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Abstract

The oriented Ramsey number ~r(H) for an acyclic digraph H is the minimum
integer n such that any n-vertex tournament contains a copy of H as a subgraph.
We prove that the 1-subdivision of the k-vertex transitive tournament Hk satisfies
~r(Hk) = O(k2 log log k). This is tight up to multiplicative log log k-term.

We also show that if T is an n-vertex tournament with ∆+(T ) − δ+(T ) =
O(n/k) − k2, then T contains a 1-subdivision of ~Kk, a complete k-vertex digraph
with all possible k(k − 1) arcs. This is tight up to multiplicative constant.

Mathematics Subject Classifications: 05C20, 05C35, 05D10

1 Introduction

What conditions guarantee certain structures on graphs? This is a central problem in
extremal graph theory. Turán [18] proved that e(G) > (1− 1

r−1
)n

2

2
implies that G contains

a complete graph Kr on r vertices as a subgraph. For a non-bipartite graph H, an
asymptotic threshold

(
1 − 1

χ(H)−1
+ o(1)

)(
n
2

)
for an n-vertex graph G to contain H as a

subgraph was determined by Erdős-Stone [9] and Erdős-Simonovits [8]. This threshold is
quadratic in n.

For a (di)graph H, subdividing an edge (arc) uv exactly ` times is the operation of
replacting the edge (arc) uv by an (` + 1)-edge (directed)-path from u to v with newly
introduced internal vertices. A subdivision of H is a (di)graph obtained by subdividing
some edges (arcs) of H. The branch vertices of the subdivision are the vertices which were
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already there before subdividing edges. Unlike the above case, if we only want to ensure
a subdivision of H within a graph G, a much weaker bound than quadratic number of
edges is sufficient. In 1967, Mader [14] proved that for given k, there exists f(k) such
that every graph with average degree f(k) contains Kk as a subdivision. Mader [14] and
Erdős-Hajnal [6] conjectured that this f(k) can be shown to be O(k2) and this was verified
by Bollobás and Thomason [3] and independently by Komlós and Szemerédi [12].

Another key question in extremal combinatorics is a Ramsey-type question. For a
given H, what values of n ensure that any 2-coloring on the edges of Kn contains a
monochromatic H? We write r(H) to denote the smallest such n. In general, such a
number r(H) is exponential in |H|, as was shown to be

(
√

2/e− o(1))k2k/2 6 r(Kk) 6 e−c(log k)2
(

2k

k

)
where c > 0 is an absolute constant. The lower bound is proved by Spencer in [16], and
the upper bound is by Sah in [15]. See [4] for more recent developments in Ramsey theory.
However, Alon [1] in 1994 proved that if H is a subdivision of another graph obtained
by subdividing every edge at least once, the Ramsey number r(H) is linear in |H|. Note
that such a graph H is always 2-degenerate. This result was further improved by the
celebrated result of Lee [13] in 2017 proving the Burr-Erdős conjecture stating that any
d-degenerate graph has a linear Ramsey number.

There is an analogue considering tournaments instead of complete graphs. A tourna-
ment is an orientation of a complete graph. For a given oriented graph H, we define the
oriented Ramsey number ~r(H) to be the smallest n where any n-vertex tournament con-
tains a copy of H. Indeed, ~r(H) exists only when H is acyclic. This is because, no matter
how large n is, the n-vertex transitive tournament Tn, which is the acyclic tournament of
order n, does not contain any digraph with a cycle as a subgraph. More generally, for a
collection H of oriented graphs, we define ~r(H) to be the smallest n where any n-vertex
tournament contains a copy of a graph in H. Again, at least one graph in H has to be
acyclic for the parameter to be defined.

Stearns [17] in 1959 and Erdős and Moser [7] in 1964 initiated the study on the oriented
Ramsey number and proved that

2k/2−1 6 ~r(Tk) 6 2k−1.

Since then, there has been no improvement to the exponential constants. Note that it
is easy to observe ~r(Tk) 6 r(Kk), hence improving the above lower bound is at least as
difficult as improving the lower bound on the Ramsey number.

As in the undirected case, we wonder whether a linear bound on ~r(H) holds if H is
obtained by subdividing every arc of another digraph, in particular a subdivision of a
transitive tournament. Girão, Popielarz, and Snyder [11] proved that any tournament on
Ω(k2) vertices contains a subdivision of Tk where each arc is subdivided at most twice
(hence each directed path in the subdivision has length at most three). In other words,
they proved ~r(H) = O(k2) when H is the collection of all graphs which are obtained from
Tk by subdividing every edge at most twice.
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As subdividing more makes the graph sparser, to consider small number of subdivisions
we say a (di)graph is the 1-subdivision of H if it is obtained from H by subdividing
every edge (arc) exactly once. Let Hk be the 1-subdivision of Tk. Girão, Popielarz, and
Snyder [11] proved that ~r(Hk) = O(k2 log3 k) and posed the following conjecture.

Conjecture 1 (Girão, Popielarz, and Snyder). ~r(Hk) = O(k2).

This conjecture, if true, is an analogue of Alon’s result [1] on the subdivision as Hk

contains
(
k+1

2

)
vertices, hence ~r(Hk) is linear in |Hk|. In this note, we prove the following

theorem improving the result of Girão, Popielarz, and Snyder.

Theorem 2. ~r(Hk) = O(k2 log log k).

One natural question is whether an analogue of the Burr-Erdős conjecture for oriented
graphs is true. In other words, this asks if degenerate acyclic oriented graphs have linear
(or almost linear) Ramsey number. This was disproved by Fox, He, and Wigderson [10].
They showed that for each ∆ > 2 there exists an acyclic oriented graph H with both max-
imum outdegree and maximum indegree at most ∆ such that ~r(H) = |H|Ω(∆2/3/ log5/3(∆)).
They also proved more general bounds on the oriented Ramsey number of digraphs with
bounded maximum degree.

As we mentioned earlier, a transitive tournament does not contain any digraph with
a cycle, so ~r(H) only makes sense when H is acyclic digraphs. What if we consider
tournaments which are far from being transitive?

Alon, Krivelevich, and Sudakov [2] proved a conjecture of Erdős stating that any n-
vertex graph with at least εn2 edges contains a 1-subdivision of a complete graph on c(ε)

√
n

vertices. This states that any graph far from the empty graph contains a subdivision of
a large complete graph. In the case of tournaments, we similarly consider an n-vertex
tournament T that is far from being transitive, and ask whether it contains a 1-subdivision
of a large complete digraph ~Kk. Here ~Kk is the digraph on k vertices having # ”uv as an arc
for each pair of distinct vertices u and v, and with no parallel arc.

We prove the following theorem stating that it is indeed possible to find a 1-subdivision
of ~KΩ(n1/3) in a tournament T if we assume that all vertices in T have outdegree at most

n/2 +O(n2/3).

Theorem 3. Suppose that T is an n-vertex tournament with ∆+(T )− δ+(T ) 6 n
10k
− k2.

Then T contains a 1-subdivision of ~Kk.

At first glance assuming all vertices have both out-degree and in-degree n/2 +O(n/k)
seems like a very strong assumption. However it turns out that this assumption is neces-
sary. The following proposition shows that the above theorem is tight up to a multiplica-
tive constant and an additive k2 term.

Proposition 4. For any integers n and k with 2 6 k 6
√
n, there exists an n-vertex

tournament T with ∆+(T ) − δ+(T ) 6 2n/k such that T does not contain 1-subdivision

of ~Kk.
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Proof. Consider an odd number k′ ∈ {k − 2, k − 1} and an k′-vertex regular tournament
T ′. Let ` = dn/k′e. Blow up each vertex of T ′ into a transitive tournament of size either
` or `− 1 to obtain an n-vertex tournament T . Let V1, . . . , Vk′ be the vertex sets of those
transitive tournaments.

Assume we have a 1-subdivision of ~Kk in T . For those k branch vertices, two vertices
u, v of them belong to the same part, say Vi, of T . As those two vertices has exactly same
set of out/in-neighbors outside Vi, both paths from u to v and v to u must lie inside Vi.
However, T [Vi] is transitive, so one of two paths does not exist, a contradiction. Hence,

T does not contain a 1-subdivision of ~Kk and

∆+(T )− δ+(T ) 6

(
k′ − 1

2
· `+ (`− 1)

)
− k′ − 1

2
· (`− 1) =

k′ − 1

2
+ `− 1 6

2n

k
,

as desired.

2 Preliminaries

We write [n] = {1, . . . , n} and log = log2. For a digraph D, we let A(D) be the arc
set of D, and d−D(x) and d+

D(x) refer to the in-degree and out-degree of a vertex x ∈
V (D), respectively. We denote by ∆+(D) the maximum out-degree of D and δ+(D) the
minimum out-degree of D. We denote by N−D (x) and N+

D (x) the in-neighbourhood and
out-neighbourhood of x ∈ V (D), respectively.

For a (di)graph G and X ⊂ V (G), we denote by G[X] the sub(di)graph of G induced
by X.

Let G be an undirected graph and let u, v be vertices in G. We denote by dist(u, v)
the length (which is the same as the number of edges) of a shortest path between u and
v in G. If such a path does not exist, then we let dist(u, v) =∞. For each i ∈ N, we let
N i
G(v) be the set of all vertices u with dist(v, u) = i and let Bi

G(v) =
⋃

06j6iN
i
G(v). For

X ⊆ V (G), let B1
G(X) =

⋃
v∈X B

1
G(v).

We often omit the subscript D or G when the underlying (di)graph is clear from the
context. We will omit floors and ceilings and treat large numbers as integers whenever it
does not affect the argument.

To deal with the 1-subdivisions of digraphs, it is useful to count the number of directed
paths of length two between two vertices. For a tournament T and u, v ∈ V (T ), let P2(u, v)
be the number of paths of length at most 2 from u to v. As P2(u, v) = |N+(u) \N+(v)|,
we have

P2(u, v)− P2(v, u) = d+(u)− d+(v). (1)

Observe that P2 satisfies the following triangle inequality.

Proposition 5. For any u, v, w ∈ V (T ), we have P2(u, v) 6 P2(u,w) + P2(w, v).
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Proof. We have

P2(u,w) + P2(w, v) = |N+(u) \N+(w)|+ |N+(w) \N+(v)|
> |N+(u)| − |N+(u) ∩N+(w) ∩N+(v)|
> |N+(u) \N+(v)| = P2(u, v).

3 Proofs of the Theorems

We first prove Theorem 2. Our proof develops the ideas in [11]. Let Hk be the 1-
subdivision of Tk. We will show that any tournament with at least Ck2 log log k vertices
contains a copy of Hk. We use induction on k with the choice of C = 230. Note an
m-vertex tournament contains a transitive tournament Tlogm which contains a copy of
H√logm. As

√
logC > 5, we may assume k > 6. Moreover, as the induction hypothesis,

we assume the following.

for each s < k, any tournament on at least Cs2 log log s vertices contains a copy
of Hs.

(2)

Let n = Ck2 log log k and T be an n-vertex tournament. We enumerate the vertices
of T into v1, . . . , vn so that

d+(v1) > · · · > d+(vn). (3)

We divide V (T ) into three sets as follows:

V1 = {v1, . . . , vn/4}, V2 = {vn/4+1, . . . , v3n/4}, and V3 = {v3n/4+1, . . . , vn}.

By (2), each of G[V1] and G[V3] contains a copy of Hk/2.
If d+

T (vn/4)−d+
T (v3n/4) > k2, then for any vertex u ∈ V1 and v ∈ V3, we have P2(u, v) >

k2. Hence, there are at least k2−1 paths of length exactly 2 from u to v. As a copy of Hk

contains
(
k
2

)
+ k < k2− 1 vertices, we can greedily take internally disjoint paths of length

2 for each pair of vertices between two copies of Hk/2 until we obtain a copy of Hk. Thus
we may assume that, for any u, v ∈ V2,

d+
T (u)− d+

T (v) < k2. (4)

Now we consider an auxiliary graph G recording pairs in V2 with not too many paths
of length 2 between. Let

V (G) = V2 and E(G) = {uv ∈
(
V2

2

)
: P2(u, v) < k2 or P2(v, u) < k2}. (5)

Then by (1) and (4), for any uv ∈ E(G) we have

P2(u, v) < 2k2 and P2(v, u) < 2k2. (6)

Note that the definition of G ensures that a large independent set in G yields a 1-
subdivision of a large transitive tournament. Moreover, if we have t vertex sets with
no edges between them in G, we can obtain a large 1-subdivision as follows.
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Claim 6. Let C1, . . . , Ct ⊆ V (G) be disjoint nonempty vertex sets where G has no edges
between Ci and Cj for i 6= j ∈ [t]. For each i ∈ [t], let mi =

√
|Ci|/(C log log k). If∑t

i=1 mi > 2k, then T contains a copy of Hk.

Proof. Indeed, (2) ensures that each Ci contains a copy of Hbmic, and clearly it contains a
copy of H1 which is a vertex. Choose an integer 0 6 ni 6 max{1, bmic} for each i so that∑t

i=1 ni = k. If t > k, then ni = 1 for 1 6 i 6 k and ni = 0 for i > k works; otherwise∑t
i=1(mi − 1) > k, so again such ni’s exist. By (5), we can greedily connect different

copies of Hni
in Ci to obtain a copy of Hk.

The above claim states that if G is not well-connected, then we can obtain a large
1-subdivision. On the other hand, the following claim states that our graph G cannot
be too well-connected. The proof of this claim was a part of the argument in [11]. We
include the proof for completeness.

Claim 7. For any v ∈ V (G) and r ∈ N, we have |Br
G(v)| 6 20rk2.

Proof. Let B = Br
G(v) and consider the subtournament T ′ = T [B]. Choose a vertex x

in T ′ with out-degree d+
T ′(x) > (|T | − 1)/2. Again T [N+

T ′(x)] forms another tournament,
hence there exists y ∈ N+

T ′(x) having at least (d+
T ′(x)− 1)/2 in-neighbors in N+

T ′(x). Thus
we have

P2(x, y) > |N+
T (x) ∩N−T (y)| > 1

4
|B| − 1.

However, as x, y ∈ B, there exists a path (x = z1, z2, . . . , zs = y) of length at most 2r
between x and y in G. Hence Proposition 5 together with (6) implies that

P2(x, y) 6
∑
i∈[s−1]

P2(zi, zi+1) 6 4rk2.

This yields |B| 6 16rk2 + 4 6 20rk2.

In order to utilize the above two claims in a right way, we need to quantify the
expansion of graphs so that the claims give what we want.

Claim 8. Let G′ be a subgraph of G. For any v ∈ V (G′), there exists 1 6 r 6 1+log log k
such that the following holds where Bi = Bi

G′(v):

|Br| 6 1

10
n1/2|Br−1|1/2.

Proof. If |B1| 6 1
10
n1/2, then r = 1 suffices, so we assume |B1| > 1

10
n1/2 > 1. Suppose

that such an r does not exist, meaning that for each r ∈ [1 + log log k], we have

|Br| > 1

10
n1/2|Br−1|1/2. (7)

For each i ∈ [1 + log log k], let α be a real number satisfying |Bi| = n1−αi . Then we have
0 6 α1 < 1.
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By (7), for each i ∈ [1 + log log k], we have n1−αi > 1
10
n1− 1

2
αi−1 , i.e., αi <

1
2
αi−1 + 4

logn
.

Inductively applying this yields

αi <
1

2
αi−1 +

4

log n
<

1

4
αi−2 +

4

log n

(
1 +

1

2

)
< · · · < 21−iα1 +

4

log n

i−2∑
j=0

2−j < 21−i +
8

log n
.

Hence, for s = 1 + log log k, we have αs <
1

log k
+ 8

logn
. However, as k > 6, we have

n = 230k2 log log k < k16, whence αs <
24

logn
. Thus

|Bs| = n1−αs 6 2logn−24 = 2−24n = 2−24Ck2 log log k.

However, Claim 7 implies |Bs| 6 |Bs
G(v)| 6 20sk2 6 20k2(1+log log k) < 2−24Ck2 log log k

as C = 230, a contradiction. Hence there exists r ∈ [1 + log log k] such that |Br+1| >
1
10
n1/2|Br|.

Now we are ready to prove Theorem 2. We take distinct vertices v1, . . . , vs in V (G),
positive integers r1, . . . , rs, vertex sets X1, . . . , Xs, Y1, . . . , Ys, and subgraphs G1, . . . , Gs+1

of G satisfying the following with the maximum possible s.

(G1) For each i ∈ [s], we have ri 6 1 + log log k.

(G2) For each i ∈ [s], we have G1 = G and Gi+1 = G−
⋃i
j=1 Yi and Xi = Bri−1

Gi
(vi) and

Yi = Bri
Gi

(vi).

(G3) For each i ∈ [s], we have |Yi| 6 1
10
n1/2|Xi|1/2.

Indeed, such a collection exists as the trivial collection with s = 0 vacuously satisfies all
three conditions.

We claim that with such a choice with the maximum s, we have

s∑
i=1

|Yi| = |V (G)| = n

2
.

Suppose not. Then Gs+1 is a nonempty graph, so it contains a vertex. Let vs+1 be
an arbitrary vertex in Gs+1. By applying Claim 8 with Gs+1 and vs+1, we can find
rs+1 ∈ [1 + log log k] such that B

rs+1−1
Gs+1

(vs+1) = Xs+1 and B
rs+1

Gs+1
(vs+1) = Ys+1 satisfying

(G1)–(G3), which contradicts to the maximality of s.
Furthermore, for each i ∈ [s], as ri 6 1 + log log k, Claim 7 implies that

|Xi| 6 |Bri−1
G (vi)| 6 20k2 log log k 6

n

100
.
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Note that X1, . . . , Xs are disjoint vertex sets, and for i < j, we have B1
G(Xi) ∩ Xj =

Yi ∩Xj = ∅, so there are no edges between Xi and Xj in G. In addition, we have

∑
i∈[s]

√
|Xi|

C log log k
>
∑
i∈[s]

10|Yi|
n1/2(C log log k)1/2

=
5n

n1/2(C log log k)1/2
> 2k.

Hence Claim 6 applies so that T contains a copy of Hk. This finishes the proof of Theo-
rem 2.

Now we prove Theorem 3. Let ` = ∆+(T ) − δ+(T ). As in the previous section, let
P2(u, v) be the number of paths from u to v of length at most two, and we construct an
auxiliary graph G with V (G) = V (T ) and

E(G) = {uv ∈
(
V (G)

2

)
: P2(u, v) < k2 or P2(v, u) < k2}.

As in (6), we can use the above to obtain that for uv ∈ E(G),

P2(u, v) < k2 + ` and P2(v, u) < k2 + `. (8)

Moreover, as in the proof of Claim 7, we can show that any vertex v satisfies |Br
G(v)| 6

10r(k2 + `) for any r ∈ N. In particular, with r = 1, this implies that any vertex v has
degree at most 10(k2 + `)−1 in G. By Turán’s theorem, G contains an independent set of
size at least n

10(k2+`)
> n

10(k2+n/(10k)−k2)
= k. Take such an independent set {v1, . . . , vk} and

greedily connect all pairs with internally disjoint paths. Then we obtain a 1-subdivision
of ~Kk. This finishes the proof of Theorem 3.
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[3] Béla Bollobás and Andrew Thomason. Proof of a conjecture of Mader, Erdös and
Hajnal on topological complete subgraphs. European Journal of Combinatorics,
19(8):883–887, 1998.

[4] David Conlon, Jacob Fox, and Benny Sudakov. Recent developments in graph Ram-
sey theory. In Surveys in combinatorics 2015, volume 424 of London Math. Soc.
Lecture Note Ser., pages 49–118. Cambridge Univ. Press, Cambridge, 2015.

the electronic journal of combinatorics 29(1) (2022), #P1.51 8
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[6] Paul Erdős and András Hajnal. On topological complete subgraphs of certain graphs.
In Annales Univ. Sci. Budapest, volume 7, pages 193–199, 1969.
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