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Abstract

The weighted binomial sum fm(r) = 2−r
!r

i=0

"
m
i

#
arises in coding theory and

information theory. We prove that, for m ∕∈ {0, 3, 6, 9, 12}, the maximum value of
fm(r) with 0 ! r ! m occurs when r = ⌊m/3⌋ + 1. We also show this maximum
value is asymptotic to 3√

πm

"
3
2

#m
as m → ∞.

Mathematics Subject Classifications: 05A10, 11B65, 94B65

1 Introduction

Let m be a non-negative integer, and let fm(r) be the function:

fm(r) =
1

2r

r!

i=0

"
m

i

#
.

This function arises in coding theory and information theory e.g. [2, Theorem 4.5.3]. It
is desirable for a linear code to have large rate (to communicate a lot of information) and
large minimal distance (to correct many errors). So for a linear code with parameters
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[n, k, d], one wants both k/n and d/n to be large. The case that kd/n is large is studied
in [1]. A Reed-Muller code RM(r,m) has n = 2m, k =

$r
i=0

%
m
i

&
and d = 2m−r by [4,

§6.2], and hence kd/n equals fm(r). It is natural to ask which value of r maximizes fm(r),
and what is the size of the maximum value.

Theorem 1. Suppose that m, r are integers where 0 ! r ! m. The maximum value of
fm(r) = 2−r

$r
i=0

%
m
i

&
occurs when r = ⌊m

3
⌋+ 1 provided m ∕∈ {0, 3, 6, 9, 12}.

We give an optimal asymptotic bound for the maximum value of fm(r).

Theorem 2. Suppose that m ∕∈ {0, 1, 3, 6, 9, 12} and r0 = ⌊m
3
⌋+ 1. Then

(1)
1

2⌊
m
3
⌋

"
1− k + 2

2(r0 + 1)

#"
m

r0

#
< fm(r0) <

1

2⌊
m
3
⌋

"
m

r0

#

where k := 3r0 −m ∈ {1, 2, 3}. Furthermore,

(2) fm(r0) <
3√
πm

"
3

2

#m

and lim
m→∞

fm(r0)
√
m

"
2

3

#m

=
3√
π
.

We prove that fm(r) increases strictly if 0 ! r ! r0 := ⌊m
3
⌋ + 1 and m > 12 (see

Theorem 6), and it decreases strictly for r0 ! r ! m (see Theorem 8). Elementary
arguments in Lemma 4(c) show that fm(0) < fm(1) < · · · < fm(r0 − 1). More work is
required to prove that fm(r0 − 1) < fm(r0). Determining when fm(r) decreases involves
a delicate inductive proof requiring a growing amount of precision, and inequalities with
rational functions such as Xi =

r−i+1
m−r+i

, see Lemma 5. In Section 5 we establish bounds
(and asymptotic behavior) for fm(r0) using standard methods.

Brendan McKay [3] showed, using approximations for sufficiently large m, that the
maximum value of fm(r) is near m/3. His method may well extend to a proof of Theo-
rem 1. If so, it would involve very different techniques from ours.

2 Data, comparisons and strategies

The values of fm(0), fm(1), fm(2), . . . , fm(m− 2), fm(m− 1), fm(m) appear to increase to
a maximum and then decrease. For ‘large’ m we see that

1 <
m+1

2
<

m2+m+2

8
< · · · ? · · · > 8− m2+m+2

2m−2
> 4− m+ 1

2m−2
> 2− 1

2m−1
> 1.

Computer calculations for ‘large’ m suggest that a maximum value for fm(r) occurs at
r0 = ⌊m

3
⌋+ 1, see Table 1 which lists the integer part ⌊fm(r)⌋. Computing fm(r) exactly

shows that for m ∈ {0, 3, 6, 9, 12} the maximum occurs at r0 − 1 and not r0, see Table 2.
The maximum happens to occur for a unique r, except for m = 1.

Determining the relative sizes of fm(r) and fm(r + 1) is reduced in Lemma 3 to
determining the relative sizes of

$r
i=0

%
m
i

&
and

%
m
r+1

&
.
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Table 1: Maximum values of ⌊fm(r)⌋ for 0 ! r ! m and m ∈ {6, 7, . . . , 15}.

6 1 3 5 5 3 1 1
7 1 4 7 8 6 3 1 1
8 1 4 9 11 10 6 3 1 1

9 1 5 11 16 16 11 7 3 1 1

10 1 5 14 22 24 19 13 7 3 1 1
11 1 6 16 29 35 32 23 14 7 3 1 1

12 1 6 19 37 49 49 39 25 14 7 3 1 1

13 1 7 23 47 68 74 64 45 27 15 7 3 1 1
14 1 7 26 58 91 108 101 77 50 29 15 7 3 1 1
15 1 8 30 72 121 154 155 128 89 54 30 15 7 3 1 1

Lemma 3. Suppose that 0 ! r < m. Then

(a) the inequality fm(r) < fm(r + 1) is equivalent to
$r

i=0

%
m
i

&
<

%
m
r+1

&
,

(b) if
$r

i=0

%
m
i

&
!

%
m
r+1

&
, then

$r
i=0

%
m+1
i

&
<

%
m+1
r+1

&
,

(c) the inequality fm(r) > fm(r + 1) is equivalent to
$r

i=0

%
m
i

&
>

%
m
r+1

&
, and

(d) if
$r

i=0

%
m
i

&
"

%
m
r+1

&
, then

$r
i=0

%
m−1
i

&
>

%
m−1
r+1

&
.

Proof. (a,b) Clearly fm(r) < fm(r + 1) is equivalent to 2
$r

i=0

%
m
i

&
<

$r+1
i=0

%
m
i

&
which is

equivalent to
$r

i=0

%
m
i

&
<

%
m
r+1

&
. If r < m and

$r
i=0

%
m
i

&
!

%
m
r+1

&
, then

r!

i=0

"
m+ 1

i

#
=

r!

i=0

m+ 1

m− i+ 1

"
m

i

#
! m+ 1

m− r + 1

r!

i=0

"
m

i

#

<
m+ 1

m− r

"
m

r + 1

#
=

"
m+ 1

r + 1

#
.

(c,d) Clearly fm(r) > fm(r+1) is equivalent to 2
$r

i=0

%
m
i

&
>

$r+1
i=0

%
m
i

&
which, in turn,

is equivalent to
$r

i=0

%
m
i

&
>

%
m
r+1

&
. If

$r
i=0

%
m
i

&
"

%
m
r+1

&
, then as m > r " 0,

r!

i=0

"
m− 1

i

#
=

r!

i=0

m− i

m

"
m

i

#
" m− r

m

r!

i=0

"
m

i

#

>
m− r − 1

m

"
m

r + 1

#
=

"
m− 1

r + 1

#
.

The following easy lemma elucidates which r ∈ {0, . . . ,m} maximize fm(r).
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Lemma 4. Let sm(m+ 1) = 2m, and for 0 ! r ! m define

sm(r) =
r!

i=0

"
m

i

#
, tm(r) =

sm(r + 1)

sm(r)
, and cm(r) =

%
m
r+1

&
%
m
r

& =
m− r

r + 1
.

(a) If 0 ! r ! m, then cm(r) < tm(r), and if 0 ! r < m, then tm(r + 1) < tm(r).
(b) If m " 2, then for some r∗, fm(0) < · · · < fm(r

∗) and fm(r
∗ + 1) > · · · > fm(m).

(c) max{fm(0), . . . , fm(m)} = max{fm(r∗), fm(r∗+1)} and fm(0) < · · · < fm(r0−1).

Proof. (a) We show cm(r) < tm(r) via induction on r. This is true when r = 0 as
cm(0) = m < m + 1 = tm(0). Suppose that 0 ! r < m and cm(r) < tm(r) holds. That
is,

%
m
r+1

&
/
%
m
r

&
< sm(r + 1)/sm(r) holds. Since cm(r + 1) = m−r−1

r+2
< m−r

r+1
= cm(r) we have

cm(r + 1) < cm(r) < tm(r). Using properties of mediants, it follows that

cm(r + 1) =

%
m
r+2

&
%

m
r+1

& <

%
m
r+2

&
+ sm(r + 1)

%
m
r+1

&
+ sm(r)

<
sm(r + 1)

sm(r)
= tm(r).

Hence cm(r + 1) < tm(r + 1) < tm(r) as sm(n + 1) =
%

m
n+1

&
+ sm(n). This completes the

induction, and it also proves that tm(r + 1) < tm(r), as claimed.
(b) Since sm(m + 1) = 2m, part (a) shows that 1 = tm(m) < · · · < tm(0) = m + 1.

Choose an integer r∗ such that tm(r
∗) ! 2 < tm(r

∗ − 1). The following are equivalent:
2 < tm(r); 2sm(r) < sm(r + 1); fm(r) < fm(r + 1). Thus 2 < tm(r

∗ − 1) < · · · < tm(0)
implies fm(0) < · · · < fm(r

∗). Similarly, tm(m− 1) < · · · < tm(r
∗ + 1) < 2 and tm(r) < 2

implies fm(r + 1) < fm(r). Hence fm(r
∗ + 1) > · · · > fm(m).

(c) By part (b), max{fm(r) | 0 ! r ! m} = max{fm(r∗), fm(r∗ + 1)}. If 2 ! cm(r) =
m−r
r+1

, then 3r + 2 ! m and r ! ⌊m−2
3

⌋. Hence 2 ! cm(r) < tm(r) by part (a), and

⌊m−2
3

⌋ ! r∗ − 1 by the definition of r∗. Thus r0 − 1 = ⌊m
3
⌋ ! r∗ and it follows from

part (b) that fm(0) < · · · < fm(r0 − 1).

Fix m and r where 0 ! r < m. We shall use the following notation:

Xi =
r − i+ 1

m− r + i
for 0 ! i ! r,(3)

Sj = 1 +Xj+1 +Xj+1Xj+2 + · · ·+Xj+1Xj+2 · · ·Xr for 0 ! j < r,(4)

Tj = 1 +X1 +X1X2 + · · ·+X1X2 · · ·Xj for 0 ! j ! r.(5)

Our convention in (5) is that T0 = 1 as Tj =
$j

i=0(
'i

k=1 Xk) equals 1 when j = 0.

Lemma 5. Fix m, r, j where 0 ! j ! r < m. Using the above definitions,

(a) the inequality
$j

i=0

%
m
r−i

&
>

%
m
r+1

&
is equivalent to Tj > X−1

0 ,

(b) the inequality
$r

i=0

%
m
i

&
<

%
m
r+1

&
is equivalent to S0 < X−1

0 .
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Proof. For 0 ! i ! r, we have
%

m
r−i

&
= Xi

%
m

r−i+1

&
so

%
m
r−i

&
= (

'i
k=1 Xk)

%
m
r

&
holds. There-

fore
$j

i=0

%
m
r−i

&
=

%
m
r

&$j
i=0

('i
k=1 Xk

)
=

%
m
r

&
Tj. Since

%
m
r

&
= X0

%
m
r+1

&
, the inequality

$j
i=0

%
m
r−i

&
>

%
m
r+1

&
is equivalent to

%
m
r

&
Tj > X−1

0

%
m
r

&
which is equivalent to Tj > X−1

0 .
This proves part (a).

Note that
$r

i=0

%
m
i

&
=

$r
i=0

%
m
r−i

&
=

%
m
r

&
Tr =

%
m
r

&
S0 since S0 = Tr. Since

%
m
r+1

&
=

X−1
0

%
m
r

&
, the inequality

$r
i=0

%
m
i

&
<

%
m
r+1

&
is equivalent to

%
m
r

&
S0 < X−1

0

%
m
r

&
which is

equivalent to S0 < X−1
0 . This proves part (b).

3 Proof that fm(r) is increasing for 0 ! r ! r0

Recall that m " 0 and r0 := ⌊m
3
⌋+ 1. We now strengthen Lemma 4(c).

Theorem 6. If m ∕∈ {0, 1, 3, 6, 9, 12}, then fm(0) < fm(1) < · · · < fm(r0).

Proof. The statement is easy to check for m ∈ {2, 4, 5}. The statement follows from
Tables 1 and 2 for m ∈ {7, 8, 10, 11, 13, 14}. Suppose now that m " 15.

Table 2: □ = max{fm(r0 − 1), fm(r0)} for 0 ! m ! 12, r0 = ⌊m/3⌋+ 1.

m 0 1 2 3 4 5 6 7 8 9 10 11 12

fm(r0 − 1) 1 1 1 2 5
2

3 11
2

29
4

37
4

65
4

22 29 397
8

fm(r0)
1
2
∗ 1 3

2
7
4

11
4

4 21
4

8 93
8

16 193
8

281
8

793
16

Recall that r0 = ⌊m
3
⌋ + 1 and m ∈ {3r0 − 3, 3r0 − 2, 3r0 − 1}. By Lemma 4(c) it

suffices to show that fm(r0− 1) < fm(r0). If we prove this for m = 3r0− 3, Lemma 3(b,a)
gives it for m = 3r0 − 2 and m = 3r0 − 1 as well, so for r0 " 6 we want to show
f3r0−3(r0 − 1) < f3r0−3(r0). This is true for r0 = 6 by Table 1. We set t := r0 − 1, m := 3t
and we prove, using induction on t, that f3t(t) < f3t(t+ 1) holds for all t " 6.

Note that f3t(t) < f3t(t + 1) is equivalent by Lemma 3(a) to
$t

i=0

%
3t
i

&
<

%
3t
t+1

&
, and

this is equivalent to S0 < X−1
0 by Lemma 5(b). Putting m = 3t and r = t in (3), gives

Xi =
t−i+1
2t+i

and S0 = 1 +X1 +X1X2 + · · ·+X1X2 · · ·Xt by (4).

It follows from 0 < Xt < · · · < X5 < X4 and X4 =
t−3
2t+4

< 1
2
that

S3 = 1 +X4 +X4X5 + · · ·+X4X5 · · ·Xt < 1 +
1

2
+

1

4
+ · · ·+ 1

2t−3
<

∞!

i=0

1

2i
= 2.

The recurrence relation Sj = 1 +Xj+1Sj+1 for 0 ! j < t implies that

S0 = 1 +X1 (1 +X2 (1 +X3S3)) < 1 +X1 (1 +X2 (1 + 2X3))

= 1 +
t

2t+ 1

"
1 +

t− 1

2t+ 2

"
1 +

2(t− 2)

2t+ 3

##
.

∗Observe that f0(1) = 2−1
!!

0
0

"
+
!
0
1

""
= 2−1(1+0) = 1

2 .
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We aim to show that S0 < X−1
0 . It suffices to prove 1 + X1 (1 +X2 (1 + 2X3)) ! X−1

0

where X0 =
t+1
2t
. This amounts to proving that

1 +
t

2t+ 1

"
1 +

t− 1

2t+ 2

"
1 +

2(t− 2)

2t+ 3

##
! 2t

t+ 1
.

Rearranging, and using the denominator (2t+ 1)(2t+ 2)(2t+ 3), gives

0 ! 3t2 − 17t− 6

(2t+ 1)(2t+ 2)(2t+ 3)
=

(3t+ 1)(t− 6)

(2t+ 1)(2t+ 2)(2t+ 3)

This inequality is valid for all t " 6. This completes the proof.

How might one prove a nice formula such as lims→∞
$s

i=0

%
3s
i

&
/
%
3s
s

&
= 2?

Remark 7. For s > 4 set m = 3s and r0 = s + 1. Then fm(r0 − 1) < fm(r0) by
Theorem 6. Hence

$s
i=0

%
3s
i

&
<

%
3s
s+1

&
= 2s

s+1

%
3s
s

&
and so lims→∞

$s
i=0

%
3s
i

&
/
%
3s
s

&
! 2. We

show fm(r0) > fm(r0 + 1) in Section 4, and therefore lims→∞
$s

i=0

%
3s
i

&
/
%
3s
s

&
" 2.

4 Proof that fm(r) is decreasing for r0 ! r ! m

Showing that fm(r) decreases strictly for r0 ! r ! m is much harder. Recall that
%
r
i

&
= 0

if i < 0, and
%
r
i

&
= 1

i!

'i−1
j=0(r − j) if i " 0. In this section we prove:

Theorem 8. If m " 2, then fm(⌊m/3⌋+1) > fm(⌊m/3⌋+2) > · · · > fm(m)= 1.

Our proof of Theorem 8 depends on two technical lemmas, the first of which proves
that the non-leading coefficients of a certain polynomial A(r) are all negative.

First define Bi(r) =
'i

ℓ=1(r−ℓ). Now
'i

ℓ=1(r−ℓ) = ri+
$i−1

k=0 bi,kr
k and the coefficients

bi,k alternate in sign: for 0 ! k ! i, we have bi,k > 0 if i− k is even and bi,k < 0 if i− k is
odd. Next define polynomials Ai(r) via:

(6) A2(r) = r2 − 15r − 10 and Ai(r) = (2r + i)Ai−1(r)− Bi(r) for i " 3.

Clearly deg(Ai(r)) = i and we may write Ai(r) = ri +
$i−1

k=0 ai,kr
k. We use ai,i = 1.

Comparing coefficients in this recurrence and Bi(r) = (r − i)Bi−1(r), shows that

a2,0 = −10, a2,1 = −15, ai,k = iai−1,k + 2ai−1,k−1 − bi,k for i " 3,(Ra)

b2,0 = 2, b2,1 = −3, bi,k = −ibi−1,k + bi−1,k−1 for i " 3.(Rb)

Lemma 9. Let ai,k, bi,k, Ai(r), Bi(r) be as above.

(a) If i " 2, then bi,i−1 = −
%
i+1
2

&
and ai,i−1 = −

%
i+4
2

&
.

(b) If i " 2 and 0 ! k ! i− 1, then ai,k ! −2bi,k < 0 if i−k is even, and ai,k ! bi,k < 0
if i− k is odd.
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(c) If i " 2, then the coefficients ai,k are negative for 0 ! k < i.

Proof. (a) Clearly bi,i−1 = −
$i

j=1 j = −
%
i+1
2

&
. The formula for ai,i−1 holds for i = 2 and

by induction using the recurrence (Ra).
(b) We use induction on i. For the base case i = 2, either i − k is even and a2,0 =

−10 ! −2b2,0 = −4, or i− k is odd and a2,1 = −15 < b2,1 = −3. Thus the claims are true
for i = 2. Suppose now that i " 3, and the claims are valid for i− 1.

By part (a), ai−1,i = −
%
i+4
2

&
< −

%
i+2
2

&
= bi,i−1 < 0 as claimed. It remains to consider

k in the range 0 ! k < i− 1. It is useful to set ai,−1 = bi,−1 = 0. Suppose first that i− k
is even. Using the recurrences (Ra), (Rb) and induction gives

ai,k = i(ai−1,k + bi−1,k) + (2ai−1,k−1 − bi−1,k−1)

! i(bi−1,k + bi−1,k) + (−4bi−1,k−1 − bi−1,k−1)

! 2ibi−1,k − 2bi−1,k−1 = −2bi,k < 0.

If i− k is odd, then a similar argument gives

ai,k = i(ai−1,k + bi−1,k) + (2ai−1,k−1 − bi−1,k−1)

! i(−2bi−1,k + bi−1,k) + (2bi−1,k−1 − bi−1,k−1)

! −ibi−1,k + bi−1,k−1 = bi,k < 0.

(c) This follows immediately from part (b).

Lemma 10. Suppose that j " 4. Then
$r

i=r−j

%
3r−1

i

&
>

%
3r−1
r+1

&
holds for all r in the range

j ! r !
%
j+2
2

&
.

Proof. We apply Lemma 5(a) with m = 3r − 1. Hence Xi = r−i+1
2r+i−1

by (3). Since$r
i=r−j

%
m
i

&
=

$j
i=0

%
m
r−i

&
it suffices by Lemma 5(a) to prove that

Tj = 1 +X1 +X1X2 + · · ·+X1X2 · · ·Xj > X−1
0 .

We prove that this inequality holds for all r in the range j ! r !
%
j+2
2

&
. This inequality

is equivalent to

(7) Xj > X−1
j−1(· · · (X−1

2 (X−1
1 (X−1

0 − 1)− 1)− 1) · · · )− 1.

The right-side of (7) is a rational function in r, which when j = 4, equals

P4(r)

Q4(r)
=

2r + 2

r − 2

"
2r + 1

r − 1

"
2r

r

"
2r − 1

r + 1
− 1

#
− 1

#
− 1

#
− 1

where the denominator is Q4(r) = (r + 1)r(r − 1)(r − 2), and the numerator is P4(r) =
(r + 1)r(r2 − 15r − 10). Since gcd(P4(r), Q4(r)) = (r + 1)r, the polynomials A2(r) :=
r2 − 15r − 10 and B2(r) := (r − 1)(r − 2) are coprime. The putative inequality (7) when
j = 4 is therefore

r − 3

2r + 3
>

P4(r)

Q4(r)
=

A2(r)

B2(r)
=

r2 − 15r − 10

(r − 1)(r − 2)
.
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Observe that A2(r) < r2 − 15r ! 0 for 4 ! r ! 15 =
%
6
2

&
. Thus for r in the range

4 ! r !
%
6
2

&
, the left side of (7) is positive, and the right side is at most 0. Thus the

inequality is valid for 4 ! r !
%
6
2

&
and the claim is true for j = 4.

Assume now that j > 4, and that the claim is true for j−1. Therefore the inequality (7)
can be written

Xj =
r − j + 1

2r + j − 1
>

Pj(r)

Qj(r)
where

Pj(r)

Qj(r)
= (Xj−1)

−1 Pj−1(r)

Qj−1(r)
− 1.

Since (Xj−1)
−1 = 2r+j−2

r−j+2
, this gives rise to the recurrences:

Pj(r) = (2r + j − 2)Pj−1(r)− (r − j + 2)Qj−1(r) for j > 4,

Qj(r) = (r − j + 2)Qj−1(r) for j > 4.

It is clear that Qj(r) = (r+1)r(r− 1) · · · (r− j+2) = (r+1)rBj−2(r) holds and Bj−2(r)
has degree j − 2. Furthermore, (r + 1)r divides gcd(Pj(r), Qj(r)), so the polynomials
Aj−2(r), which are defined by the similar recurrence (6), satisfy Pj(r) = (r + 1)rAj−2(r)
and also have degree j − 2.

By Lemma 9, Ai(r)−ri has negative coefficients and leading coefficient −
%
i+4
2

&
. So for

i " 2 and r !
%
i+4
2

&
, we have Ai(r) < ri−

%
i+4
2

&
ri−1 ! 0. Further, Bi(r) =

'i
ℓ=1(r− ℓ) > 0

for r " i + 1. Hence Ai(r)/Bi(r) < 0 for r satisfying i + 2 ! r !
%
i+4
2

&
. Suppose that

j = i+ 2, then Pj(r)/Qj(r) < 0 for r in the interval j ! r !
%
j+2
2

&
. Using the definitions

of Pj(r), Qj(r), the inequality (7) is the same as

Xj =
r − j + 1

2r + j − 1
>

Pj(r)

Qj(r)
=

Aj−2(r)

Bj−2(r)
.

Thus for r satisfying j ! r !
%
j+2
2

&
, the left side of (7) is positive, and the right side is

negative. Thus the claim is valid for j ! r !
%
j+2
2

&
.

Proof of Theorem 8. It follows from
$m

i=0

%
m
i

&
= 2m that fm(m) = 1. Since r0 := ⌊m/3⌋+

1, we have m ∈ {3r0 − 3, 3r0 − 2, 3r0 − 1}. If we can prove that fm(r0) > fm(r0 + 1)
for m = 3r0 − 1, then fm(r0) > fm(r0 + 1) holds for m = 3r0 − 2 and 3r0 − 3 by
Lemma 3(d). With the notation in Lemma 4, we have 2 > tm(r0) and hence r∗ ! r0.
Therefore fm(r0 + 1) > · · · > fm(m) holds by Lemma 4(b).

In summary, it remains to prove
$r0

i=0

%
3r0−1

i

&
>

%
3r0−1
r0+1

&
for r0 " 1. This is true for

r0 = 1, 2, 3 since 3
2
> 1, 4 > 13

4
and 93

8
> 163

16
. For each r0 " 4 set j = r0. Then j " 4 and$r0

i=0

%
m
i

&
>

%
m

r0+1

&
follows by Lemma 10. This completes the proof.

Proof of Theorem 1. The result follows from Theorems 6 and 8. There are two equal sized
maxima if m = 1, otherwise the maximum is unique.
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5 Estimating fm(r0)

This section is devoted to proving asymptotically optimal bounds for fm(r0).

Proof of Theorem 2. We first prove the upper bound in (1). This is true ifm = 1. Form ∕∈
{0, 1, 3, 6, 9, 12} and r0 = ⌊m/3⌋ + 1 it follows from Theorem 6 that
fm(r0 − 1) < fm(r0) and by Lemma 3(a) that

$r0−1
i=0

%
m
i

&
<

%
m
r0

&
. Therefore$r0

i=0

%
m
i

&
< 2

%
m
r0

&
and the upper bound follows. For the lower bound, fm(r0) > fm(r0+1)

holds by Theorem 8, and so
$r0

i=0

%
m
i

&
>

%
m

r0+1

&
by Lemma 3(c). Hence

2−r0
%

m
r0+1

&
< fm(r0), and the lower bound of (1) follows from

"
m

r0 + 1

#
=

2r0 − k

r0 + 1

"
m

r0

#
= (2− k + 2

r0 + 1
)

"
m

r0

#
.

To prove (2), we use binomial approximations.
Suppose that 0 < p < 1 and q := 1 − p. If pn is an integer, then qn = n − pn is an

integer, and Stirling’s approximation n! =
√
2πn(n

e
)n(1 + O( 1

n
)) gives

(8)

"
n

pn

#
=

cn√
2πpqn

"
1 + O

"
1

n

##
where c =

1

ppqq
.

Paraphrasing [2, Lemma 4.7.1] gives the following upper and lower bounds:

(9)
cn√
8pqn

!
"
n

pn

#
! cn√

2πpqn
where c =

1

ppqq
.

Henceforth set p = 1
3
, so q = 2

3
and c = 3

22/3
. Therefore c3 = 27

4
and

c3r0

2r0
=

1

2r0

"
27

4

#r0

=

"
27

8

#r0

=

"
3

2

#3r0

and
1√
2pq

=
3

2
.

We write m = 3r0 − k where k ∈ {1, 2, 3}.
We now prove the upper bound for fm(r0) in (2). It follows from

"
m

r0

#
=

"
3r0 − k

r0

#
=

2r0 − k + 1

3r0 − k + 1

"
3r0 − k + 1

r0

#
! 2

3

"
3r0 − k + 1

r0

#

that
%
m
r0

&
! (2

3
)k
%
3r0
r0

&
. Setting n = 3r0 and p = 1

3
in (9) and using m < n shows

2

2r0

"
3r0
r0

#
=

2

2r0

"
n

pn

#
! 2

2r0
c3r0√
2πpqn

=
2√

2πpqn

"
3

2

#3r0

<
3√
πm

"
3

2

#3r0

.

Using
%
m
r0

&
! (3

2
)−k

%
3r0
r0

&
and m = 3r0 − k gives

fm(r0) !
2

2r0

"
m

r0

#
! 2

2r0

"
3

2

#−k "
3r0
r0

#
<

3√
πm

"
3

2

#m

.
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We now consider approximate lower bounds for fm(r0). Our argument involves con-
stants depending on k but not r0 whose values are not relevant here. We have

"
m

r0 + 1

#
= 2

"
1 + O

"
1

r0

##"
m

r0

#
= 4

"
1 + O

"
1

r0

##"
m

r0 − 1

#
.

Further, if k = 1, 2 and r0 " 1 it follows that

"
m

r0 − 1

#
=

"
3r0 − k

r0 − 1

#
=

3r0 − k

2r0 − k + 1

"
3r0 − k − 1

r0 − 1

#

=

"
3

2
+

k − 3

2(2r0 − k + 1)

#"
3r0 − k − 1

r0 − 1

#
>

3

2

"
3r0 − k − 1

r0 − 1

#
.

Hence
%

m
r0−1

&
" (3

2
)3−k

%
3r0−3
r0−1

&
holds for k ∈ {1, 2, 3} and r0 " 1.

Setting n = 3r0 − 3 and p = 1
3
in (8) yields

1

2r0

"
3r0 − 3

r0 − 1

#
=

1

2r0

"
n

pn

#
=

1

2r0
c3r0−3

√
2pqπn

"
1 + O

"
1

n

##
.

However, c3r0
2r0

= (3
2
)3r0 and c−3

√
2pqπn

= 3c−3

2
√
πn

= 2
9
√
πn

= 2
9
√
πm

(1 + O
%

1
m

&
). Therefore

1

2r0

"
3r0 − 3

r0 − 1

#
=

2

9
√
πm

"
3

2

#3r0 "
1 + O

"
1

m

##
.

The above bounds give

fm(r0) "
1

2r0

"
m

r0 + 1

#
" 4

"
1 + O

"
1

r0

##"
3

2

#3−k
1

2r0

"
3r0 − 3

r0 − 1

#

= 4

"
1+O

"
1

m

##"
3

2

#3−k
2

9
√
πm

"
3

2

#3r0

=

"
1+O

"
1

m

##
3√
πm

"
3

2

#m

.

Finally, since 1 + O
%

1
m

&
→ 1 as m → ∞, the limit in (2) follows.
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