On the maximum of the weighted binomial sum $2^{-r}\sum_{i=0}^r \binom{m}{i}$

S.P. Glasby*

Centre for the Mathematics of Symmetry and Computation University of Western Australia, 35 Stirling Highway Godroo, Perth 6009, Australia.

Stephen.Glasby@uwa.edu.au

G.R. Paseman Sheperd Systems, UC Berkeley, USA sheperdsystems@gmail.com

Submitted: September 25, 2021; Accepted: Feb 28, 2022; Published: Apr 8, 2022 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The weighted binomial sum $f_m(r) = 2^{-r} \sum_{i=0}^r {m \choose i}$ arises in coding theory and information theory. We prove that, for $m \notin \{0,3,6,9,12\}$, the maximum value of $f_m(r)$ with $0 \leq r \leq m$ occurs when $r = \lfloor m/3 \rfloor + 1$. We also show this maximum value is asymptotic to $\frac{3}{\sqrt{\pi m}} \left(\frac{3}{2}\right)^m$ as $m \to \infty$.

Mathematics Subject Classifications: 05A10, 11B65, 94B65

1 Introduction

Let m be a non-negative integer, and let $f_m(r)$ be the function:

$$f_m(r) = \frac{1}{2^r} \sum_{i=0}^r \binom{m}{i}.$$

This function arises in coding theory and information theory e.g. [2, Theorem 4.5.3]. It is desirable for a linear code to have large rate (to communicate a lot of information) and large minimal distance (to correct many errors). So for a linear code with parameters

^{*}Supported by the Australian Research Council (ARC) Discovery Project DP190100450.

[n, k, d], one wants both k/n and d/n to be large. The case that kd/n is large is studied in [1]. A Reed-Muller code RM(r, m) has $n = 2^m$, $k = \sum_{i=0}^r {m \choose i}$ and $d = 2^{m-r}$ by [4, §6.2], and hence kd/n equals $f_m(r)$. It is natural to ask which value of r maximizes $f_m(r)$, and what is the size of the maximum value.

Theorem 1. Suppose that m, r are integers where $0 \le r \le m$. The maximum value of $f_m(r) = 2^{-r} \sum_{i=0}^r {m \choose i}$ occurs when $r = \lfloor \frac{m}{3} \rfloor + 1$ provided $m \notin \{0, 3, 6, 9, 12\}$.

We give an optimal asymptotic bound for the maximum value of $f_m(r)$.

Theorem 2. Suppose that $m \notin \{0, 1, 3, 6, 9, 12\}$ and $r_0 = \lfloor \frac{m}{3} \rfloor + 1$. Then

(1)
$$\frac{1}{2^{\lfloor \frac{m}{3} \rfloor}} \left(1 - \frac{k+2}{2(r_0+1)} \right) \binom{m}{r_0} < f_m(r_0) < \frac{1}{2^{\lfloor \frac{m}{3} \rfloor}} \binom{m}{r_0}$$

where $k := 3r_0 - m \in \{1, 2, 3\}$. Furthermore,

(2)
$$f_m(r_0) < \frac{3}{\sqrt{\pi m}} \left(\frac{3}{2}\right)^m$$
 and $\lim_{m \to \infty} f_m(r_0) \sqrt{m} \left(\frac{2}{3}\right)^m = \frac{3}{\sqrt{\pi}}.$

We prove that $f_m(r)$ increases strictly if $0 \le r \le r_0 := \lfloor \frac{m}{3} \rfloor + 1$ and m > 12 (see Theorem 6), and it decreases strictly for $r_0 \le r \le m$ (see Theorem 8). Elementary arguments in Lemma 4(c) show that $f_m(0) < f_m(1) < \cdots < f_m(r_0 - 1)$. More work is required to prove that $f_m(r_0 - 1) < f_m(r_0)$. Determining when $f_m(r)$ decreases involves a delicate inductive proof requiring a growing amount of precision, and inequalities with rational functions such as $X_i = \frac{r-i+1}{m-r+i}$, see Lemma 5. In Section 5 we establish bounds (and asymptotic behavior) for $f_m(r_0)$ using standard methods.

Brendan McKay [3] showed, using approximations for sufficiently large m, that the maximum value of $f_m(r)$ is near m/3. His method may well extend to a proof of Theorem 1. If so, it would involve very different techniques from ours.

2 Data, comparisons and strategies

The values of $f_m(0), f_m(1), f_m(2), \ldots, f_m(m-2), f_m(m-1), f_m(m)$ appear to increase to a maximum and then decrease. For 'large' m we see that

$$1 < \frac{m+1}{2} < \frac{m^2 + m + 2}{8} < \dots ? \dots > 8 - \frac{m^2 + m + 2}{2^{m-2}} > 4 - \frac{m+1}{2^{m-2}} > 2 - \frac{1}{2^{m-1}} > 1.$$

Computer calculations for 'large' m suggest that a maximum value for $f_m(r)$ occurs at $r_0 = \lfloor \frac{m}{3} \rfloor + 1$, see Table 1 which lists the *integer part* $\lfloor f_m(r) \rfloor$. Computing $f_m(r)$ exactly shows that for $m \in \{0, 3, 6, 9, 12\}$ the maximum occurs at $r_0 - 1$ and not r_0 , see Table 2. The maximum happens to occur for a unique r, except for m = 1.

Determining the relative sizes of $f_m(r)$ and $f_m(r+1)$ is reduced in Lemma 3 to determining the relative sizes of $\sum_{i=0}^{r} {m \choose i}$ and ${m \choose r+1}$.

6	1	3	(5)	(5)	3	1	1									
7	1	4	$\overline{\overline{7}}$	8	6	3	1	1								
8	1	4	9	(11)	10	6	3	1	1							
9	1	5	11	(16)	(16)	11	7	3	1	1						
10	1	5	14	$\widetilde{22}$	(24)	19	13	7	3	1	1					
11	1	6	16	29	(35)	32	23	14	7	3	1	1				
12	1	6	19	37	(49)	(49)	39	25	14	7	3	1	1			
13	1	7	23	47	$\widetilde{68}$	(74)	64	45	27	15	$\overline{7}$	3	1	1		
14	1	7	26	58	91	(108)	101	77	50	29	15	$\overline{7}$	3	1	1	
15	1	8	30	72	121	154	(155)	128	89	54	30	15	7	3	1	1

Table 1: Maximum values of $\lfloor f_m(r) \rfloor$ for $0 \leq r \leq m$ and $m \in \{6, 7, \dots, 15\}$.

Lemma 3. Suppose that $0 \leq r < m$. Then

- (a) the inequality $f_m(r) < f_m(r+1)$ is equivalent to $\sum_{i=0}^r \binom{m}{i} < \binom{m}{r+1}$,
- (b) if $\sum_{i=0}^{r} {m \choose i} \leq {m \choose r+1}$, then $\sum_{i=0}^{r} {m+1 \choose i} < {m+1 \choose r+1}$,
- (c) the inequality $f_m(r) > f_m(r+1)$ is equivalent to $\sum_{i=0}^r {m \choose i} > {m \choose r+1}$, and
- (d) if $\sum_{i=0}^{r} \binom{m}{i} \ge \binom{m}{r+1}$, then $\sum_{i=0}^{r} \binom{m-1}{i} > \binom{m-1}{r+1}$.

Proof. (a,b) Clearly $f_m(r) < f_m(r+1)$ is equivalent to $2\sum_{i=0}^r \binom{m}{i} < \sum_{i=0}^{r+1} \binom{m}{i}$ which is equivalent to $\sum_{i=0}^r \binom{m}{i} < \binom{m}{r+1}$. If r < m and $\sum_{i=0}^r \binom{m}{i} \leq \binom{m}{r+1}$, then

$$\sum_{i=0}^{r} \binom{m+1}{i} = \sum_{i=0}^{r} \frac{m+1}{m-i+1} \binom{m}{i} \leq \frac{m+1}{m-r+1} \sum_{i=0}^{r} \binom{m}{i} < \frac{m+1}{m-r} \binom{m}{r+1} = \binom{m+1}{r+1}.$$

(c,d) Clearly $f_m(r) > f_m(r+1)$ is equivalent to $2\sum_{i=0}^r \binom{m}{i} > \sum_{i=0}^{r+1} \binom{m}{i}$ which, in turn, is equivalent to $\sum_{i=0}^r \binom{m}{i} > \binom{m}{r+1}$. If $\sum_{i=0}^r \binom{m}{i} \ge \binom{m}{r+1}$, then as $m > r \ge 0$,

$$\sum_{i=0}^{r} \binom{m-1}{i} = \sum_{i=0}^{r} \frac{m-i}{m} \binom{m}{i} \ge \frac{m-r}{m} \sum_{i=0}^{r} \binom{m}{i}$$
$$> \frac{m-r-1}{m} \binom{m}{r+1} = \binom{m-1}{r+1}.$$

The following easy lemma elucidates which $r \in \{0, \ldots, m\}$ maximize $f_m(r)$.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.5

Lemma 4. Let $s_m(m+1) = 2^m$, and for $0 \leq r \leq m$ define

$$s_m(r) = \sum_{i=0}^r \binom{m}{i}, \quad t_m(r) = \frac{s_m(r+1)}{s_m(r)}, \text{ and } c_m(r) = \frac{\binom{m}{r+1}}{\binom{m}{r}} = \frac{m-r}{r+1}.$$

(a) If $0 \leq r \leq m$, then $c_m(r) < t_m(r)$, and if $0 \leq r < m$, then $t_m(r+1) < t_m(r)$.

(b) If $m \ge 2$, then for some r^* , $f_m(0) < \cdots < f_m(r^*)$ and $f_m(r^*+1) > \cdots > f_m(m)$.

(c) $\max\{f_m(0), \ldots, f_m(m)\} = \max\{f_m(r^*), f_m(r^*+1)\}$ and $f_m(0) < \cdots < f_m(r_0-1).$

Proof. (a) We show $c_m(r) < t_m(r)$ via induction on r. This is true when r = 0 as $c_m(0) = m < m + 1 = t_m(0)$. Suppose that $0 \le r < m$ and $c_m(r) < t_m(r)$ holds. That is, $\binom{m}{r+1}/\binom{m}{r} < s_m(r+1)/s_m(r)$ holds. Since $c_m(r+1) = \frac{m-r-1}{r+2} < \frac{m-r}{r+1} = c_m(r)$ we have $c_m(r+1) < c_m(r) < t_m(r)$. Using properties of mediants, it follows that

$$c_m(r+1) = \frac{\binom{m}{r+2}}{\binom{m}{r+1}} < \frac{\binom{m}{r+2} + s_m(r+1)}{\binom{m}{r+1} + s_m(r)} < \frac{s_m(r+1)}{s_m(r)} = t_m(r).$$

Hence $c_m(r+1) < t_m(r+1) < t_m(r)$ as $s_m(n+1) = \binom{m}{n+1} + s_m(n)$. This completes the induction, and it also proves that $t_m(r+1) < t_m(r)$, as claimed.

(b) Since $s_m(m+1) = 2^m$, part (a) shows that $1 = t_m(m) < \cdots < t_m(0) = m+1$. Choose an integer r^* such that $t_m(r^*) \leq 2 < t_m(r^*-1)$. The following are equivalent: $2 < t_m(r); 2s_m(r) < s_m(r+1); f_m(r) < f_m(r+1)$. Thus $2 < t_m(r^*-1) < \cdots < t_m(0)$ implies $f_m(0) < \cdots < f_m(r^*)$. Similarly, $t_m(m-1) < \cdots < t_m(r^*+1) < 2$ and $t_m(r) < 2$ implies $f_m(r+1) < f_m(r)$. Hence $f_m(r^*+1) > \cdots > f_m(m)$.

(c) By part (b), $\max\{f_m(r) \mid 0 \leq r \leq m\} = \max\{f_m(r^*), f_m(r^*+1)\}$. If $2 \leq c_m(r) = \frac{m-r}{r+1}$, then $3r+2 \leq m$ and $r \leq \lfloor \frac{m-2}{3} \rfloor$. Hence $2 \leq c_m(r) < t_m(r)$ by part (a), and $\lfloor \frac{m-2}{3} \rfloor \leq r^* - 1$ by the definition of r^* . Thus $r_0 - 1 = \lfloor \frac{m}{3} \rfloor \leq r^*$ and it follows from part (b) that $f_m(0) < \cdots < f_m(r_0 - 1)$.

Fix m and r where $0 \leq r < m$. We shall use the following notation:

(3)
$$X_i = \frac{r-i+1}{m-r+i}$$
 for $0 \le i \le r$,

(4)
$$S_j = 1 + X_{j+1} + X_{j+1}X_{j+2} + \dots + X_{j+1}X_{j+2} \cdots X_r$$
 for $0 \le j < r$,
(5) $T_i = 1 + X_i + X_i X_2 + \dots + X_i X_2 \dots X_i$ for $0 \le i \le r$

(5)
$$T_j = 1 + X_1 + X_1 X_2 + \dots + X_1 X_2 \dots X_j$$
 for $0 \le j \le r$

Our convention in (5) is that $T_0 = 1$ as $T_j = \sum_{i=0}^{j} (\prod_{k=1}^{i} X_k)$ equals 1 when j = 0.

Lemma 5. Fix m, r, j where $0 \le j \le r < m$. Using the above definitions,

- (a) the inequality $\sum_{i=0}^{j} {m \choose r-i} > {m \choose r+1}$ is equivalent to $T_j > X_0^{-1}$,
- (b) the inequality $\sum_{i=0}^{r} {m \choose i} < {m \choose r+1}$ is equivalent to $S_0 < X_0^{-1}$.

Proof. For $0 \leq i \leq r$, we have $\binom{m}{r-i} = X_i \binom{m}{r-i+1}$ so $\binom{m}{r-i} = (\prod_{k=1}^i X_k) \binom{m}{r}$ holds. Therefore $\sum_{i=0}^j \binom{m}{r-i} = \binom{m}{r} \sum_{i=0}^j (\prod_{k=1}^i X_k) = \binom{m}{r} T_j$. Since $\binom{m}{r} = X_0 \binom{m}{r+1}$, the inequality $\sum_{i=0}^j \binom{m}{r-i} > \binom{m}{r+1}$ is equivalent to $\binom{m}{r} T_j > X_0^{-1} \binom{m}{r}$ which is equivalent to $T_j > X_0^{-1}$. This proves part (a).

Note that $\sum_{i=0}^{r} \binom{m}{i} = \sum_{i=0}^{r} \binom{m}{r-i} = \binom{m}{r} T_r = \binom{m}{r} S_0$ since $S_0 = T_r$. Since $\binom{m}{r+1} = X_0^{-1}\binom{m}{r}$, the inequality $\sum_{i=0}^{r} \binom{m}{i} < \binom{m}{r+1}$ is equivalent to $\binom{m}{r} S_0 < X_0^{-1}\binom{m}{r}$ which is equivalent to $S_0 < X_0^{-1}$. This proves part (b).

$3 \quad \text{Proof that} \ f_m(r) \ \text{is increasing for} \ 0 \leqslant r \leqslant r_0$

Recall that $m \ge 0$ and $r_0 := \lfloor \frac{m}{3} \rfloor + 1$. We now strengthen Lemma 4(c).

Theorem 6. If $m \notin \{0, 1, 3, 6, 9, 12\}$, then $f_m(0) < f_m(1) < \cdots < f_m(r_0)$.

Proof. The statement is easy to check for $m \in \{2, 4, 5\}$. The statement follows from Tables 1 and 2 for $m \in \{7, 8, 10, 11, 13, 14\}$. Suppose now that $m \ge 15$.

)/0///0/0				, 0	, L / J ·			
m	0 1	2	3	4	5	6	7	8	9	10	11	12
$f_m(r_0-1)$	1 1	1	2	$\frac{5}{2}$	3	$\frac{11}{2}$	$\frac{29}{4}$	$\frac{37}{4}$	$\frac{65}{4}$	22	29	$\frac{397}{8}$
$f_m(r_0)$	$\frac{1}{2}^{*}$ 1	$\frac{3}{2}$	$\frac{7}{4}$	$\frac{11}{4}$	4	$\frac{21}{4}$	8	$\frac{93}{8}$	16	$\frac{193}{8}$	$\frac{281}{8}$	$\frac{793}{16}$

Table 2: $\Box = \max\{f_m(r_0 - 1), f_m(r_0)\}$ for $0 \le m \le 12, r_0 = \lfloor m/3 \rfloor + 1$.

Recall that $r_0 = \lfloor \frac{m}{3} \rfloor + 1$ and $m \in \{3r_0 - 3, 3r_0 - 2, 3r_0 - 1\}$. By Lemma 4(c) it suffices to show that $f_m(r_0 - 1) < f_m(r_0)$. If we prove this for $m = 3r_0 - 3$, Lemma 3(b,a) gives it for $m = 3r_0 - 2$ and $m = 3r_0 - 1$ as well, so for $r_0 \ge 6$ we want to show $f_{3r_0-3}(r_0-1) < f_{3r_0-3}(r_0)$. This is true for $r_0 = 6$ by Table 1. We set $t := r_0 - 1, m := 3t$ and we prove, using induction on t, that $f_{3t}(t) < f_{3t}(t+1)$ holds for all $t \ge 6$.

Note that $f_{3t}(t) < f_{3t}(t+1)$ is equivalent by Lemma 3(a) to $\sum_{i=0}^{t} {3t \choose i} < {3t \choose t+1}$, and this is equivalent to $S_0 < X_0^{-1}$ by Lemma 5(b). Putting m = 3t and r = t in (3), gives $X_i = \frac{t-i+1}{2t+i}$ and $S_0 = 1 + X_1 + X_1 X_2 + \cdots + X_1 X_2 \cdots X_t$ by (4).

It follows from $0 < X_t < \cdots < X_5 < X_4$ and $X_4 = \frac{t-3}{2t+4} < \frac{1}{2}$ that

$$S_3 = 1 + X_4 + X_4 X_5 + \dots + X_4 X_5 \dots X_t < 1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{t-3}} < \sum_{i=0}^{\infty} \frac{1}{2^i} = 2.$$

The recurrence relation $S_j = 1 + X_{j+1}S_{j+1}$ for $0 \leq j < t$ implies that

$$S_{0} = 1 + X_{1} \left(1 + X_{2} \left(1 + X_{3}S_{3} \right) \right) < 1 + X_{1} \left(1 + X_{2} \left(1 + 2X_{3} \right) \right)$$
$$= 1 + \frac{t}{2t+1} \left(1 + \frac{t-1}{2t+2} \left(1 + \frac{2(t-2)}{2t+3} \right) \right).$$

*Observe that $f_0(1) = 2^{-1} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = 2^{-1} (1+0) = \frac{1}{2}.$

The electronic journal of combinatorics $\mathbf{29(2)}$ (2022), #P2.5

We aim to show that $S_0 < X_0^{-1}$. It suffices to prove $1 + X_1 (1 + X_2 (1 + 2X_3)) \leq X_0^{-1}$ where $X_0 = \frac{t+1}{2t}$. This amounts to proving that

$$1 + \frac{t}{2t+1} \left(1 + \frac{t-1}{2t+2} \left(1 + \frac{2(t-2)}{2t+3} \right) \right) \leqslant \frac{2t}{t+1}.$$

Rearranging, and using the denominator (2t+1)(2t+2)(2t+3), gives

$$0 \leqslant \frac{3t^2 - 17t - 6}{(2t+1)(2t+2)(2t+3)} = \frac{(3t+1)(t-6)}{(2t+1)(2t+2)(2t+3)}$$

This inequality is valid for all $t \ge 6$. This completes the proof.

How might one prove a nice formula such as $\lim_{s\to\infty} \sum_{i=0}^{s} {\binom{3s}{i}} / {\binom{3s}{s}} = 2?$ Remark 7. For s > 4 set m = 3s and $r_0 = s + 1$. Then $f_m(r_0 - 1) < f_m(r_0)$ by Theorem 6. Hence $\sum_{i=0}^{s} {3s \choose i} < {3s \choose s+1} = \frac{2s}{s+1} {3s \choose s}$ and so $\lim_{s\to\infty} \sum_{i=0}^{s} {3s \choose i} / {3s \choose s} \leq 2$. We show $f_m(r_0) > f_m(r_0 + 1)$ in Section 4, and therefore $\lim_{s\to\infty} \sum_{i=0}^{s} {3s \choose i} / {3s \choose s} \geq 2$.

Proof that $f_m(r)$ is decreasing for $r_0 \leqslant r \leqslant m$ 4

Showing that $f_m(r)$ decreases strictly for $r_0 \leq r \leq m$ is much harder. Recall that $\binom{r}{i} = 0$ if i < 0, and $\binom{r}{i} = \frac{1}{i!} \prod_{j=0}^{i-1} (r-j)$ if $i \ge 0$. In this section we prove:

Theorem 8. If $m \ge 2$, then $f_m(|m/3|+1) > f_m(|m/3|+2) > \cdots > f_m(m) = 1$.

Our proof of Theorem 8 depends on two technical lemmas, the first of which proves

that the non-leading coefficients of a certain polynomial A(r) are all negative. First define $B_i(r) = \prod_{\ell=1}^{i} (r-\ell)$. Now $\prod_{\ell=1}^{i} (r-\ell) = r^i + \sum_{k=0}^{i-1} b_{i,k} r^k$ and the coefficients $b_{i,k}$ alternate in sign: for $0 \leq k \leq i$, we have $b_{i,k} > 0$ if i - k is even and $b_{i,k} < 0$ if i - k is odd. Next define polynomials $A_i(r)$ via:

(6)
$$A_2(r) = r^2 - 15r - 10$$
 and $A_i(r) = (2r+i)A_{i-1}(r) - B_i(r)$ for $i \ge 3$.

Clearly deg $(A_i(r)) = i$ and we may write $A_i(r) = r^i + \sum_{k=0}^{i-1} a_{i,k} r^k$. We use $a_{i,i} = 1$. Comparing coefficients in this recurrence and $B_i(r) = (r-i)B_{i-1}(r)$, shows that

(Ra)
$$a_{2,0} = -10, \quad a_{2,1} = -15, \quad a_{i,k} = ia_{i-1,k} + 2a_{i-1,k-1} - b_{i,k} \quad \text{for } i \ge 3,$$

(Rb)
$$b_{2,0} = 2,$$
 $b_{2,1} = -3,$ $b_{i,k} = -ib_{i-1,k} + b_{i-1,k-1}$ for $i \ge 3.$

Lemma 9. Let $a_{i,k}, b_{i,k}, A_i(r), B_i(r)$ be as above.

- (a) If $i \ge 2$, then $b_{i,i-1} = -\binom{i+1}{2}$ and $a_{i,i-1} = -\binom{i+4}{2}$.
- (b) If $i \ge 2$ and $0 \le k \le i-1$, then $a_{i,k} \le -2b_{i,k} < 0$ if i-k is even, and $a_{i,k} \le b_{i,k} < 0$ if i - k is odd.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.5

(c) If $i \ge 2$, then the coefficients $a_{i,k}$ are negative for $0 \le k < i$.

Proof. (a) Clearly $b_{i,i-1} = -\sum_{j=1}^{i} j = -\binom{i+1}{2}$. The formula for $a_{i,i-1}$ holds for i = 2 and by induction using the recurrence (Ra).

(b) We use induction on *i*. For the base case i = 2, either i - k is even and $a_{2,0} = -10 \leq -2b_{2,0} = -4$, or i - k is odd and $a_{2,1} = -15 < b_{2,1} = -3$. Thus the claims are true for i = 2. Suppose now that $i \geq 3$, and the claims are valid for i - 1.

By part (a), $a_{i-1,i} = -\binom{i+4}{2} < -\binom{i+2}{2} = b_{i,i-1} < 0$ as claimed. It remains to consider k in the range $0 \le k < i - 1$. It is useful to set $a_{i,-1} = b_{i,-1} = 0$. Suppose first that i - k is even. Using the recurrences (Ra), (Rb) and induction gives

$$a_{i,k} = i(a_{i-1,k} + b_{i-1,k}) + (2a_{i-1,k-1} - b_{i-1,k-1})$$

$$\leq i(b_{i-1,k} + b_{i-1,k}) + (-4b_{i-1,k-1} - b_{i-1,k-1})$$

$$\leq 2ib_{i-1,k} - 2b_{i-1,k-1} = -2b_{i,k} < 0.$$

If i - k is odd, then a similar argument gives

$$a_{i,k} = i(a_{i-1,k} + b_{i-1,k}) + (2a_{i-1,k-1} - b_{i-1,k-1})$$

$$\leqslant i(-2b_{i-1,k} + b_{i-1,k}) + (2b_{i-1,k-1} - b_{i-1,k-1})$$

$$\leqslant -ib_{i-1,k} + b_{i-1,k-1} = b_{i,k} < 0.$$

(c) This follows immediately from part (b).

Lemma 10. Suppose that $j \ge 4$. Then $\sum_{i=r-j}^{r} {3r-1 \choose i} > {3r-1 \choose r+1}$ holds for all r in the range $j \le r \le {j+2 \choose 2}$.

Proof. We apply Lemma 5(a) with m = 3r - 1. Hence $X_i = \frac{r-i+1}{2r+i-1}$ by (3). Since $\sum_{i=r-j}^{r} {m \choose i} = \sum_{i=0}^{j} {m \choose r-i}$ it suffices by Lemma 5(a) to prove that

$$T_j = 1 + X_1 + X_1 X_2 + \dots + X_1 X_2 \dots X_j > X_0^{-1}.$$

We prove that this inequality holds for all r in the range $j \leq r \leq \binom{j+2}{2}$. This inequality is equivalent to

(7)
$$X_j > X_{j-1}^{-1}(\cdots(X_2^{-1}(X_1^{-1}(X_0^{-1}-1)-1)-1)\cdots) - 1.$$

The right-side of (7) is a rational function in r, which when j = 4, equals

$$\frac{P_4(r)}{Q_4(r)} = \frac{2r+2}{r-2} \left(\frac{2r+1}{r-1} \left(\frac{2r}{r} \left(\frac{2r-1}{r+1}-1\right)-1\right)-1\right) - 1\right)$$

where the denominator is $Q_4(r) = (r+1)r(r-1)(r-2)$, and the numerator is $P_4(r) = (r+1)r(r^2 - 15r - 10)$. Since $gcd(P_4(r), Q_4(r)) = (r+1)r$, the polynomials $A_2(r) := r^2 - 15r - 10$ and $B_2(r) := (r-1)(r-2)$ are coprime. The putative inequality (7) when j = 4 is therefore

$$\frac{r-3}{2r+3} > \frac{P_4(r)}{Q_4(r)} = \frac{A_2(r)}{B_2(r)} = \frac{r^2 - 15r - 10}{(r-1)(r-2)}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.5

Observe that $A_2(r) < r^2 - 15r \leq 0$ for $4 \leq r \leq 15 = \binom{6}{2}$. Thus for r in the range $4 \leq r \leq \binom{6}{2}$, the left side of (7) is positive, and the right side is at most 0. Thus the inequality is valid for $4 \leq r \leq \binom{6}{2}$ and the claim is true for j = 4.

Assume now that j > 4, and that the claim is true for j-1. Therefore the inequality (7) can be written

$$X_j = \frac{r-j+1}{2r+j-1} > \frac{P_j(r)}{Q_j(r)} \quad \text{where} \quad \frac{P_j(r)}{Q_j(r)} = (X_{j-1})^{-1} \frac{P_{j-1}(r)}{Q_{j-1}(r)} - 1.$$

Since $(X_{j-1})^{-1} = \frac{2r+j-2}{r-j+2}$, this gives rise to the recurrences:

$$P_{j}(r) = (2r+j-2)P_{j-1}(r) - (r-j+2)Q_{j-1}(r) \qquad \text{for } j > 4,$$

$$Q_{j}(r) = (r-j+2)Q_{j-1}(r) \qquad \text{for } j > 4.$$

It is clear that $Q_j(r) = (r+1)r(r-1)\cdots(r-j+2) = (r+1)rB_{j-2}(r)$ holds and $B_{j-2}(r)$ has degree j-2. Furthermore, (r+1)r divides $gcd(P_j(r), Q_j(r))$, so the polynomials $A_{j-2}(r)$, which are defined by the similar recurrence (6), satisfy $P_j(r) = (r+1)rA_{j-2}(r)$ and also have degree j-2.

By Lemma 9, $A_i(r) - r^i$ has negative coefficients and leading coefficient $-\binom{i+4}{2}$. So for $i \ge 2$ and $r \le \binom{i+4}{2}$, we have $A_i(r) < r^i - \binom{i+4}{2}r^{i-1} \le 0$. Further, $B_i(r) = \prod_{\ell=1}^i (r-\ell) > 0$ for $r \ge i+1$. Hence $A_i(r)/B_i(r) < 0$ for r satisfying $i+2 \le r \le \binom{i+4}{2}$. Suppose that j = i+2, then $P_j(r)/Q_j(r) < 0$ for r in the interval $j \le r \le \binom{j+2}{2}$. Using the definitions of $P_j(r), Q_j(r)$, the inequality (7) is the same as

$$X_j = \frac{r-j+1}{2r+j-1} > \frac{P_j(r)}{Q_j(r)} = \frac{A_{j-2}(r)}{B_{j-2}(r)}.$$

Thus for r satisfying $j \leq r \leq {j+2 \choose 2}$, the left side of (7) is positive, and the right side is negative. Thus the claim is valid for $j \leq r \leq {j+2 \choose 2}$.

Proof of Theorem 8. It follows from $\sum_{i=0}^{m} {m \choose i} = 2^m$ that $f_m(m) = 1$. Since $r_0 := \lfloor m/3 \rfloor + 1$, we have $m \in \{3r_0 - 3, 3r_0 - 2, 3r_0 - 1\}$. If we can prove that $f_m(r_0) > f_m(r_0 + 1)$ for $m = 3r_0 - 1$, then $f_m(r_0) > f_m(r_0 + 1)$ holds for $m = 3r_0 - 2$ and $3r_0 - 3$ by Lemma 3(d). With the notation in Lemma 4, we have $2 > t_m(r_0)$ and hence $r^* \leq r_0$. Therefore $f_m(r_0 + 1) > \cdots > f_m(m)$ holds by Lemma 4(b).

In summary, it remains to prove $\sum_{i=0}^{r_0} {3r_0-1 \choose i} > {3r_0-1 \choose r_0+1}$ for $r_0 \ge 1$. This is true for $r_0 = 1, 2, 3$ since $\frac{3}{2} > 1, 4 > \frac{13}{4}$ and $\frac{93}{8} > \frac{163}{16}$. For each $r_0 \ge 4$ set $j = r_0$. Then $j \ge 4$ and $\sum_{i=0}^{r_0} {m \choose i} > {m \choose r_0+1}$ follows by Lemma 10. This completes the proof.

Proof of Theorem 1. The result follows from Theorems 6 and 8. There are two equal sized maxima if m = 1, otherwise the maximum is unique.

5 Estimating $f_m(r_0)$

This section is devoted to proving asymptotically optimal bounds for $f_m(r_0)$.

Proof of Theorem 2. We first prove the upper bound in (1). This is true if m = 1. For $m \notin \{0, 1, 3, 6, 9, 12\}$ and $r_0 = \lfloor m/3 \rfloor + 1$ it follows from Theorem 6 that $f_m(r_0 - 1) < f_m(r_0)$ and by Lemma 3(a) that $\sum_{i=0}^{r_0-1} \binom{m}{i} < \binom{m}{r_0}$. Therefore $\sum_{i=0}^{r_0} \binom{m}{i} < 2\binom{m}{r_0}$ and the upper bound follows. For the lower bound, $f_m(r_0) > f_m(r_0+1)$ holds by Theorem 8, and so $\sum_{i=0}^{r_0} \binom{m}{i} > \binom{m}{r_0+1}$ by Lemma 3(c). Hence $2^{-r_0}\binom{m}{r_0+1} < f_m(r_0)$, and the lower bound of (1) follows from

$$\binom{m}{r_0+1} = \frac{2r_0-k}{r_0+1}\binom{m}{r_0} = (2-\frac{k+2}{r_0+1})\binom{m}{r_0}.$$

To prove (2), we use binomial approximations.

Suppose that 0 and <math>q := 1 - p. If pn is an integer, then qn = n - pn is an integer, and Stirling's approximation $n! = \sqrt{2\pi n} (\frac{n}{e})^n (1 + O(\frac{1}{n}))$ gives

(8)
$$\binom{n}{pn} = \frac{c^n}{\sqrt{2\pi pqn}} \left(1 + O\left(\frac{1}{n}\right)\right) \quad \text{where } c = \frac{1}{p^p q^q}.$$

Paraphrasing [2, Lemma 4.7.1] gives the following upper and lower bounds:

(9)
$$\frac{c^n}{\sqrt{8pqn}} \leqslant \binom{n}{pn} \leqslant \frac{c^n}{\sqrt{2\pi pqn}} \quad \text{where } c = \frac{1}{p^p q^q}.$$

Henceforth set $p = \frac{1}{3}$, so $q = \frac{2}{3}$ and $c = \frac{3}{2^{2/3}}$. Therefore $c^3 = \frac{27}{4}$ and

$$\frac{c^{3r_0}}{2^{r_0}} = \frac{1}{2^{r_0}} \left(\frac{27}{4}\right)^{r_0} = \left(\frac{27}{8}\right)^{r_0} = \left(\frac{3}{2}\right)^{3r_0} \quad \text{and} \quad \frac{1}{\sqrt{2pq}} = \frac{3}{2}.$$

We write $m = 3r_0 - k$ where $k \in \{1, 2, 3\}$.

We now prove the upper bound for $f_m(r_0)$ in (2). It follows from

$$\binom{m}{r_0} = \binom{3r_0 - k}{r_0} = \frac{2r_0 - k + 1}{3r_0 - k + 1} \binom{3r_0 - k + 1}{r_0} \leqslant \frac{2}{3} \binom{3r_0 - k + 1}{r_0}$$

that $\binom{m}{r_0} \leq (\frac{2}{3})^k \binom{3r_0}{r_0}$. Setting $n = 3r_0$ and $p = \frac{1}{3}$ in (9) and using m < n shows

$$\frac{2}{2^{r_0}}\binom{3r_0}{r_0} = \frac{2}{2^{r_0}}\binom{n}{pn} \leqslant \frac{2}{2^{r_0}}\frac{c^{3r_0}}{\sqrt{2\pi pqn}} = \frac{2}{\sqrt{2\pi pqn}}\left(\frac{3}{2}\right)^{3r_0} < \frac{3}{\sqrt{\pi m}}\left(\frac{3}{2}\right)^{3r_0}$$

Using $\binom{m}{r_0} \leq (\frac{3}{2})^{-k} \binom{3r_0}{r_0}$ and $m = 3r_0 - k$ gives

$$f_m(r_0) \leqslant \frac{2}{2^{r_0}} \binom{m}{r_0} \leqslant \frac{2}{2^{r_0}} \left(\frac{3}{2}\right)^{-k} \binom{3r_0}{r_0} < \frac{3}{\sqrt{\pi m}} \left(\frac{3}{2}\right)^m.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.5

We now consider approximate lower bounds for $f_m(r_0)$. Our argument involves constants depending on k but not r_0 whose values are not relevant here. We have

$$\binom{m}{r_0+1} = 2\left(1+O\left(\frac{1}{r_0}\right)\right)\binom{m}{r_0} = 4\left(1+O\left(\frac{1}{r_0}\right)\right)\binom{m}{r_0-1}.$$

Further, if k = 1, 2 and $r_0 \ge 1$ it follows that

$$\binom{m}{r_0 - 1} = \binom{3r_0 - k}{r_0 - 1} = \frac{3r_0 - k}{2r_0 - k + 1} \binom{3r_0 - k - 1}{r_0 - 1}$$
$$= \left(\frac{3}{2} + \frac{k - 3}{2(2r_0 - k + 1)}\right) \binom{3r_0 - k - 1}{r_0 - 1} > \frac{3}{2} \binom{3r_0 - k - 1}{r_0 - 1}.$$

Hence $\binom{m}{r_0-1} \ge (\frac{3}{2})^{3-k} \binom{3r_0-3}{r_0-1}$ holds for $k \in \{1, 2, 3\}$ and $r_0 \ge 1$. Setting $n = 3r_0 - 3$ and $p = \frac{1}{3}$ in (8) yields

$$\frac{1}{2^{r_0}} \binom{3r_0 - 3}{r_0 - 1} = \frac{1}{2^{r_0}} \binom{n}{pn} = \frac{1}{2^{r_0}} \frac{c^{3r_0 - 3}}{\sqrt{2pq\pi n}} \left(1 + O\left(\frac{1}{n}\right) \right).$$

However, $\frac{c^{3r_0}}{2^{r_0}} = (\frac{3}{2})^{3r_0}$ and $\frac{c^{-3}}{\sqrt{2pq\pi n}} = \frac{3c^{-3}}{2\sqrt{\pi n}} = \frac{2}{9\sqrt{\pi n}} = \frac{2}{9\sqrt{\pi m}} (1 + O\left(\frac{1}{m}\right))$. Therefore $\frac{1}{2^{r_0}} \binom{3r_0 - 3}{r_0 - 1} = \frac{2}{9\sqrt{\pi m}} \left(\frac{3}{2}\right)^{3r_0} \left(1 + O\left(\frac{1}{m}\right)\right).$

The above bounds give

$$f_m(r_0) \ge \frac{1}{2^{r_0}} \binom{m}{r_0 + 1} \ge 4 \left(1 + O\left(\frac{1}{r_0}\right) \right) \left(\frac{3}{2}\right)^{3-k} \frac{1}{2^{r_0}} \binom{3r_0 - 3}{r_0 - 1} \\ = 4 \left(1 + O\left(\frac{1}{m}\right) \right) \left(\frac{3}{2}\right)^{3-k} \frac{2}{9\sqrt{\pi m}} \left(\frac{3}{2}\right)^{3r_0} = \left(1 + O\left(\frac{1}{m}\right) \right) \frac{3}{\sqrt{\pi m}} \left(\frac{3}{2}\right)^m .$$

Finally, since $1 + O\left(\frac{1}{m}\right) \to 1$ as $m \to \infty$, the limit in (2) follows.

Acknowledgements

SPG gratefully acknowledges support from the Australian Research Council (ARC) Discovery Project DP190100450. GRP thanks family.

References

[1] Faezeh Alizadeh, S. P. Glasby, Cheryl E. Praeger. Sequences of linear codes where the rate times distance grows rapidly. arXiv:2110.01277, 2021, to appear in J. Algebra Comb. Discrete Struct. Appl..

- [2] Robert B. Ash. Information theory, Corrected reprint of the 1965 original, Dover Publications, Inc., New York, 1990, xii+339, ISBN 0-486-66521-6.
- [3] S. P. Glasby. On the maximum of the weighted binomial sum $2^{-r} \sum_{i=0}^{r} {m \choose r}$. Math-Overflow, Question 389857.
- [4] San Ling, Chaoping Xing. Coding theory. A first course. Cambridge University Press, Cambridge, 2004, xii+222, ISBN 0-521-52923-9.