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Abstract

A k-star is a complete bipartite graph K1,k. For a graph G, a k-star decomposi-

tion of G is a set of k-stars in G whose edge sets partition the edge set of G. If we

weaken this condition to only demand that each edge of G is in at most one k-star,

then the resulting object is a partial k-star decomposition of G. An embedding of a

partial k-star decomposition A of a graph G is a partial k-star decomposition B of

another graph H such that A ⊆ B and G is a subgraph of H. This paper considers

the problem of when a partial k-star decomposition of Kn can be embedded in a k-

star decomposition of Kn+s for a given integer s. We improve a result of Noble and

Richardson, itself an improvement of a result of Hoffman and Roberts, by showing

that any partial k-star decomposition of Kn can be embedded in a k-star decom-

position of Kn+s for some s such that s < 9
4k when k is odd and s < (6 − 2

√
2)k

when k is even. For general k, these constants cannot be improved. We also obtain

stronger results subject to placing a lower bound on n.

Mathematics Subject Classifications: 05C51, 05C70

1 Introduction

A k-star decomposition of a graph G is a collection of copies of K1,k in G such that each

edge of G is in exactly one copy. If we weaken this condition to demand that each edge

of G is in at most one copy, then the resulting object is a partial k-star decomposition.

An embedding of a partial k-star decomposition A of a graph G is a partial k-star decom-

position B of another graph H such that A ⊆ B and G is a subgraph of H. The leave of

a partial k-star decomposition of G is the graph L having vertex set V (G) and edge set

comprising all edges of G that are not in a k-star in the decomposition.
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The problem of determining when a graph has a decomposition into k-stars has been

thoroughly investigated. An obvious necessary condition for a graph to have a k-star

decomposition is that its number of edges is divisible by k. Trivially, any graph has a

decomposition into 1-stars. A simple inductive argument shows that any connected graph

with an even number of edges has a 2-star decomposition (see [4, Theorem 1]). Tarsi [10]

and Yamamoto et al. [13] independently proved that, for n ! 2, a k-star decomposition

of Kn exists if and only if n ! 2k and
!
n
2

"
≡ 0 (mod k). In fact, Tarsi gave necessary and

sufficient conditions for the existence of a decomposition of a complete multigraph into

k-stars while Yamamoto et al. also proved an analogous statement for complete bipartite

graphs.

A result of Dor and Tarsi [5] implies that determining whether an arbitrary graph G

has a k-star decomposition is NP-complete whenever k ! 3. A result of Tarsi [11] gives

a characterisation of when an arbitrary graph G has a k-star decomposition in which the

number of k-stars that are centred on each vertex is specified. Other results in [11] imply

various sufficient conditions for a graph to have a decomposition into k-stars. Hoffman

and Roberts [8] exactly determined the maximum possible number of k-stars in a partial

k-star decomposition of Kn and moreover characterised the possible leaves in some cases.

This paper is concerned with the problem of when a partial k-star decomposition of

Kn can be embedded in a k-star decomposition of Kn+s. In 2012, Hoffman and Roberts

[7] proved that a partial k-star decomposition of Kn can be embedded in a k-star decom-

position of Kn+s for some positive integer s such that s " 7k − 4 when k is odd and

s " 8k − 4 when k is even. Furthermore, they conjectured that the smallest possible

upper bound on s is around 2k. In 2019, Noble and Richardson [9] improved the bounds

on s to s " 3k− 2 when k is odd and s " 4k− 2 when k is even. As our first main result

of the paper we further improve these bounds.

Theorem 1. Let k ! 2 and n ! 1 be integers. Any partial k-star decomposition of Kn

can be embedded in a k-star decomposition of Kn+s for some s such that s < 9
4
k when k

is odd and s < (6− 2
√
2)k when k is even.

If either of the constants 9
4
or 6− 2

√
2 ≈ 3.17 in the above result were decreased then

the result would fail to hold for infinitely many k (see Lemmas 18 and 21). Our next

main result shows, however, that these constants can be improved if we impose a lower

bound on n.

Theorem 2. Let k ! 2 and n > k(k−1)√
8k−1

be integers. Any partial k-star decomposition of

Kn can be embedded in a k-star decomposition of Kn+s for some s such that s " 2k − 2

when k is odd and s " 3k − 2 when k is even.

Neither of the upper bounds on s in this result can be decreased, no matter what lower

bound we place on n (see Lemmas 9(c) and 16(b)). We prove Theorem 2 as a consequence
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of the following result which shows that, when s ! k and n is large enough, the obvious

necessary condition is also sufficient for the existence of an embedding of a partial k-star

decomposition of Kn in a k-star decomposition of Kn+s.

Theorem 3. Let k ! 2 and n > k(k−1)√
8k−1

be integers. Any nonempty partial k-star decom-

position of Kn can be embedded in a k-star decomposition of Kn+s for each s ! k such

that
!
n+s
2

"
≡ 0 (mod k).

The lower bound on s in this result cannot be decreased no matter what lower bound

we place on n (see Lemma 9(b)). Moreover, the lower bound on n is asymptotically best

possible as k becomes large (see Lemma 15).

2 Central functions and other preliminaries

We introduce some more notation that we use throughout the paper. Let G be a graph.

Let E(G), V (G) and G denote the edge set, vertex set and complement of G respectively.

For any x ∈ V (G), degG(x) denotes the degree of x in G. The neighbourhood NG(x) of a

vertex x ∈ V (G) is the set of all vertices which are adjacent to x in G. For a subset U of

V (G) we use G[U ] to denote the subgraph of G induced by U .

For a set S of vertices we use KS to denote the complete graph with vertex set S, and

for disjoint sets S and T of vertices we use KS,T to denote the complete bipartite graph

with parts S and T . For vertex-disjoint graphs G and H we use G ∨ H to denote the

graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ E(KV (G),V (H)). Our

use of the notation KS,T will imply that S and T are disjoint and our use of the notation

G ∨H will imply that G and H are vertex-disjoint. As a special case, we take G ∨K∅ or

G∨K0 to be simply the graph G. We can embed a partial k-star decomposition D of Kn

in a k-star decomposition of Kn+s for some nonnegative integer s if and only if there is a

k-star decomposition of L ∨Ks, where L is the leave of D.

We begin by emphasising the necessary and sufficient conditions for the existence of a

k-star decomposition of Kn that we mentioned in the introduction and highlighting their

effects in the special case where k is a prime power.

Theorem 4. [10, 13] Let k ! 2 and n ! 2 be positive integers.

(a) A k-star decomposition of Kn exists if and only if n ! 2k and
!
n
2

"
≡ 0 (mod k).

(b) If k is a power of 2 then a k-star decomposition of Kn exists if and only if n ! 2k

and n ≡ 0 (mod 2k) or n ≡ 1 (mod 2k).

(c) If k is a power of an odd prime then a k-star decomposition of Kn exists if and only

if n ! 2k and n ≡ 0 (mod k) or n ≡ 1 (mod k).
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Parts (b) and (c) of Theorem 4 follow immediately from part (a) because
!
n
2

"
≡

0 (mod k) is equivalent to n ≡ 0 (mod 2k) or n ≡ 1 (mod 2k) when k is a power of 2 and

is equivalent to n ≡ 0 (mod k) or n ≡ 1 (mod k) when k is a power of an odd prime. We

often exploit this limitation of the possible values of n when k is a prime power in our

constructions of partial k-star decompositions without small embeddings.

As mentioned in the introduction, a simple inductive argument shows that any con-

nected graph with an even number of edges has a 2-star decomposition (see [4, Theorem

1]). This immediately implies the following characterisation of when a graph L ∨Ks has

a 2-star decomposition.

Lemma 5. Let L be a graph. There is a 2-star decomposition of L ∨Ks if and only if

• s = 0 and each connected component of L has an even number of edges; or

• s ! 1 and |E(L ∨Ks)| ≡ 0 (mod 2).

Let k ! 2 be an integer. In a k-star, the vertex of degree k is called the centre. For

a given k-star decomposition D of G, we can define a function γ : V (G) → Z!0 called

the central function, where γ(x) is the number of k-stars of D whose centre is x for each

x ∈ V (G). It will be helpful to bear in mind the three following properties that must hold

for any central function γ of a k-star decomposition of a graph G.

• k
#

x∈V (G) γ(x) = |E(G)|.

• For each edge x1x2 of G, γ(x1) + γ(x2) ! 1.

• For each vertex x of G, kγ(x) " degG(x) and if kγ(x) = degG(x) then each edge of

G incident with x is in a k-star of D centred at x.

We call a function γ : V (G) → Z!0 such that k
#

x∈V (G) γ(x) = |E(G)| a k-precentral

function for G. Crucial to our approach in this paper is Lemma 6 below, which charac-

terises when a k-star decomposition of a graph G with a specified central function exists.

Lemma 6 is a simple consequence of a result of Tarsi [11, Theorem 2]. Because we will

use Lemma 6 so extensively, we first introduce some notation that simplifies its statement

and use.

Let G be a graph G equipped with a k-precentral function γ (note that G and γ

determine the value of k). We call a k-star decomposition of G in which there are γ(x)

stars centred at x for each x ∈ V (G) a star G-decomposition. The notation we now define

is implicitly dependent on G, which will always be obvious from context. For any subset

T of V (G), let ∆T = ∆+
T −∆−

T where ∆−
T = k

#
x∈T γ(x), ∆+

T = |ET |, and ET is the set

of edges of G that are incident to at least one vertex in T . Let ∆ be the minimum of ∆T

over all subsets T of V (G) and note that taking T = ∅ implies that ∆ " 0. Let T be

the collection of subsets T of V (G) for which ∆T = ∆ and which, subject to this, have

minimum cardinality.
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Lemma 6. Let k ! 2 be an integer and let G be a graph G equipped with a k-precentral

function γ.

(i) There exists a star G-decomposition if and only if ∆ = 0.

(ii) For each T ∈ T , T ⊆ {x ∈ V (G) : γ(x) ! 1}.

Proof . We first prove (i). It is clear that a star G-decomposition exists if and only if

there is an orientation of the edges of G such that exactly kγ(x) edges are oriented out

from x for each x ∈ V (G). Remember that k
#

x∈V (G) γ(x) = |E(G)| because γ is a

k-precentral function. Thus, by [11, Theorem 2] such an orientation exists if and only

if k
#

x∈S γ(x) ! |E(G[S])| for each subset S of V (G). For a given subset S of V (G),

k
#

x∈S γ(x) = |E(G)|−∆−
T and E(G[S]) = E(G) \ET , where T = V (G) \S. Thus, such

an orientation exists if and only if

∆T ! 0 for each subset T of V (G). (1)

Because ∆∅ = 0 and hence ∆ " 0, (1) is equivalent to ∆ = 0.

We now prove (ii). Let T ∈ T and suppose for a contradiction that γ(x) = 0 for

some x ∈ T . We have that ∆T\{x} " ∆T because ∆−
T\{x} = ∆−

T and ∆+
T\{x} " ∆+

T since

ET\{x} ⊆ ET . So, because |T \ {x}| < |T |, we have a contradiction to the definition of

T .

Lemma 6 can also be obtained by specialising results in [6] or [1] concerning star

decompositions of multigraphs. Through our notation ∆+
T and ∆−

T , the condition of

Lemma 6(i) is stated in the complement when compared to [11, Theorem 2], but this

makes it consistent with the statements in [1, 6], which generalise more naturally to star

packings of graphs.

We call a set U of vertices of a graph G pairwise twin, if NG(x) \ {y} = NG(y) \ {x}
for all x, y ∈ U . The next lemma aids us when applying Lemma 6 to graphs containing

sets of pairwise twin vertices. Note that in a graph G = L ∨ KS, the vertices in S are

pairwise twin and so we can apply the lemma with U chosen to be S.

Lemma 7. Let k ! 2 be an integer, let G be a graph and let U be a pairwise twin subset

of V (G). Let G be the graph G equipped with some k-precentral function γ and let T ∈ T .

For any x1 ∈ U \ T and x2 ∈ T ∩U we have γ(x1) < γ(x2). In particular, if γ(x) = γ(x′)

for all x, x′ ∈ U then, for each T ∈ T , either U ⊆ T or T ∩ U = ∅.

Proof . Suppose that T ∈ T , x1 ∈ U \ T and x2 ∈ U ∩ T . Let A = NG(x1) \ T , and note

that A = NG(x2) \ (T ∪ {x1}) because x1 and x2 are twin. Let a = |A|, T1 = T ∪ {x1}
and T2 = T \ {x2}. Because T ∈ T and |T2| < |T | we have ∆T1 ! ∆T and ∆T2 > ∆T .

Observe that ∆−
T1

= ∆−
T + kγ(x1) and ∆+

T1
= ∆+

T + a since ET1 = ET ∪ {x1z : z ∈ A}.
Therefore, ∆T1 = ∆T + a − kγ(x1) and so, because ∆T1 ! ∆T , kγ(x1) " a. Now,
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∆−
T2

= ∆−
T − kγ(x2) and ∆+

T2
" ∆+

T − a since ET2 = ET \ ({x2z : z ∈ A} ∪ X), where

X = {x1} if x1x2 ∈ E(G) and X = ∅ if x1x2 /∈ E(G). Therefore, ∆T2 " ∆T − a+ kγ(x2)

and so, because ∆T2 > ∆T , a < kγ(x2). Combining kγ(x1) " a and a < kγ(x2), we see

we must have γ(x1) < γ(x2).

Now suppose γ(x) = γ(x′) for all x, x′ ∈ U . By what we have just proved, either

U \ T = ∅ and hence U ⊆ T , or T ∩ U = ∅.

Many of the results in this paper (including Theorem 3) effectively concern k-star

decompositions of L ∨Ks for some specified graph L and integer s ! k. Lemma 9 below

illustrates why we usually impose the condition that s be at least k in these results. First

we state a special case of a result of Tarsi [11, Theorem 4] that we will often use to show

that a certain graph is the leave of a partial k-star decomposition.

Theorem 8 ([11]). Let G be a graph of order n such that degG(x) ! 1
2
n+ k− 1 for each

x ∈ V (G). Then G has a k-star decomposition if |E(G)| ≡ 0 (mod k).

Lemma 9. Let k ! 2 and n ! 2 be integers such that k is odd and n ≡ 2 (mod 2k). Let

L be a graph of order n that has exactly one edge.

(a) There is a partial k-star decomposition of Kn whose leave is L.

(b) There is no k-star decomposition L∨Kk−1, even though |E(L∨Kk−1)| ≡ 0 (mod k).

(c) If k is a power of an odd prime, there is no k-star decomposition L ∨ Ks for any

s < 2k − 2.

Proof . We first prove (a) by showing that a k-star decomposition of L exists. This is

trivial if n = 2. If n ! 2k + 2, then degL(y) ! n− 2 ! 1
2
n+ k − 1 for each y ∈ V (L) and

|E(L)| =
!
n
2

"
− 1 ≡ 0 (mod k) since n ≡ 2 (mod 2k). Therefore, by Theorem 8, a k-star

decomposition of L exists.

We now prove (b). Note that |E(L∨Kk−1)| = 1+n(k−1)+
!
k−1
2

"
≡ 0 (mod k) because

n ≡ 2 (mod 2k) and k is odd. Let r be the nonnegative integer such that n = 2kr + 2.

Suppose for a contradiction that there is a k-star decomposition D of L ∨ KS, where

|S| = k−1, and let γ be the central function of D. Now |E(L∨KS)| = 1+n(k−1)+
!
k−1
2

"

and so
#

x∈V (L)∪S γ(x) = (2r+ 1
2
)(k−1)+1. Observe that degL∨KS

(y1) = degL∨KS
(y2) = k,

where y1y2 is the only edge in L, and degL∨KS
(y) = k−1 for each y ∈ V (L)\{y1, y2}. So,

without loss of generality, γ(y1) = 1, every edge of L∨KS incident with y1 is in the star in

D centred at y1, and γ(y) = 0 for each y ∈ V (L)\{y1}. Thus
#

z∈S γ(z) = (2r+ 1
2
)(k−1).

By the pigeonhole principle, it follows that γ(z1) = 2r + 1 for some z1 ∈ S because

|S| = k− 1. Now degL∨KS
(z1) = n+ k− 2 = k(2r+1) noting that n = 2kr+2. So every

edge incident with z1 is in a star in D centred at z1. But this contradicts the fact that

the edge y1z1 is in the star in D centred at y1.
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We now prove (c). Suppose that k is a power of an odd prime. Assume for a contradic-

tion that D is a k-star decomposition of L∨KS where |S| = s for some nonnegative integer

s < 2k− 2. By part (a) of this lemma and Theorem 4(c), we have that n+ s ≡ 0 (mod k)

or n + s ≡ 1 (mod k) and hence, because n ≡ 2 (mod 2k), that s ≡ k − 2 (mod k) or

s ≡ k − 1 (mod k). So s ∈ {k − 2, k − 1} because s < 2k − 2. So then s = k − 1 because

a k-star in D must be centred at an end vertex of the edge in L and these vertices have

degree s + 1 in L ∨KS. However, a k-star decomposition of L ∨Kk−1 does not exist by

(b).

3 Embedding maximal partial k-star decompositions

A partial k-star decomposition of a graph G is maximal if there is no star that can be

added to it to produce a partial k-star decomposition of G containing more stars. Thus, a

partial k-star decomposition of a graph G is maximal if and only if its leave has maximum

degree at most k − 1. In this section we prove results about embedding maximal partial

k-star decompositions of Kn in k-star decompositions of Kn+s where s ! k. These results

will be crucial in proving the main theorems.

An independent set in a graph is a set of its vertices that are pairwise non-adjacent.

The independence number α(G) of a graph G is the maximum cardinality of an inde-

pendent set in G. In [2, Corollary 2], Caro and Roditty note that if a graph G has a

decomposition into k-stars then α(G) ! |V (G)|− 1
k
|E(G)|. This can be seen by observing

that any edge in G must have a star of the decomposition centred on at least one of

its end-vertices. For the cases we are interested in, we formalise this observation in the

following lemma.

Lemma 10. Let k ! 2, n ! 1 and s ! 0 be integers, and let L be a graph of order n. If

there is k-star decomposition of L ∨Ks, then α(L) ! n+ s− 1
k
|E(L ∨Ks)|.

Proof . If there is a k-star decomposition of L∨Ks, then α(L∨Ks) ! n+s− 1
k
|E(L∨Ks)|

by [2, Corollary 2]. Furthermore, it is easy to see that α(L ∨Ks) = α(L).

In this section we show that, for a maximal partial k-star decomposition D of Kn and

an integer s ! k such that
!
n+s
2

"
≡ 0 (mod k), the obstacle described by Lemma 10 is the

only thing that can prevent the existence of an embedding of D in a k-star decomposition

of Kn+s. We do this in two lemmas: Lemma 11 deals with the case where the number of

stars to be added is small and the obstacle may arise whereas Lemma 12 deals with the

case where the number of stars to be added is large and the obstacle cannot arise.

Lemma 11. Let k, n and s be integers with s ! k ! 2, and let L be a graph of order

n with maximum degree at most k − 1 and |E(L ∨ Ks)| " k(n + s). Then there is a

k-star decomposition of L ∨ Ks if and only if |E(L ∨ Ks)| ≡ 0 (mod k) and α(L) !
n+ s− 1

k
|E(L ∨Ks)|.
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Proof . The ‘only if’ direction follows from Lemma 10, so we only need to prove the ‘if’

direction.

Suppose that |E(L ∨ KS)| ≡ 0 (mod k), where S is a set with |S| = s. Let V =

V (L∨KS) and b = 1
k
|E(L∨KS)|, and suppose that L has an independent set A containing

n + s − b vertices. Note that n + s − b ! 0 because |E(L ∨ KS)| " k(n + s) by our

hypotheses. Define a k-precentral function γ for L ∨KS by γ(x) = 0 for each x ∈ A and

γ(x) = 1 for each x ∈ V \ A. This is indeed a k-precentral function for L ∨KS because#
x∈V γ(x) = n+ s− |A| = b. Let G be the graph L∨KS equipped with γ. We complete

the proof by showing that ∆ = 0 and hence a star G-decomposition exists by Lemma 6.

Let T ∈ T and suppose for a contradiction that ∆T < 0. Since γ(z) = 1 for all z ∈ S, we

can apply Lemma 7 with U = S to conclude that either T ∩S = ∅ or S ⊆ T . We consider

these cases separately, with the latter splitting into two subcases.

Case 1: Suppose that T ∩ S = ∅. This implies T ⊆ V (L). Then ∆+
T ! s|T |, because

E(KS,T ) ⊆ ET and ∆−
T = k|T | by the definition of γ and Lemma 6(ii). Therefore, we

have ∆−
T " ∆+

T as s ! k. This contradicts ∆T < 0.

Case 2a: Suppose that S ⊆ T but T ∕= V \A. Then there is a vertex y ∈ V (L)\(A∪T )
and, by the definition of γ, γ(y) = 1. Let T1 = T ∪ {y}. Then ∆+

T1
" ∆+

T + k − 1, noting

that degL(y) " k − 1 and ∆−
T1

= ∆−
T + k. Therefore, ∆T1 " ∆T − 1 contradicting T ∈ T .

Case 2b: Suppose that T = V \A. Then ∆+
T = |E(L∨KS)| because ET = E(L∨KS)

since A is independent. Moreover, ∆−
T = |E(L∨KS)| because γ is a k-precentral function

for L ∨KS. So ∆+
T = ∆−

T contradicting ∆T < 0.

Note that the condition n ! k in the following lemma will certainly hold whenever L

is the leave of a nontrivial k-star decomposition.

Lemma 12. Let k, n and s be positive integers with s ! k ! 2 and n ! k, and let L be a

graph of order n with maximum degree at most k − 1 and |E(L ∨Ks)| ! k(n+ s). Then

there is a k-star decomposition of L ∨Ks if and only if |E(L ∨Ks)| ≡ 0 (mod k).

Proof . If L ∨Ks has a k-star decomposition, then obviously |E(L ∨Ks)| ≡ 0 (mod k).

So it suffices to prove the ‘if’ direction.

Assume that |E(L∨KS)| ≡ 0 (mod k), where S is a set with |S| = s, let b = 1
k
|E(L∨

KS)| and note b ! n+s by the hypotheses of the lemma. Thus, we can define a k-precentral

function γ on L∨KS such that γ(y) = 1 for each y ∈ V (L) and γ(z) ∈ {d, d+1} for each

z ∈ S, where d = ⌊ b−n
s
⌋. Note that d ! 1 since b ! n+ s and let S0 = {z ∈ S : γ(z) = d}.

We will show there is a star G-decomposition where G is L ∨KS equipped with γ.

Let T ∈ T , H = L[V (L) \ T ], h = |V (H)|, and e = |E(H)|. By Lemma 6, it suffices

to show that ∆T ! 0. By Lemma 7 with U = S, we have that T ∩ S ∈ {∅, S \ S0, S}. We

separate the proof into three cases accordingly.
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Case 1: Suppose that T ∩ S = ∅. Then T = V (L) \ V (H). Noting that ET =

E(KS,V (L)\V (H)) ∪ (E(L) \ E(H)) and ∆−
T = k(n− h), we have

∆T =
!
(n− h)s+ |E(L)|− e

"
− k(n− h) = (n− h)(s− k) + |E(L)|− e.

This last expression is nonnegative because n ! h, s ! k and |E(L)| ! e.

Case 2: Suppose that T∩S = S. Noting that ET = E(L∨KS)\E(H), that |E(L∨KS)| =
bk, and that ∆−

T = k(b− h), we see that

∆T = (bk − e)− k(b− h) = kh− e.

This last expression is nonnegative because e " 1
2
h(k − 1) since H has maximum degree

at most k − 1.

Case 3: Suppose that T ∩ S = S \ S0. Let s0 = |S0|. Noting that

ET = E(L ∨KS)
$ !

E(KS0) ∪ E(KS0,V (H)) ∪ E(H)
"
,

that |E(L ∨KS)| = bk, and that ∆−
T = k(b− ds0 − h), we see that

∆T =
%
bk −

%
s0
2

&
− hs0 − e

&
− k(b− ds0 − h) =

s0
2
(2dk + 1− s0) + h(k − s0)− e. (2)

The remainder of the proof is a somewhat tedious verification that this last expression is

nonnegative. We first observe the following three useful facts.

(F1) 2e " h(k − 1)

(F2) e " k(n+ s(d+ 1)− s0)− ns−
!
s
2

"

(F3) d " 1
2ks

(n(2s− k − 1) + s(s− 1) + 2ks0)− 1

Note that (F1) holds because H is a subgraph of L and thus has maximum degree at most

k−1. Also, (F2) holds because e " |E(L)| = bk−ns−
!
s
2

"
and b = n+s(d+1)−s0 from the

definition of γ. Further, (F3) holds because b = n+s(d+1)−s0, b =
1
k
(|E(L)|+ns+

!
s
2

"
)

and |E(L)| " 1
2
n(k − 1) since L has maximum degree at most k − 1. We divide this case

into subcases depending on the value of s0.

Case 3a: Suppose that s0 ! k. Then substituting h " n and (F2) into (2) we obtain

∆T ! s− s0
2

!
s+ s0 + 2(n− k)− 2dk − 1

"
. (3)

Substituting (F3) into (3) and rearranging, we obtain

∆T ! s− s0
2s

!
(s0 − k)(s− k) + k(s+ n− s0 − k) + n

"
.
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This last expression is nonnegative because n ! k and s ! s0 ! k using the conditions of

this case.

Case 3b: Suppose that s0 " k+1
2
. Then substituting e " 1

2
h(k − 1) from (F1) into (2)

we obtain

∆T ! s0
2
(2dk + 1− s0) + h(k+1

2
− s0).

This last expression can be seen to be nonnegative using d ! 1 and 1 " s0 " k+1
2

from

the conditions of this case.

Case 3c: Suppose that k+2
2

" s0 " k − 1. Then substituting h ! 2e
k−1

from (F1) into (2)

we obtain

∆T ! s0
2
(2dk + 1− s0)−

e

k − 1
(2s0 − k − 1). (4)

Observing that 2s0 − k − 1 > 0 by the conditions of this case, substituting (F2) and

rearranging, we obtain

∆T ! 2s0 − k − 1

k − 1

%%
s

2

&
+ n(s− k)− k(s− s0)

&
−
%
s0
2

&
+

dk

k − 1

!
s(k+1)− s0(2s− k+1)

"
.

(5)

We further divide this subcase according to the sign of the coefficient of d in (5).

Case 3c(i): Suppose that s(k + 1) < s0(2s − k + 1). Substituting (F3) into (5) and

simplifying, we obtain

∆T ! s− s0
2s

!
n+ k(n− s0) + s0(s− k)

"
. (6)

We can easily see that ∆T is nonnegative since s ! k, n ! k and s0 " k − 1 by the

conditions of Case 3c.

Case 3c(ii): Suppose that s(k + 1) ! s0(2s − k + 1). Substituting d ! 1 and n ! k in

(5) and rearranging yields

∆T ! 2s0 − k − 1

2(k − 1)

!
s2 − (2k + 1)s− 2k2

"
+

3k + 1

k − 1

%
s0
2

&
. (7)

Recall that 2s0 > k − 1 by the conditions of Case 3c. Since s ! k is an integer, either

s = k or s ! k + 1, and hence s2 − (2k + 1)s ! −k(k + 1). Substituting this into (7) and

rearranging, we obtain

∆T ! 3k + 1

k − 1

%
k − s0 + 1

2

&
. (8)

This last expression is clearly nonnegative since s0 " k − 1 by the conditions of Case

3c.
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4 Proof of Theorems 2 and 3

Caro [3] and Wei [12] independently established the following lower bounds on the inde-

pendence number of a graph.

Theorem 13 ([3], [12]). For any graph G, the following hold.

(a) α(G) !
#

x∈V (G)
1

degG(x)+1

(b) α(G) ! |V (G)|2
2|E(G)|+|V (G)|

Part (b) of Theorem 13 follows immediately from part (a) because, by convexity,

!

x∈V (G)

1

degG(x) + 1
! |V (G)|

d+ 1
where d =

2|E(G)|
|V (G)| .

In Lemma 14 below we combine Theorem 13(b) with Lemmas 11 and 12 to show that,

for any graph L, a k-star decomposition of L∨Ks must exist if |E(L∨Ks)| ≡ 0 (mod k)

and s is greater than a certain function of k and |V (L)|. Theorem 3 then follows from

Lemma 14 and, in turn, Theorem 2 follows from Theorem 3. For technical reasons we

restrict Lemma 14 to k ! 3. Lemma 5 covers the case when k = 2.

Lemma 14. Let k, n and s be positive integers with s ! k ! 3 and n ! k, and let L be a

graph of order n such that |E(L∨Ks)| ≡ 0 (mod k). Then there is a k-star decomposition

of L ∨Ks if

s > k − n+
1

2
+

'%
n−

√
2k

&2

+ k(k − 3) + 1
4
. (9)

In particular, such a decomposition exists if n > k(k−1)√
8k−1

.

Proof . Observe that the right hand side of (9) is real because k ! 3. We first prove the

first part of the lemma. Suppose that (9) holds. We may assume that L has maximum

degree at most k−1 because otherwise we can greedily delete k-stars from L until this is the

case, apply the proof, and finally add the deleted k-stars to the decomposition produced.

Let b = 1
k
|E(L∨Ks)|, note that b is an integer because |E(L∨Ks)| ≡ 0 (mod k), and let

e = |E(L)|. If b ! n + s, then a k-star decomposition of L ∨Ks exists by Lemma 12, so

we may assume that b < n+ s. By Lemma 11 it suffices to show that α(L) ! n+ s− b.

By Theorem 13 we have α(L) ! n2

2e+n
. So, because α(L) and n+s−b are both integers,

it is enough to show that n2

2e+n
> n+ s− b− 1. Using b = 1

k
(e+ns+

!
s
2

"
) and multiplying

through by 2k, this is equivalent to showing that

s2 + (2n− 2k − 1)s− 2kn+ 2k + 2e+
2kn2

(2e+ n)
(10)
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is positive. Considered as a function of a real variable e ! 0, (10) is minimised when

e = n
2
(
√
2k− 1). Substituting this value for e and rearranging, we see that (10) is at least

s2 + (2n− 2k − 1)s+ 2k −
%
2k − 2

√
2k + 1

&
n.

Considering this last expression as a quadratic in s, it can be seen that it is positive when

(9) holds. Thus, (10) is positive and α(L) ! n+ s− b, as required.

We now prove the second part of the lemma. Suppose that n > k(k−1)√
8k−1

. Since s ! k,

substituting s = k into (9) and rearranging shows that (9) will hold if

n− 1

2
>

'%
n−

√
2k

&2

+ k(k − 3) + 1
4
.

By squaring both sides of this expression and rearranging, we see that it is equivalent to

n > k(k−1)√
8k−1

. Therefore, by the first part of the lemma, a k-star decomposition of L ∨Ks

exists.

We can now prove Theorem 3 directly from Lemma 14.

Proof of Theorem 3. Let L be the leave of a nonempty partial k-star decomposition

of Kn and note that this implies that n > k. Let s be an integer such that s ! k and!
n+s
2

"
≡ 0 (mod k). Since L is the leave of a partial k-star decomposition and

!
n+s
2

"
≡

0 (mod k), it follows that |E(L ∨ Ks)| ≡ 0 (mod k). So, by Lemma 14 if k ! 3 and by

Lemma 5 if k = 2, there is a k-star decomposition of L ∨Ks.

Lemma 9(b) demonstrates that the lower bound on s in Theorem 3 cannot be decreased

no matter what lower bound we place on n. Next, in Lemma 15, we show that in the case

s = k the lower bound on n in Theorem 3 is asymptotically best possible. To see that

Lemma 15 implies this, note that k(k−1)√
8k−1

= (k
2
)3/2 +O(k) as k becomes large.

Lemma 15. Let k = 2t for some odd integer t ! 7, let m =
√
2k, and let n = 1

4
km− k =

(k
2
)3/2 − k. Let L be a graph of order n that is a vertex disjoint union of n

m
copies of

Km. Then a partial k-star decomposition of Kn whose leave is L exists and furthermore

it cannot be embedded in a k-star decomposition of Kn+k, even though
!
n+k
2

"
≡ 0 (mod k).

Proof . Note thatm = 2(t+1)/2 is an integer divisible by 8 because t is odd and t ! 7. Thus

n ≡ k (mod 2k), n
m

is an integer and
!
n+k
2

"
≡ 0 (mod k). Note that |E(L)| = n

m

!
m
2

"
=

n
2
(m− 1). We first show that L is the leave of a partial k-star decomposition of Kn. Note

that degL(y) = n−m ! 1
2
n+ k− 1 for each y ∈ V (L) because n = 1

4
km− k and k ! 128.

Furthermore, E(L) =
!
n
2

"
− n

2
(m − 1) = n

2
(n − m) ≡ 0 (mod k) because n ≡ 0 (mod k)

and n−m is even. Therefore, by Theorem 8, there is a k-star decomposition of L.
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We complete the proof by using Lemma 10 to show that there is no k-star decompo-

sition of L ∨Kk. Observe that

n+ k − 1

k
|E(L ∨Kk)| = n+ k − 1

k

%
n

2
(m− 1) + kn+

%
k

2

&&
=

k

4
+

5
√
2k

8

where the first equality follows using |E(L)| = n
2
(m − 1) and the second follows using

n = 1
4
km − k and m =

√
2k. On the other hand, α(L) = n

m
= k

4
− k

m
because an

independent set in L can contain at most one vertex from each copy of Km. So we have

α(L) < n + k − 1
k
|E(L ∨Kk)| and hence there is no k-star decomposition of L ∨Kk by

Lemma 10.

Theorem 2 follows readily from Theorem 3.

Proof of Theorem 2. Let D be a partial k-star decomposition of Kn. If D is empty

and n=1, then D is trivially its own embedding. If D is empty and n ! 2, then there is

an embedding of D in a k-star decomposition of K2k by Theorem 4(a). So in either case

the result holds, and hence we may assume that D is nonempty.

If k is even, let s be an element of {k, . . . , 3k − 2} such that n + s ≡ 0 (mod 2k) or

n+ s ≡ 1 (mod 2k). If k is odd, let s be an element of {k, . . . , 2k − 2} such that n+ s ≡
0 (mod k) or n + s ≡ 1 (mod k). In either case such an s exists because {k, . . . , 3k − 2}
contains 2k−1 consecutive integers and {k, . . . , 2k−2} contains k−1 consecutive integers.

Then
!
n+s
2

"
≡ 0 (mod k) by our definition of s. So by Theorem 3 there is an embedding

of D in a k-star decomposition of Kn+s and hence the result is proved.

Lemma 9(c) shows that the upper bound of 2k−2 on s in the k odd case of Theorem 2

cannot be improved for any k that is a power of an odd prime. Next, in Lemma 16, we

show that the upper bound of 3k − 2 on s in the k even case of Theorem 2 cannot be

improved for any k ! 16 that is a power of 4.

Lemma 16. Let k = 2t for some even t ! 4, and let n ! 3k + 2 be an integer such

that n ≡ k + 2 (mod 2k). Let L be a graph of order n that is a vertex disjoint union of

one copy of K√
k,

1
2

√
k + 1 copies of K2 and n− 2

√
k − 2 copies of K1. A partial k-star

decomposition of Kn whose leave is L exists and furthermore it cannot be embedded in a

k-star decomposition of Kn+s for any s < 3k − 2.

Proof . A simple calculation shows that |E(L)| = 1
2
(k + 2). We first show that L is the

leave of a partial k-star decomposition of Kn. Note that degL(y) ! n−
√
k ! 1

2
n+ k − 1

for each y ∈ V (L) since n ! 3k + 2 and k ! 16. Furthermore, |E(L)| =
!
n
2

"
− 1

2
(k + 2) ≡

0 (mod k) since n ≡ k + 2 (mod 2k). Therefore, a k-star decomposition of L exists by

Theorem 8.

Now assume for a contradiction that D is a k-star decomposition of L ∨ KS where

|S| = s for some nonnegative integer s < 3k − 2 and let γ be the central function of D.
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We must have that n+s ≡ 0 (mod 2k) or n+s ≡ 1 (mod 2k) by Theorem 4(b) and hence,

because n ≡ k + 2 (mod 2k), that s ≡ k − 2 (mod 2k) or s ≡ k − 1 (mod 2k). Therefore,

s ∈ {k − 2, k − 1} since s < 3k − 2.

Let V1 be the vertex set of the copy of K√
k in L and let V2 be the set of vertices in

the 1
2

√
k+1 copies of K2 in L. If s = k− 2, then degL∨KS

(y) = k− 1 and hence γ(y) = 0

for each y ∈ V2 which contradicts the fact that each edge in L[V2] is in a star in D. Thus

it must be that s = k − 1 and D is a k-star decomposition of L ∨ Kk−1. Let r be the

positive integer such that n = 2kr + k + 2. Observe the following.

•
#

x∈V (L)∪S γ(x) = (2r+1)(k−1)+ 1
2
k+1 because |E(L∨Kk−1)| = 1

2
(k+2)+n(k−

1) +
!
k−1
2

"
.

•
#

y∈V1
γ(y) "

√
k because degL∨KS

(y) = k+
√
k− 2 < 2k for each y ∈ V1 and hence

γ(y) " 1 for all y ∈ V1.

•
#

y∈V2
γ(y) = 1

2

√
k + 1 because degL∨KS

(y) = k for each y ∈ V2 and hence γ(y1) +

γ(y2) = 1 for each edge y1y2 in L[V2].

•
#

y∈V (L)\(V1∪V2)
γ(y) = 0 because degL∨KS

(y) = k − 1 for each y ∈ V (L) \ (V1 ∪ V2).

Using these four facts and simplifying we have

!

z∈S
γ(z) =

!

x∈V (L)∪S
γ(x)−

!

y∈V (L)

γ(y) ! (2r + 1)(k − 1) + 1
2
k − 3

2

√
k > (2r + 1)(k − 1)

where the last inequality follows because k ! 16. So, by the pigeonhole principle, γ(z1) !
2r+2 for some z1 ∈ S because s = k−1. Now degL∨KS

(z1) = n+k−2 = k(2r+2) noting

that n = 2kr + k + 2, so it must be that γ(z1) = 2r + 2 and that every edge incident

with z1 is in a star in D centred at z1. But this contradicts the fact that, for any vertex

y1 ∈ V2 such that γ(y1) = 1, the edge y1z1 must be in a star in D centred at y1.

5 Proof of Theorem 1

From Lemma 14, it is not too difficult to prove Theorem 1 in the case where k is even.

Note that in fact the argument in the proof also applies when k is odd.

Lemma 17. Let k ! 2 and n ! 1 be integers. Any partial k-star decomposition of Kn

can be embedded in a k-star decomposition of Kn+s for some s such that s < (6− 2
√
2)k.

Proof . Let D be a partial k-star decomposition of Kn and L be its leave. Note that we

will have |E(L ∨ Ks)| ≡ 0 (mod k) for any integer s such that n + s ≡ 0 (mod 2k). If

k = 2 then we can choose s ∈ {1, 2, 3, 4} such that n + s ≡ 0 (mod 4) and L ∨ Ks will
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have a 2-star decomposition by Lemma 5, so we may assume k ! 3. We consider three

cases according to the value of n.

Case 1: Suppose that n ! 2
√
2k. Let s be an integer such that (4 − 2

√
2)k " s <

(6 − 2
√
2)k and n + s ≡ 0 (mod 2k). By Lemma 14 there is a k-star decomposition of

L ∨ Ks and hence the result is proved provided that (9) holds. The lower bound on s

given by (9) can be seen to be decreasing in n, so it suffices to show that this bound is

less than (4− 2
√
2)k when n = 2

√
2k. Substituting n = 2

√
2k into the bound gives

%
1− 2

√
2
&
k + 1

2
+
(

9k2 − 8k3/2 − k + 1
4

which is easily seen to be less than (4− 2
√
2)k since the final term is less than 3k − 1

2
.

Case 2: Suppose that k + 1 " n < 2
√
2k. We show that we can embed D in a k-star

decomposition of K4k. Let s = 4k − n and note that k " s < (6 − 2
√
2)k since k + 1 "

n < 2
√
2k and that

!
n+s
2

"
≡ 0 (mod k). By Lemma 14 there is a k-star decomposition of

L∨Ks and hence the result is proved provided that (9) holds. Now (9) holds if and only

if !
3k − 1

2

"2
>

%
n−

√
2k

&2

+ k(k − 3) + 1
4

and this can in turn be shown to hold using n < 2
√
2k.

Case 3: Suppose that 1 " n " k. Then D is empty and hence a k-star decomposition of

K2k, which exists by Theorem 4(a), is an embedding of D.

Lemma 18 below shows that if the constant 6 − 2
√
2 in Theorem 1 were decreased

then the result would fail to hold for each sufficiently large k that is 2 to some odd

power. To see this, observe that the value of n in the statement of Lemma 18 is at most

2
)

k(2k + 1) + 2
√
2k and hence is 2

√
2k +O(

√
k) as k becomes large.

Lemma 18. Let k = 2t for some odd integer t ! 3, let m =
√
2k, let n be the smallest

integer such that n ≡ 0 (mod m) and n > 2
)

k(2k + 1) +
√
2k, and let L be a graph of

order n that is a vertex disjoint union of n
m
copies of Km. A partial k-star decomposition of

Kn whose leave is L exists and furthermore it cannot be embedded in a k-star decomposition

of Kn+s for any s < 6k − n.

Proof . Observe that |E(L)| = n
m

!
m
2

"
= n

2
(m− 1). We first show that L is the leave of a

partial k-star decomposition of Kn. Note that degL(y) = n − m ! 1
2
n + k − 1 for each

y ∈ V (L) since n > 2
)

k(2k + 1) +
√
2k. Furthermore, |E(L)| = n

2
(n −m) ≡ 0 (mod k)

because n ≡ 0 (mod m). Therefore, by Theorem 8, a k-star decomposition of L exists.

Now suppose for a contradiction that a k-star decomposition of L ∨KS exists where

|S| = s for some nonnegative integer s < 6k − n. We must have n + s ≡ 0 (mod 2k) or

n+ s ≡ 1 (mod 2k) by Theorem 4(b). Therefore, because 0 " s < 6k−n and n > 2k+1,

we have s ∈ {4k − n, 4k − n+ 1}.
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Now α(L) = n
m

because an independent set in L can contain at most one vertex from

each copy ofKm. So we complete the proof by showing that n+s− 1
k
(|E(L)|+ns+

!
s
2

"
) > n

m

and hence concluding by Lemma 10 that there is no k-star decomposition of L∨KS. Using

|E(L)| = n
2
(m − 1) and m =

√
2k and multiplying through by 2k, this is equivalent to

showing that

n
%
2k − 2

√
2k + 1

&
− s(s+ 2n− 2k − 1) (11)

is positive. Using s " 4k − n+ 1, (11) is at least n(n− 2
√
2k)− 2k(4k + 1). In turn this

can be shown to be positive using n > 2
)

k(2k + 1) +
√
2k.

In order to prove Theorem 1 when k is odd, we need to make a closer examination

of leaves of partial k-star decompositions of Kn where k < n " 2k. It turns out that

these leaves must contain a large clique and hence we can improve on the bound of

Theorem 13(b) for their independence number using Theorem 13(a). Our first step is to

improve on Theorem 13(b) in the case where the graph considered contains a large clique.

Lemma 19. If L is a graph of order n such that L has a copy of Kr as a subgraph and

|E(L)| " 1
2
n(r − 1), then

α(L) ! 1 +
(n− r)2

2|E(L)|+ n− r2
.

Proof . Let V = V (L) and R be a subset of V such that L[R] is a copy of Kr. Let

d = 2|E(L)|−r(r−1)
n−r

and note that d " r − 1 since |E(L)| " 1
2
n(r − 1). By Theorem 13(a)

we have that

α(L) !
!

x∈V

1

degL(x) + 1
. (12)

Observe that degL(x) ! r − 1 for x ∈ R, that |R| = r, that
#

x∈V degL(x) = 2|E(L)|,
and that d " r − 1. By convexity, the minimum value of

#n
i=1

1
xi+1

, where the xi are

nonnegative reals subject to the constraints xi ! r − 1 for i ∈ {1, . . . , r} and
#n

i=1 xi =

2|E(L)|, occurs when xi = r − 1 for each i ∈ {1, . . . , r} and xi = d for each i ∈ {r +
1, . . . , n}. Thus from (12) we have

α(L) ! r

(r − 1) + 1
+

n− r

d+ 1
= 1 +

(n− r)2

2|E(L)|+ n− r2
.

By combining Lemma 19 with Lemmas 11 and 12, we can improve on Lemma 14 in the

special case where L is the leave of a partial k-star decomposition of Kn and k < n " 2k.

Again the k = 2 case is covered by Lemma 5.

Lemma 20. Let k, n and s be integers such that s ! k ! 3, 2k ! n > k and!
n+s
2

"
≡ 0 (mod k). Any partial k-star decomposition of Kn can be embedded in a k-star
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decomposition of Kn+s if

s > k − n+
1

2
+

'
4k

%√
n− k − 1√

2

&2

+ k(k − 3) + 1
4

(13)

Proof . Observe that the right hand side of (13) is real because k ! 3. Suppose that

(13) holds. Let D be a partial k-star decomposition of Kn. We may assume that D is

maximal for otherwise we can greedily add k-stars to D until it is maximal and then

apply the proof. Let L be the leave of D and note that L has maximum degree at most

k − 1. Let b = 1
k
|E(L ∨Ks)|, note that b is an integer because |E(L ∨Ks)| ≡ 0 (mod k)

since
!
n+s
2

"
≡ 0 (mod k) and L is the leave of a partial k-star decomposition of Kn. If

b ! n+ s, then a k-star decomposition of L∨Ks exists by Lemma 12, so we may assume

that b < n+ s. By Lemma 11 it suffices to show that α(L) ! n+ s− b.

Let V0 be the set of vertices in V (L) that have no star in D centred at them. No star in

D can contain an edge between a pair of vertices in V0 and hence L[V0] must be a complete

graph. Because D contains 1
k
(
!
n
2

"
− |E(L)|) stars, |V0| ! r where r = n− 1

k
(
!
n
2

"
− e) and

e = |E(L)|. Note that r ! 1 since k ! n
2
from our hypotheses. So L contains a copy of Kr

as a subgraph. Also, it follows from the definition of r that e =
!
n
2

"
− k(n− r) and hence,

because k ! n
2
, that e " 1

2
n(r − 1). Thus, by Lemma 19 we have α(L) ! 1 + (n−r)2

2e+n−r2
.

So, because α(L) and n+s−b are both integers, it is enough to show that 1+ (n−r)2

2e+n−r2
>

n+ s− b− 1. Using b = 1
k
(e+ns+

!
s
2

"
) and multiplying through by 2k, this is equivalent

to showing that

s2 + (2n− 2k − 1)s− 2kn+ 4k + 2e+
2k(n− r)2

2e+ n− r2
(14)

is positive. Using e =
!
n
2

"
− k(n− r), (14) is equal to

s2 + (2n− 2k − 1)s− (4k − n)(n− 1) + 2k
%
r +

n− r

n+ r − 2k

&
. (15)

Because L contains a copy ofKr as a subgraph, we have that e !
!
r
2

"
or equivalently, using

e =
!
n
2

"
−k(n−r), that 1

2
(n−r)(n+r−2k−1) ! 0. This implies that 2k+1−n " r " n.

Considered as a function of a real variable r where 2k+1− n " r " n, (15) is minimised

when r = 2k − n+
√
2n− 2k and, substituting this value for r and rearranging, we have

that (15) is at least

s2 + (2n− 2k − 1)s− (6k − n)(n− 1) + 4k
%
k +

√
2n− 2k − 1

&
.

Considering this last expression as a quadratic in s, we can see that it is positive when

(13) holds. Thus (14) is positive and α(L) ! n+ s− b, as required.
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We now finish the proof of Theorem 1 by considering the case where k is odd.

Proof of Theorem 1. When k is even the result follows from Lemma 17, so we may

assume that k is odd. Let D be a partial k-star decomposition of Kn and L be its

leave. Note that we will have |E(L ∨ Ks)| ≡ 0 (mod k) for any integer s such that

n+ s ≡ 0 (mod k). We consider four cases according to the value of n.

Case 1: Suppose that n ! 2
√
2k. Let s be an integer such that 5

4
k " s < 9

4
k and

n + s ≡ 0 (mod k). We saw in Case 1 of the proof of Lemma 17 that the right hand

side of (9) is less than (4 − 2
√
2)k when n ! 2

√
2k. So by Lemma 14 there is a k-star

decomposition of L ∨Ks and hence the result is proved, because s ! 5
4
k > (4− 2

√
2)k.

Case 2: Suppose that 7
4
k < n < 2

√
2k. We show that we can embed D in a k-star

decomposition of K4k. Let s = 4k − n and note that k " s < 9
4
k since 7

4
k < n < 2

√
2k

and that
!
n+s
2

"
≡ 0 (mod k). We showed in Case 2 of the proof of Lemma 17 that (9)

holds when s = 4k − n and n < 2
√
2k. So by Lemma 14 there is a k-star decomposition

of L ∨Ks.

Case 3: Suppose that k + 1 " n " 7
4
k. We show that we can embed D in a k-star

decomposition of K3k. Let s = 3k − n and note that k " s < 9
4
k since k + 1 " n " 7

4
k

and that
!
n+s
2

"
≡ 0 (mod k). Then (13) holds if and only if

!
2k − 1

2

"2
> 4k

%
n−

√
2n− 2k

&
− k(3k + 1) + 1

4
. (16)

For n ! k+ 1, the right hand side of (16) is increasing in n and hence (16) can be shown

to hold for k + 1 " n " 7
4
k by substituting n = 7

4
k. So by Lemma 20 there is a k-star

decomposition of L ∨Ks.

Case 4: Suppose that 1 " n " k. Then D is empty and hence a k-star decomposition of

K2k, which exists by Theorem 4(a), is an embedding of D.

Finally, we prove Lemma 21, which shows that if the constant 9
4
in Theorem 1 were

decreased then the result would fail to hold for each sufficiently large k that is a power of

an odd prime. To see this, observe that the definition of n in the statement of Lemma 21

can be rephrased as n = 1
2
a+k where a is the smallest even perfect square that is greater

than 3
2
k +

√
6k + 6 + 5

2
. Clearly then, a = 3

2
k + O(

√
k) and hence n = 7

4
k + O(

√
k) as k

becomes large.

Lemma 21. Let k be a sufficiently large integer that is a power of an odd prime and let

n be the smallest integer such that n > 7
4
k + 1

2

√
6k + 6 + 5

4
and

√
2n− 2k is an integer.

Let m =
√
2n− 2k and r = 2k − n +m, and let L be a graph of order n that is a vertex

disjoint union of m− 1 copies of Km and a copy of Kr. A partial k-star decomposition of

Kn whose leave is L exists and furthermore it has no embedding in a k-star decomposition

of Kn+s for any s < 4k − n.
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Proof . Observe that, for sufficiently large k, r = k
4
+O(

√
k) because n = 7

4
k+O(

√
k) as

noted in the paragraph before the lemma. We first show that L is the leave of a partial

k-star decomposition. Let V0 be the vertex set of the copy of Kr in L and let V1, . . . , Vm−1

be the vertex sets of the copies of Km in L. Let γ : V (L) → Z!0 be defined by γ(x) = 0

for each x ∈ V0 and γ(y) = 1 for each y ∈ V (L) \ V0. Then γ is a precentral function

for L, because we have 1
k
(
!
n
2

"
− |E(L)|) = m(m − 1) using |E(L)| =

!
r
2

"
+ (m − 1)

!
m
2

"
,

the definition of r and n = 1
2
m2 + k. Let G be L equipped with γ and let T ∈ T . We

will show that ∆T = 0 and hence that a k-star decomposition of L exists. For each

i ∈ {1, . . . ,m− 1}, we have Vi ⊆ T or T ∩ Vi = ∅ by Lemma 7 with U = Vi. So without

loss of generality we can assume that T = V1 ∪ · · ·∪Vt for some t ∈ {0, . . . ,m− 1}. Then
∆+

T =
!
t
2

"
m2 +mt(n−mt) and ∆−

T = kmt. Thus, using n = 1
2
m2 + k and simplifying,

∆T = 1
2
tm2(m− 1− t)

which is nonnegative since t ∈ {0, . . . ,m− 1}. Thus ∆T = 0 and a k-star decomposition

of L exists.

Now suppose for a contradiction that a k-star decomposition of L ∨KS exists where

|S| = s for some nonnegative integer s < 4k − n. We must have n + s ≡ 0 (mod k) or

n + s ≡ 1 (mod k) by Theorem 4(c). Therefore, because 0 " s < 4k − n and n > k + 1,

we have s ∈ {2k − n, 2k − n+ 1, 3k − n, 3k − n+ 1}.
Now α(L) = m because an independent set in L can contain at most one vertex from

the copy of Kr and at most one vertex from each copy of Km. So we complete the proof

by showing that n + s − 1
k
(|E(L)| + ns +

!
s
2

"
) > m and hence concluding by Lemma 10

that there is no k-star decomposition of L ∨Ks. Using |E(L)| =
!
r
2

"
+ (m − 1)

!
m
2

"
, the

definitions of r and m, and multiplying through by 2k, this is equivalent to showing that

n(6k − n+ 1)− 4k
%
k +

√
2n− 2k

&
− s(s+ 2n− 2k − 1) (17)

is positive. Using s " 3k − n + 1, (17) is at least k(4n − 7k − 4
√
2n− 2k − 1). In turn

this can be shown to be positive using n > 7
4
k + 1

2

√
6k + 6 + 5

4
.
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