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Abstract

A graph admitting an automorphism with two orbits of the same length is called
a bicirculant. Recently, Jajcay et al. initiated the investigation of the edge-transitive
bicirculants with the property that at least one of the subgraphs induced by the
latter orbits is a cycle and the valence is at least 6 (Electron. J. Combin., 2019).
We show that the complement of the Petersen graph is the only such graph whose
order is twice an odd number.

Mathematics Subject Classifications: 05C25, 20B25

1 Introduction

All groups and graphs in this paper will be finite. A graph admitting an automorphism
with two orbits of the same length is called a bicirculant. The symmetry properties of
bicirculants have attracted considerable attention (see, e.g., [1, 4, 6, 14, 19, 20, 22, 27]).
Recently, Jajcay et al. [10] initiated the investigation of the edge-transitive bicirculants
with the property that at least one of the subgraphs induced by the two orbits of the
semiregular automorphism is a cycle and the valence is at least 6. Motivated by this, we
set the following notation.

Notation. For a positive integer d ! 3, denote by F(d) the family of regular graphs having
valence d and admitting an automorphism with two orbits of the same length such that
at least one of the subgraphs induced by these orbits is a cycle.
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The graphs in the family F(3) are the well studied generalised Petersen graphs, which
were introduced by Watkins [25] in 1969. The graphs in F(4) were defined under the
name Rose Window graphs by Wilson [26] and those in F(5) under the name Tabačjn
graphs by Arroyo et al. [2]. The question which of these graphs are edge-transitive has
been answered in [9, 13, 2]. Moreover, the automorphism groups of all (not only the
edge-transitive) graphs in the families F(d), d = 3, 4, 5, are also known (see [9, 13, 8, 15]).

Jajcay et al. [10] focused primarily on the family F(6), they called the members of
this family Nest graphs (see also [24]). Their main result was the classification of the
edge-transitive Nest graphs of girth 3, the task to classify all edge-transitive Nest graphs
was posed as [10, Problem 1.2]. Regarding the families F(d) with d > 6, the following
questions were raised (see [10, Question 1.1]):

1. For which d > 6 does the family F(d) contain at least one edge-transitive graph?

2. For which d > 6 does the family F(d) contain infinitely many edge-transitive graphs?

Jajcay et al. [10] also carried out an exhaustive computer search for edge-transitive
graphs of order at most 220 and belonging to F(6), and also for edge-transitive graphs of
order at most 100 and belonging to the families F(d) with 7 " d " 10. By the order of
a graph we mean the number of its vertices. They obtained 66 graphs in F(6) (see [10,
Table 1]) and none in the families F(d), 7 " d " 10. Among the 66 graphs, only one has
twice odd order, and this graph is the complement of the Petersen graph. Motivated by
these observations, in this paper we focus on the edge-transitive graphs in the families
F(d), d ! 6, whose order is twice an odd number.

Our main result is the following theorem.

Theorem 1. The family F(d) with d > 6 contains no edge-transitive graph of twice odd
order. Furthermore, the complement of the Petersen graph is the only edge-transitive
graph in family F(6) of twice odd order.

The paper is organised as follows. Section 2 contains the needed results from graph and
group theory. The next two sections are devoted to the preparation for the proof of our
main theorem. The main result in Section 3 is Lemma 11, which contains some necessary
conditions for a graph in F(6) to be edge-transitive. In Section 4 we analyse the blocks
of imprimitivity for a group of automorphisms acting transitively on the edges of a graph
from F(d). The core of our proof lies in this analysis, in which we rely on the classification
of primitive permutation groups containing a semiregular cyclic subgroup with two orbits
(see [21]), and the classification of arc-transitive circulants (see [12, 16, 17]). The proof
of Theorem 1 is presented in Section 5.

2 Preliminaries

2.1 Graph theory

For a graph Γ, let V (Γ), E(Γ), A(Γ) and Aut(Γ) denote its vertex set, edge set, arc set
and automorphism group, respectively. The set of vertices adjacent with a given vertex v
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is denoted by Γ(v).
Let G " Aut(Γ) and let v ∈ V (Γ). The stabiliser of v in G is denoted by Gv and the

orbit of v under G by vG. For a subset B ⊆ V (Γ), the set-wise stabiliser of B in G is
denoted by G{B}. If G is transitive on V (Γ), then Γ is said to be G-vertex-transitive, and
Γ is simply called vertex-transitive when it is Aut(Γ)-vertex-transitive. The (G-)edge- and
(G-)arc-transitive graphs are defined correspondingly.

Let Γ be a G-vertex-transitive graph. A subset B ⊆ V (Γ) is called a block for G (the
term block of imprimitivity is also commonly used) if Bg ∩ B = ∅ or Bg = B holds for
every g ∈ G. The block B is non-trivial if 1 < |B| < |V (Γ)|, and it is minimal if it is
non-trivial and no non-trivial block is contained properly in B. The block system induced
by B is the partition of V (Γ) consisting of the images Bg, where g runs over G. A block
system is called normal if it consists of the orbits of a normal subgroup of G.

Let π be an arbitrary partition of V (Γ). For a vertex v ∈ V (Γ), let π(v) denote the
class containing v. The quotient graph of Γ with respect to π, denoted by Γ/π, is defined
to have vertex set π, and edges {π(u), π(v)}, where π(u) ∕= π(v) and {u′, v′} ∈ E(Γ) for
some u′ ∈ π(u) and v′ ∈ π(v). If there exists a constant r such that

∀{u, v} ∈ E(Γ) : π(u) ∕= π(v) and |Γ(u) ∩ π(v)| = r,

then Γ is called an r-cover of Γ/π (our definition of an r-cover generalises the definition
given in [6], where π is also assumed to be a block system). The term cover will also
be used instead of 1-cover. In the special case when π is formed by the orbits of an
intransitive normal subgroup N ⊳Aut(Γ), Γ/N will also be written for Γ/π, and the term
normal r-cover (normal cover, respectively) will also be used instead of r-cover (cover,
respectively). The following properties are well-known.

Proposition 2. Let Γ be a connected G-vertex- and G-edge-transitive graph, let B be a
normal block system of G, and let K be the kernel of the action of G on B.

(1) Γ is a normal r-cover of Γ/B, where r = |Γ(v) ∩ B|, v is any vertex and B is any
block in B containing a neighbour of v.

(2) If Γ is a normal cover of Γ/B, then Γ and Γ/B have the same valence, the kernel K
is regular on every block in B, and Γ/B is G/K-edge-transitive.

Let S ⊂ H be a subset of a group H such that 1H /∈ S, where 1H denotes the identity
element of H. The Cayley digraph Cay(H,S) is defined to have vertex set H and arcs
(h, sh), where h ∈ H and s ∈ S. In the case when S is inverse-closed, we regard Cay(H,S)
as an undirected graph and use the term Cayley graph. It is a well-known observation
(see Sabidussi [23]) that, if Γ is any graph, v is any vertex, and H " Aut(Γ) is a regular
subgroup, then

Γ ∼= Cay(H,S), where S = {x ∈ H : vx ∈ Γ(v)}. (1)

The Cayley digraphs of cyclic groups are shortly called circulants. A recursive classi-
fication of finite arc-transitive circulants was obtained independently by Kovács [12] and
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Li [16]. The paper [12] also provides an explicit characterisation (see [12, Theorem 4]),
which was rediscovered recently by Li et al. [17]. The characterisation presented below
follows from the proof of [12, Theorem 4] or from [17, Theorem 1.1]. In order to state this
characterisation, some further definitions are introduced next.

For a finite group H, denote by H# the set of all non-identity elements of H, and by
HR the group of all right multiplications by the elements of H. If K " H, then let [H : K]
denote the set of right K-cosets in H. In the case when K is a block for Aut(Cay(H,S)),
the block system induced by K is equal to [H : K]. Now, if K ⊳ H also holds, then
the image of the action of HR on [H : K] is regular, in particular, Γ/[H : K] becomes a
Cayley graph of the group H/K.

A Cayley graph Cay(H,S) is called normal if HR ⊳ Aut(Cay(H,S)). Note that, if
Cay(H,S) is a normal arc-transitive Cayley graph, then S is equal to an A-orbit for some
subgroup A " Aut(H).

Theorem 3. ([12]) Let Γ = Cay(C, S) be a connected arc-transitive graph, where C is a
cyclic group of order n. Then one of the following holds.

(a) Γ is the complete graph.

(b) Γ is normal.

(c) There exists a subgroup 1 < D < C such that D is a block for Aut(Γ) and Γ/[C : D]
is a connected arc-transitive circulant. Furthermore, S is a union of D-cosets.

(d) There exist subgroups 1 < D,E < C such that both D and E are blocks for Aut(Γ),
C = D×E, |D| > 3 and gcd(|D|, |E|) = 1. Furthermore, S = D#R, where R ⊆ E#,
R is inverse-closed, Cay(E,R) is connected and arc-transitive.

Besides the Petersen graph, two further small arc-transitive graphs will appear later.
The Clebsch graph is obtained from the 4 dimensional cube graph Q4 by adding the edges
connecting antipodal points; the lattice graph L2(4) is defined to have vertices the ordered
pairs (i, j), 0 " i, j " 3, and two vertices are adjacent if and only if either their first
or second coordinates are the same. The graph L2(4) is depicted in Figure 1. It can be
easily checked that the mapping σ : (i, j) *→ (j + 1, i), where the addition is computed
modulo 4, is an automorphism of L2(4), σ has two orbits of the same length, and one of
the subgraphs induced by these orbits is a cycle. This shows that L2(4) is an example of
an edge-transitive graph from the family F(6).

2.2 Group theory

Our terminology and notation are standard and we follow the books [7, 11]. The socle of
a group G, denoted by soc(G), is the subgroup generated by the set of all minimal normal
subgroups (see [7, page 111]). The group G is called almost simple if soc(G) = T , where
T is a non-abelian simple group. In this case G is embedded in Aut(T ) so that its socle is
embedded via the inner automorphisms of T , and we also write T " G " Aut(T ) (see [7,
page 126]).

the electronic journal of combinatorics 29(3) (2022), #P3.48 4



(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 1: The lattice graph L2(4) and its subgraph induced by the orbit of the vertex
(1, 1) under the automorphism σ : (i, j) *→ (j + 1, i), which is shown with thick lines.

Our proof of Theorem 1 relies on the classification of primitive groups containing a
cyclic subgroup with two orbits due to Müller [21]. Here we need only the special case
when the cyclic subgroup is semiregular.

Theorem 4. ([21, Theorem 3.3]) Let G be a primitive permutation group of degree 2n
containing an element with two orbits of the same length. Then one of the following holds.

(1) (Affine action) G contains a regular normal subgroup isomorphic to Zm
2 , where m ∈

{2, 3, 4}.1

(2) (Almost simple action) G is an almost simple group and one of the following holds.

(a) n ! 3, soc(G) = A2n, and A2n " G " S2n, where G acts on 2n elements.

(b) n = 5, soc(G) = A5, and A5 " G " S5, where G acts on the set of 2-subsets of
{1, 2, 3, 4, 5}.

(c) n = (qd − 1)/2(q − 1), soc(G) = PSLd(q), and PSLd(q) " G " PΓLd(q) for
some odd prime power q and even number d ! 2 such that (d, q) ∕= (2, 3).

(d) n = 6 and soc(G) = G = M12.

(e) n = 11, soc(G) = M22, and M22 " G " Aut(M22).

(f) n = 12 and soc(G) = G = M24.

If G is a group in one of the families (a)-(f) above, then it follows from [7, Theo-
rem 4.3B] that soc(G) is the unique minimal normal subgroup of G. Therefore, we have
the following corollary.

Corollary 5. Let G be a primitive permutation group in one of the families (a)-(f) in
part (2) of Theorem 4, and let N ⊳G, N ∕= 1. Then N is also primitive.

1The group G is from a short list, but as this possibility will not occur later, we omit the details.
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For a transitive permutation group G " Sym(Ω), the subdegrees of G are the lengths
of the orbits of a point stabiliser Gω, ω ∈ Ω. Since G is transitive, it follows that the
subdegrees do not depend on the choice of ω (see [7, page 72]). The number of orbits of
Gω is called the rank of G. The actions of a group G on sets Ω and Ω′ are said to be
equivalent if there is a bijection ϕ : Ω → Ω′ such that

∀ω ∈ Ω, ∀g ∈ G : ϕ(ωg) = (ϕ(ω))g.

Now, suppose thatG is a group in one of the families (a)-(f) in part (2) of Theorem 4. If
G is in family (a), then the action is unique up to equivalence and G is clearly 2-transitive.
If G is in family (b), then the action is unique up to equivalence and the subdegrees are
1, 3 and 6. Let G be in family (c). The semiregular cyclic subgroup of G with two orbits
is contained in a regular cyclic group, called the Singer subgroup of PGLd(q) (see [11,
Chapter 2, Theorem 7.3]). In this case the action is unique up to equivalence if and only
if d = 2. If d ! 4, then the action of G is equivalent to either its natural action on the
set of points of the projective geometry PGd(q), or to its natural action on the set of
hyperplanes of PGd(q). In both actions G is 2-transitive. Finally, if G is in the families
(d)-(f), then the action is unique up to equivalence and G is 2-transitive (this can also be
read off from [5]). All this information is summarised in the lemma below.

Lemma 6. Let G be a primitive permutation group in one of the families (a)-(f) in part
(2) of Theorem 4.

(1) G is 2-transitive, unless G belongs to family (b). In the latter case the subdegrees are
1, 3 and 6.

(2) The action of G is unique up to equivalence, unless G is in family (c) and d ! 4. In
the latter case G admits two inequivalent faithful actions, namely, the natural actions
on the set of points and the set of hyperplanes, respectively, of the projective geometry
PGd(q).

The following result about G-arc-transitive bicirculants was proved by Devillers et
al. [6], but the proof works also for the edge-transitive bicirculants as well. In fact, it is
an easy consequence of Theorem 4.

Proposition 7. ([6, part (1) of Proposition 4.2]) Let Γ be a G-edge-transitive bicirculant
such that G is a primitive group. Then Γ is one of the following graphs:

(1) The complete graph, and G is one of the 2-transitive groups described in part (2) of
Theorem 4.

(2) The Petersen graph or its complement, and A5 " G " S5.

(3) The lattice graph L2(4) or its complement, and G is a rank 3 subgroup of AGL(4, 2).

(4) The Clebsch graph or its complement, and G is a rank 3 subgroup of AGL(4, 2).
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One can easily check which of the graphs in the families (1)–(4) above belongs also to
the family F(d) for some d ! 3.

Corollary 8. Let Γ ∈ F(d) be a G-edge-transitive graph for some d ! 3. If G is primitive
on V (Γ), then Γ is isomorphic to K6, or the Petersen graph, or its complement, or the
lattice graph L2(4).

3 A lemma on the graphs in the family F(6)

In this section we derive some necessary conditions for a graph in F(6) to be edge-
transitive. Our main tool is the coset graph construction defined next.

Let G be a group, let H be a core-free subgroup of G, and let S be a subset of G
such that S ∩ H = ∅ and HSH = HS−1H. By core-free we mean that H contains no
non-trivial normal subgroup of G. The coset graph Cos(G,H,HSH) is defined to have
vertex set [G : H] (the set of all right H-cosets in G), and edges {Hx,Hy}, where x, y ∈ G
and yx−1 ∈ HSH. The action of G on [G : H] defined by right multiplication is transitive
and as H is core-free in G, it is also faithful. The corresponding image of G is a group of
automorphisms of Cos(G,H,HSH). The lemma below is a folklore result.

Lemma 9. Let Γ be a both G-vertex- and G-edge-transitive graph. Write H for the
vertex-stabiliser Gv, and let g ∈ G such that {v, vg} is an edge. Then the mapping

ϕ : [G : H] → V (Γ), Hx *→ vx for x ∈ G

is an isomorphism between Cos(G,H,H{g, g−1}H) and Γ.

The valence of the graph Cos(G,H,H{g, g−1}H) is given below.

Lemma 10. ([18, Lemma 2.4]) The valence of the coset graph Cos(G,H,H{g, g−1}H) is
equal to |H|/|H ∩Hg| if HgH = Hg−1H, or 2|H|/|H ∩Hg| otherwise.

Suppose that Γ is a G-edge-transitive graph in F(6) such that G contains a semiregular
cyclic subgroup C with two orbits and the subgraph of Γ induced by at least one of the
C-orbits is a cycle. Note that Γ is then G-vertex-transitive as well. This can be seen by
observing that Γ admits an edge with end-vertices lying in distinct C-orbits and also an
edge with end-vertices from the same C-orbit. Now as G acts transitively on E(Γ), the
two C-orbits are merged into one G-orbit.

The main result of this section is the following lemma.

Lemma 11. Let Γ be a G-edge-transitive graph in F(6) of order 2n such that G contains
a semiregular cyclic subgroup C with two orbits, and the subgraph of Γ induced by at least
one of the C-orbits is a cycle. Furthermore, let H be a vertex-stabiliser in G. Then G
contains an element g of order n satisfying one of the following sets of conditions:

(1) HgH = Hg−1H and |H| = 6|H ∩Hg| = 1
2
|H〈g〉 ∩HgH|.
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(2) HgH ∕= Hg−1H and |H| = 3|H ∩Hg| = |H〈g〉 ∩HgH|.

Proof. There is a vertex v ∈ V (Γ) such that the subgraph of Γ induced by the orbit vC

is a cycle. Choose c ∈ C such that {v, vc} is an edge. Note that c has order n. As it has
been observed above, Γ is not only G-edge-, but also G-vertex-transitive. Thus Lemma 9
can be applied to G,K := Gv and c, and this yields

Γ ∼= Γ′ := Cos(G,K,K{c, c−1}K).

Note that, as both H and K are vertex-stabilisers, H = Kg′ for some g′ ∈ G.
Assume first that KcK = Kc−1K. Using the formula for the valence of Γ′ given in

Lemma 10, we find that
|K| = 6|K ∩Kc|. (2)

Let ϕ be the isomorphism between Γ′ and Γ defined in Lemma 9. Since KcK =
Kc−1K, it follows that Γ′ is G-arc-transitive. This means that Γ is also G-arc-transitive,
hence the stabiliser K is transitive on Γ(v). It follows that vC ∩ (vc)K = {vc, vc−1}.
Applying ϕ−1, we get

{Kci : 0 " i " n− 1} ∩ {Kck : k ∈ K} = {Kc,Kc−1}.

This shows that K〈c〉 ∩KcK = Kc ∪Kc−1 holds in G, and so

|K〈c〉 ∩KcK| = 2|K|. (3)

Using also the condition that H = Kg′ , (2) and (3) show that choosing g to be cg
′
, part

(1) of the lemma holds.
Now assume that KcK ∕= Kc−1K. Using again Lemma 10, we find that

|K| = 3|K ∩Kc|. (4)

In this case Γ′ is not arc-transitive. Thus neither is Γ, and Γ(v) splits into two K-
orbits of the same size. We claim that vc and vc

−1
belong to different K-orbits. For

otherwise, vc
−1

= vcg
′′
for some g′′ ∈ K, and this would imply that the automorphism cg′′

inverts the arc (vc
−1
, v), contradicting the assumption that Γ is not arc-transitive. Then

vC ∩ (vc)K = {vc}, and this yields K〈c〉 ∩KcK = Kc, and so

|K〈c〉 ∩KcK| = |K|. (5)

Then (4) and (5) show that part (2) of the lemma holds for g = cg
′
.

4 Blocks

Throughout this section we keep the following notation:
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Γ ∈ F(d) is a G-edge-transitive graph of oder 2n for some d ! 6.

C " G is a cyclic semiregular subgroup with two orbits and at least one of
the subgraphs induced by these orbits is a cycle.

B is a non-trivial block for G and B is the block system induced by B.

We say that B is cyclic when it is contained in one of the C-orbits, and non-cyclic
otherwise.

Recall that, C{B} is the set-wise stabiliser of B in C, and B is said to be normal when
there is a normal subgroup N of G such that B consists of the N -orbits.

Lemma 12. Suppose that B is cyclic such that |B| < n/2. Then the kernel of the action
of G on B is equal to C{B}. Furthermore, Γ is a normal cover of Γ/B and Γ/B ∈ F(d).

Proof. Denote by Vi the C-orbits, i = 1, 2, and by K the kernel of the action of G on B. It
is clear that any block in B is contained in either V1 or V2. Consider the blocks contained
in V1. These form a block system for C, and as C is regular on V1, it follows that these
blocks are the C{B1}-orbits, where B1 is any block contained in V1. The group C{B1} is
regular on B1, hence |C{B1}| = |B1| = |B|, from which it follows that C{B} = C{B1}. The
same applies to V2, and we conclude that B consists of the C{B}-orbits. Thus K ! C{B},
in particular, B is normal.

It can be assumed w.l.o.g. that the subgraph of Γ induced by V1 is a cycle. Now, fix
an edge {u, v} such that u, v ∈ V1. Since |B| < n/2, it follows that Γ(u) ∩ B′ = {v},
where B′ is the block containing v. By Proposition 2(1), Γ is a normal cover of Γ/B.
Then part (2) of the same proposition shows that K is regular on every block, and so we
have K = C{B}.

In order to see that Γ/B belongs to F(d), one only needs to observe that Γ/B has
valence d, C/C{B} is semiregular with two orbits, the induced cycle of Γ on V1 projects
to an induced cycle of Γ/B, and V1 projects to a C/C{B}-orbit.

Recall that, B is minimal if no non-trivial block for G is contained properly in B (see
the third paragraph in Section 2.1).

Lemma 13. Suppose that B is non-cyclic.

(1) B is a union of two C{B}-orbits. The group C acts transitively on B with kernel equal
to C{B}.

(2) If |B| > 2 and B is minimal, then B is normal.

Proof. (1): Since there are two C-orbits on V (Γ) of the same size and B has a point in
common with both, it follows that B splits into two C{B}-orbits, hence |B| = 2|C{B}|.

Let C̄ and K be the image and the kernel, respectively, of the action of C on B. It is
clear that C acts transitively on B. This shows that C̄ is regular, hence C{B} " K, and
we can write

|C|/|K| = |C̄| = |B| = 2n/|B| = |C|/|C{B}|.
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This shows that |K| = |C{B}| also holds, and so K = C{B}.
(2): For a subgroup X " G{B}, denote by X∗ the image of the action of X on B. Let

M be the kernel of the action of G on B. By the minimality of B, (G{B})
∗ is primitive.

On the other hand, as 1 < (C{B})
∗ " M∗ ⊳ (G{B})

∗, M∗ is transitive on B. This shows
that B is normal.

From now on we focus on the case when n is odd.

Lemma 14. If n is odd, then |B| > 2.

Proof. Assume on the contrary that |B| = 2. Write B = {u, v}. Then uC ∕= vC , and we
may assume that the subgraph of Γ induced by uC is a cycle. Let c ∈ C such that {u, uc}
is an edge. Clearly, c has order n.

There is a unique number 1 " k " (n−1)/2 such that vc
k
and vc

−k
are the neighbours

of v. Define the subset S ⊆ C as

S = {x ∈ C : {u, vx} ∈ E(Γ)}.

It is clear that |S| = d − 2. Also, 1C /∈ S, where 1C is the identity element of C. For
otherwise, {u, v} is an edge, but as it is also a block, Gu = Gv, and this contradicts the
fact that Γ is G-edge-transitive.

We say that two blocks in B are adjacent when these are adjacent as vertices of Γ/B.
It can be easily seen that any two subgraphs of Γ induced by the union of two adjacent
blocks are isomorphic to the same graph, say ∆. We claim that

∆ ∼= K2 ∪ 2K1 or 2K2.

Assume for the moment that there exists some s ∈ S such that s /∈ {c, c−1, ck, c−k}. Then
the subgraph induced by {u, v, us, vs} ∼= 2K2 or K2 ∪ 2K1 depending on whether s−1 ∈ S
or not, and the claim follows. Now, as |S| = d − 2 ! 4, we are left with the case when
k ∕= 1 and S = {c, c−1, ck, c−k}. In this case the subgraph induced by {u, uc, v, vc} is the
3-path (v, uc, u, vc). Since Γ is G-edge-transitive, there is some g ∈ G mapping {u, uc} to
{u, vc}. This implies that g maps the 3-path to itself, hence it induces an automorphism
of it. This is clearly impossible, and so the claim is proved.

Moreover, the argument above also shows that we have the following options:

(k = 1 and S = S−1) or (k ∕= 1 and S ∩ S−1 = ∅). (6)

Now, define the permutation t of V (Γ) as

t = (u v)(uc vc) · · · (ucn−1

vc
n−1

).

Observe that t commutes with any element of G. In particular, Ĉ := 〈c, t〉 is a regular
cyclic group.

Define next the graph Γ′ by

V (Γ′) = V (Γ) and E(Γ′) = {{u, uc}g : g ∈ 〈G, t〉}.
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Using the fact that tg = gt for any g ∈ G, we find that

E(Γ′) = {{u, uc}g : g ∈ G} ∪ {{v, vc}g : g ∈ G}.

This can be used to find the neighbourhood Γ′(u). If k = 1, then E(Γ′) = E(Γ), and so
Γ′(u) = Γ(u). If k ∕= 1, then E(Γ′) splits into two edge-orbits under G, and t swaps these
edge-orbits. This yields that Γ′(u) = Γ(u)∪Γ(ut)t = Γ(u)∪Γ(v)t. Now, according to (1),
Γ′ ∼= Cay(Ĉ, S ′ ∪ S ′′), where

S ′ = {c, c−1, ck, c−k} and S ′′ = tS ∪ tS−1.

It follows from (6) that the valence of Γ′ is 2 + |S| if k = 1, and 4 + 2|S| if k ∕= 1.
By definition, Γ′ is edge-transitive. It is well-known that it must be then arc-transitive

as well, and therefore, Γ′ belongs to one of the families (a)-(d) in Theorem 3. We consider
below all possibilities case by case.

Family (a): Γ′ is the complete graph. This contradicts the fact that Γ′ has even valence
and order.

Family (b): Γ′ is normal. Then S ′ ∪ S ′′ = cA for some subgroup A " Aut(Ĉ). This
contradicts the fact that c has order n, while ts has even order for each s ∈ S.

Family (c): There exists a subgroup 1 < D < Ĉ such that S ′ ∪ S ′′ is a union of
D-cosets. If |D| is odd, then D " C, and so S ′ would be a union of D-cosets. This is
clearly impossible. Hence, |D| is even. Then t ∈ D, implying tS ′ = S ′′ and tS ′′ = S ′, and
so |S ′| = |S ′′|. This contradicts the conditions that |S ′| = 2 and |S ′′| = |S| ! 4 if k = 1,
and |S ′| = 4 and |S ′′| = 2|S| ! 8 otherwise.

Family (d): There exist subgroups 1 < D,E < Ĉ such that Ĉ = D × E, |D| > 3,
gcd(|D|, |E|) = 1, and S ′ ∪ S ′′ = D#R for some subset R ⊆ E#.

Suppose first that |D| is odd. Then D " C. For every i ∈ {1,−1, k,−k}, |Dci ∩S ′| =
|D|−1 ! 4. It follows that |D| = 5, k ∕= 1, and S ′ ⊂ Dc. This shows that c2 ∈ D, whence
D = C. On the other hand, D is a block for Aut(Γ′), and so C is a block for G. This is
impossible.

Now suppose that |D| is even. Then t ∈ D and D can be written as D = 〈t〉 × D′.
Also, R ⊂ E " C. As S ′ ∪ S ′′ = D#R is inverse-closed, so is R, in particular, |R| is even.
Also, S ′ = D#R∩C = (D# ∩C)R = (D′)#R. Thus |S ′| = (|D′|− 1)|R|, and these imply
in turn that |R| = 2, |D′| = 3, |S ′| = 4, and |S ′′| = |D#R|− |S ′| = 6. We have seen above
that this is impossible.

Our last lemma is one of the crucial steps towards Theorem 1.

Lemma 15. If n > 5 is odd, then G admits a non-trivial cyclic block.

Proof. Since n > 5, it follows from Corollary 8 that G is imprimitive. Choose a minimal
non-trivial block B for G, denote by B the block system induced by B, and let K denote
the kernel of the action of G on B.

We are done if B is cyclic, hence we assume that B is non-cyclic. By Lemma 14,
|B| > 2. As before, for a subgroup X " G{B}, X

∗ denotes the image of the action of X
on B.
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Apply Lemma 13 to B. This shows that B is normal and (C{B})
∗ is a cyclic semiregular

subgroup of (G{B})
∗ with two orbits. As B is minimal, (G{B})

∗ is also primitive, and
therefore described by Theorem 4. The fact that n is odd shows that (G{B})

∗ is one of the
groups in the families (a)-(f) in part (2) of Theorem 4. Then K∗ ⊳ (G{B})

∗. Note that,
K∗ is non-trivial by Lemma 13(2) since |B| > 2. By Corollary 5, K∗ is also primitive.
We derive the lemma in three steps.

Step 1. K acts faithfully on every block in B.
Assume on the contrary that K acts unfaithfully on some block in B. Using the

connectedness of Γ, it is easy to show that there are adjacent blocks B′, B′′ ∈ B so that
the kernel of the action of K on B′ is non-trivial on B′′. Denote by N the latter kernel.
Now, as N ⊳ K and K is primitive on B′′, N is transitive on B′′. This implies that
any vertex in B′ is adjacent with any vertex in B′′. This contradicts the facts that the
subgraph of Γ induced by at least one of the C-orbits is a cycle and that |B| = 2ℓ for
some odd ℓ ! 3.

Fix a vertex u ∈ B.

Step 2. For each block B′ ∈ B there exists a unique vertex u′ ∈ B′ such that Ku = Ku′ .

Define the binary relation ∼ on B by letting B′ ∼ B′′ if and only if the action of K
on B′ and B′′, respectively, are equivalent. It is easy to show that ∼ is an equivalence
relation.

Let B′, B′′ ∈ B be such that B′ ∼ B′′ and let g ∈ G. We claim that (B′)g ∼ (B′′)g.
There is a bijective mapping ϕ from B′ to B′′ such that

∀v ∈ B′, ∀k ∈ K : ϕ(vk) = (ϕ(v))k.

Now, pick arbitrary w ∈ (B′)g and k ∈ K. Let γ1 be the bijection from B′ to (B′)g

defined by γ1(x) = xg for each x ∈ B′, and let γ2 be the bijection from B′′ to (B′′)g

defined by γ2(x) = xg for each x ∈ B′′. We finish the proof of the claim by showing
ψ(wk) = (ψ(w))k, where ψ is the bijection defined as the composition ψ = γ2 ◦ ϕ ◦ γ−1

1 .
Then w = vg for some v ∈ B′ and gk = k′g for some k′ ∈ K because K ⊳G. Thus

ψ(wk) = ψ(vk
′g) = (ϕ(vk

′
))g = ϕ(v)k

′g = (ϕ(v)g)k = (ψ(w))k.

Thus ∼ is G-invariant, and therefore, it is a G-congruence. Due to [7, Exercise 1.5.4],
the ∼-classes form a block system for G with respect to its action on B. Denote by m the
number of ∼-classes. As |B| is odd, so is m. On the other hand, by Lemma 6(2), K has
at most two inequivalent faithful actions, and we conclude that m = 1.

Let B′ ∈ B′ be an arbitrary block. Since K acts equivalently on B and B′, it follows
by [7, Lemma 1.6B] that there is an element u′ ∈ B′ such that Ku = Ku′ . By Lemma 6(1),
K is 2-transitive on B′, unless |B′| = 10, K = A5 or S5, and it has subdegrees 1, 3 and 6.
This shows that Kx ∕= Ku′ for any vertex x ∈ B′ such that x ∕= u′. On the other hand,
Ku = Ku′ and this finishes off the proof of Step 2.

Step 3. The set of all vertices u′ defined in Step 2 is a cyclic block.
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Denote by B̂ the set of all vertices u′ defined in Step 2. The cardinality |B̂| = |B|,
and as |B| is odd, we are done if we show that B̂ is a block. Equivalently, B̂g = B̂ or
B̂g ∩ B̂ = ∅ holds for each g ∈ G.

Suppose that vg ∈ B̂ for some v ∈ B̂ and g ∈ G. We have to show that B̂g = B̂.
In fact, it is enough to show that B̂g ⊆ B̂. Choose an arbitrary element w ∈ B̂. Then
Ku = Kv = Kvg = Kw. Using also the normality of K in G, we can write that

Kwg = K ∩Gwg = K ∩ (Gw)
g = (K ∩Gw)

g = (Kw)
g.

The same argument shows that Kvg = (Kv)
g, and thus Ku = Kvg = (Kv)

g = (Kw)
g =

Kwg . By the definition of the set B̂, wg ∈ B̂, and B̂g ⊆ B̂ follows.

5 Proof of Theorem 1

Assume on the contrary that there is an edge-transitive graph Γ ∈ F(d) of order 2n such
that d ! 6, n is odd and n > 5. Here we use the fact that there is no edge-transitive
graph in the class F(7) with n = 5 (see [10]). Choose n to be the smallest possible, i.e.,
whenever Γ′ ∈ F(d′) is edge-transitive of order 2n′ such that d′ ! 6, n′ < n and n′ is
odd, then Γ′ is isomorphic to the complement of the Petersen graph. In what follows, we
denote the latter graph by Pet.

For the sake of simplicity, write G for Aut(Γ). Let C " G be a cyclic semiregular
subgroup with two orbits such that at least one of the subgraphs induced by these orbits
is a cycle.

It follows from Corollary 8 that G is imprimitive. Choose a minimal non-trivial block
B for G, denote by B be the block system induced by B, and let K be the kernel of the
action of G on B.

Due to Lemma 15 we may assume that B is cyclic, i.e., any block in B is contained in
one of the two C-orbits.

As n is odd, |B| < n/2. By Lemma 12, C{B}⊳G. Let p be a prime divisor of |B|, and
let P " C{B} be the subgroup of order p. The group P is characteristic in C{B} and as
C{B}⊳G, it follows that P ⊳G. The minimality of B implies P = C{B} and thus |B| = p.
By Lemma 12, Γ is a normal cover of Γ/P and Γ/P ∈ F(d). Due to Proposition 2(2),
Γ/P is also G/P -edge-transitive. The order of Γ/P is 2n/p, hence the minimality of n
yields

n = 5p, Γ/P ∼= Pet, and G/P ∼= A5 or S5.

This also implies that d = 6 and Γ is arc-transitive. The last condition follows from the
fact that G/P acts transitively on the edges of Pet.

If p = 3 or 5, then Γ has order 30 or 50 and its valence is 6. It follows from [10,
Table 1] that no graph in F(6) of order 30 or 50 is edge-transitive. Thus p > 5, and
the Zassenhaus theorem (see [11, Chapter 1, Theorem 18.1]) shows that there exists a
subgroup L < G such that G = P ⋊ L, P ∼= Zp and L ∼= G/P ∼= A5 or S5.

Fix z to be a generator of P and let L be identified with A5 or S5. Note that every
element of G can be expressed as a product

gziλ, where 0 " i " p− 1 and λ ∈ L.
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Let N = CL(P ). Since NL(P ) = L, it follows that N ⊳L and L/N is isomorphic to a
subgroup of Aut(P ), in particular, it is a cyclic group. This implies that either N = L,
or L = S5 and N = A5. Consequently,

G =

!
P × L if N = L,

P ⋊ L if L = S5 and N = A5.
(7)

Furthermore, in the second case the action of L on P by conjugation is defined by

(zi)λ =

!
zi if λ is even,

z−i if λ is odd,
(8)

where 0 " i " p− 1 and λ ∈ L = S5.

Let H = NL(〈(1, 2, 3)〉). Then

H =

!"
(1, 2, 3), (1, 2)(4, 5)

# ∼= S3 if L ∼= A5,"
(1, 2, 3), (1, 2), (4, 5)

# ∼= S3 × Z2 if L ∼= S5.

We show next that H is a vertex-stabiliser in G. First, as Γ is a normal cover of Pet,
the vertex-stabilisers in G are isomorphic to the vertex-stabilisers in the image of G under
its action on the quotient graph Γ/P ∼= Pet. Therefore, these vertex-stabilisers in G are
isomorphic to H. It follows immediately from (7) and (8) that all the elements of order 3
in G are contained in L, and form a single conjugacy class within G. In particular, there
exists a vertex-stabiliser in G containing (1, 2, 3), let this vertex-stabiliser be denoted by
M . Clearly, M " NG(〈(1, 2, 3)〉). Using the identities in (7) and (8), we obtain that

NG(〈(1, 2, 3)〉) =
!
P ×H if N = L,

P ⋊H if L = S5 and N = A5.

If NG(〈(1, 2, 3)〉) = P ×H, then it is clear that H is the only subgroup of NG(〈(1, 2, 3)〉)
isomorphic to H, so M = H, i.e., H is indeed a vertex-stabiliser.

Let NG(〈(1, 2, 3)〉) = P ⋊ H and suppose that M ∕= H. Then ziλ ∈ M for some
1 " i " p− 1 and λ ∈ H. If λ is even, then p divides the order of ziλ, which is impossible
because M ∼= H. Thus λ must be odd.

Suppose that z1λ1 and z2λ2 are distinct elements in M for some z1, z2 ∈ P and
λ1,λ2 ∈ H. Now if λ1 = λ2, then z1 ∕= z2, hence z1z

−1
2 is an element of order p in M ,

which is impossible. Combining this with the equality |M | = |H|, it is not hard to show
that for any µ ∈ H, there is an element z′ ∈ P such that z′µ ∈ M . It follows from this
that (H ∩ A5) " M . If i = 2j, then (ziλ)z

j
= λ, and we have

M zj =
"
H ∩ A5, z

iλ
#zj

=
"
(H ∩ A5)

zj , (ziλ)z
j#

=
"
H ∩ A5,λ

#
= H.

If i = 2j + 1, then one finds in the same way that Mλz(p−1)/2−j
= H. In either case we

obtain that H is a vertex-stabiliser.
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The desired contradiction will arise after applying Lemma 11 toH. Due to this lemma,
there is an element g ∈ G of order 5p satisfying all conditions in either part (1) or (2) of
Lemma 11. W.l.o.g. we may write g = zσ, where σ is a 5-cycle in S5.

Case 1. N = L.

By (7), G = P ×L. Using the condition that zλ = λz for every λ ∈ H, it is easy to see
that g−1 /∈ HgH. ThusHgH ∕= Hg−1H, and so we have |H| = 3|H∩Hg| = |H〈g〉∩HgH|.
Since Hz = H, it follows that Hg = Hσ. Also,

H〈g〉 =
p−1$

i=0

ziH〈σ〉 and HgH = zHσH.

Thus the equalities |H| = 3|H ∩Hg| = |H〈g〉 ∩HgH| reduce to

|H| = 3|H ∩Hσ| = |H〈σ〉 ∩HσH|.

A computation with the computer package Magma [3] shows that no 5-cycle σ satisfies
these conditions.

Case 2. L = S5 and N = A5.

Let H1 = H ∩ A5. Note that H = H1 ∪ (4, 5)H1. By (7), G = K ⋊ L, and the action
of L on P by conjugation is described in (8).

Then HgH = Hg−1H if and only if g−1 ∈ HgH, and so g−1 = z−1σ−1 = λ1zσλ2 for
some λ1,λ2 ∈ H. It can be seen that both λ1 and λ2 must be odd. Then λi = (4, 5)λ′

i for
some λ′

i ∈ H1, where i = 1, 2, and it holds σ−1 = (4, 5)λ′
1σ(4, 5)λ

′
2. A computation with

Magma [3] verifies that such λ′
1 and λ′

2 exist for any 5-cycle σ. Thus HgH = Hg−1H,
and so we have |H| = 6|H ∩ Hg| = 1

2
|H〈g〉 ∩ HgH|. Then Hg = Hg

1 ∪ ((4, 5)H1)
g =

Hσ
1 ∪ z−2((4, 5)H1)

σ, hence the first equality reduces to

|H| = 6|H ∩Hσ
1 |. (9)

In order to rewrite the second equality, observe first that

H〈g〉 =
p−1$

i=0

Hzi〈σ〉 =
p−1$

i=0

%
ziH1〈σ〉 ∪ z−i(4, 5)H1〈σ〉

&
=

p−1$

i=0

ziH〈σ〉.

On the other hand, HgH = (H1 ∪ (4, 5)H1)zσH = zH1σH ∪ z−1(4, 5)H1σH. Thus
|H| = 1

2
|H〈g〉 ∩HgH| reduces to

|H〈σ〉 ∩H1σH|+ |H〈σ〉 ∩ (4, 5)H1σH| = 2|H|. (10)

A computation with Magma [3] shows that no 5-cycle σ satisfies both (9) and (10). This
completes the proof of Theorem 1.
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[8] E. Dobson, I. Kovács, and Š. Miklavič. The automorphism groups of non-edge-
transitive rose window graphs. Ars. Math. Contemp., 9:63–75, 2015.

[9] R. Frucht, J. E. Graver, and M. E. Watkins. The group of the generalized Petersen
graphs. Proc. Camb. Philos. Soc., 70:211–218, 1971.

[10] R. Jajcay, Š. Miklavič, P. Šparl, and G. Vasiljević. On certain edge-transitive bicir-
culants. Electron. J. Combin., 26(2):#P2.6, 2019.

[11] B. Huppert. Endliche Gruppen I. Springer-Verlag, Berlin-Heidelberg-New York,
1967.
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