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Abstract

We prove that a family of pseudo-Paley graphs of square order obtained from
unions of cyclotomic classes satisfies the Erdős-Ko-Rado (EKR) module property, in a
sense that the characteristic vector of each maximum clique is a linear combination of
characteristic vectors of canonical cliques. This extends the EKR-module property of
Paley graphs of square order and solves a problem proposed by Godsil and Meagher.
Different from previous works, which heavily rely on tools from number theory, our
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approach is purely combinatorial in nature. The main strategy is to view these
graphs as block graphs of orthogonal arrays, which is of independent interest.

Mathematics Subject Classifications: Primary 05C25, 05B15; Secondary 05C69,
05E30, 11T30, 51E15

1 Introduction

Throughout the paper, let p be an odd prime, q a power of p. Let Fq be the finite field
with q elements, F+

q be its additive group, and F∗q = Fq \ {0} be its multiplicative group.
Given an abelian group G and a connection set S ⊂ G \ {0} with S = −S, the Cayley

graph Cay(G,S) is the undirected graph whose vertices are elements of G, such that two
vertices g and h are adjacent if and only if g− h ∈ S. A clique in a graph X is a subset of
vertices of X such that any two of them are adjacent. For a graph X, the clique number
of X, denoted ω(X), is the size of a maximum clique of X.

Given any graph X for which we can describe its canonical cliques (that is, typically
cliques with large size and simple structure), we can ask whether X has any of the following
three related Erdős-Ko-Rado (EKR) properties; see Section 2.1 for more background and
connection to other EKR-type results.

• EKR property: the clique number of X equals the size of canonical cliques.

• EKR-module property: the characteristic vector of each maximum clique in X is a
Q-linear combination of characteristic vectors of canonical cliques in X.

• strict-EKR property: each maximum clique in X is a canonical clique.

Consider the Paley graph Pq2 which is the Cayley graph defined on the additive group
of Fq2 , with the connection set being the set of squares in F∗q2 . Clearly, the subfield Fq
forms a clique. Moreover, aFq + b also forms a clique for each a, b ∈ Fq2 where a is a
nonzero square. Such square translates of Fq are the canonical cliques [16, Section 5.9] in
this example. Blokhuis proved that these are precisely the maximum cliques in Pq2 .

Theorem 1 ([7]). Let q be an odd prime power. The Paley graph Pq2 satisfies the strict-
EKR property.

Godsil and Meagher [16, Section 5.9] call Theorem 1 the EKR theorem for Paley graphs.
Theorem 1 was first proved by Blokhuis [7]. Extensions and generalizations of Theorem 1
can be found in [13, 30, 25, 3, 4]. A Fourier analytic approach was recently proposed in
[34, Section 4.4]. While we have at least three different proofs of Theorem 1, all known
proofs relied heavily on advanced tools such as the polynomial method over finite fields.

Instead, in this paper, we will follow a purely combinatorial approach. Although we are
not able to give a simple proof of Theorem 1, we prove that a weaker version of Theorem 1
extends to a larger family of Cayley graphs, namely Peisert-type graphs; see Theorem 3.
Peisert-type graphs were first introduced explicitly in [4, Definition 1.1], but can be dated
back to [12]; see the discussion before Corollary 5. See Lemma 11 for examples of such
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graphs: Paley graphs, Peisert graphs, and their generalizations. The following definition
differs slightly from [4, Definition 1.1] which had a slightly stronger hypothesis m 6 q+1

2
.

Definition 2 (Peisert-type graphs). Let q be an odd prime power. Let S ⊂ F∗q2 be a
union of m 6 q cosets of F∗q in F∗q2 such that F∗q ⊂ S, that is,

S = c1F∗q ∪ c2F∗q ∪ · · · ∪ cmF∗q. (1)

Then the Cayley graph X = Cay(F+
q2 , S) is said to be a Peisert-type graph of type (m, q).

A clique in X is called a canonical clique if it is the image of the subfield Fq under an
affine transformation.

In this paper, we discuss the three different notions of EKR properties mentioned
above in the context of Peisert-type graphs. For any Peisert-type graph X of type (m, q),
we always assume m 6 q. Note that the subfield Fq forms a clique in X. In particular,
ω(X) > q. The hypothesis that m 6 q is crucial for the equality ω(X) = q to hold as can
be seen from the proof of Theorem 7. Hence, Peisert-type graphs have the EKR-property.
We refer to other known EKR-related properties of Peisert-type graphs in Section 2.2.

Blokhuis’ theorem already implies that Paley graphs of square order enjoy the EKR-
module property. In their book, Godsil and Meagher ask for an algebraic proof of this
statement [16, Problem 16.5.1], which motivates this work.

Our main result in the present paper answers this problem for a larger family of Cayley
graphs:

Theorem 3. Peisert-type graphs satisfy the EKR-module property.

The main ingredient in the proof is the following connection between Peisert-type
graphs and orthogonal arrays, which is of independent interest.

Theorem 4. Each Peisert-type graph of type (m, q) can be realized as the block graph of
an orthogonal array OA(m, q). Moreover, there is a one-to-one correspondence between
canonical cliques in the block graph and canonical cliques in a given Peisert-type graph.

We remark that the idea of viewing certain Cayley graphs geometrically has appeared
in the past; see for example [25, Construction 5.2.1] and [4, Section 4.2] for related
discussion. However, Paley graphs and block graphs of orthogonal arrays are often treated
independently; see for example [17, Chapter 10], [16, Chapter 5], and [1, Section 5]. The
present paper is the first to make an explicit connection between Peisert-type graphs and
orthogonal arrays: Theorem 4 allows us to treat them in a uniform manner. We mention
the following four additional applications below.

It is known that the block graph of an orthogonal array is strongly regular. Thus,
Theorem 4 also implies the same conclusion for the Peisert-type graphs. We remark
that Peisert-type graphs in fact form a subfamily of a well-known family of strongly
regular Cayley graphs defined on finite fields due to Brouwer, Wilson, and Xiang [12]:
the connection set is a union of semi-primitive cyclotomic classes of Fq2 . However, their
proof heavily relied on the fact we can compute semi-primitive Gauss sums explicitly using
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Stickelberger’s theorem and its variants; see [12, Proposition 1] and [3, Corollary 3.6]. We
will see that Theorem 4 can be proved using a purely combinatorial argument, thus giving
an elementary proof of the corollary below.

Corollary 5. A Peisert-type graph of type (m, q) is strongly regular with parameters
(q2,m(q − 1), (m − 1)(m − 2) + q − 2,m(m − 1)) and eigenvalues k = m(q − 1) (with
multiplicity 1), −m (with multiplicity q2 − 1 − k) and q − m (with multiplicity k). In
particular, a Peisert-type graph of type ( q+1

2
, q) is a pseudo-Paley graph.

Paley graphs are known to have a close connection with Paley’s construction on
Hadamard matrices [26]. Recently, Adm et al. [1] introduced the notion of weakly
Hadamard matrices and studied weakly Hadamard diagonalizable graphs (see Definition 19
and 20). In particular, they showed that Paley graphs of square order are weakly Hadamard
diagonalizable [1, Theorem 5.9]. The following theorem generalizes their result.

Theorem 6. Peisert-type graphs are weakly Hadamard diagonalizable.

Recall that the chromatic number of a graph X, denoted χ(X), is the smallest number
of colors needed to color the vertices of X so that no two adjacent vertices share the same
color. We remark that one can prove the original EKR theorem using the (fractional)
chromatic number of Kneser graphs [17, Theorem 7.8.1]. It is known that the chromatic
number is bounded below by the clique number, that is, ω(X) 6 χ(X). Broere, Döman,
and Ridley [10] showed that if d > 1 and d | (q + 1), then both the chromatic number and
the clique number of GP (q2, d) is q; the graph GP (q2, d) is the d-Paley graph of order q2,
whose precise definition can be found in Section 2.2 below. The converse of this result was
proved by Schneider and Silva [29, Theorem 4.7]; a stronger converse was proved recently
in [34]. The following theorem computes both the chromatic and the clique number of all
Peisert-type graphs, hence extending the first result since GP (q2, d) with d | (q + 1) is a
Peisert-type graph by Lemma 11.

Theorem 7. Let X be a Peisert-type graph of order q2. Then ω(X) = χ(X) = q. In
particular, X has the EKR property.

Theorem 4 also implies the following corollary on the strict-EKR property of a special
family of Peisert-type graphs, which includes Sziklai’s theorem on generalized Paley graphs
[30] in case of small edge density. Although the corollary is slightly weaker than [4,
Corollary 4.1], the proof of this weaker result is much simpler. In contrast, the proof of the
stronger result [4, Corollary 4.1] relied on the characterization of the number of directions
determined by the graph of a function [5] over finite fields, which was built on [28, 9, 8].

Corollary 8. If q > (m − 1)2, then all Peisert-type graphs of type (m, q) satisfy the
strict-EKR property. In particular, if d > q+1√

q+1
and d | (q + 1), then the d-Paley graph

GP (q2, d) has the strict-EKR property.

It is natural to examine when a Peisert-type graph X enjoys the strict-EKR property.
While we do not have a general answer to this problem, we exhibit an infinite family
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of Peisert-type graphs which fail to satisfy the strict-EKR property in Section 5. The
following theorem shows that the condition q > (m− 1)2 in Corollary 8 is sharp when q is
a square.

Theorem 9. Let q be an odd prime power which is not a prime. Then there exists a
Peisert-type graph X of order q2 such that X fails to have the strict-EKR property. In
particular, if q is a square, then there exists a Peisert-type graph X of type (

√
q + 1, q)

which fails to have the strict-EKR property.

Outline of the paper

In Section 2 we include more background and provide further motivation for our work.
In Section 3 we prove Theorem 4 and deduce Corollary 5, Theorem 6, Theorem 7, and
Corollary 8. We explore the EKR-module property of Peisert-type graphs and prove
Theorem 3 in Section 4. Section 5 discusses the strict-EKR property of Peisert-type graphs
and contains the proof of Theorem 9 and an explicit counterexample GP ∗(81, 10). Finally,
Section 6 considers two open problems related to the present work.

2 Preliminaries

The structure of this background section is as follows. We briefly overview EKR-type
results in 2.1, Peisert-type graphs in 2.2, strongly regular graphs in 2.3, orthogonal arrays
in 2.4, and weakly Hadamard matrices in 2.5.

2.1 EKR-type results

The classical Erdős-Ko-Rado theorem [15] classified maximum intersecting families of
k-element subsets of {1, 2, . . . , n} when n > 2k + 1. Since then, EKR-type results refer to
understanding maximum intersecting families in a broader context, and more generally,
classifying extremal configurations in other domains. The book [16] by Godsil and Meagher
provides an excellent survey on the modern algebraic approaches to proving EKR-type
results for permutations, set systems, orthogonal arrays, and so on.

The EKR-type problems related to a transitive permutation group G can be refor-
mulated in terms of the EKR properties of cocliques of the derangement graph Γ(G), or
equivalently, the cliques of the complement. Once we define canonical cocliques (or cliques),
we can discuss the EKR properties of G after identifying G with Γ(G). The EKR-module
property was first formally defined by Meagher [21] in this context: a permutation group
G naturally acts on the vector space W spanned by the characteristic vectors of canonical
cliques, which makes W a G-module.

Each finite 2-transitive group enjoys the EKR property [24]. Meagher and Sin [23]
recently showed that all finite 2-transitive groups have the EKR-module property. However,
the strict-EKR property does not hold for permutations groups in general; recently, Meagher
and Razafimahatratra [22] have shown that the general linear group GL(2, q) is such a
counterexample. We remark that our results are of similar flavor, although in our context
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of Peisert-type graphs, the corresponding vector space W does not carry a natural module
structure. However, we shall remark that the definition of the EKR-module property (even
for permutation groups) does not need the additional G-module structure.

In general, the module method (see [2, Section 4]) refers to the strategy of proving that
a graph Γ satisfies the strict-EKR property in two steps:

• show that Γ satisfies the EKR-module property

• show that the EKR-module property implies the strict-EKR property

As an example of the module method, [2, Theorem 4.5] provides a sufficient condition for
the second step above for 2-transitive permutation groups.

The EKR-type problems discussed in this paper are about cliques of Peisert-type
graphs. The algebraic graph theory approach to prove Theorem 1 suggested by [16, Section
16.5] is precisely the module method. In the present paper, we confirm the first step for
all Peisert-type graphs in Theorem 3. We show that the second step fails for an infinite
family of Peisert-type graphs, and we discuss concrete counterexamples in Section 5. We
remark that in [1, Lemma 5.6], a proof of the EKR-module property of Paley graphs of
square order is given without using Theorem 1.

2.2 Peisert-type graphs

Let d > 1 be a positive integer. If q ≡ 1 (mod 2d), the d-Paley graph on Fq [14, 20],
denoted GP (q, d), is the Cayley graph Cay(F+

q , (F∗q)d), where (F∗q)d is the set of d-th powers
in F∗q. Sziklai [30] showed that if d > 1 and d | (q + 1), then GP (q2, d) has the strict-EKR
property. Note that a Peisert-type graph is simply the union of copies of generalized
Paley graphs GP (q2, q + 1) = Cay(F+

q2 ,F
∗
q): while each copy obviously has the strict-EKR

property, it is not clear whether their union would preserve this property.
Peisert [27] introduced a new family of graphs to classify self-complementary symmetric

graphs, and this family of graphs are now known as Peisert graphs. The Peisert graph of
order q = pr, where p is a prime such that p ≡ 3 (mod 4) and r is even, denoted P ∗q , is the
Cayley graph Cay(F+

q ,Mq) with Mq = {gj : j ≡ 0, 1 (mod 4)}, where g is a primitive root
of the field Fq. Mullin [25, Chapter 8] conjectured that if q ≡ 3 (mod 4), then the Peisert
graph with order q2 has the strict-EKR property. In [4, Theorem 1.4], we confirmed her
conjecture when q = pn and p > 8.2n2.

Mullin introduced the notion of generalized Peisert graphs; see [25, Section 5.3].

Definition 10. Let d be a positive even integer, and q a prime power such that q ≡ 1
(mod 2d). The d-th power Peisert graph of order q, denoted GP ∗(q, d), is the Cayley graph
Cay(F+

q ,Mq,d), where

Mq,d =

{
gdk+j : 0 6 j 6

d

2
− 1, k ∈ Z

}
,

and g is a primitive root of Fq.
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The following lemma further motivates the definition of Peisert-type graphs (Defini-
tion 2) by showing that they unify the previously studied graphs.

Lemma 11 ([4, Lemma 2.10]). The following families of Cayley graphs are Peisert-type
graphs:

• Paley graphs of square order;

• Peisert graph with order q2, where q ≡ 3 (mod 4);

• Generalized Paley graphs GP (q2, d), where d | (q + 1) and d > 1;

• Generalized Peisert graphs GP ∗(q2, d), where d | (q + 1) and d is even.

In [4, Theorem 1.2], we showed that each maximum clique in a Peisert-type graph of
type (m, q) with m 6 q+1

2
is an affine Fp-subspace. In particular, every Peisert-type graph

of type (m, p) with m 6 p+1
2

has the strict-EKR property. To deduce that maximum
cliques of a general Peisert-type graph X have the subfield structure, that is, X has the
strict-EKR property, we borrowed character sum estimates over subspaces. We found that
the strict-EKR property holds under some conditions on the connection set of X and the
characteristic p [4, Theorem 1.3].

We expected that directly extending Blokhuis’ and Sziklai’s proofs to a general Peisert-
type graph is difficult [4, Remark 2.16]. In fact, we speculated that there might be an
infinite family of Peisert-type graphs which fail to have the strict-EKR property and gave
a few counterexamples of small size in [4, Example 2.18]. We confirm our prediction in
Theorem 9.

2.3 Strongly regular graphs

We first recall the definition of strongly regular graphs.

Definition 12 (Strongly regular graph). If X is a k-regular graph with n vertices, such
that any two adjacent vertices have λ common neighbors, and any two distinct non-adjacent
vertices have µ common neighbors, then X is a strongly regular graph with parameters
(n, k, λ, µ).

It is well-known that Paley graphs are strongly regular; see for example [16, Theorem
5.8.1].

Theorem 13. If q ≡ 1 (mod 4), then the Paley graph Pq is a strongly regular graph with
parameters (q, q−1

2
, q−5

4
, q−1

4
). Moreover, the eigenvalues of Pq are q−1

2
(with multiplicity

1), 1
2
(−1±√q) (each with multiplicity q−1

2
).

Weng, Qiu, Wang, and Xiang [33] introduced the definition of pseudo-Paley graphs.

Definition 14 (Pseudo-Paley graph). A pseudo-Paley graph is a strongly regular graph
with the same parameters (n, k, λ, µ) as the Paley graph Pq for some q.
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A clique C in a regular graph is called regular if every vertex that is not in C has the
same number of neighbors in C. The following lemma gives an upper bound on the clique
number of a strongly regular graph, and shows that a maximum clique whose size agrees
with the given upper bound must be regular; see for example [11, Proposition 1.3.2].

Lemma 15 (Delsarte-Hoffman bound). Suppose that X is a strongly regular graph with
parameters (n, k, λ, µ) and smallest eigenvalue −m. Let C be a clique in X. Then
|C| 6 1 + k

m
, with equality if and only if every vertex that is not in C has the same number

of neighbors (namely µ
m

) in C.

2.4 Block graphs of orthogonal arrays and their EKR properties

In this subsection, we recall basic terminology about orthogonal arrays and revisit the
related EKR properties.

An orthogonal array OA(m,n) is an m× n2 array with entries from an n-element set
T with the property that the columns of any 2 × n2 subarray consist of all n2 possible
pairs. The block graph of an orthogonal array OA(m,n), denoted XOA(m,n), is defined to
be the graph whose vertices are columns of the orthogonal array, where two columns are
adjacent if there exists a row in which they have the same entry. Let Sr,i be the set of
columns of OA(m,n) that have the entry i in row r. These sets are cliques, and since each
element of the n-element set T occurs exactly n times in each row, the size of Sr,i is n for
all i and r. These cliques are called the canonical cliques in the block graph XOA(m,n).
A simple combinatorial argument shows that the block graph of an orthogonal array is
strongly regular.

Theorem 16 ([16, Theorem 5.5.1]). If OA(m,n) is an orthogonal array where m < n+ 1,
then its block graph XOA(m,n) is strongly regular with parameters

(n2,m(n− 1), (m− 1)(m− 2) + n− 2,m(m− 1));

the eigenvalues of XOA(m,n) are m(n− 1), n−m, and −m with multiplicities 1, m(n− 1),
and (n− 1)(n+ 1−m), respectively.

Combining Lemma 15 and Theorem 16, we see that the clique number of XOA(m,n) is

at most 1 + m(n−1)
m

= n, which is equal to the size of the canonical clique. Thus, block
graphs of orthogonal arrays have the EKR-property. It is known that when n > (m− 1)2,
the block graph of OA(m,n) has the strict-EKR property; see [16, Corollary 5.5.3]. We
include a short proof for the sake of completeness, especially because it will lead to a
simple and self-contained proof of Corollary 8.

Theorem 17. Let X = XOA(m,n) be the block graph of an orthogonal array OA(m,n) with
n > (m− 1)2. Then X has the strict-EKR property: the only maximum cliques in X are
the columns that have entry i in row r for some 1 6 i 6 n and 1 6 r 6 m.

Proof. The case m = 1 is trivial. Next we assume m > 2. Clearly, the set of columns that
have entry i in row r forms a clique of size n. Next, we consider a clique C that is not
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of this form, and we will show |C| 6 (m− 1)2 < n. Then we can conclude that the only
cliques of size n in X are canonical.

Let C be a non-canonical clique in the block graph of an orthogonal array OA(m,n).
We can relabel the entries to be {0, 1, . . . , n − 1}. By translating entries of each row
modulo n, we may assume, without loss of generality, that the column c0 with all zeros is
in C. Then other columns in C must each have exactly one zero entry. Let Di be the set
of columns in C \ {c0} having a zero entry in the i-th row. Without loss of generality, we
assume that |D1| 6 |D2| 6 · · · 6 |Dm|. By assumption, we have 0 < |Dm−1| 6 |Dm|. Let
c be a column in Dm−1, then for each 1 6 j 6 m− 2, there is at most one column in Dm

that shares the same entry with c in row j. And if j ∈ {m− 1,m}, there is no column in
Dm that shares the same entry with c in row j. Therefore, |Dm| 6 m− 2. It follows that

|C| 6 1 +
m∑
j=1

|Dj| 6 1 +m|Dm| 6 (m− 1)2 < n.

When n 6 (m − 1)2, Theorem 17 no longer holds [16, Section 5.5]. However, it is
known that a weaker statement is true, namely: the block graph XOA(m,n) always satisfies
the EKR-module property (for example, this follows from [16, Theorem 5.5.5]). We will
give a detailed explanation for this fact in Section 4, and use it to establish our main
result.

An orthogonal array OA(m,n) is called extendible if it occurs as the first m rows of an
OA(m+ 1, n). The following theorem characterizes extendible orthogonal arrays.

Theorem 18 ([17, Theorem 10.4.5]). An orthogonal array OA(m,n) is extendible if and
only if its block graph XOA(m,n) has chromatic number n.

2.5 Weakly Hadamard diagonalizable graphs

Recall that a Hadamard matrix is a square matrix with entries 1 or −1 such that any two
columns are mutually orthogonal. There are several open problems about the structure of
the Hadamard matrices. One of them is determining the existence of a Hadamard matrix
of a particular order. One classical construction dates back to Paley [26] using quadratic
residues over a finite field, which eventually motivated the definition of the Paley graph;
see [19] for a historical discussion.

A graph Γ is called Hadamard diagonalizable if the Laplacian of Γ can be diagonalized
by a Hadamard matrix [6]. Recently, Adm et al. [1] studied a larger class of graphs which
contains some families of strongly regular graphs. In order to present this result, they
introduced a broader class of matrices which include Hadamard matrices.

Definition 19 ([1]). A square matrix is called weakly Hadamard if it satisfies the following
two conditions:

• The entries of the matrix are from the set {−1, 0, 1}.

• There is an ordering of the columns of the matrix so that the non-consecutive columns
are orthogonal.
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Definition 20 ([1, Definiton 1.1]). A graph is weakly Hadamard diagonalizable if its
Laplacian matrix can be diagonalized with a weakly Hadamard matrix.

A large class of block graphs of orthogonal arrays satisfy this definition according to
the following theorem.

Theorem 21 ([1, Theorem 5.19]). Let O = OA(m,n) be an orthogonal array that can
be extended to an orthogonal array with n + 1 rows. Then its block graph XO is weakly
Hadamard diagonalizable.

3 Peisert-type graphs as block graphs of orthogonal arrays

In this section, we first construct an orthogonal array Oq from the affine Galois plane
AG(2, q) and then realize every Peisert-type graph as the block graph of some subarray of
Oq, thereby proving Theorem 4.

For any odd prime power q, the field Fq2 can be naturally viewed as the affine Galois
plane AG(2, q) ∼= Fq × Fq. Indeed, once α ∈ Fq2 \ Fq is picked, we have a bijective map
Fq ⊕ αFq → Fq2 sending (x, y) to x+ αy.

Construction. We construct Oq := OA(q+1, q) as the point-line incidence orthogonal
array of the affine Galois plane AG(2, q). The q+1 rows of the orthogonal array are indexed
by the slopes (directions) k of the lines; note that either k belongs to Fq or represents
the vertical direction. The q2 columns are indexed by the points (x, y) ∈ AG(2, q). If
k ∈ Fq, we define the entry at the row indexed by the slope k and column indexed by
(x, y) as the y-intercept of the line with slope k passing through the point (x, y). More
precisely, this entry has the value y − kx ∈ Fq. If k =∞ is the vertical direction, then the
entry is simply the x-coordinate of the given column (x, y). We claim that this defines an
orthogonal array: to see this, pick two rows indexed by k1 and k2, and c1, c2 ∈ Fq. We
need to show that there is a unique column indexed by (x, y), such that the corresponding
entries in k1-th and k2-th row are c1 and c2, respectively. There are 2 cases to consider:

• If k1, k2 ∈ Fq, then there is a unique point (x, y) ∈ AG(2, q) such that y = k1x+ c1
and y = k2x+ c2.

• If k1 ∈ Fq, k2 = ∞, then there is a unique point (x, y) ∈ AG(2, q) such that
y = k1x+ c1 and x = c2.

The two statements above can be verified algebraically or geometrically using the fact that
two non-parallel lines in AG(2, q) intersect at a point.

A subarray O′ of an orthogonal array O consists of a subset of rows in O with the same
columns. By the definition of an orthogonal array, it is clear that every subarray is still an
orthogonal array. We realize each Peisert-type graph as the block graph of a subarray of
Oq constructed above to prove Theorem 4.

Proof of Theorem 4. Given a Peisert-type graph X = Cay(F+
q2 , S) with S = c1F∗q ∪ · · · ∪

cmF∗q, we first pick α ∈ Fq2 \ Fq so that α /∈ S. After identifying Fq2 = Fq ⊕ αFq with

the electronic journal of combinatorics 29(4) (2022), #P4.33 10



AG(2, q), we consider the orthogonal array Oq. After expressing ci = ui + viα with
ui, vi ∈ Fq, and scaling by u−1i , we can assume that ui = 1 (note that ui 6= 0 because
α /∈ S.) Pick the rows indexed by vi ∈ Fq to form the subarray O′ of Oq.

We claim that X is isomorphic to the block graph XO′ . Consider the function
f : V (XO′)→ V (X) on the vertex sets defined by sending (x, y) ∈ AG(2, q) to x+yα ∈ Fq2 .
It is clear that f is bijective. Recall that x1 + y1α and x2 + y2α are adjacent in X if
(y2− y1)α+ (x2− x1) ∈ ciF∗q for some 1 6 i 6 m. Since α 6∈ S, we must have x1 6= x2, and

so we can rewrite the condition as y2−y1
x2−x1α+ 1 ∈ ciF∗q. The resulting direction of the line

joining (x1, y1) and (x2, y2) is y2−y1
x2−x1 = vi. This completes the proof of the first assertion.

If C is a canonical clique in X, then C is an affine transformation of the subfield
Fq ⊂ Fq2 ; more precisely, C = ciFq + b for some 1 6 i 6 m and b ∈ Fq2 . After writing
b = c+dα for c, d ∈ Fq, we have C = {(1+viα)t+c+dα : t ∈ Fq}, which corresponds to the
line in AG(2, q) parametrized by (t+c, vit+d). The equation of the line is y−d = vi(x−c),
or equivalently, y = vix+ (d− cvi). While the choice of b is not unique, it always gives
rise to the same line.

On the other hand, a canonical clique in the block graph XO′ consists of a set of
vertices (columns in O′) sharing the same entry along a given row (a slope), that is, a set
of vertices lying on a line y = vix+ δ for some 1 6 i 6 m and δ ∈ Fq. This corresponds to
the maximum clique C = ciFq + δα in X. Thus, there is an explicit equivalence between
canonical cliques in X and canonical cliques in the block graph XO′ given by sending
ciFq + b with b = c+ dα to the set of columns containing the entry d− cvi along the row
indexed by the slope vi.

We now mention a few consequences of Theorem 4. First, the spectrum of a Peisert-type
graph can be quickly computed using the known spectrum of the corresponding block
graph.

Proof of Corollary 5. This follows from Theorem 4 and Theorem 16.

Next, we show that Peisert-type graphs are weakly Hadamard diagonalizable.

Proof of Theorem 6. Recall that in the proof of Theorem 4, we showed that each Peisert-
type graph is isomorphic to the block graph of a subarray of Oq, where Oq is an orthogonal
array OA(q + 1, q). The conclusion follows from Theorem 21.

We can also compute the clique number and the chromatic number of a Peisert-type
graph.

Proof of Theorem 7. Recall that in the proof of Theorem 4, we showed that X is isomorphic
to the block graph of a (proper) subarray O′ of Oq. In particular, O′ is extendible. Thus
Theorem 18 implies the block graph of O′ has chromatic number q. It follows that
χ(X) = q.

We present two different proofs of ω(X) = q. Note that Fq forms a clique in X, and
so ω(X) > q. It remains to show that ω(X) 6 q. One way is to apply Corollary 5 and
Lemma 15. The second way is to observe that ω(X) 6 χ(X) = q.
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Remark 22. While Peisert-type graphs may not be self-complementary in general, we can
use Theorem 7 to compute the independence number α(X) as follows. If X = Cay(F+

q2 , S)

is a Peisert-type graph of type (m, q), then X ′ = Cay(F+
q2 ,F

∗
q2 \ S) is a Peisert-type graph

of type (q+ 1−m, q). Thus, α(X) = ω(X ′) = q. Since equality α(X)ω(X) = q2 = |V (X)|
holds in the clique-coclique bound and X is vertex-transitive, every maximum coclique
meets each maximum clique in exactly one vertex [16, Theorem 2.1.1].

Another application of Theorem 4 is a self-contained proof for the strict-EKR property
of certain Peisert-type graphs.

Proof of Corollary 8. This follows from combining Theorem 4 and Theorem 17 on the
strict-EKR property of the block graph of the corresponding orthogonal array.

4 The EKR-module property of Peisert-type graphs

Given a graph Γ = (V,E), a function f : V → R is called a θ-eigenfunction, if f 6≡ 0 and
the equality

θf(γ) =
∑

δ∈N(γ)

f(δ) (2)

holds for every vertex γ ∈ V , where N(γ) denotes the set of neighbors of γ.

4.1 An eigenbasis for the block graph of an orthogonal array

We say that a vector in Rn is balanced if it is orthogonal to the all-ones vector 1. If vA is
the characteristic vector of a subset A of the set V , then we say that

vA −
|A|
|V |

1

is the balanced characteristic vector (function) of A. Next, we discuss eigenfunctions of
the block graphs of orthogonal arrays and explain how it is spanned by the characteristic
vectors of the canonical cliques Sr,i.

Let OA(m,n) be an orthogonal array with entries from the set {1, 2, . . . , n}. The
strongly regular graph XOA(m,n) = (V,E) defined as the block graph of OA(m,n) induces
m partitions, with each row corresponding to a partition of the vertex set into canonical
cliques of size n. Denote the partitions by Π1, . . . ,Πm. Let Πr = (Sr,1, Sr,2, . . . , Sr,n) be
such a partition for some r ∈ {1, . . . ,m}. Fix a clique from this partition, say Sr,1. Given
an integer i ∈ {2, . . . , n}, define a function fr,i : V → R as follows. For a vertex γ ∈ V ,
put

fr,i(γ) :=


1, if γ ∈ Sr,1;
−1, if γ ∈ Sr,i;
0, otherwise.

Lemma 23. For each r ∈ {1, . . . ,m}, i ∈ {2, . . . , n}, the function fr,i is an eigenfunction
of XOA(m,n) corresponding to its largest non-principal eigenvalue n−m.
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Proof. It suffices to check the condition (2) for the eigenvalue θ = n−m and the function
fr,i.

Let γ be a vertex from Sr,1. The left side of (2) is equal to n−m. On the other hand,
γ has n− 1 neighbors in Sr,1 (with values 1) and m− 1 neighbors in Sr,i (with values −1).
Thus, the right side of (2) is equal to (n− 1)− (m− 1) = n−m. In the same manner,
the equality (2) holds for any vertex γ from Sr,i.

Let γ be a vertex that is not from Sr,1 ∪ Sr,i. Then γ has m− 1 neighbors in Sr,1 (with
values 1) and m− 1 neighbors in Sr,i (with values −1). Thus, the equality (2) holds.

The following lemma constructs an explicit basis for the (n−m)-eigenspace of XOA(m,n).

Lemma 24. The functions

f1,2, f1,3, . . . , f1,n, f2,2, f2,3, . . . , f2,n, . . . , fm,2, fm,3, . . . , fm,n

form a basis of the eigenspace of XOA(m,n) corresponding to the largest non-principal
eigenvalue n−m.

Proof. It follows from Theorem 16 and two facts. The first fact is that functions fr1,i1 and
fr2,i2 are orthogonal if r1 6= r2. The second fact is that, given r ∈ {1, . . . ,m}, the functions

fr,2, fr,3, . . . , fr,n

are linearly independent.

The result in the previous lemma also appeared in [16, Theorem 5.5.5] implicitly; the
proof given above is more elementary. In [18, Lemma 15], a similar basis was constructed
for the largest non-principal eigenvalue of the Star graphs. We also point out the similarity
between the eigenfunctions from Lemma 23 and the eigenfunctions of Hamming graphs
and Johnson graphs considered in [31] and [32].

4.2 Proof of Theorem 3

For the rest of the section, let X denote a fixed Peisert-type graph of type (m, q). Recall
that in the proof of Theorem 4, we associated to X a subarray O′ of the orthogonal array
Oq. In our construction, both the rows and the entries of O′ were indexed by elements of
Fq. Since we will use the notation from the previous subsection, we relabel the rows and
entries of O′ by elements {1, . . . ,m} and {1, . . . , q}, respectively.

Lemma 25. Let C be a maximum clique in X. Then its balanced characteristic vector vC
lies in the (q −m)-eigenspace of X.

Proof. It suffices to check the condition (2) for the eigenvalue θ = q −m and the function
qvC − 1.

Take a vertex γ ∈ C. The left side of (2) is equal to (q−1)(q−m). On the other hand, γ
has q−1 neighbors in C (with values q−1) and m(q−1)−(q−1) = (m−1)(q−1) neighbors
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not in S (with values −1). Thus, the right side of (2) is equal to (q−1)2− (m−1)(q−1) =
(q − 1)(q −m).

Take a vertex γ /∈ C. The left side of (2) is equal to −(q−m). Recall that we have shown
in Corollary 5 that X is a strongly regular graph with parameter µ = m(m−1). Since C is
a maximum clique, Lemma 15 implies that C is a regular clique. Thus, γ has µ/m = (m−1)
neighbors in C (with values q− 1) and m(q− 1)− (m− 1) neighbors not in C (with values
−1). Thus, the right side of (2) is equal to (q−1)(m−1)−m(q−1)+(m−1) = −(q−m).

Now we are ready to present an explicit basis for the (q−m)-eigenspace of a Peisert-type
graph X of type (m, q).

Lemma 26. The m(q − 1) functions

f1,2, f1,3, . . . , f1,q, f2,2, f2,3, . . . , f2,q, . . . , fm,2, fm,3, . . . , fm,q

form a basis of the eigenspace of X corresponding to the largest non-principal eigenvalue
q −m.

Proof. This directly follows from Theorem 4 and Lemma 24.

Given a partition Πr = {Sr,1, Sr,2, . . . , Sr,q} for some r ∈ {1, . . . ,m} and a positive
integer i ∈ {1, . . . , q}, define a function gr,i : V (X) → R by the following rule. For any
γ ∈ V (X), put

gr,i(γ) :=

{
q − 1, if γ ∈ Sr,i;
−1, otherwise.

Note that the a function gr,i is a (q −m)-eigenfunction of X, and gr,i/q is equal to the
balanced characteristic function of the clique Sr,i.

Proposition 27. The m(q − 1) functions

g1,2, g1,3, . . . , g1,q, g2,2, g2,3, . . . , g2,q, . . . , gm,2, gm,3, . . . , gm,q

form a basis of the the eigenspace of X corresponding to the eigenvalue q −m.

Proof. We first show that the functions

g1,1, g1,2, . . . , g1,q, g2,1, g2,2, . . . , g2,q, . . . , gm,1, gm,2, . . . , gm,q

span the eigenspace of X corresponding to the eigenvalue q − m. This follows from
Lemma 26 and the fact that, for any r ∈ {1, . . . ,m} and i ∈ {2, . . . , q}, the equality

fr,i =
1

q
(gr,1 − gr,i)

holds. Next, we find a linearly independent subset which still spans the eigenspace. Note
that, for any r ∈ {1, . . . ,m}, the equality

gr,1 + gr,2 + · · ·+ gr,q = 0
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holds. It means that the m(q − 1) functions

g1,2, g1,3, . . . , g1,q, g2,2, g2,3, . . . , g2,q, . . . , gm,2, gm,3, . . . , gm,q

still span the (q −m)-eigenspace of X and thus form a basis since the (q −m)-eigenspace
has dimension m(q − 1) by Corollary 5.

Proof of Theorem 3. Let C be a maximum clique in X. By Lemma 25 and Proposition 27,
the balanced characteristic vector of C is a linear combination of the balanced characteristic
vectors of the canonical cliques in X. However, note that the sum of all characteristic
vectors of the canonical cliques is a constant multiple of the all-ones vector due to symmetry.
It follows that the characteristic vector of C is a linear combination of the characteristic
vectors of the canonical cliques.

5 Counterexamples for the strict-EKR property

In this section, we focus on Peisert-type graphs which fail to satisfy the strict-EKR property.
After constructing an infinite family of such graphs in Section 5.1, we give details of a
concrete counterexample involving a generalized Peisert graph.

5.1 Proof of Theorem 9

The construction of the following counterexamples is inspired by [3, Section 5.3], [4,
Theorem 1.2], and [4, Example 2.18].

Proof of Theorem 9. Let q be an odd prime power which is not a prime. Let g be a
primitive root of Fq2 . We pick a proper subfield K of Fq. Let t be the dimension of Fq as
a K-vector space. Consider the following K-subspace of Fq2 :

C =
t−1⊕
j=0

gjK.

Then |C| = q and C \{0} is the union of q−1
|K|−1 K

∗-cosets; in particular, C \{0} is contained

in the union S of exactly q−1
|K|−1 6 q−1

2
many distinct F∗q-cosets because giF∗q 6= gjF∗q for

0 6 i < j 6 t− 1 and t 6 log2(q).
The Peisert-type graph X = Cay(F+

q2 , S) contains C as a maximum clique; note that C
is indeed closed under subtraction, that is, C −C = C ⊂ S ∪ {0} because C is a subspace.
We claim that C is a non-canonical clique in X. Assuming that C is canonical, it must be
the image of the subfield Fq under a linear transformation; since g ∈ C and |C| = q, this
would imply that C = gFq which is a contradiction as 1 ∈ C but g−1 /∈ Fq. Consequently,
X does not have the strict-EKR property.

In the case when q is a square, the above construction could be simplified by taking
K to be F√q. The resulting clique is C = F√q ⊕ gF√q inside a Peisert-type graph

X = Cay(F+
q2 , S), where the connection set S is the union of exactly q−1

|K|−1 =
√
q + 1
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many F∗q-cosets. Thus, the corresponding Peisert-type graph X is of type (
√
q + 1, q) and

contains C as a non-canonical clique. This shows that the “q > (m− 1)2” condition in
Corollary 8 is sharp when q is a square.

5.2 Detailed analysis of a counterexample of small size

We proceed to give a detailed analysis of a Peisert-type graph with order 81 which fails to
satisfy the strict-EKR property.

We consider the generalized Peisert graphs GP ∗(34, 32 + 1) = GP ∗(81, 10). While the
connection set of the graph depends on the choice of the primitive root, the isomorphism
class is unique. Let a be a primitive root of F81 satisfying a4 − a3 − 1 = 0. Recall that

GP ∗(81, 10) = Cay
(
F+
81,F∗9 ∪ aF∗9 ∪ a2F∗9 ∪ a3F∗9 ∪ a4F∗9

)
.

Using SageMath, we see that the graph GP ∗(81, 10) has clique number 9, and has 9
maximum cliques containing 0. The 5 canonical cliques containing 0 can be read from the
connection set:

F9, aF9, a
2F9, a

3F9, a
4F9.

There are exactly 4 non-canonical cliques containing 0. These are:

C1 = 〈1, a3〉, C2 = 〈a, a10〉,
C3 = 〈a11, a20〉, C4 = 〈a30, a33〉,

where 〈ai, aj〉 stands for the F3-subspace generated by ai and aj.
Let v1, v2, . . . , v40 be the balanced characteristic of the canonical cliques not containing

0. By Proposition 27, these 40 = 81−1
2

vectors form a basis for the eigenspace W of
GP ∗(81, 10) corresponding to the eigenvalue q −m = 9− 5 = 4. The following table lists
these 40 canonical cliques of GP ∗(81, 10). The entry (s, t) is a shorthand for the canonical
clique sF9 + t.

(1, a) (a, a2) (a2, 1) (a3, a) (a4, a)
(1, 2a) (a, 2a2) (a2, 2) (a3, 2a) (a4, 2a)
(1, a2) (a, 1) (a2, a) (a3, 1) (a4, 1)
(1, 2a2) (a, 2) (a2, 2a) (a3, 2) (a4, 2)

(1, a2 + a) (a, a2 + 1) (a2, a+ 1) (a3, a+ 1) (a4, a+ 1)
(1, a2 + 2a) (a, a2 + 2) (a2, a+ 2) (a3, a+ 2) (a4, a+ 2)
(1, 2a2 + a) (a, 2a2 + 1) (a2, 2a+ 1) (a3, 2a+ 1) (a4, 2a+ 1)
(1, 2a2 + 2a) (a, 2a2 + 2) (a2, 2a+ 2) (a3, 2a+ 2) (a4, 2a+ 2)

Let v be the balanced characteristic function of the non-canonical clique C2 = 〈a, a10〉.
We can express v = b1v1 + b2v2 + · · ·+ b40v40 for some bi ∈ Q. Using SageMath, we found
that among these 40 coefficients, 16 of them are 0 and 24 of them are −1/3. The value of
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bi is −1/3 if the corresponding cell is shaded grey, and it is 0 if the cell is unshaded. In
other words, v has the “distribution” given by (016; (−1/3)24).

Note that there are 36 non-canonical cliques in GP ∗(81, 10). Using SageMath, we
found that exactly 4 non-canonical cliques have the distribution (016; (−1/3)24), and these
are precisely the 4 non-canonical cliques containing 0. The remaining 32 non-canonical
cliques have the distribution equal to (025; (−1/3)6; (1/3)9).

6 Open problems

We end the paper by presenting two open problems.
Inspired by our example in Section 5.2, it is natural to investigate how the coefficients

for the balanced characteristic function of non-canonical cliques vary in a given Peisert-type
graph.

Question 28. Let X be a Peisert-type graph of type (m, q). Fix a basis of the (q −m)-
eigenspace of X according to Proposition 27. Then do any two non-canonical cliques
containing 0 share the same distribution of coefficients in the given basis? Moreover, do
any two non-canonical cliques not containing 0 share the same distribution of coefficients
in the given basis?

Another problem, motivated by the counterexamples found in Theorem 9, is the
following.

Problem 29. Characterize Peisert-type graphs with the strict-EKR property.

According to Theorem 4, this is a special case of another open problem: characterize
orthogonal arrays whose block graphs satisfy the strict-EKR property [16, Problem 16.4.1].
We believe that this is an interesting sub-problem to explore.
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