π,−α2 + δ}.
At this point, we will not go into the detail of checking that these elements do in fact

belong to the length difference set (and are the only elements that do belong), but we can
do a quick check of the cardinality. Using Sage [13], we find `(x) = 12 and `(sαx) = 9, so
the length difference set must indeed contain 3 elements.

Note that the two elements of the length difference set that are not α are θ − 3δ + π
and −α2 + δ = −sα(θ− 3δ+ π). In general, the elements of the length difference set that
are not equal to α will come in such pairs. If β ∈ Lx,α and β 6= α then −sα(β) ∈ Lx,α.
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3.1 Graphs

We begin by graphing the positive double affine roots α such that y = sαx is less than x
with respect to the Bruhat order.

Definition 10. Let ν ∈ Φfin and let Γx,ν denote the points (r, j) ∈ Z2 such that α =
ν+ rδ+ jπ > 0 and x−1(α) < 0. We call this the lower graph of x corresponding to ν and
say α corresponds to a point in Γx,ν if α = ν + rδ + jπ such that (r, j) ∈ Γx,ν .

Figure 1: A general Γx,ν .

It is important to note that the two outer edges appearing in the graph above may or
may not be included (and it is very possible that only part of an edge will be included)
depending on the choice of x and ν. Because the graph shows all α such that x > sαx, it
is clear that the cardinality of Lx,α will be greater than or equal to one if α corresponds
to a point in Γx,ν .

Definition 11. Let α = ν + rδ + jπ be a double affine root. Then we say ν is the finite
part of α because ν ∈ Φfin. We denote this by fin(α) = ν.

Proposition 12. Let α = ν + rδ + jπ and β = γ + pδ + qπ. The double affine root β is
in Lx,α if and only if β ∈ Γx,fin(β) and −sαβ ∈ Γx,fin(−sα(β)).

Proof. Note that fin(α) = ν, fin(β) = γ, and fin(−sα(β)) = −sν(γ).
Let β ∈ Lx,α. Then β > 0 and x−1(β) < 0, so β ∈ Γx,γ. Additionally, sα(β) < 0 and

x−1(sαβ) > 0, so −sα(β) ∈ Γx,−sν(γ).
Let β ∈ Γx,γ and −sα(β) ∈ Γx,−sν(γ). Then β > 0, x−1(β) < 0, −sα(β) > 0, and

−x−1(sα(β)) < 0, so β ∈ Lx,α.

Example 13. Consider Waff of type Ã2 and x = Xα1+α2+δ+Λ0Y α2 (the same choices from
Example 9). The lower graph of x corresponding to α1 is shown in Figure 2.

To see why this is the graph for Γx,α1 , we need to examine when α > 0 and x−1(α) < 0.
The double affine root α = α1 + rδ + jπ is positive if and only if one of the following
holds:

1. j > 0

2. j = 0 and r > 0.
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Figure 2: Γx,α1 .

To determine when x−1(α) < 0, it will help to expand x−1(α):

x−1(α) = Y −α2X−α1−α2−δ−Λ0(α1 + rδ + jπ)

= α1 + (r + 〈α1, α2〉)δ + (j + 〈α1 + rδ,−α1 − α2 − δ − Λ0〉)π
= α1 + (r − 1)δ + (j + r + 1)π.

Now we can see that x−1(α) < 0 if and only if one of the following holds:

1. j < −r − 1

2. j = −r − 1 and r < 1.

Combining these restrictions results in the graph shown above.

Proposition 14. Fix x = Xζw̃ ∈ WT with w̃ = Y λw ∈ Waff and fix ν ∈ Φfin. The point
(r, j) ∈ Γx,ν if and only if one of the following holds:

1. 0 < j < 〈−ζ, α̃〉 = −〈ζ, ν + rδ〉

2. (r, j) = (r, 0) with 0 6 r 6 〈ν,µ〉
−l , and if r = 0, then ν > 0

3. (r, j) = (r, 〈−ζ, α̃〉) = (r,−〈ν, µ〉 − lr) with r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉}, and if r =
−〈λ, ν〉, then w−1(ν) < 0.

Proof. For α = ν + rδ+ jπ ∈ Φ to correspond to a point in Γx,ν , we need both α > 0 and
x−1(α) < 0.

For α = ν + rδ + jπ > 0, we need one of the following:

1. j > 0

2. j = 0, r > 0

3. j = 0, r = 0, ν > 0.
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For x−1(α) < 0, we need

x−1(α) = w̃−1(α̃) + (j − 〈−ζ, α̃〉)π
= w−1(ν) + (r + 〈λ, ν〉)δ + (j + 〈µ, ν〉+ lr)π < 0,

so we need one of the following:

1. j < 〈−ζ, α̃〉 = −〈µ, ν〉 − lr

2. j = 〈−ζ, α̃〉, r < −〈λ, ν〉

3. j = 〈−ζ, α̃〉, r = −〈λ, ν〉, w−1(ν) < 0.

Combining these results, we see that if (r, j) is in the graph, then 0 6 j 6 〈−ζ, α̃〉.
This tells us that −〈ζ, α̃〉 > 0 and since −〈ζ, α̃〉 = 〈−µ−mδ− lΛ0, ν+ rδ〉 = −〈µ, ν〉− lr,
we can solve for r and get r 6 〈ν,µ〉

−l . The point (r, j) = ( 〈ν,µ〉−l , 0) is the intersection point

of j = 0 and j = 〈−ζ, α̃〉. When j = 0, we can restrict r to 0 6 r 6 〈ν,µ〉
−l , and when

j = 〈−ζ, α̃〉, we can restrict r to r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉}.

Definition 15. For simplicity, we will refer to the line segment of j = 0 that is included
in the graph and the ray of j = −〈ζ, α̃〉 = −〈ζ, ν + rδ〉 that is included in the graph as
the lower and upper outer edges respectively. We will refer to the ray of j = 1 that is
included in the graph and the ray of j = −〈ζ, ν + rδ〉 − 1 that is included in the graph as
the lower and upper inner edges respectively.

Proposition 16. For a fixed x ∈ WT and ν ∈ Φfin, there are 12 possible forms for Γx,ν,
and they are represented by the graphs below.

Proof. Because the lower outer edge will be the line segment j = 0 with 0 6 r 6 〈ν,µ〉
−l and

endpoints possibly not included, there are four possibilities:

L1 L2 L3 L4
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L1* L4*

Note that the first two types do not include the intersection point of j = 0 and
j = −〈ζ, α̃〉 (represented by the right endpoint), but the last two types do. Also note that
type L1 and type L4 may or may not include the line segment between the endpoints. If
the line segment is not included, we will refer to these as type L1* or L4* respectively:

Now we will look at the possibilities for the upper outer edge given by j = −〈ζ, α̃〉
with r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉} and endpoint possibly not included:

U1 U2 U3 U4

Note that the first three types do not include the intersection point of j = 0 and
j = −〈ζ, α̃〉 (represented by the right point). These upper outer edges will match with
the lower outer edges of type L1, L1*, and L2. The only upper outer edge containing the
intersection point is of type U4, so this will match with the lower outer edges of type L3,
L4, and L4*. In total, this gives 12 possibilities for the graph.

3.2 Corners

Recall that we are interested in determining which α of Γx,fin(α) correspond to cocovers
(meaning y = sαx is a cocover of x). To do this, we must examine specific (r, j) ∈ Γx,fin(α).

Definition 17. For double affine roots α = ν + rδ + jπ and β = ν + pδ + qπ, define β−α
to be the root found by rotating (p, q) 180 degrees about (r, j).

Proposition 18. If β and α are double affine roots such that fin(α) = fin(β), then
β−α = −sαβ.

Proof. Let α = ν + rδ + jπ and β = ν + pδ + jπ. Then

−sα(β) = −β + 〈β, α〉α
= −β + 〈ν, ν〉α
= −β + 2α

= ν + (2r − p)δ + (2j − q)π.

The root β−α is equal to ν + p′δ + q′π where (p′, q′) is the result of rotating (p, q) 180
degrees about (r, j). To determine (p′, q′), first shift so that we are rotating about the
center: (p, q) → (p − r, q − j) and (r, j) → (0, 0), then reflect over the x and y axes:
(p− r, q− j)→ (−p+ r,−q+ j), and now shift back to original orientation: (0, 0)→ (r, j)
and (−p+ r,−q + j)→ (−p+ 2r,−q + 2j) = (2r − p, 2j − q).

So (p′, q′) = (2r − p, 2j − q) and β−α = ν + (2r − p)δ + (2j − q)π = −sα(β).
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Definition 19. We say that α is a corner of the graph Γx,fin(α), or a corner relative to x,
if α corresponds to a point in Γx,fin(α), and if for any β = fin(α) + pδ + qπ corresponding
to a point in Γx,fin(α), β

−
α is not in the graph.

Example 20. Consider Waff of type Ã2, x = Xα1+α2+δ+Λ0Y α2 (the same choices from
Example 9).

Figure 3: Γx,α1 with highlighted corner.

With this setup, α = α1 − 2δ + π corresponds to a corner of Γx,α1 .

Proposition 21. If y = sαx is a cocover of x, then α must correspond to a corner in the
graph Γx,fin(α).

Proof. Suppose α is not a corner of Γx,fin(α). Then there is some β with fin(β) = fin(α)
such that β 6= α, β ∈ Γx,fin(α), and β−α ∈ Γx,fin(α). But β−α = −sα(β), so by Proposition
12, β ∈ Lx,α. So |Lx,α| > 1, and y is not a cocover of x.

Remark 22. In general, the set of corners will be larger than the set of roots corresponding
to cocovers of a fixed x ∈ WT . Consider our continuing example where Waff is of type
Ã2, x = Xα1+α2+δ+Λ0Y α2 , α = α1 − 2δ + π. Then α corresponds to a corner of Γx,α1 , as
shown in Example 20, but sαx is not a cocover of x (we saw in Example 9 that the length
difference set contains 3 elements).

We would like to show that there are finitely many α that are corners relative to a
fixed x, but before we do, we need to make some observations about the graphs.

Fix ν ∈ Φfin and x ∈ WT . Then:

• If (r, j) is a point of Γx,ν and j 6= 0, then (p, j) is in Γx,ν for all p < r. This is true
because if (r, j) is a point in Γx,ν with j 6= 0, then the only possible bound on r is

the upper bound r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉}. So if p < r, then p < min{ 〈ν,µ〉−l ,−〈λ, ν〉}
and (p, j) is in Γx,ν .

• The upper outer edge falls on the line y = −〈ζ, ν + xδ〉 = −〈µ, ν〉 − xl. The slope
of this line is −l, which is an integer (specifically, l =lev(ζ)), and for any r ∈ Z,
j = −〈ζ, ν + rδ〉 is also an integer because −〈ζ, ν + rδ〉 = −〈µ, ν〉 − rl where
r, l, 〈µ, ν〉 ∈ Z.
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• Let L0 represent the line given by y = −〈ζ, ν + xδ〉. Let (r, j) be a point of L0 that

falls in Γx,ν . Then r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉}. Additionally, for any (p, q) of L0 with
p < r, (p, q) is in Γx,ν . This is true because (p, q) satisfies q = −〈ζ, ν + pδ〉 and

p < r 6 min{ 〈ν,µ〉−l ,−〈λ, ν〉}.

• Let Lk represent the line given by y = −〈ζ, ν+xδ〉−k, where k is a positive integer.
Let (r, j) be a point on Lk that falls in the graph. Then j > 0, and for any (p, q) of
Lk with p < r, (p, q) is in Γx,ν . This is true because p < r means q > j (since the
slope of Lk is negative), so 0 6 j < q < −〈ζ, ν + pδ〉, and (p, q) is a point of Γx,ν .

Proposition 23. Fix x ∈ WT and ν ∈ Φfin. The number of corners of Γx,ν is finite.

Idea: We show that if α = ν + rδ + jπ is a corner relative to x, then α must fall on
one of the two outer edges or one of the two inner edges of Γx,ν . But on these edges, only
the (r, j) ∈ Z2 closest to endpoints can be corners.

Figure 4: Inner and Outer Edges of a General Γx,ν .

Proof. We break the proof into several cases. Let (r′, j′) represent a corner.

Case 1: Assume j′ = 0. Then (r′, j′) falls along the lower outer edge, which is either a
line segment or a single point. In either case, there are finitely many possibilities
for (r′, j′).

Case 2: Assume (r′, j′) falls along the upper outer edge (the diagonal j = −〈ζ, ν + rδ〉).
Then any other (r, j) ∈ Γx,ν on the upper outer edge must have r < r′. If there
exists some (r, j) on the graph’s upper outer edge such that r > r′, then it can be
rotated 180 degrees about (r′, j′) and end up in the graph (because it will land on
the diagonal and be higher up than (r′, j′)), which contradicts the fact that (r′, j′)
is a corner. So there is only one possibility for (r′, j′).

Case 3: Assume (r′, j′) falls along the upper inner edge (the diagonal given by j =
−〈ζ, ν + rδ〉 − 1). Then using the same logic from above, (r′, j′) must have largest
possible r′, so there is only one possibility for (r′, j′).
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Case 4: Assume j′ = 1. Again, r′ must be maximal. Suppose (r, 1) is another point
of the graph such that r > r′. Then (r, 1) rotated 180 degrees about (r′, 1) results
in some (p, 1) with p < r′. This would mean that (p, 1) is in the graph, but that
contradicts the fact that (r′, j′) is a corner.

Case 5: Assume (r′, j′) does not lie on any of the outer or inner edges. Then 1 < j′ <
〈−µ, ν〉 − r′l− 1. So 1 6 j′− 1 < j′ < 〈−µ, ν〉 − r′l− 1, and (r′, j′− 1) is a point of
the graph as it falls strictly between the outer edges. Similarly, 1 < j′ < j′ + 1 6
〈−µ, ν〉−r′l−1, so (r′, j′+1) is also a point on the graph as it falls strictly between
the outer edges. Thus (r′, j′) cannot be a corner.

To be a corner, (r′, j′) must fall along one of the two outer edges or one of the two
inner edges. On those edges there are finitely many possibilities for corners. Thus for any
given x and ν, the corresponding graph Γx,ν contains finitely many corners.

Corollary 24. The number of cocovers of x is finite.

Proof. Fix x. For any ν ∈ Φfin, the graph Γx,ν has finitely many corners. So there are
finitely many α = ν+ rδ+ jπ such that y = sαx is a cocover of x. Since ν is a finite root,
there are finitely many possibilities for ν. So there are finitely many cocovers for a given
x.

Theorem 25. Let x, y ∈ WT such that y 6 x. Then the double affine Bruhat interval
[y, x] will be finite.

Proof. If we construct a saturated chain from y to x by starting at x and selecting cocovers,
then there are finitely many options for each element in the chain as there are finitely
many cocovers for any element of WT . Additionally, there are finitely many elements in
the chain as any path from y to x will have at most `(x) − `(y) steps. Thus there are
finitely many options for a saturated chain, and since every z such that y < z < x is part
of a saturated chain, we see there are finitely many options for z ∈ [y, x] and [y, x] must
be finite.

Example 26. Consider Waff of type Ã2, and let x = Xα1+α2+δ+Λ0Y α2 and α = α1−2δ+π
(the same choices from Example 9). Then [sαx, x], which is graphed in figure 5, contains
8 elements:

1. x = Xα1+α2+δ+Λ0Y α2

2. sθ−3δ+πx = Xα1+α2+δ+Λ0Y 2α1+3α2s1s2s1, a cocover of x

3. s−α2+δx = Xα1+α2+δ+Λ0s2, a cocover of x

4. sα1+α2−4δ+2πsαx = Xα1+α2+δ+Λ0Y 3α1+α2s1s2, a cover of sαx

5. sθ−3δ+πsαx = Xα1+α2+δ+Λ0Y 2α1s1s2, a cover of sαx

6. s−α2+δsαx = Xα1+α2+δ+Λ0Y 3α1+3α2s2s1, a cover of sαx
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7. s−α2+πsαx = Xα1+α2+δ+Λ0Y 3α1+2α2s2s1, a cover of sαx

8. sαx = sα1−2δ+πx.

Figure 5: Graph of the Bruhat Interval.

Corollary 27. Let x = Xζw̃ with ζ ∈ T and w̃ ∈ Waff . If α = ν + rδ + jπ corresponds
to a corner of the graph Γx,fin(α), then one of the following must hold:

1. j = 0

2. j = 1

3. j = −〈ζ, α̃〉

4. j = −〈ζ, α̃〉 − 1.

3.3 Classification

The following classification is extended from the work done in the affine case by Lam and
Shimozono [6] and further strengthened by Milićević [9]. We note that the restriction in [9]
is stricter than the restriction needed here. This is not due to the change from the affine
case to the double affine case, but instead it is due to the method of proof. In both [6]
and [9] the proof involves introducing a convex function and using it to approximate
the length function in order to classify the cocovers. By using our relationship between
cocovers and the corners of graphs, we are able to avoid introducing this function and in
doing so we avoid using as strict of a bound.
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Theorem 28. Let x = X ṽζw̃ and y = sαx where α = −ṽα̃+ jπ is a positive double affine
root and 〈ζ, αi〉 > 2 for i = 0, 1, . . . , n. Then y is a cocover of x if and only if one of the
following holds:

1. `(ṽ) = `(ṽsα̃) + 1 and j = 0.

2. `(ṽ) = `(ṽsα̃) + 1− 〈α̃, 2ρ〉 and j = 1.

3. `(w̃−1ṽsα̃) = `(w̃−1ṽ) + 1 and j = 〈ζ, α̃〉.

4. `(w̃−1ṽsα̃) = `(w̃−1ṽ) + 1− 〈α̃, 2ρ〉 and j = 〈ζ, α̃〉 − 1.

Proof. Following Milićević [9, Proof of Prop 4.2], we re-write y as

y = s−ṽα̃+jπx = Xjṽα̃sṽα̃X
ṽζw̃

= Xjṽα̃+sṽα̃ṽζsṽα̃w̃

= X ṽ(sα̃ζ+jα̃)sṽα̃w̃

= X ṽsα̃(ζ−jα̃)sṽα̃w̃

= X ṽ(ζ−(〈ζ,α̃〉−j)α̃)sṽα̃w̃.

Using Proposition 4 and the fact that ζ is dominant and regular, we have

`(x) = 〈ζ, 2ρ〉 − `(w̃−1ṽ) + `(ṽ).

If y is a cocover of x, then α is a corner relative to x, and by Corollary 27, there are
four possibilities for j:

1. j = 0 and y = X ṽsα̃ζsṽα̃w̃

2. j = 1 and y = X ṽsα̃(ζ−α̃)sṽα̃w̃

3. j = −〈ṽζ,−ṽα̃〉 = 〈ζ, α̃〉 and y = X ṽζsṽα̃w̃

4. j = −〈ṽζ,−ṽα̃〉 − 1 = 〈ζ, α̃〉 − 1 and y = X ṽ(ζ−α̃)sṽα̃w̃.

No matter which direction we are proving, we may reduce to these four cases. Using
〈α̃, β̃〉 6 2 for all α̃, β̃ ∈ Φaff [1, VI 1.3] and the assumption that 〈ζ, αi〉 > 2 for i =
0, 1, . . . , n, we have that ζ − α̃ is dominant and regular.

Case 1: Let j = 0. Then y = X ṽsα̃ζsṽα̃w̃, and by using Proposition 4 we have

`(y) =〈ζ, 2ρ〉 − `(w̃−1sṽα̃ṽsα̃) + `(ṽsα̃)

=〈ζ, 2ρ〉 − `(w̃−1ṽsα̃ṽ
−1ṽsα̃) + `(ṽsα̃)

=〈ζ, 2ρ〉 − `(w̃−1ṽ) + `(ṽsα̃).

So `(x)−`(y) = `(ṽ)−`(ṽsα̃), and y is a cocover of x if and only if `(ṽ)−`(ṽsα̃) = 1.

the electronic journal of combinatorics 29(4) (2022), #P4.7 16



Case 2: Let j = 1. Then y = X ṽsα̃(ζ−α̃)sṽα̃w̃, and by using Proposition 4 we have

`(y) =〈ζ − α̃, 2ρ〉 − `(w̃−1sṽα̃ṽsα̃) + `(ṽsα̃)

=〈ζ, 2ρ〉 − 〈α̃, 2ρ〉 − `(w̃−1ṽsα̃ṽ
−1ṽsα̃) + `(ṽsα̃)

=〈ζ, 2ρ〉 − 〈α̃, 2ρ〉 − `(w̃−1ṽ) + `(ṽsα̃).

So `(x) − `(y) = `(ṽ) − `(ṽsα̃) + 〈α̃, 2ρ〉, and y is a cocover of x if and only if
`(ṽ)− `(ṽsα̃) + 〈α̃, 2ρ〉 = 1.

Case 3: Let j = 〈ζ, α̃〉. Then y = X ṽζsṽα̃w̃, and by using Proposition 4 we have

`(y) = 〈ζ, 2ρ〉 − `(w̃−1sṽα̃ṽ) + `(ṽ)

= 〈ζ, 2ρ〉 − `(w̃−1ṽsα̃) + `(ṽ).

So `(x)−`(y) = `(w̃−1ṽsα̃)−`(w̃−1ṽ), and y is a cocover of x if and only if `(w̃−1ṽsα̃)−
`(w̃−1ṽ) = 1.

Case 4: Let j = 〈ζ, α̃〉 − 1. Then y = X ṽ(ζ−α̃)sṽα̃w̃, and by using Proposition 4 we have

`(y) = 〈ζ, 2ρ〉 − 〈α̃, 2ρ〉 − `(w̃−1sṽα̃ṽ) + `(ṽ)

= 〈ζ, 2ρ〉 − 〈α̃, 2ρ〉 − `(w̃−1ṽsα̃) + `(ṽ).

So `(x)− `(y) = `(w̃−1ṽsα̃)− `(w̃−1ṽ) + 〈α̃, 2ρ〉, and y is a cocover of x if and only
if `(w̃−1ṽsα̃)− `(w̃−1ṽ) + 〈α̃, 2ρ〉 = 1.

3.4 Quantum Bruhat Graphs

In both [6] and [9] the authors related the cocovering relation in the affine setting to
the finite quantum Bruhat graph defined by Brenti, Fomin, and Postnikov [3]. Following
their work, we relate the cocovering relation in the double affine Bruhat order to the
affine quantum Bruhat graph, giving us another way of visualizing these relations. For
other applications of the quantum Bruhat graph of the affine Weyl group, see [8] where
Mihalcea and Mare use the graph in their work on Chevalley operators.

Definition 29. We define the quantum Bruhat graph (QBG) of Waff to be the graph
whose set of vertices consists of the elements of Waff and whose edge set is created by
making a directed edge from ṽsα̃ to ṽ for α̃ a positive affine root if one of the following
holds:

1. `(ṽ) = `(ṽsα̃) + 1

2. `(ṽ) = `(ṽsα̃)− 〈α̃, 2ρ〉+ 1.

The edges are labeled by α̃.

Example 30. Let Waff be of type Ã1. Then the QBG of Waff is given below.
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Figure 6: QBG of Waff .

Remark 31. There is a correspondence from the length conditions required in Theorem
28 to the edges in the quantum Bruhat graph of Waff .

• Length condition (1) corresponds to an upward edge in the QBG of the form ṽsα̃ → ṽ
with length change +1.

• Length condition (2) corresponds to a downward edge in the QBG of the form
ṽsα̃ → ṽ with length change −(〈α̃, 2ρ〉 − 1).

• Length condition (3) corresponds to an upward edge in the QBG of the form w̃−1ṽ →
w̃−1ṽsα̃ with length change +1.

• Length condition (4) corresponds to a downward edge in the QBG of the form
w̃−1ṽ → w̃−1ṽsα̃ with length change −(〈α̃, 2ρ〉 − 1).

Because of the correspondence in Theorem 28 between the length conditions and the
QBG, we can find cocovers in WT by examining edges in the QBG of Waff .

Example 32. The QBG with Waff of type Ã1 has the upward edge s1s0 → s0s1s0. If
we pick ṽ = s0s1s0 and ṽsα̃ = s1s0, then this edge corresponds to the first cocover type
in Theorem 28 and j = 0. The reflection we are extending by is sα̃ = s0s1s0s1s0, so
α̃ = s0s1(α0) = 3α0 + 2α1 = −α1 + 3δ, and α = −ṽα̃ + jπ = −α1 + δ = α0.

We pick ζ = 2α1 + δ + 8Λ0 and check 〈ζ, αi〉 > 2 for i = 0, 1. With these choices,

x = Xs0s1s0(ζ) = X14α1−23δ+8Λ0 , y = Xs1s0(ζ)Y α1s1 = X−6α1−3δ+8Λ0Y α1s1,

and y is a cocover of x. Further, we can confirm this by using Sage [13] to check the
lengths. Indeed, `(x)− `(y) = 8− 7 = 1.

Acknowledgments

This work was part of the author’s doctoral dissertation at Virginia Polytechnic Institute
and State University. The author would like to thank her advisor, Daniel Orr, for his help
on this project. We also thank Dinakar Muthiah for suggesting the approach we used
based on corners to classifying covers in the double affine Bruhat order.

the electronic journal of combinatorics 29(4) (2022), #P4.7 18



References

[1] N. Bourbaki. Lie Groups and Lie Algebras. Chapters 4-6. Elements of Mathematics
(Berlin) Springer-Verlag, 2002. Translated from the 1968 French original by Andrew
Pressley.

[2] A. Braverman, D. Kazhdan, and M. Patnaik. Iwahori-Hecke algebras for p-adic loop
groups. Invent. Math., 204, 2016, no. 2, 347-442.

[3] F. Brenti, S. Fomin, A. Postnikov. Mixed Bruhat operatiors and Yang-Baxter equa-
tions for Weyl groups. Internat. Math. Res. Notices, 1999, no. 8, 419 - 441.

[4] J. E. Humphreys. Reflection groups and Coxeter groups. Cambridge Studies in Ad-
vanced Mathematics, 29. Cambridge University Press, Cambridge, 1990.

[5] V. G. Kac. Infinite dimensional Lie algebras. Third edition. Cambridge University
Press, Cambridge, 1990.

[6] T. Lam and M. Shimozono. Quantum cohomology of G/P and homology of affine
Grassmannian. Acta Math., 204, 2010, 49-90.

[7] I. Macdonald. Affine Hecke Algebras and Orthogonal Polynomials (Cambridge Tracts
in Mathematics). Cambridge University Press, Cambridge, 2003.

[8] A.-L. Mare and L. Mihalcea. An Affine Quantum Cohomology Ring for Flag Man-
ifolds and the Periodic Toda Lattice. Proc. London Math. Soc., Volume 116, 2017,
no. 1, 135 – 181.
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