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Abstract

Gian-Carlo Rota conjectured that for any n bases B1, B2, . . . , Bn in a matroid of
rank n, there exist n disjoint transversal bases of B1, B2, . . . , Bn. The conjecture for
graphic matroids corresponds to the problem of an edge-decomposition as follows;
If an n-vertex edge-colored connected multigraph G has n− 1 colors and the graph
induced by the edges colored with c is a spanning tree for each color c, then G has
n − 1 mutually edge-disjoint rainbow spanning trees. In this paper, we prove that
edge-colored graphs where the edges colored with c induce a spanning star for each
color c can be decomposed into rainbow spanning trees.

Mathematics Subject Classifications: 05C05, 05C70

1 Introduction

The matroids are an abstraction of a concept of independecy or dependency. The matroids
derived from graphs are vital example of the matroids, and lead to more general results
in graph theory. A matroid M is an ordered pair (E,B) consisting of a finite set E
and a non-empty collection B of subsets of E satisfying the basis exchange axiom. More
precisely, B satisfies the following: If B1 and B2 are members of B and x ∈ B1 \B2, then
there is an element y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B. We call an element in
B a basis for M . It follows from the basis exchange axiom that all members of B have
the same cardinality. We define the rank of M to be the cardinality of a basis in B. Two
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matroids M = (E,B) and M ′ = (E ′,B′) are isomorphic, written by M ∼= M ′, if there is
a bijection φ : E → E ′ such that X ⊆ E is independent in M if and only if φ(X) ⊆ E ′ is
independent in M ′.

Let E be the set of column labels of an m × n matrix A over the filed R of real
numbers. Let B be the subsets of E whose set of corresponding column vectors of A is a
basis of V (m,R). Then M = (E,B) is a matroid, called a real-representable matroid. A
transversal basis of n bases B1, B2, . . . , Bn in a matroid of rank n is a basis e1, e2, . . . , en
for some ei ∈ Bi for each i ∈ {1, 2, . . . , n}.

The following conjecture, so-called Rota’s basis conjecture, was posed by Gian-Carlo
Rota.

Conjecture 1 (Rota’s basis conjecture [13]). For given n bases B1, B2, . . . , Bn in a ma-
troid of rank n, there exist n disjoint transversal bases of B1, B2, . . . , Bn.

Huang and Rota [13] proved that if Alon-Tarsi conjecture on Latin squares holds for
n × n Latin square for an even integer n, then Conjecture 1 holds for real-representable
matroids of rank n. Drisko [7] and Glynn [12] proved that Alon-Tarsi conjecture is true
for n = p + 1 and n = p − 1 if p is an odd prime. Hence Conjecture 1 is true for real-
representable matroids of rank n = p ± 1. In 1994, Wild [16] proved Conjecture 1 is
true for strongly base-orderable matroids and the result implies that Conjecture 1 is true
for cycle matroids of series-parallel graphs. In 2006, Geelen and Humphries [9] proved
that Conjecture 1 is true for paving matroids, where a paving matroid M of rank n is
a matroid in which each circuit has size n or n + 1. Cheung [6] computationally proved
that the conjecture holds for matroids of rank at most 4. As far as we are aware, there
are no other results ensuring the existence of n disjoint transversal bases.

There is a natural approach to Conjecture 1, which is to find many disjoint transversal
bases from given n bases in a matroid of rank n. In 2007, Geelen and Webb [10] proved
that there exist Ω(

√
n) disjoint transversal bases. In 2019, this was improved by Dong

and Geelen [8] and they proved that there exist Ω(n/ log n) disjoint transversal bases.
Recently, Bucić, Kwan, Pokrovskiy, and Sudakov [4] proved that there exist (1/2−o(1))n
disjoint transversal bases. In [15], it was proven that the conjecture holds asymptotically.
As described, there are some results about the conjecture but it remains open.

The class of the matroids derived from finite graphs is one of the fundamental classes
of matroids. For a graph G, let V (G) and E(G) denote the vertex set and the edge set
of G, respectively. A forest is a graph with no cycle and a tree is a connected forest. We
say that a subgraph T in G is a spanning tree in G if T is a tree and V (T ) = V (G).
The matroid derived from a graph consists as follows: We construct a matroid from the
edge set E(G). Let B be the collection of edge sets of maximal forests in G. Then
M(G) = (E(G),B) is a matroid. We call it the cycle matroid of G, written by M(G). If
G has ω(G) components, then the rank of the cycle matroid M(G) is |V (G)| − ω(G). In
particular, if G is connected, then the rank of M(G) is |V (G)| − 1, and the set of bases
of M(G) is the set of edges of the spanning trees in G. A matroid that is isomorphic to
the cycle matroid of a graph is called graphic. Note that if M is a graphic matroid, then
there is a connected graph G such that M ∼= M(G).
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In this paper, we consider Rota’s basis conjecture for graphic matroids. The main
purpose of this paper is to ensure the existence of n disjoint transversal bases in Con-
jecture 1 for graphic matroids by assuming graphical conditions. In order to solve the
problem, we use graph-theoritical approaches that are completely different from previous
approaches explained in the previous paragraphs. Moreover, our approaches do not de-
pend on any other results. Let us introduce basic terms of graph theory. We only consider
finite graphs. Let Kn,m be a complete bipartite graph with the size of one partite set n
and the size of the other partite set m. For a positive integer n, K1,n is called a star and
the vertex of the star with degree n is called its center. Note that a center of K1,n is
unique for n ⩾ 2. We say that a subgraph T in a graph G is a spanning star in G if T is
a spanning tree and a star.

An edge-colored graph is a graph with an edge-coloring. For an edge-colored graph G,
C(G) denotes the set of colors used in G. An edge-colored graph is rainbow if no two
edges have the same color. The following conjecture is Rota’s basis conjecture for graphic
matroids.

Conjecture 2. Let G be an edge-colored connected multigraph with order n ⩾ 3. Sup-
pose that G has n − 1 colors and the graph induced by the edges colored with c is a
spanning tree for each color c. Then G has n−1 mutually edge-disjoint rainbow spanning
trees.

It seems that the study of Conjecture 2 has not well developed yet. In this situation,
we take new approaches to Conjecture 2 by considering constructions of edge-colored
graphs, and we solve Conjecture 2 when edges colored with c induce a star for each color
c. The approaches would play an important role to solve not only Conjecture 2 but also
Conjecture 1.

Theorem 3. Let G be an edge-colored connected multigraph with order n. Suppose that
G has n − 1 colors and the graph induced by the edges colored with c is a spanning star
for each color c. Then G has n− 1 mutually edge-disjoint rainbow spanning trees.

Technical terms for the proof of Theorem 3 are defined in Section 2.
We introduce topics related to Cojecture 2 and Theorem 3. Conjecture 2 is a problem

of an edge decomposition of an edge-colored graph into rainbow spanning trees. There are
some such decomposition problems in the case when an edge-colored graph is a complete
graph as follows.

Conjecture 4 (Brualdi and Hollingsworth [3]). Let m ⩾ 3 be an integer and let K2m be
an edge-colored complete graph. Suppose that the graph induced by the edges colored
with c is a perfect matching for each color c. Then the complete graph has m mutually
edge-disjoint rainbow spanning trees.

Conjecture 4 was solved in [3] replacing “m edge-disjoint” with “two edge-disjoint”.
Recently, Conjecture 4 was solved for sufficient large m in [11] (in fact [11] obtained a
stronger conclusion than Conjecture 4). Furthermore, there are other results about finding
some edge-disjoint rainbow spanning trees in an edge-colored graph: Kaneko, Kano, and
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Suzuki [14] showed that every properly edge-colored complete graph Kn has three edge-
disjoint rainbow spanning trees for every integer n ⩾ 6. Akbari and Alipour [1] showed
that every edge-colored complete graph Kn such that no color appears more than n/2
times has two edge-disjoint rainbow spanning trees for every integer n ⩾ 5. Carraher,
Hartke, and Horn [5] showed that every edge-colored complete graph Kn such that no
color appears more that n/2 times has at least ⌊n/(1000 log n)⌋ edge-disjoint rainbow
spanning trees for every integer n ⩾ 1000000.

As described, there are many studies of an edge decomposition of an edge-colored
complete graph however compared to them, the studies of edge-decomposition of edge-
colored non-complete graphs are not still developed. We hope that our result helps to
make progress on non-complete cases of such problems.

2 Proof

In this section, we prove Theorem 3. It is easy to see that Theorem 3 is true for n = 2.
Hence we may assume that a graph G has order at least three in the rest of the paper.

For two colors c and c′ in C(G), swapping c and c′ is the operation that the edges
colored with c (respectively c′) are recolored with c′ (respectively c).

2.1 Preliminaries

We prepare some definitions and results to prove Theorem 3.
For n ⩾ 1, let Gn be the set of edge-colored multigraphs with order n and having

n − 1 colors such that the graph induced by the edges colored with c is a spanning
star for each color c. For G ∈ Gn, we may assume that V (G) = {v0, v1, . . . , vn−1}, and
C(G) = {c1, c2, . . . , cn−1} in the rest of the paper. For v ∈ V (G) and c ∈ C(G), we say
that c belongs to v in G if v is a center of a monochromatic star whose edges are colored
by c.

We define two functions on the color set of G ∈ Gn as follows: For G ∈ Gn, the function
fG : {1, 2, . . . , n− 1} → {0, 1, . . . , n− 1} satisfies that ci ∈ C(G) belongs to vfG(i). For a
rainbow spanning subgraph T in G cotaining all colors in C(G), eT (c) denotes the edge in
T colored with c and we define the function gG,T : {1, 2, . . . , n−1} → {0, 1, . . . , n−1} such
that vgG,T (i) is incident with eT (ci) and ci does not belong to vgG,T (i). Note that vgG,T (i) is
just the endpoint of eT (ci) that is not the center of the star induced by the edges colored
with ci.

Example 5. Let G and T be the graph in the left of Fig. 1 and the rainbow spanning
tree in G in the right of Fig. 1, respectively. Let c1, c2, and c3 be colors in G and black
lines, dotted lines, and doublet lines represent edges of the color c1, the color c2, and the
color c3, respectively. Then fG(1) = fG(2) = fG(3) = 0 and gG,T (1) = 1, gG,T (2) = 2,
gG,T (3) = 3.

Definition 6. Let G ∈ Gn. We say that G is good if G satisfies the following two
conditions:
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v0 v1

v2v3

T

v0 v1

v2v3

Figure 1: A graph G in G4 and a rainbow spanning tree T in G.

(i) fG(i) ⩾ fG(j) for any 1 ⩽ i < j ⩽ n− 1.

(ii) There is an integer i with 0 ⩽ i ⩽ n− 2 such that there exist some colors belonging
to vj for 0 ⩽ j ⩽ i and no color belongs to vk for i+ 1 ⩽ k ⩽ n− 1.

Example 7. Let c1, c2, and c3 be colors in the graphs in Fig. 2 and black lines, dotted
lines, and doublet lines represent edges of the color c1, the color c2, and the color c3,
respectively. In Fig. 2, the left graph is good but the center and right ones are not good
since the center one does not satisfy the condition (i), and the right one does not satisfy
the condition (ii).

The following proposition is obtained from the definition of goodness and important
for the proof of Theorem 3.

Proposition 8. Let G be a good graph. For two integers j, k with 1 ⩽ k < j ⩽ n− 1, we
have fG(k)− fG(j) ⩽ j − k.

Proof. If fG(k) = fG(j), then the proposition holds. Hence we may assume that fG(k) >
fG(j) by the definition (i) of goodness. By the definition (ii) of goodness, for each i
with fG(j) < i < fG(k), there is a color belonging to vi and such a color is contained
in {ck+1, . . . , cj−1} by the definition (i) of goodness. Since |{i | fG(j) < i < fG(k)}| =
fG(k)− fG(j)− 1 and |{i | k < i < j}| = j − k− 1, we obtain fG(k)− fG(j) ⩽ j − k.

It is easy to obtain the following proposition from the definition of goodness. Hence
we omit the proof.

Proposition 9. Let G be a good graph. Then fG(n− 1) = 0.

Proposition 10. If Theorem 3 is true for every good graph in Gn, then Theorem 3 is true
for every graph in Gn.

Proof. Let G be an edge-colored graph in Gn. The following hold:

• A graph G′ obtained from G by swapping two colors has n−1 mutually edge-disjoint
rainbow spanning trees if and only if G has n − 1 mutually edge-disjoint rainbow
spanning trees.
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v0 v1

v2v3

v0 v1

v2v3

v0 v1

v2v3

Figure 2: The left graph is good and the center and right ones are not good where black
lines, dotted lines, doublet lines represent edges of the color c1, the color c2, and the color
c3, respectively.

• A graph G′ obtained from G by changing the indices of vertices has n− 1 mutually
edge-disjoint rainbow spanning trees if and only if G has n−1 mutually edge-disjoint
rainbow spanning trees.　

If G is not a good graph, then we can obtain a good graph by swapping some colors and
changing indices of vi. Hence the proposition holds.

2.2 Proof of the main theorem

We continue to use the same notations as in Subsection 2.1. We state our main theorem
again.

Theorem 11 (cf. Theorem 3). For G ∈ Gn, G has n− 1 mutually edge-disjoint rainbow
spanning trees.

Proof. By Proposition 10, we may assume that G is good. Since we never change a graph
G in the rest of the proof, for convenience, we will write gT (·) and f(·) instead of gG,T (·)
and fG(·), respectively. We define a function h : {1, 2, . . . , n− 1} × {1, 2, . . . , n− 1} → Z
as follows: For 1 ⩽ i ⩽ n− 1 and 1 ⩽ j ⩽ n− 1, if f(j) ⩾ j, then{

h(i, j) = i+ j − 2 if i+ j − 1 ⩽ f(j),

h(i, j) = i+ j − 1 (mod n) otherwise,
(1)

and if f(j) ⩽ j − 1, then{
h(i, j) = i+ j − 1 (mod n) if i+ j − n ⩽ f(j),

h(i, j) = i+ j − n otherwise.
(2)

Claim 2.1. Let j be an integer with 1 ⩽ j ⩽ n− 1. Then the following claims hold:

Case 1. f(j) ⩾ j

(i) If 1 ⩽ i ⩽ f(j)− j + 1, then j − 1 ⩽ h(i, j) ⩽ f(j)− 1 and h(i, j) = i+ j − 2.

(ii) If f(j)− j + 2 ⩽ i ⩽ n− j, then f(j) + 1 ⩽ h(i, j) ⩽ n− 1 and h(i, j) = i+ j − 1.

(iii) If n− j + 1 ⩽ i ⩽ n− 1, then 0 ⩽ h(i, j) ⩽ j − 2 and h(i, j) = i+ j − 1− n.
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Case 2. f(j) ⩽ j − 1

(i) If 1 ⩽ i ⩽ n− j, then j ⩽ h(i, j) ⩽ n− 1 and h(i, j) = i+ j − 1.

(ii) If n− j+1 ⩽ i ⩽ n− j+f(j), then 0 ⩽ h(i, j) ⩽ f(j)−1 and h(i, j) = i+ j−1−n.

(iii) If n− j+f(j)+1 ⩽ i ⩽ n−1, then f(j)+1 ⩽ h(i, j) ⩽ j−1 and h(i, j) = i+ j−n.

Moreover, h(i, j) ̸= h(i′, j) for any 1 ⩽ i ̸= i′ ⩽ n− 1 and for any 1 ⩽ j ⩽ n− 1.

Proof. Case 1–(i) In this case, f(j) ⩾ i+j−1 and so h(i, j) = i+j−2. It is easy to obtain
that j−1 ⩽ i+j−2 ⩽ f(j)−1 from 1 ⩽ i ⩽ f(j)−j+1. Hence j−1 ⩽ h(i, j) ⩽ f(j)−1.

Case 1–(ii) In this case, f(j) ⩽ i + j − 2 and so h(i, j) = i + j − 1 (mod n). We
obtain that f(j) + 1 ⩽ i + j − 1 ⩽ n − 1 from f(j) − j + 2 ⩽ i ⩽ n − j. Hence
f(j) + 1 ⩽ h(i, j) ⩽ n− 1 and h(i, j) = i+ j − 1.

Case 1–(iii) In this case, f(j) ⩽ n−1 ⩽ i+j−2 and so h(i, j) = i+j−1 (mod n). We
obtain that n ⩽ i+ j−1 ⩽ n+ j−2 from n− j+1 ⩽ i ⩽ n−1. Hence 0 ⩽ h(i, j) ⩽ j−2
and h(i, j) = i+ j − 1− n.

Case 2–(i) In this case, i+ j − n ⩽ 0 ⩽ f(j) and so h(i, j) = i+ j − 1 (mod n). We
obtain that j ⩽ i + j − 1 ⩽ n − 1 from 1 ⩽ i ⩽ n − j. Hence j ⩽ h(i, j) ⩽ n − 1 and
h(i, j) = i+ j − 1.

Case 2–(ii) In this case, f(j) ⩾ i + j − n and so h(i, j) = i + j − 1 (mod n). We
obtain that n ⩽ i + j − 1 ⩽ n + f(j) − 1 from n − j + 1 ⩽ i ⩽ n − j + f(j). Hence
0 ⩽ h(i, j) ⩽ f(j)− 1 and h(i, j) = i+ j − 1− n.

Case 2–(iii) In this case, f(j) ⩽ i+ j−1−n and so h(i, j) = i+ j−n. We obtain that
f(j)+1 ⩽ i+j−n ⩽ j−1 from n−j+f(j)+1 ⩽ i ⩽ n−1. Hence f(j)+1 ⩽ h(i, j) ⩽ j−1.

For fixed j, the ranges of h(i, j) of the cases in Case 1 (respectively Case 2) are
mutually disjoint and h(i, j) is a linear function of i for each case. Hence h is an injective
mapping of i from {1, 2, . . . , n− 1} into {0, 1, . . . , n− 1} \ {f(j)} for fixed j.

By Claim 2.1, we obtain f(j) ̸= h(i, j) for any 1 ⩽ i ⩽ n−1 and for any 1 ⩽ j ⩽ n−1
and the following claim holds.

Claim 2.2. For any two integers i and j with 1 ⩽ i ⩽ n − 1 and 1 ⩽ j ⩽ n − 1, there is
an edge vf(j)vh(i,j) in G.

Let Ti be the rainbow spanning subgraph ofG such that E(Ti) =
∪

1⩽j⩽n−1{vf(j)vh(i,j)}.
Then gTi

(j) = h(i, j). Since n ⩾ 2, it follows from Claim 2.1 that the following claim
holds.

Claim 2.3. gTi
(j) ∈ {i+j−1, i+j−2, i+j−n, i+j−1−n} and i+j−1−n ⩽ gTi

(j) ⩽ i+j−1.

Since h(i, j) ̸= h(i′, j) for any 1 ⩽ i ̸= i′ ⩽ n− 1 and for any 1 ⩽ j ⩽ n− 1 by the last
statement of Claim 2.1, the following claim holds.

Claim 2.4. The spanning subgraphs T1, T2, . . . , Tn−1 are mutually edge-disjoint.
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⋯ ⋯

v0 v1

i+ j − 1− n
Case 1–(iii)

i+ j − 2
Case 1–(i)

i+ j − 1
Case 1–(ii)

vj−1

vf(j)

f(j) ⩾ j

v0 v1
i+ j − 1− n
Case 2–(ii)

i+ j − n

Case 2–(iii)

i+ j − 1
Case 2–(i)

vf(j)

vj

f(j) ⩽ j − 1

Figure 3: For a fixed integer j, vertices surrounded by a closed curve is a range of a
formula of gTi

(j) and a corresponding case in Claim 2.1. For example, if f(j) ⩾ j, then
gTi(j) = i+ j − 2 if and only if j − 1 ⩽ gTi

(j) ⩽ f(j)− 1 (it corresponds to Case 1–(i) in
Claim 2.1).

We shall show that T1, T2, . . . , Tn−1 are spanning trees in G. Suppose that Ti is not
a spanning tree for some 1 ⩽ i ⩽ n − 1. Since |E(Ti)| = n − 1, Ti has a cycle C. For
1 ⩽ j ⩽ n − 1, we orient the edge of E(Ti) colored with cj from the center of the star
colored with cj to the other end-vertex, i.e. eTi

(cj) is assigned a direction from vf(j) to
vgTi (j). Fig. 3 illustrates the definition of gTi

(j) for a fixed integer j. In Fig. 3, we arrange
the vertices in a circle and write the number of gTi

(j) outside of the circles.

Claim 2.5. For every 1 ⩽ j ̸= k ⩽ n− 1, gTi
(j) ̸= gTi

(k) except for {j, k} = {1, n− 1}. If
gTi

(1) = gTi
(n− 1), then f(1) ̸= f(n− 1), f(1) ⩾ i, and gTi

(1) = gTi
(n− 1) = i− 1.

Proof. Suppose that gTi
(j) = gTi

(k) for some 1 ⩽ j ̸= k ⩽ n − 1. We may assume that
j > k. We divide the proof into two cases. By the definition (i) of goodness, we obtain
f(k) ⩾ f(j).

Subclaim 2.5.1. The following claims hold;

(i) gTi
(j) ∈ {i+ j − 2, i+ j − 1− n, i+ j − n}.

(ii) gTi
(k) ∈ {i+ k − 1, i+ k − 2, i+ k − n}.

Proof. (i) Suppose not. By Claim 2.3, gTi
(j) = i+ j−1. By Claim 2.3, gTi

(k) ⩽ i+k−1.
Since j > k, gTi

(j) = i+ j − 1 > i+ k − 1 ⩾ gTi
(k), which contradicts to gTi

(j) = gTi
(k).

Hence gTi
(j) ̸= i+ j − 1.

(ii) Suppose not. By Claim 2.3, gTi
(k) = i + k − n − 1. Since j > k, gTi

(k) =
i+ k − n− 1 < i+ j − n− 1 ⩽ gTi

(j), which contradicts to gTi
(j) = gTi

(k).
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Case 1. f(j) ⩾ j.
By the definition (i) of goodness and our assumptions, f(k) ⩾ f(j) ⩾ j > k and so

we obtain f(k) > k.
Suppose gTi

(j) = i+ j − 2. Then f(j) ⩾ i+ j − 1 by (1). Suppose gTi
(k) ̸= i+ k − 1.

By Claim 2.3, gTi
(k) ⩽ i + k − 2. Since j > k, gTi

(j) = i + j − 2 > i + k − 2 ⩾ gTi
(k),

which contradicts to gTi
(j) = gTi

(k). Hence gTi
(k) = i+ k− 1 and so f(k) ⩽ i+ k− 2 by

(1). Then we obtain f(k) ⩽ i+k−2 < i+j−1 ⩽ f(j), which contradicts to f(k) ⩾ f(j).
Hence we may assume gTi

(j) = i + j − 1 − n. If gTi
(j) ∈ {i + k − 2, i + k − 1}, then

it follows from gTi
(j) = gTi

(k) that j ⩾ k + n− 1, which contradicts to j ⩽ n− 1. Hence
we may assume gTi

(k) = i + k − n and so f(k) ⩽ i + k − n − 1 by (2). Since f(k) > k,
we obtain k < i+ k − n− 1 and so n+ 1 < i, which contradicts to i ⩽ n− 1. Hence the
proof of the case is complete.

Case 2. f(j) ⩽ j − 1.
Suppose gTi

(j) = i + j − n. Suppose further gTi
(k) = i + k − n. Since j > k,

gTi
(k) = i + k − n < i + j − n = gTi

(j), which contradicts to gTi
(j) = gTi

(k). Hence
gTi

(k) ∈ {i+ k− 1, i+ k− 2}. If gTi
(k) = i+ k− 1, then j = k+ n− 1, which contradicts

to j ⩽ n − 1. Hence gTi
(k) = i + k − 2. Then we obtain j = k + n − 2, which implies

k = 1 and j = n − 1 and gTi
(k) = gTi

(j) = i − 1. Moreover, by (1) and (2), we obtain
f(k) ⩾ i+ k − 1 = i, f(j) ⩽ i+ j − n− 1 = i− 2 and so f(k) ̸= f(j).

Suppose gTi
(j) = i + j − 1 − n. By (2), f(j) ⩾ i + j − n. If gTi

(k) is equal to either
i+ k − 1 or i+ k − 2, then j ⩾ k + n− 1, which contradicts to j ⩽ n− 1. Hence we may
assume gTi

(k) = i+ k− n and so f(k) ⩽ i+ k− n− 1 by (2). Then we obtain j = k + 1.
However, f(k) ⩽ i+k−n−1 = i+j−n−2 < f(j), which contradicts to f(k) ⩾ f(j).

We define the types (A1), (A2), (B1), and (B2) of cj ∈ C(G) according to the value
of gTi

(j).

• If gTi
(j) = i+ j − 1, then cj is of type (A1),

• if gTi
(j) = i+ j − n, then cj is of type (A2),

• if gTi
(j) = i+ j − 2, then cj is of type (B1), and

• if gTi
(j) = i+ j − 1− n, then cj is of type (B2).

We remark that cj is of type (A1) or (A2) if and only if f(j) < gTi
(j), similarly, cj is of

type (B1) or (B2) if and only if f(j) > gTi
(j).

Claim 2.6. The cycle C is a directed cycle.

Proof. Suppose that C is not a directed cycle. By Claim 2.5, C has a unique vertex
having indegree two in C and C contains vf(1)vi−1 and vf(n−1)vi−1. Since f(n − 1) = 0
by Proposition 9, i − 1 ⩾ 1 and so i ⩾ 2. Moreover, C consists of a vertex w whose
outdegree is two in C (possibly w ∈ {vf(1), vf(n−1)}) and two internally disjoint directed
paths P and Q from w to vi−1 in C. We may assume that P contains vf(n−1) and Q
contains vf(1). Write P = vf(pr)vf(pr−1) . . . vf(p1)vi−1 and Q = vf(qs)vf(qs−1) . . . vf(q1)vi−1,
where vf(pr) = vf(qs) = w, vf(p1) = vf(n−1), and vf(q1) = vf(1).
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Subclaim 2.6.1. The following claims hold;

(i) If p2 exists, then cp2 is of type (B2) and f(p2) ⩽ i− 2.

(ii) If q2 exists, then cq2 is of type (A1) and f(q2) ⩾ i.

Proof. (i) Since gTi
(p2) = f(p1) = f(n− 1) = 0, the color cp2 is of type (B1) or (B2). We

obtain that if cp2 is of type (B1), then i + p2 − 2 = 0 and so 1 ⩽ p2 = 2 − i and hence
i ⩽ 1, which contradicts to i ⩾ 2. Hence cp2 is of type (B2) and p2 = n + 1 − i. By
Proposition 8, we obtain

f(p2) = f(p2)− f(n− 1)

⩽ n− 1− p2

= n− 1− (n+ 1− i)

= i− 2.

(ii) Since gTi
(q2) = f(1) > f(q2), the color cq2 is of type (A1) or (A2). Since f(1) ⩾ i

by Claim 2.5, we obtain gTi
(q2) = f(1) ⩾ i. Hence cq2 is of type (A1). By Proposition 8,

we obtain

q2 − 1 ⩾ f(1)− f(q2)

= gTi
(q2)− f(q2)

= i+ q2 − 1− f(q2).

From the above inequality, f(q2) ⩾ i.

Subclaim 2.6.2. The following claims hold;

(i) If r ⩾ 3, then f(pr′) ⩽ f(p2) for 3 ⩽ r′ ⩽ r.

(ii) If s ⩾ 3, then f(qs′) ⩾ f(q2) for 3 ⩽ s′ ⩽ s.

Proof. (i) Suppose that f(pr′) > f(p2) for some 3 ⩽ r′ ⩽ r (see the left graph in Fig. 4).
By the definition (i) of goodness, pr′ < p2. We may assume that r′ is the smallest integer
in {3, . . . , r} satisfying f(pr′) > f(p2). By the choice of r′, we obtain f(pr′−1) ⩽ f(p2) <
f(pr′) and so f(pr′) > f(pr′−1) = gTi

(pr′). This implies that cpr′ is of type (B1) or
(B2). Suppose that cpr′ is of type (B2). Since pr′ < p2, it follows from Claim 2.3 that
gTi

(pr′) = i + pr′ − 1 − n < i + p2 − 1 − n ⩽ gTi
(p2) = 0 and so gTi

(pr′) < 0, which
contradicts to gTi

(pr′) ⩾ 0. Hence cpr′ is of type (B1) and we obtain

f(pr′−1)− f(n− 1) = gTi
(pr′)− gTi

(p2)

= i+ pr′ − 2− (i+ p2 − 1− n)

= pr′ − p2 + n− 1.

By Proposition 8, f(pr′−1) − f(n − 1) ⩽ n − 1 − pr′−1 and this together with the above
equation implies pr′ ⩽ p2 − pr′−1. Since f(pr′−1) ⩽ f(p2) and P is a directed path, we
obtain p2 ⩽ pr′−1 and so pr′ ⩽ 0, which contradicts to pr′ ⩾ 1.

the electronic journal of combinatorics 29(3) (2022), #P3.63 10



vf(p1)

vf(pr′ )vi−1

vf(p2)

vf(pr′−1)
vf(q1)

vf(p1)

vi−1

vf(qs′ )

vf(q1)

vf(q2)

vf(qs′−1)

Figure 4: Vertices are labeled with the same ordering as Fig. 3. In the left graph, the black
arrows are oriented edges contained in P , dotted arrows are oriented edges contained in
Q, and the black vertex is vf(pr′ ). In the right graph, the black arrows are oriented edges
contained in Q, dotted arrows are oriented edges contained in P , and the black vertex is
vf(qs′ ).

(ii) Suppose that f(qs′) < f(q2) for some 3 ⩽ s′ ⩽ s (see the right graph in Fig. 4).
By the definition (i) of goodness, q2 < qs′ . We may assume that s′ is the smallest integer
in {3, . . . , s} satisfying f(qs′) < f(q2). By the choice of s′, we obatin f(qs′−1) ⩾ f(q2) >
f(qs′) and so f(qs′) < f(qs′−1) = gTi

(qs′). This implies that cqs′ is of type (A1) or (A2).
Suppose that cqs′ is of type (A1). Since q2 < qs′ , f(qs′−1) = gTi

(qs′) = i + qs′ − 1 >
i+ q2 − 1 = gTi

(q2) = f(1) and so f(qs′−1) > f(1), which contradicts to the definition (i)
of goodness. Hence cqs′ is of type (A2) and we obtain

f(1)− f(qs′−1) = gTi
(q2)− gTi

(qs′)

= i+ q2 − 1− (i+ qs′ − n)

= q2 − qs′ + n− 1.

By Proposition 8, f(1) − f(qs′−1) ⩽ qs′−1 − 1 and this together with the above equation
implies q2 − qs′−1 + n ⩽ qs′ . Since f(qs′−1) ⩾ f(qs) and Q is a directed path, we obtain
q2 > qs′−1 and so qs′ ⩾ n, which contradicts to qs′ ⩽ n− 1.

By Subclaims 2.6.1 and 2.6.2, 0 ⩽ f(pr′) ⩽ i− 2 for 2 ⩽ r′ ⩽ r and i ⩽ f(qs′) ⩽ f(1)
for 2 ⩽ s′ ⩽ s. However, this contradicts to vf(pr) = vf(qs).
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By Claim 2.6, C is a directed cycle. Let j1, j2, . . . , jℓ be the integers such that C =
vf(j1)vf(j2) . . . vf(jℓ)vf(j1) i.e. gTi

(js) = f(js+1) for every 1 ⩽ s ⩽ ℓ, where ℓ = |E(C)| and
jℓ+1 = j1. We may assume that j1 is the largest integer in j1, j2, . . . , jℓ. By the definition
(i) of goodness and the choice of j1, f(j1) < f(jk) for any 2 ⩽ k ⩽ ℓ. Note that cj1 is of
type (A1) or (A2) and cjℓ is of type (B1) or (B2).

Claim 2.7. The length of C is at least three, i.e. ℓ ⩾ 3.

Proof. Suppose that ℓ = 2. Then cj2 is of type (B1) or (B2). We divide the proof into
two cases.

Case 1. cj1 is of type (A1).
Suppose that cj2 is of type (B1). Then f(j2)− f(j1) = gTi

(j1)− gTi
(j2) = i+ j1 − 1−

(i+ j2−2) = j1− j2+1, which contradicts Proposition 8. Thus, cj2 is of type (B2). Then
f(j2)− f(j1) = gTi

(j1)− gTi
(j2) = i+ j1 − 1− (i+ j2 − 1− n) = j1 − j2 + n > n, which

contradicts to f(j2) ⩽ n− 1.

Case 2. cj1 is of type (A2).
Suppose that cj2 is of type (B1). Then f(j2)− f(j1) = gTi

(j1)− gTi
(j2) = i+ j1 − n−

(i+j2−2) = j1−j2−n+2 ⩽ 0, which contradicts to f(j1) < f(j2). Suppose that cj2 is of
type (B2). Then f(j2)−f(j1) = gTi

(j1)−gTi
(j2) = i+j1−n−(i+j2−1−n) = j1−j2+1,

which contradicts Proposition 8.

Claim 2.8. For every 2 ⩽ k ⩽ ℓ, gTi
(j1) > gTi

(jk).

Proof. Suppose that gTi
(j1) < gTi

(jk) for some 2 ⩽ k ⩽ ℓ (see Fig. 5). We may assume
that k is the smallest integer in {2, 3, . . . , ℓ} satisfying gTi

(j1) < gTi
(jk). By the choice of

k, we obtain f(jk) = gTi
(jk−1) ⩽ gTi

(j1) < gTi
(jk) and so cjk is of type (A1) or (A2). By

the choice of j1, jk+1 ̸= j1. Suppose that cj1 is of type (A1). Since j1 > jk, it follows from
Claim 2.3 that we obtain gTi

(j1) = i + j1 − 1 > i + jk − 1 ⩾ gTi
(jk), which contradicts

to gTi
(j1) < gTi

(jk). Hence cj1 is of type (A2). Suppose that cjk is of type (A2). Since
j1 > jk, we obtain gTi

(jk) = i + jk − n < i + j1 − n = gTi
(j1), which contradicts to

gTi
(j1) < gTi

(jk). Hence cjk is of type (A1). Then we obtain

f(jk+1)− f(j2) = gTi
(jk)− gTi

(j1)

= i+ jk − 1− (i+ j1 − n)

= jk − j1 + n− 1. (3)

By Proposition 8, f(jk+1)− f(j2) ⩽ j2 − jk+1. This together with (3) impies

jk+1 + jk + n− 1 ⩽ j1 + j2.

If k = 2, then we obtain jk+1+n−1 ⩽ j1, which contradicts to j1 ⩽ n−1. Hence we may
assume k ⩾ 3. By the choice of k, we obtain f(jk) = gTi

(jk−1) ⩽ gTi
(j1) = f(j2). Since C

is a directed cycle and k ̸= 2, we obtain f(jk) ̸= f(j2) and so f(jk) < f(j2). This together
with the definition (i) of goodness implies that j2 ⩽ jk and we obtain jk+1 + n− 1 ⩽ j1,
which contradicts to j1 ⩽ n− 1.
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v1
vf(j1)

vgTi (j1) = vf(j2)

vf(jk)

vgTi (jk) = vf(jk+1)

Figure 5: Vertices are labeled with the same ordering as Fig. 3. In the graph, the black
arrows are the oriented edges contained in C and the black vertex is vgTi (jk).

Recall that cjℓ is of type (B1) or (B2). By Claim 2.8, cj2 is of type (B1) or (B2) and
by the definition (i) of goodness, we obtain j2 < jℓ. Note that gTi

(j2) = f(j3) > f(j1) =
gTi

(jℓ). Suppose that cj2 is of type (B2). Since j2 < jℓ, it follows from Claim 2.3 that
gTi

(j2) = i+ j2 − 1− n < i+ jℓ − 1− n ⩽ gTi
(jℓ), which contradicts to gTi

(j2) > gTi
(jℓ).

Hence cj2 is of type (B1). Suppose that cjℓ is of type (B1). Since j2 < jℓ, gTi
(jℓ) =

i+ jℓ− 2 > i+ j2− 2 = gTi
(j2), which contradicts to gTi

(j2) > gTi
(jℓ). Hence cjℓ is of type

(B2).
Suppose that cj1 is of type (A2). By Caim 2.8, we obtain gTi

(j1) > gTi
(j2) and

0 < gTi
(j1)− gTi

(j2) = i+ j1 − n− (i+ j2 − 2)

= j1 − j2 − n+ 2.

This implies j1 > j2 + n − 2, which contradicts to j1 ⩽ n − 1. Hence we have only to
consider the case when cj1 is of type (A1).

Then

f(j2)− f(j1) = gTi
(j1)− gTi

(jℓ)

= i+ j1 − 1− (i+ jℓ − 1− n)

= j1 − jℓ + n > n.

This contradicts to f(j2) ⩽ n− 1.
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