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Abstract

We obtain a characterization of lattice cubes as the only sets that reach equality
in several discrete isoperimetric-type inequalities associated with the L∞ norm,
including well-known results by Radcliffe and Veomett.

We furthermore provide a new isoperimetric inequality for the lattice point enu-
merator that generalizes previous results, and for which the aforementioned char-
acterization also holds.

Mathematics Subject Classifications: 52C07, 11H06

1 Introduction and notation

We denote the n-dimensional Euclidean space by Rn. The n-dimensional integer lattice
will be denoted by Zn, and we will use Zn

!0 to refer to the points with non-negative
coordinates in Zn. For all i = 1, . . . , n, the i-th canonical unit vector will be denoted by
ei. The family of lattice cubes, i.e., the intersection of an n-dimensional cube [a, b]n ⊆ Rn

with the integer lattice Zn, will play a special role in our main results.
For a measurable set M ⊆ Rn, we write vol(M) to refer to its volume, this is, its

n-dimensional Lebesgue measure. As discrete counterparts we use |X| to denote the
cardinality of any finite set X ⊆ Rn, together with the lattice point enumerator Gn(K) =
|K ∩ Zn| for any bounded set K ⊆ Rn.

The Brunn-Minkowski inequality arises as a natural connection between the notions
of Minkowski addition and volume. It states, in one of its forms, that for K,L ⊆ Rn
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non-empty compact convex sets, we have

vol(K + L)1/n ! vol(K)1/n + vol(L)1/n, (1)

with equality, if vol(K) vol(L) > 0, if and only ifK and L are homothetic, i.e., L = x+λK
for some λ > 0 and x ∈ Rn. Here, we use + to denote the Minkowski addition, i.e.,

A+B = {a+ b : a ∈ A, b ∈ B},

for any non-empty sets A,B ⊆ Rn.
The hypothesis of the Brunn-Minkowski inequality can be relaxed substantially, not

only by getting rid of the convexity, but even the compactness, as the inequality can be
obtained for bounded measurable sets. Comprehensive surveys on the topic may be found
in [2, 7].

It is well known that if one replaces the volume functional in (1) by the cardinality (in
the case of finite sets) or the lattice point enumerator, then the resulting inequality does
not hold in general (see [12, 15]). Therefore, in order to obtain discrete Brunn-Minkowski
type inequalities several approaches have been considered. In [8], Gardner and Gronchi
defined an order in Zn and, by combining this order with a technique of compressions,
they proved an engaging discrete analogue of an equivalent version of (1), which improved
previous results obtained by Ruzsa in [21, 22].

Another approach has been to consider a modification of the sets involved to get a
valid inequality preserving the structure of (1). In this regard, one can find inequalities
for the cardinality [9, 12, 15], functional extensions of them [11, 14, 15, 16, 24] and also
discrete inequalities for the lattice point enumerator [11, 13, 15]. As a relevant example
for the discussion, we highlight the following result:

Theorem A. [15, Theorem 3.2] Let X, Y ⊆ Zn be non-empty finite sets. Then

!!X + Y + {0, 1}n
!!1/n ! |X|1/n + |Y |1/n. (2)

Equality holds if both X and Y are lattice cubes.

Perhaps one of the most elegant consequences of the Brunn-Minkowski inequality is the
remarkable isoperimetric inequality, which characterizes the Euclidean balls as the only
convex bodies that minimize the surface area (i.e. the Minkowski content) for prescribed
positive volume. It can be expressed as

"
S(K)

S(Bn)

#n

!
"
vol(K)

vol(Bn)

#n−1

,

where S(·) represents the surface area and Bn is the Euclidean unit ball.
The isoperimetric inequality was already known in antiquity in two dimensions and,

since then, a rich collection of analogs has been obtained in varied and diverse fields and
branches of mathematics. For instance, a version for mixed volumes known asMinkowski’s
first inequality (cf. [23, Theorem 7.2.1]), as well as an equivalent analytic version due to
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Sobolev (see e.g. [7, Section 5]). Other related inequalities, which can be consulted in
[23, Section 7.2], include Diskant’s inequality or the Bonnesen-type inequalities in the
plane. Apart from the measure, the geometric space can also be modified. In this regard,
isoperimetric inequalities in the spherical and hyperbolic spaces have been proved (cf.
[4]). Also, the reverse isoperimetric inequality by Ball deserves a special mention (see
e.g. [1]). We refer the reader to [19] for a thorough survey on the topic.

A more general version of the isoperimetric inequality is known as its “neighborhood”
form (see, e.g., [17, Proposition 14.2.1]): it states that for any non-empty compact convex
set K ⊆ Rn, and all t ! 0, we have

vol(K + tBn) ! vol(rBn + tBn), (3)

where r ! 0 satisfies vol(rBn) = vol(K).
Furthermore, the Brunn-Minkowski inequality also implies that given any t ! 0 and

non-empty compact convex sets K,E ⊆ Rn with positive volume, if r > 0 is such that
vol(K) = vol(rE), then we have

vol(K + tE) ! vol(rE + tE), (4)

with equality if and only if K and E are homothetic. Since the set K + tBn consists
of all points having Euclidean distance at most t to the set K, one could see (4) as an
isoperimetric inequality where the “distance” involved is modified according to the set E.
This allows to extend the isoperimetric inequality to metric spaces where there is a notion
of measure, without needing to define the concept of surface area.

A brief survey on the neighborhood form of the isoperimetric inequality can be found
in [17, Section 14.2], where different spaces are considered (e.g. the Gauss space and the
n-dimensional discrete unit cube {0, 1}n). In [25] and [5], this type of inequalities are
studied in Zn endowed with the L1 norm, characterizing the equality in some particular
cases.

In [20], Radcliffe and Veomett proved an exceptional discrete isoperimetric inequality
in the spirit of (4) for the integer lattice Zn endowed with the L∞ norm considering the
cardinality as the measure. To this end, the authors defined a complete order in Zn (see
Definition 4) to show that the initial segments Ir ⊆ Zn (i.e., the first r points in the order,
r ∈ Z>0) minimize the functional |X + {−1, 0, 1}n|, among all sets X ⊆ Zn with |X| = r:

Theorem B. [20, Theorem 1] Let X ⊆ Zn with r = |X| ∈ Z>0. Then

!!X + {−1, 0, 1}n
!! !

!!Ir + {−1, 0, 1}n
!!. (5)

The authors also considered the restriction to Zn
!0 of the aforementioned order to show

an analogous result for the corresponding initial segments Jr ⊆ Zn
!0:

Theorem C. [20, Corollary 1] Let X ⊆ Zn
!0 with r = |X| ∈ Z>0. Then

!!$X + {−1, 0, 1}n
%
∩ Zn

!0

!! !
!!$Jr + {−1, 0, 1}n

%
∩ Zn

!0

!!. (6)
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We note that for r = (ρ+1)n, ρ ∈ Z!0, both initial segments Ir ⊆ Zn and Jr ⊆ Zn
!0 are

lattice cubes (cf. Remark 5). The authors of [20] already observed that initial segments
do not characterize the equality case in (5) and (6).

Nevertheless, here we show, on the one hand, that lattice cubes can be characterized
as the only sets attaining equality in Theorem B and Theorem C, for those cardinalities
that allow lattice cubes:

Theorem 1. Let X ⊆ Zn with |X| = (ρ+ 1)n for some ρ ∈ Z!0. Then equality holds in
(5) if and only if X is a lattice cube.

Theorem 2. Let X ⊆ Zn
!0 with |X| = (ρ+ 1)n for some ρ ∈ Z!0. Then equality holds in

(6) if and only if X = {0, . . . , ρ}n.

Observe that, in the latter characterization, the lattice cube must be anchored at the
origin (see Remark 5 for examples and more explanations).

Furthermore, in Section 2 we connect both problems, by developing further under-
standing about the structure of initial segments in both settings, and showing that it
suffices to consider Zn

!0, having several advantages over Zn which we shall discuss. In
Section 3, we prove a stronger characterization of lattice cubes as the only minimizers of
the functional |X + {0, . . . , s}n| for all s ∈ Z>0 (see Theorem 17). This further allows
to characterize lattice cubes in a wider family of discrete inequalities, for instance, in
the Brunn-Minkowski type inequality given in Theorem A (see Corollary 35), where we
have equality if and only if X is a lattice cube, provided that Y is a lattice cube (and
|X| = (ρ+ 1)n for some ρ ∈ Z!0).

On the other hand, using the initial segments Ir ⊆ Zn, in [13], the authors defined the
extended cubes CIr ⊆ Rn (see Definition 37): a uniparametric family of star-shaped sets
characterized as the largest sets (with respect to inclusion) such that CIr + (−1, 1)n ⊆
Ir + (−1, 1)n. Analogously, extended cubes CJr ⊆ Rn

!0 can be defined. The extended
cubes CIr allowed the authors to obtain an equivalent version of (5) for the lattice point
enumerator Gn(·) that can be used (see [13, Theorem 1.4]) to infer the neighborhood form
(4) of the isoperimetric inequality when E = [−1, 1]n.

Theorem D. [13, Theorem 1.2] Let K⊆Rn be a non-empty bounded set. If r=Gn(K)>0,
then

Gn

$
K + t[−1, 1]n

%
! Gn

$
CIr + t[−1, 1]n

%
(7)

for all t ! 0.

Here, we prove an isoperimetric-type inequality (with the corresponding equality cases)
for the lattice point enumerator that generalizes (7) (see Proposition 41) which, conse-
quently, can also be used to obtain the neighborhood form (4) for E = [0, 1]n.

Theorem 3. Let K ⊆ Rn be a non-empty bounded set. If r = Gn(K) > 0, then

Gn

$
K + t[0, 1]n

%
! Gn

$
CJr + t[0, 1]n

%
(8)
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for all t ! 0. When Gn(K) = (ρ+ 1)n for some ρ ∈ Z!0, for each t ! 0 equality holds if
and only if K ∩ Zn is a lattice cube and we have

(K + t[0, 1]n) ∩ Zn = (K ∩ Zn) + (t[0, 1]n ∩ Zn).

The second equality condition is related to relevant problems in several lines of math-
ematics. For instance, in lattice polytope theory, this equality was discussed in [18].
Sufficient conditions for it were obtained in the plane in [6], using an algebraic geometry
approach; and in [10], this result was then strengthened via a discrete geometry approach.

This paper is organized as follows. In Section 2 we compare the initial segments in
Zn and Zn

!0, to obtain some initial results which will enable the comparison between
Theorem B and Theorem C. Sections 3 and 4 are devoted to the characterization results
for the lattice cubes, and the results for the lattice point enumerator, respectively.

2 Comparing the initial segments in Zn and Zn
!0

This section is devoted to further studying the structure of initial segments and their
corresponding order, both in Zn and Zn

!0 (see, e.g., Remark 13), which will enable us to
establish precise relations between them and, in turn, connect Theorem B and Theorem C
(and thus, later, their respective characterizations, Theorems 1 and 2).

To this end, we show a new isoperimetric-type inequality in Zn
!0 that generalizes both

theorems B and C (see Corollary 11 and the observations thereafter). Next, we prove
that both the initial segments in Zn and in Zn

!0 reach equality in this new inequality
(see Corollary 16). This will allow us to indistinctly work with initial segments in either
Zn or Zn

!0 (in the context of these discrete isoperimetric type inequalities). The new
formulation in Zn

!0 provides several additional advantages, such as being able to work
with lattice cubes of odd length, or simplifying the definitions and results. This will make
this setting our preferred choice for subsequent sections.

The following complete order was defined in [20], and it will be the keystone of the
subsequent development.

Definition 4. If n = 1, the order ≺ in Z is defined by

0 ≺ 1 ≺ −1 ≺ 2 ≺ −2 ≺ · · · ≺ m ≺ −m ≺ . . .

For n ! 2 and for any vector w = (w1, . . . , wn) ∈ Zn, let

mw = max
≺

{wi : i = 1, . . . , n}, iw = min
&
i : wi = mw

'
and

w′ = (w1 . . . , wiw−1, wiw+1, . . . , wn) ∈ Zn−1.

Then, ≺ is defined recursively as follows: for any u, v ∈ Zn with u ∕= v, one has u ≺ v if

i) mu ≺ mv or

ii) mu = mv and then either iv < iu or (iv = iu and) u′ ≺ v′.
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Moreover, we write u ≼ v if either u ≺ v or u = v.

We note that, in order to define ≺ in Zn
!0, one could see that order as the restriction

of the order in Zn to the subset Zn
!0, or as the generalization of the usual order in Z!0,

to which one applies the same process described in Definition 4.
For any r ∈ Z>0, we denote by Ir (resp., Jr) the initial segment in Zn (resp., Zn

!0) of
cardinality r, that is, the set of the first r points with respect to the order ≺ of Zn (resp.,
Zn

!0).

Remark 5. It can be easily verified from the definition of ≺ that for r = (ρ + 1)n, with
ρ ∈ Z!0, the initial segments Ir ⊆ Zn and Jr ⊆ Zn

!0 are both lattice cubes. More precisely,
Ir = {−ρ/2, . . . , ρ/2}n for ρ even and Ir = {−(ρ + 1)/2 + 1, . . . , (ρ + 1)/2}n for ρ odd,
whereas Jr = {0, . . . , ρ}n for all ρ ∈ Z!0. See Remark 13 for a more precise description
of the structure of the initial segments.
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Figure 1: The initial segments I23 (left) and J23 (right) for n = 2.

For any given x ∈ Zn we denote its rank, i.e., its position with respect to the order ≺
in Zn, by r(x) ∈ Z!0. Furthermore, for any non-empty finite set X ⊆ Zn, the rank of X
is defined as

r(X) =
(

x∈X

r(x).

We will use the same notation when working with the order ≺ in Zn
!0, without specifying

whenever there is no ambiguity.

Definition 6. [20, Definition 2] A non-empty set X ⊆ Zn
!0, n > 1, is said to be downward

compressed in the i-th coordinate, i = 1, . . . , n, with respect to x = (x1, . . . , xn−1) ∈ Zn−1
!0

if the set
{y ∈ Z!0 : (x1, . . . , xi−1, y, xi, . . . , xn−1) ∈ X}

is either empty or of the form {y ∈ Z!0 : 0 " y " a} for some a ∈ Z!0.
Moreover, we say that X ⊆ Zn

!0 is downward compressed in the i-th coordinate if it
is downward compressed in the i-th coordinate with respect to every x ∈ Zn−1

!0 . Finally,
we say that X ⊆ Zn

!0 is downward compressed if it is downward compressed in the i-th
coordinate for all i = 1, . . . , n.

Remark 7. Let x, y, z ∈ Zn (resp. Zn
!0). Then:
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Figure 2: From left to right: a finite set, a downward compressed set in the 2nd
coordinate and a downward compressed set.

i) If for some i ∈ {1, . . . , n} we have xi ≺ yi and xj = yj for all j ∕= i, then x ≺ y.

ii) In particular, if xi ≼ yi for all i = 1, . . . , n, then x ≼ y.

iii) If x ≺ y, then x+ z ≺ y + z.

On the one hand, a straightforward consequence of the above observation is that
every initial segment Jr ⊆ Zn

!0 is downward compressed. And since it is clear that every
downward compressed set X ⊆ Zn

!0 satisfies

(X + {−1, 0, 1}n) ∩ Zn
!0 = X + {0, 1}n, (9)

then so does Jr for all r ∈ Z!0.
On the other hand, in [20, page 11], the authors show that

|(Jr + {−1, 0, 1}n) ∩ Zn
!0|+ 2l(x) = |(Jr+1 + {−1, 0, 1}n) ∩ Zn

!0|,

where x ∈ Zn
!0 satisfies Jr∪{x} = Jr+1 and l(x) ∈ {0, . . . , n} is the number of coordinates

equal to zero in x. Putting all this together yields the following result.

Lemma 8. Let r ∈ Z!0 and let x ∈ Zn
!0 be such that Jr ∪ {x} = Jr+1. Then

|Jr + {0, 1}n|+ 2l(x) = |Jr+1 + {0, 1}n|.

Following the ideas from [25, 20], we now prove a new discrete isoperimetric type
inequality. We will later show that it is, in fact, equivalent to Theorem C (see Proposi-
tion 12).

Lemma 9. Let X ⊆ Zn
!0 be a non-empty finite set with |X| = r. Then

!!X + {0, 1}n
!! !

!!Jr + {0, 1}n
!!. (10)

Proof. If n = 1, since Jr = {0, . . . , r − 1} ⊆ Z!0, by applying Theorem A to the sets
X, {0} ⊆ Z!0 we immediately get

|X + {0, 1}| ! r + 1 = |Jr + {0, 1}|. (11)

Let n > 1. If X is downward compressed then the result is a direct consequence of
Theorem C, together with the fact that Jr is also downward compressed and (9).
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If X is not downward compressed, it is enough to show that we can find a downward
compressed set Z ⊆ Zn

!0 such that |X| = |Z| and |X + {0, 1}n| ! |Z + {0, 1}n|, and apply
the previous case.

So, we assume that X is not downward compressed in the i-th coordinate, for some
i ∈ {1, . . . , n}, and we define the set Y ⊆ Zn

!0 as

Y =
)

x∈X

{(x1, . . . , xi−1, t, xi+1, . . . , xn) ∈ Zn
!0 : 0 " t < |(x+ ℓi) ∩X|},

where ℓi = lin{ei}. The set Y is downward compressed in the i-th coordinate and satisfies
|(x + ℓi) ∩ X| = |(x + ℓi) ∩ Y | for all x ∈ Zn

!0. Therefore, |Y | = |X|. Furthermore,
since Y is downward compressed in the i-th coordinate, then for all x ∈ Zn

!0 one has
that (x+ ℓi) ∩ Y has no “holes”, i.e., it is formed by consecutive points of Zn

!0 in x+ ℓi.
Hence, |(x+ ℓi)∩ (Y + {0, 1}n)| " |(x+ ℓi)∩ (X + {0, 1}n)|, and therefore, |Y + {0, 1}n| "
|X + {0, 1}n|.

We also note that, by repeatedly “compressing” the set X with respect to different
coordinates as many times as necessary, we eventually get a downward compressed set
Z ⊆ Zn

!0 after a finite number of steps. Indeed, by looking at the ranks of X and Y , we
note that r(X) ! r(Y ) with a strict inequality if X ∕= Y (cf. Remark 7), and so it is a
consequence of the fact that r(X) is bounded from below.

Remark 10. We note that Jr + {0, 1}n is an initial segment, which follows from (9) and
the fact that (Jr + {−1, 0, 1}n) ∩ Zn

!0 is an initial segment (cf. [20, page 11]).

As a consequence of the previous remark, and by iterating Lemma 9, one gets the
following corollary.

Corollary 11. Let X ⊆ Zn
!0 be a non-empty finite set with |X| = r. Then

|X + {0, . . . , s}n| ! |Jr + {0, . . . , s}n| (12)

for all s ∈ Z!0.

We emphasize that a similar process was already developed in [13] to get

|X + {−s, . . . , s}n| ! |Ir + {−s, . . . , s}n| (13)

for any X ⊆ Zn and all s ∈ Z!0, which is equivalent to Theorem B.
We note that, just like Ir, the initial segments Jr also give equality in (13) for any

s ∈ Z!0, and thus, also in (5). Indeed, it suffices to apply Corollary 11 with the cube
{0, . . . , 2s}n, together with the translation invariance of the cardinality.

It is also easy to show that Corollary 11 and Theorem C are equivalent.

Proposition 12. The discrete isoperimetric inequalities (6) and (12) are equivalent.

Proof. Since the proof of Corollary 11 uses Lemma 9 (and thus, Theorem C), we only
need to show that (12) implies (6). But this is a direct consequence of the fact that

|(X + {−1, 0, 1}n) ∩ Zn
!0| ! |X + {0, 1}n| ! |Jr + {0, 1}n| = |(Jr + {−1, 0, 1}n) ∩ Zn

!0|,

for all finite sets X ⊆ Zn
!0 with |X| ! r (cf. (9)).
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In order to further compare the initial segments in Zn and Zn
!0, we will analyze their

(n − 1)-dimensional sections, providing a description which will become crucial in sub-
sequent sections. From now on, the following notation will be used: Let n > 1 and let
X ⊆ Zn be a non-empty finite set. Given m ∈ Z and i ∈ {1, . . . , n}, we denote by X i(m)
the section of X at height m orthogonal to ei, i.e.,

X i(m) = {(x1, . . . , xn−1) ∈ Zn−1 : (x1, . . . , xi−1,m, xi, . . . , xn−1) ∈ X}.

We note that, for any x ∈ Zn (resp. Zn
!0), all but the “last” section of Ir(x) (resp.

Jr(x)) are uniquely determined by mx and ix. Indeed:

Remark 13. For x ∈ Zn, let r = r(x). Then, from the fact that Ir = {z ∈ Zn : z ≼ x} we
get that the only non-empty (n− 1)-dimensional sections of Ir (with respect to eix) are

(Ir)
ix(m) = {t ∈ Z : t ≺ mx}ix−1 × {t ∈ Z : t ≼ mx}n−ix (14)

for all m ≺ mx, and

(Ir)
ix(mx) = {z ∈ Zn−1 : z ≼ x′} ⊆ {t ∈ Z : t ≺ mx}ix−1 × {t ∈ Z : t ≼ mx}n−ix (15)

(see Figure 3).
Now, let y ∈ Zn

!0 and r = r(y). Then, since Jr = {z ∈ Zn
!0 : z ≼ y} ⊆ Zn

!0 and
{t ∈ Z!0 : t ≺ my} = {0, . . . ,my − 1}, the prior relations translate into

(Jr)
iy(m) = {0, . . . ,my − 1}iy−1 × {0, . . . ,my}n−iy (16)

for all 0 " m < my, and

(Jr)
iy(my) = {z ∈ Zn−1

!0 : z ≼ y′} ⊆ {0, . . . ,my − 1}iy−1 × {0, . . . ,my}n−iy . (17)

(a) The initial segment I44 ⊆ Z3, whose
last point is x = (−1, 2, 1) with mx = 2
and ix = 2.

(b) The initial segment J44 ⊆ Z3
!0, whose

last point is y = (2, 3, 1) with my = 3 and
iy = 2.

Figure 3: The sections of the initial segments I44 and J44.
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We already know that the initial segments Jr ⊆ Zn
!0 give equality in (13) (and thus

in (5)). In order to conclude this section, we show that, accordingly, the initial segments
Ir ⊆ Zn also attain the equality in (12) (and thus in (6)).

Before doing that, however, it is convenient to make an observation that will be useful
throughout the manuscript.

Remark 14. We note that the sequence

1, 2, . . . , 2n−2, 2n−1,
2n, 2n−1 · 3, . . . , 22 · 3n−2, 2 · 3n−1,
3n, 3n−1 · 4, . . . , 32 · 4n−2, 3 · 4n−1,

...

is strictly increasing, and therefore,
&*

si(s+ 1)n−i, si−1(s+ 1)n−i+1
%
∩ Z!0 : s ∈ Z>0, i = 1, . . . , n

'

is a partition of Z>0.

Lemma 15. Let r ∈ Z>0. Then |Ir + {0, 1}n| = |Jr + {0, 1}n|.
Proof. We proceed by induction on the dimension n. The case n = 1 is immediate since
we have |Ir + {0, 1}| = r + 1 = |Jr + {0, 1}|.

Now, let n > 1, and assume that the (n − 1)-dimensional case is already proved.
Let x ∈ Zn, y ∈ Zn

!0 be the last points in the order ≺ of Ir and Jr, respectively (so,
r(x) = r = r(y)), and let

s = |{m ∈ Z : m ≺ mx}|,
i.e., the number of sections of Ir of the form (14). Then, using (14) and (15), we have

six(s+ 1)n−ix < r " six−1(s+ 1)n−ix+1. (18)

Analogously, from (16) and (17), we get

miy
y (my + 1)n−iy < r " miy−1

y (my + 1)n−iy+1. (19)

Therefore, Remark 14, together with (18) and (19), implies that s = my and ix = iy and,
consequently,

!!{z ∈ Zn−1 : z ≼ x′}
!! = r − six(s+ 1)n−ix =

!!&z ∈ Zn−1
!0 : z ≼ y′

'!!.

Remark 13 also yields that both initial segments are the union of a lattice box of cardinality
six(s+1)n−ix with an (n− 1)-dimensional initial segment of cardinality r− six(s+1)n−ix ,
in their respective orders. Moreover, we have

|Ir + {0, 1}n| = (s+ 1)ix(s+ 2)n−ix +
!!{z ∈ Zn−1 : z ≼ x′}+ {0, 1}n−1

!!

and
|Jr + {0, 1}n| = (s+ 1)ix(s+ 2)n−ix +

!!&z ∈ Zn−1
!0 : z ≼ y′

'
+ {0, 1}n−1

!!.
This concludes the proof since the induction hypothesis implies that

!!{z ∈ Zn−1 : z ≼ x′}+ {0, 1}n−1
!! =

!!&z ∈ Zn−1
!0 : z ≼ y′

'
+ {0, 1}n−1

!!.
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In [20], the authors already noted that for every r ∈ Z>0, the set Ir+{−1, 0, 1}n is an
initial segment in Zn (see [20, Lemma 1]). Since Jr + {0, 1}n is also an initial segment in
Zn

!0 (see Remark 10), by iterating these properties, using (12), (13) and Lemma 15, and
due to the translation invariance of the cardinality, we have the following result:

Corollary 16. Let r ∈ Z>0. Then |Ir + {0, . . . , s}n| = |Jr + {0, . . . , s}n| for all s ∈ Z!0.

3 Characterization of lattice cubes

This section is devoted to characterize the lattice cubes as the only minimizers of the
functional |X + {0, . . . , s}n| for any X ⊆ Zn

!0 and s ∈ Z!0:

Theorem 17. Let X ⊆ Zn
!0 with |X| = (ρ+ 1)n for some ρ ∈ Z!0 and let s ∈ Z>0. If

!!X + {0, . . . , s}n| =
!!J(ρ+1)n + {0, . . . , s}n|,

then X is a lattice cube.

We first set further new definitions and get some initial results. The next subsections
address separately the 2-dimensional and the general case of Theorem 17 for s = 1. An
additional inductive argument then shows Theorem 17 in its full generality. Finally, as a
consequence, we obtain Theorems 1 and 2. We refer the reader to [25] and [5] for similar
studies with other norms.

Definition 18. We say that a non-empty finite set X ⊆ Zn
!0 is minimal if for all A ⊆ Zn

!0

with |A| = |X| we have |A+ {0, 1}n| ! |X + {0, 1}n|.

Definition 19. Given a finite set X ⊆ Zn
!0, we define the (n-dimensional) neighborhood

of X as Nn
X = (X+{0, 1}n)\X if X ∕= ∅, and Nn

X = ∅ if X = ∅. Moreover, its cardinality
will be denoted by n(X) = |Nn

X |.

We note that the minimality of a finite set can be defined in terms of the functional
n(·), since any set X ⊆ Zn

!0 is minimal if and only if n(A) ! n(X) for each A ⊆ Zn
!0 with

|A| = |X|.

Lemma 20. Let n > 1 and let X ⊆ Zn
!0 be a non-empty finite set. If |X| > (ρ+ 1)n for

some ρ ∈ Z!0, then |X + {0, 1}n| > (ρ+ 2)n and n(X) > (ρ+ 2)n − (ρ+ 1)n.

Proof. Let Ja ⊆ Jb ⊆ Jc ⊆ Zn
!0 be the initial segments in Zn

!0 of cardinalities a = (ρ+1)n,
b = (ρ+ 1)n + 1 and c = |X|. Then, Ja = {0, . . . , ρ}n and Jb = Ja ∪ (0, . . . , 0, ρ+ 1) (see
Remark 5), and Lemma 9 yields

|X + {0, 1}n| ! |Jc + {0, 1}n| > |Ja + {0, 1}n| = (ρ+ 2)n.

In the following, we show that for any r ∈ Z>0, we have

n(Jr+1) ! n(Jr). (20)
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Let x0 ∈ Zn
!0 be the last point of Jr+1 in the order ≺. Then, using Remark 7 and since

x ≼ (1, . . . , 1) for all x ∈ {0, 1}n, we get

z + x ≼ z + (1, . . . , 1) ≺ x0 + (1, . . . , 1),

for all z ≺ x0. This implies that x0 + (1, . . . , 1) ∈ (Jr+1 + {0, 1}n) \ (Jr + {0, 1}n).
Consequently, |Jr+1+{0, 1}n| ! |Jr+{0, 1}n|+1, and, since |Jr+1| = |Jr|+1, we deduce
that

n(Jr+1) = |Jr+1 + {0, 1}n|− |Jr+1| ! |Jr + {0, 1}n|− |Jr| = n(Jr),

proving (20). This concludes the proof, since we also have

n(Ja) = (ρ+ 2)n − (ρ+ 1)n and n(Jb) = (ρ+ 2)n + 2n−1 − ((ρ+ 1)n + 1)

(see, e.g., Lemma 8), and therefore, by (20),

n(X) = |X + {0, 1}n|− |X| ! |Jc + {0, 1}n|− c = n(Jc) ! n(Jb) > (ρ+ 2)n − (ρ+ 1)n,

where the strict inequality follows from the fact that n > 1.

Definition 21. We say that a non-empty finite set X ⊆ Zn
!0 is connected if for each

x, y ∈ X, each i ∈ {1, . . . , n}, and any m ∈ Z!0 such that xi < m < yi, there exists z ∈ X
satisfying zi = m.

An important observation is that any minimal set (see Definition 18) is connected.
Indeed, an analogous argument to the one in [5, Proposition 1.4], translating one connected
component next to the boundary of another one (without overlapping) to strictly decrease
the functional n(·), shows it. We include the proof here for completeness.

Proposition 22. If X ⊆ Zn
!0 is minimal, then X is connected.

Proof. If X is not connected, then there exist i ∈ {1, . . . , n} and m ∈ Z>0 such that we
can partition X into

X1 =
&
x ∈ X : 〈x, ei〉 < m

'
∕= ∅ and X2 =

&
x ∈ X : 〈x, ei〉 > m

'
∕= ∅

satisfying that X = X1∪X2 and X1∩X2 = ∅. Then, we may apply an integer translation
to X1 in the direction of ei (and, possibly, in another canonical direction as well) such
that the new set, X ′

1 ⊆ Zn
!0, satisfies X

′
1 ∩X2 = ∅ and

$
X ′

1 + {0, 1}n
%
∩X2 ∕= ∅. Clearly,

denoting by X ′ = X ′
1 ∪X2 ⊆ Zn

!0, one has |X ′| = |X| and n(X ′) < n(X), contradicting
the minimality of X.

3.1 Characterization in dimension 2

The 2-dimensional case of Theorem 17 is based on the fact that any connected set X can
be enlarged up to a suitable lattice box without increasing the functional n(X).
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Thus, for a finite non-empty set X ⊆ Z2
!0, we denote by B (X) ⊆ Z2

!0 the smallest
lattice box (with respect to set inclusion) such that X ⊆ B (X), i.e., B (X) =

$
[a1, b1] ×

[a2, b2]
%
∩ Z2

!0, where

ai = min{xi : (x1, x2) ∈ X} and

bi = max{xi : (x1, x2) ∈ X}
for i = 1, 2.

Lemma 23. Let X ⊆ Z2
!0 be a non-empty connected finite set. Then

n(B (X)) " n(X).

Proof. We may assume, by applying a translation to X if necessary, that

B (X) =
$
[1, b1]× [1, b2]

%
∩ Z2

!0

for some b = (b1, b2) ∈ Z2
!0. Then,

|B (X) | = b1b2, |B (X) + {0, 1}n| = (b1 + 1)(b2 + 1)

and therefore n(B (X)) = (b1 + 1)(b2 + 1)− b1b2 = b1 + b2 + 1.
Let X1, X2 ⊆ (X + {0, 1}2) \X be defined as

X1 = {(x1, x2) ∈ X : ∄(m,x2) ∈ X with m > x1}+ e1 and

X2 = {(x1, x2) ∈ X ∪X1 : ∄(x1,m) ∈ X ∪X1 with m > x2}+ e2.

We note that X1 ⊆ (X+e1)\X and X2 ⊆ (X+{0, 1}2)\(X+e1). Therefore X1∩X2 = ∅
and, since X is connected, |X1| = b2 and |X2| = b1 +1. Altogether we conclude the proof
since we have

n(B (X)) = b1 + b2 + 1 = |X1|+ |X2| " n(X).

We are now under the conditions to prove the following lemma, which corresponds to
the 2-dimensional case of Theorem 17 for s = 1.

Lemma 24. Let X ⊆ Z2
!0 be a non-empty finite set with |X| = (ρ+1)2 for some ρ ∈ Z!0.

If |X + {0, 1}2| = (ρ+ 2)2, then X is a lattice cube.

Proof. By the hypothesis on X, we deduce that X is minimal and, consequently, by
Proposition 22, it is connected. Furthermore, it must satisfy X = B (X). Indeed, other-
wise we would get |B (X) | > |X| = (ρ + 1)2 and, by Lemma 23, n(B (X)) " n(X) =
(ρ+ 2)2 − (ρ+ 1)2, which would contradict Lemma 20.

We assume, by applying a translation to X if necessary, that

X = B (X) =
$
[0, b1]× [0, b2]

%
∩ Z2

!0

for some b = (b1, b2) ∈ Z2
!0. Then, we have

(ρ+ 1)2 = |X| = (b1 + 1)(b2 + 1) and 2(ρ+ 1) + 1 = n(X) = b1 + b2 + 3,

and thus,

ρ+ 1 =
+

(b1 + 1)(b2 + 1) =
(b1 + 1) + (b2 + 1)

2
.

Hence, the equality condition in the well-known arithmetic-geometric mean inequality
(see, e.g., [3, page 71]) implies ρ = b1 = b2, as desired.
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3.2 Characterization in general dimension

The proof when n > 2 in Theorem 17 is based on a process that we call “normalization”
(see Definition 28). It extends the process of normalization first introduced in [25, Section
4] and adapts it to the L∞ setting.

The following lemma shows that the functional n(·) can be estimated in terms of the
sections of the set.

Lemma 25. Let n > 1 and i ∈ {1, . . . , n}, and let X ⊆ Zn
!0 be a non-empty finite set.

Then

n(X) !
!!!!!

, )

m∈Z!0

X i(m)
-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

!!!Nn−1
Xi(m)

!!! . (21)

Furthermore, if the sections X i(m) form a decreasing sequence, namely, X i(0) ⊃ X i(1) ⊃
. . . , then equality holds in (21).

Proof. In order to prove (21), we consider the sets

Ym = {y ∈ X : yi = m}+
$
{0, 1}i−1 × {0}× {0, 1}n−i

%

for all m ∈ Z!0 such that {y ∈ X : yi = m} ∕= ∅, and

Y = {y ∈ X + {0, 1}n : y + kei /∈ X + {0, 1}n for all k > 0}.

Clearly, the sets Ym are pairwise disjoint and do not intersect with Y . Furthermore,
Ym ⊆ X + {0, 1}n and |Ym| = |X i(m) + {0, 1}n−1| for all m ∈ Z!0 with X i(m) ∕= ∅.
Moreover, observe that |Y | =

!!Y |e⊥i
!! and

Y |e⊥i = (X + {0, 1}n)|e⊥i =
, )

m∈Z!0

X i(m)
-
+ {0, 1}n−1.

Therefore,

|X+{0, 1}n| ! |Y |+
(

m∈Z!0

|Ym| =

!!!!!

, )

m∈Z!0

X i(m)
-
+{0, 1}n−1

!!!!!+
(

m∈Z!0

Xi(m) ∕=∅

!!X i(m) + {0, 1}n−1
!! .

By subtracting |X| =
.

m∈Z!0
|X i(m)| we conclude the proof of (21).

If we have m0 ∈ Z!0 such that X i(m) = ∅ for all m > m0 and

X i(0) ⊃ X i(1) ⊃ X i(2) ⊃ · · · ⊃ X i(m0) ∕= ∅,

then !!!{y ∈ X + {0, 1}n : yi = 0}
!!! =

!!!X i(0) + {0, 1}n−1
!!!

and !!!{y ∈ X + {0, 1}n : yi = m+ 1}
!!! =

!!!X i(m) + {0, 1}n−1
!!!
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for all 0 " m " m0. So, we conclude that

|X + {0, 1}n| =
m0+1(

m=0

!!!{y ∈ X + {0, 1}n : yi = m}
!!!

=
!!!X i(0) + {0, 1}n−1

!!!+
m0(

m=0

!!!X i(m) + {0, 1}n−1
!!!

=

!!!!!

, )

m∈Z!0

X i(m)
-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

Xi(m) ∕=∅

!!!X i(m) + {0, 1}n−1
!!!,

as desired.

We note that any minimal set X ⊆ Zn
!0 must reach equality in Lemma 25: indeed,

simply by changing each section X i(m) by an initial segment in Zn−1
!0 of the same cardi-

nality, and then rearranging the sections in decreasing order, we get a new set Z ⊆ Zn
!0

that gives equality in Lemma 25. Therefore, for some m0 ∈ Z!0,

n(Z) =

!!!!!

, )

m∈Z!0

Zi(m)
-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

!!!Nn−1
Zi(m)

!!!

=
!!Zi(0) + {0, 1}n−1

!!+
(

m∈Z!0

!!!Nn−1
Zi(m)

!!!

"
!!X i(m0) + {0, 1}n−1

!!+
(

m∈Z!0

!!!Nn−1
Xi(m)

!!!

"
!!!!!

, )

m∈Z!0

X i(m)
-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

!!!Nn−1
Xi(m)

!!!

" n(X),

(22)

and thus n(Z) = n(X) due to the minimality of X. This allows us to deduce the following
result.

Corollary 26. Let n > 1 and i ∈ {1, . . . , n}, and let X ⊆ Zn
!0 be a minimal set. Then

the sections X i(m) are minimal (as (n− 1)-dimensional sets) and X satisfies

n(X) =

!!!!!

, )

m∈Z!0

X i(m)
-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

!!!Nn−1
Xi(m)

!!! . (23)

We note that the converse is not true: there are examples of non-minimal sets satisfying
(23) for all i = 1, . . . , n, and having all (n−1)-dimensional sections minimal (see Figure 4).

The following result shows, roughly speaking, that in order to minimize the expression
n(Ja) + n(Jb) for a, b ∈ Z!0 with a + b fixed, one may begin by choosing a, b such
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Figure 4: Left: A set X ⊆ Z3
!0 (in black) and X + {0, 1}3 (in white). Right: J9 ⊆ Z3

!0

(in black) and J9 + {0, 1}3 (in white). X satisfies (23) and its 2-dimensional sections are
minimal, but n(X) = 23 > 22 = n(J9).

that one of the resulting initial segments is the largest possible lattice box of the form
{0, . . . , ρ−1}j×{0, . . . , ρ}n−j for some ρ ∈ Z!0 and j ∈ {1, . . . , n}. Furthermore, it shows
that a single initial segment Ja+b does never exceed this minimum.

Lemma 27. Let a, b, c ∈ Z>0 with max{a, b} < c < a+ b and such that c = ρj(ρ+ 1)n−j

for some ρ ∈ Z!0 and j ∈ {1, . . . , n}. Then

n(Ja) + n(Jb) ! n(Ja+b−c) + n(Jc). (24)

Moreover,
n(Ja) + n(Jb) > n(Ja+b). (25)

Proof. We proceed by induction on the dimension n. Both inequalities are clear for n = 1
since for every initial segment Jr ⊆ Z!0 we have n(Jr) = 1.

Assume now that n > 1 and that the lemma holds for every dimension up to n − 1.
It suffices to show that if 1 < a " b < c = ρj(ρ+1)n−j, then it is possible to find d ∈ Z!0

with 0 < d < a and d " c− b such that

n(Ja) + n(Jb) ! n(Ja−d) + n(Jb+d), (26)

and iterating this process will prove the lemma. Indeed, notice on the one hand that the
conditions above imply that 1 " a − d < b + d " c, and if c < a + b, it is easy to check
that the process will necessarily conclude when the upper bound is reached, i.e., (24). On
the other hand, if c ! a + b, then it will necessarily conclude when the lower bound is
reached, i.e.,

n(Ja) + n(Jb) ! n(J1) + n(Ja+b−1),

which implies (25) since Lemma 8 yields

2n − 1 + n(Ja+b−1) > n(Ja+b).

Now, in order to prove (26), we let x, y ∈ Zn
!0 be the last points with respect to ≺

in Ja, Jb, respectively. Also, for the sake of brevity, we denote by G,H ⊆ Zn−1
!0 the last

non-empty sections of Ja,Jb ⊆ Zn
!0, i.e., G = (Ja)

ix(mx) and H = (Jb)
iy(my).
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We note that since 1 < a, the set Ja has at least two non-empty sections (with respect
to the direction eix), and therefore |G| < a. Using Remark 13 (in particular, (16) and
(17)), we know that

a = mix
x (mx + 1)n−ix + |G| and b = miy

y (my + 1)n−iy + |H| (27)

with
|G| " mix−1

x (mx + 1)n−ix and |H| " miy−1
y (my + 1)n−iy . (28)

Also, since a " b then x ≼ y, and thus either mx < my, or mx = my with ix ! iy.
This implies (see Remark 14) that

|G| " mix−1
x (mx + 1)n−ix " miy−1

y (my + 1)n−iy . (29)

Likewise, since
miy

y (my + 1)n−iy < b < c = ρj(ρ+ 1)n−j,

then Remark 14 implies that c ! m
iy−1
y (my + 1)n−iy+1. This, together with (27), shows

that
miy−1

y (my + 1)n−iy − |H| " c− b. (30)

Now, we consider the following cases, which are exhaustive as a consequence of (28):

(i) |G| > |H|.

(ii) |G| " |H| < m
iy−1
y (my + 1)n−iy .

(iii) |G| " |H| = m
iy−1
y (my + 1)n−iy and iy > 1.

(iv) |G| " |H| = m
iy−1
y (my + 1)n−iy and iy = 1.

In case (i) we choose d = |G| − |H|, and so we may, roughly speaking, interchange
the last sections G and H, i.e., we have H = (Ja−d)

ix(mx) and G = (Jb+d)
iy(my). The

rest of the sections (and their union) remain the same, i.e., (Ja−d)
ix(m) = (Ja)

ix(m) for
all 0 " m < mx and (Jb+d)

iy(m) = (Jb)
iy(m) for all 0 " m < my. Therefore, by using

Corollary 26, we get (26) with equality. Clearly 0 < d " |G| < a, and d " c − b follows
from (29) and (30).

In case (ii) we use the induction hypothesis (in dimension n−1) with ā = |G|, b̄ = |H|
and c̄ = m

iy−1
y (my + 1)n−iy . We choose d = min(ā, c̄− b̄) and so, we get

!!Nn−1
Jā

!!+
!!!Nn−1

Jb̄

!!! !
!!!Nn−1

Jā+b̄−c̄

!!!+
!!Nn−1

Jc̄

!!

if c̄ < ā+ b̄, and !!Nn−1
Jā

!!+
!!!Nn−1

Jb̄

!!! >
!!!Nn−1

Jā+b̄

!!!

if c̄ ! ā+ b̄. Again, from Remark 13 we get (Ja−d)
ix(m) = (Ja)

ix(m) for all 0 " m < mx

and (Jb+d)
iy(m) = (Jb)

iy(m) for all 0 " m < my, and the union of the sections remains
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likewise unchanged. Thus, an application of Corollary 26 yields (26). We again trivially
have 0 < d " |G| < a, and d " c− b follows directly from (30).

In case (iii) we have Jb = {0, . . . ,my − 1}iy−1 × {0, . . . ,my}n−iy+1 (see Remark 13).
Therefore, we may choose d = |G|, and, by applying Remark 13 again, we get that the only
non-empty sections of Ja−d are (Ja−d)

ix(m) = (Ja)
ix(m) for all 0 " m < mx. Moreover,

the only non-empty sections of Jb+d are (Jb+d)
iy−1(m) = (Jb)

iy−1(m) for all 0 " m < my

and (Jb+d)
iy−1(my) = G. So, since the union of all these sections has not changed, by

using Corollary 26 we obtain (26), once more with equality. It is straightforward that

0 < d = |G| < a, and since b = m
iy−1
y (my + 1)n−iy+1 and b < c, Remark 14 implies

c ! m
iy−2
y (my + 1)n−iy+2, and so from (29) it follows that d " c− b.

Finally, in case (iv) we have Jb = {0, . . . ,my}n. Again, we may choose d = |G|,
which yields the same sections for Ja−d as in the previous case, whereas for the non-
empty sections of Jb+d we have (Jb+d)

n(m) = (Jb)
n(m) for all 0 " m " my and

(Jb+d)
n(my + 1) = G. Once more, Corollary 26 yields (26) with equality. It is again

trivial that 0 < d = |G| < a, and this time, since b = (my + 1)n and b < c, Remark 14
implies c ! (my + 1)n−1(my + 2), and so d " c− b follows from (29).

This completes the proof of (26), and thus, of the result.

Now, for any a, n ∈ Z>0, let C ⊆ Ja ⊆ Zn
!0 be the largest lattice box (with respect to

the cardinality) of the form C = {0, . . . , ρ − 1}j × {0, . . . , ρ}n−j for some ρ := ρ(a, n),
j := j(a, n) ∈ Z!0, 1 " j " n. Then, we denote by c(a, n) = |C| = ρj(ρ + 1)n−j.
Furthermore, for any i ∈ {1, . . . , n} and any non-empty set X ⊆ Zn

!0, we denote by
ci(X) = maxm∈Z!0

c(|X i(m)|, n− 1).
We proceed to define the notion of “normalization”, which extends the normalization

process defined in [25] and also utilized, among others, in [20].

Definition 28. Let n > 1 and k ∈ {1, . . . , n}, and let X ⊆ Zn
!0 be a non-empty finite

set. Let ρ ∈ Z!0 and j ∈ {1, . . . , n − 1} be such that ck(X) = ρj(ρ + 1)n−1−j. The
k-normalization of X, denoted by Xk ⊆ Zn

!0, is the result of the following process:

(i) Replacing each non-empty section Xk(m), m ∈ Z!0, by the (n − 1)-dimensional
initial segment of the same cardinality.

(ii) Reordering the sections in decreasing order (with respect to set inclusion) such that
the largest section corresponds to m = 0.

(iii) Starting withm1 = 1 andm2 =max{m ∈ Z!0 :X
k(m) ∕= ∅}, and whilem1" ρ< m2,

we repeat both of these steps:

1. If |Xk(m1)| < ck(X), we replace the sections Xk(m1) and Xk(m2) by the
initial segments of cardinality |Xk(m1)| + h and |Xk(m2)| − h, respectively,
where h = min{|Xk(m2)|, ck(X)− |Xk(m1)|}.

2. If |Xk(m2)| = 0, we decreasem2 by 1, whereas if |Xk(m1)| = ck(X), we increase
m1 by 1.
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Figure 5: From left to right: a finite set, together with the same set after each step of the
3-normalization is applied.

Furthermore, we say that X ⊆ Zn
!0 is stable if X = Xk for all k = 1, . . . , n.

Remark 29. We note that the end result Xk of a k-normalization, k ∈ {1, . . . , n}, is a
set such that its non-empty sections, (Xk)

k(m), m ∈ Z!0, are (n− 1)-dimensional initial
segments ordered in decreasing order, i.e., (Xk)

k(0) ⊃ (Xk)
k(1) ⊃ (Xk)

k(2) ⊃ . . . , and
we have either (Xk)

k(ρ+1) = ∅ or |(Xk)
k(m)| = ck(X) for all m ∈ {1, . . . , ρ} (where ρ is

as in Definition 28).

Next we show that both the rank and the functional n(·) do not increase under the
normalization process.

Lemma 30. Let X ⊆ Zn
!0 be a non-empty finite set. If X ∕= Xk, for some k ∈ {1, . . . , n},

then r(X) > r(Xk).

Proof. We proceed by proving that if any of the 3 steps of the normalization changes the
set, then the rank of X strictly decreases.

First, it is a straightforward computation from the definition of the order ≺ that if
some section is not an ((n − 1)-dimensional) initial segment, then the (n-dimensional)
rank of the set will decrease under step 1.

Next, since all sections are initial segments, |Xk(m)| < |Xk(m′)| for some m < m′

implies Xk(m) ⊆ Xk(m′). Therefore, interchanging them is equivalent to translating the
points

$
Xk(m′) \ Xk(m)

%
× {m′} by reducing their k-th coordinate by m′ − m, which

decreases the rank strictly due to Remark 7.
In the third step, if we move a point z with mz ! zk > ρ (with ρ as specified in

Definition 28) to a point y ∈ Zn
!0 with my " ρ, then again it is clear from the definition

of the order ≺ that the rank strictly decreases.

Lemma 31. Let X ⊆ Zn
!0 be a non-empty finite set. Then n(X) ! n(Xk) for all k =

1, . . . , n.

Proof. Let k ∈ {1, . . . , n}. To begin with, we prove that the first two steps of the normal-
ization process do not increase n(·). Let us denote this resulting intermediate set by Z.
By construction, we know there exists a permutation σ : Z!0 → Z!0 such that, for every
m ∈ Zn

!0, Z
k(m) is either empty or an initial segment with |Zk(m)| = |Xk(σ(m))|. Then,

the minimality of the initial segments (cf. Lemma 9) implies that |Nn−1
Zk(m)

| " |Nn−1
Xk(σ(m))

|
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for every m ∈ Z!0, and, taking into account that the sections of Z form a decreasing
sequence, Lemma 25 yields n(Z) " n(X) (cf. (22)).

To finish, we prove that the third step of the normalization process does not increase
n(·) either. We observe that the equality case in Lemma 25 gives

n(Z) =
!!Zk(0) + {0, 1}n−1

!!+
(

m∈Z!0

!!!Nn−1
Zk(m)

!!! and

n(Xk) =
!!!
$
Xk

%k
(0) + {0, 1}n−1

!!!+
(

m∈Z!0

!!!!N
n−1

(Xk)
k
(m)

!!!! .
(31)

Note that Zk(0) =
$
Xk

%k
(0). Now, we let m1, m2 and h be as in the third step of

Definition 28, and we set a = |Zk(m1)|, b = |Zk(m2)| and c = ck(Z). So, clearly h =
min{b, c − a}. Then, on the one hand, if h = b " c − a, we have |Zk(m1)| + h = a + b
and |Zk(m2)|− h = 0, and thus (25) (in dimension n− 1) ensures that this step strictly
decreases the sum of the cardinalities of the above (n − 1)-dimensional neighborhoods.
On the other hand, if h = c − a < b, then c < a + b, and as per Definition 28 we also
clearly have max{a, b} < c. Therefore (24) (in dimension n−1) again yields that this step
does not increase the sum of the cardinalities of the (n − 1)-dimensional neighborhoods
above. Consequently, from (31) we conclude that n(Z) ! n(Xk), as desired.

The stability property allows us to decompose the set in a precise way:

Lemma 32. Let n ! 3, ρ ! 1 and let X ⊆ Zn
!0 be a non-empty finite set with |X| =

(ρ+ 1)n. If X is stable, then there exist A,B ⊆ Zn
!0 such that

A ⊆ {0, . . . , ρ− 1}n−1 × {ρ+ 1}, ∅ ∕= B ⊆ {ρ}× {0, . . . , ρ}n−1

and
X = A ∪B ∪

$
{0, . . . , ρ− 1}× {0, . . . , ρ}n−1

%
.

Proof. For the sake of brevity we write C = {0, . . . , ρ}n. If X = C, then the result holds
by taking A = ∅ and B = {ρ}× {0, . . . , ρ}n−1, and so we assume that X ∕= C.

For any i ∈ {1, . . . , n}, since X is stable, we know that the non-empty sections X i(m)
are initial segments verifying

X i(0) ⊃ X i(1) ⊃ X i(2) ⊃ . . . , (32)

and so (ρ, . . . , ρ) /∈ X because X ∕= C.
First, we show that if X i(m) ∕= ∅ for some i ∈ {1, . . . , n} and m ! 2, then we must

have {0, . . . ,m − 2}n ⊆ X. To see this, let x ∈ X with xi = m. Then, for any j ∕= i,
since Xj(xj) is an initial segment, we get {0, . . . ,m − 1}n−1 ⊆ Xj(xj). Fixing such an
index j ∕= i, this implies in particular that (m− 1, . . . ,m− 1, xj,m− 1, . . . ,m− 1) ∈ X,
and so just like before, for any k ∕= j, we obtain that {0, . . . ,m − 2}n−1 ⊆ Xk(m − 1),
since Xk(m− 1) is an initial segment (observe how it is crucial in this step that n ! 3).
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This in particular implies that (m − 2, . . . ,m − 2) ∈ X, which together with (32) yields
{0, . . . ,m− 2}n ⊆ X, as desired.

It is easy to check that the previous property applied to m = ρ + 1 and m = ρ + 2,
respectively, together with the fact that X ∕= C, yields

{0, . . . , ρ− 1}n ⊆ X ⊆ {0, . . . , ρ+ 1}n.

In fact, we further have

X ⊆ {0, . . . , ρ}n−1 × {0, . . . , ρ+ 1}. (33)

Indeed, if X i(ρ + 1) ∕= ∅ for some i < n, then there exists x ∈ X such that xi = ρ + 1.
Fixing any j ∕= i, n and using a very similar argument to the previous one, exploiting
that Xj(xj) is an initial segment, we obtain that ρ ei + (ρ + 1)en ∈ X. But this yields
{0, . . . , ρ}n−1⊆X i(ρ) (since X i(ρ) is an initial segment), contradicting that (ρ, . . . , ρ) /∈X.
This proves (33), as desired.

Now, on the one hand, (33) yields X1(ρ) ∕= ∅, since otherwise we would have

|X| " |{0, . . . , ρ− 1}× {0, . . . , ρ}n−2 × {0, . . . , ρ+ 1}| = ρ(ρ+ 1)n−2(ρ+ 2) < (ρ+ 1)n,

a contradiction. Since X1(ρ) is an initial segment then (0, . . . , 0) ∈ X1(ρ), and thus
(ρ, 0, . . . , 0) ∈ X. Hence, (ρ, 0, . . . , 0) ∈ Xn(0), and therefore, since Xn(0) is an initial
segment, we have

{0, . . . , ρ− 1}× {0, . . . , ρ}n−2 ⊆ Xn(0). (34)

Both (33) and (34), together with the fact that X ∕= C and thus Xn(0) ∕= {0, . . . , ρ}n−1,
yield the bounds

ρ(ρ+ 1)n−2 " |Xn(0)| < (ρ+ 1)n−1.

This implies that cn(X) = ρ(ρ+ 1)n−2.
On the other hand, since X ∕= C, it follows from (33) that Xn(ρ+ 1) ∕= ∅. Therefore,

as X is stable (and thus X = Xn), Remark 29 for k = n implies that, for all m = 0, . . . , ρ,
we have |Xn(m)| ! ρ(ρ+1)n−2. Consequently, since Xn(m) is an initial segment, we have

{0, . . . , ρ− 1}× {0, . . . , ρ}n−2 ⊆ Xn(m) (35)

for all m = 0, . . . , ρ.
Finally, we note that, in fact,

Xn(ρ+ 1) ⊆ {0, . . . , ρ− 1}n−1. (36)

Indeed, if x ∈ Xn(ρ+ 1) with xi = ρ for i < n, then since X i(ρ) is an initial segment, we
would have {0, . . . , ρ}n−1 ⊆ X i(ρ), contradicting that (ρ, . . . , ρ) /∈ X.

This concludes the proof by setting A = Xn(ρ + 1) × {ρ + 1} and B = {ρ}×X1(ρ),
as a consequence of (33), (35) and (36).

Finally, we prove that in order to characterize the lattice cubes we only need stability
and, either cardinality 2n or minimality.
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Corollary 33. Let n ! 3 and let X ⊆ Zn
!0 be a non-empty finite set with |X| = 2n. If X

is stable, then X = {0, 1}n.

Proof. Let A,B ⊆ Zn
!0 be the sets arising from Lemma 32 for ρ = 1. We notice that

X = {0, 1}n if and only if A = ∅. Therefore, if X ∕= {0, 1}n, then we must have |A| = 1
and, since |A|+ |B| = 2n−1, we also have |B| = 2n−1 − 1. Moreover, since X is stable, B
is an (n− 1)-dimensional initial segment, and so we have

X = ({0, 1}n \ (1, . . . , 1)) ∪ (0, . . . , 0, 2).

This contradicts the stability of X since Xn = {0, 1}n ∕= X.

Lemma 34. Let n ! 3, ρ ! 2 and let X ⊆ Zn
!0 be a non-empty finite set with |X| =

(ρ+ 1)n. If X is minimal and stable, then X = {0, . . . , ρ}n.

Proof. Assume that X ∕= {0, . . . , ρ}n and let A,B ⊆ Zn
!0 be the sets arising from

Lemma 32. Observe that, since X is not a lattice cube, the set A ∕= ∅. Then, |A| > 0 and

|A|+ |B| = (ρ+ 1)n−1. (37)

If (A+{0, 1}n)∩(B+{0, 1}n) = ∅ then, since A = Xn(ρ+1)×{ρ+1} and B = {ρ}×X1(ρ),
we clearly have, on the one hand, that

n(X) =
!!!Nn

{0,...,ρ−1}×{0,...,ρ}n−1

!!!+
!!!Nn−1

Xn(ρ+1)

!!!+
!!!Nn−1

X1(ρ)

!!! .

On the other hand, the minimality of X yields

n(X) = n({0, . . . , ρ}n) =
!!!Nn

{0,...,ρ−1}×{0,...,ρ}n−1

!!!+
!!!Nn−1

{0,...,ρ}n−1

!!! ,

a contradiction because (25) for a =
!!Xn(ρ + 1)

!! and b =
!!X1(ρ)

!! implies (see also (37))
that !!!Nn−1

Xn(ρ+1)

!!!+
!!!Nn−1

X1(ρ)

!!! >
!!!Nn−1

{0,...,ρ}n−1

!!! .

Now, if
$
A+ {0, 1}n

%
∩
$
B+ {0, 1}n

%
∕= ∅, then (ρ− 1, 0, . . . , 0, ρ+1) ∈ A. This, together

with the fact that A = Xn(ρ + 1) × {ρ + 1} is an (n − 1)-dimensional initial segment,
implies, on the one hand, that there are (ρ− 1)ρn−2 points in Xn(ρ+ 1) strictly smaller,
in the order ≺, than (ρ− 1, 0, . . . , 0) ∈ Xn(ρ+1), and therefore, |A| > (ρ− 1)ρn−2. And,
on the other hand, they ensure that (ρ− 2, ρ− 1, . . . , ρ− 1, ρ+ 1) ∈ A ⊆ X.

From now on we will write (x1, . . . , /xi, . . . , xn) to indicate that the i-th coordinate
xi does not appear in the point (x1, . . . , xn), being henceforth a point in Rn−1. Thus,
considering the section Xn−1(ρ− 1), which is also an (n− 1)-dimensional initial segment,
one has that

(ρ, . . . , ρ, 0ρ−1, ρ) ≺ (ρ− 2, ρ− 1, . . . , 0ρ−1, ρ+ 1) in Xn−1(ρ− 1),

and hence (ρ, . . . , ρ, 0ρ−1, ρ) ∈ Xn−1(ρ− 1), i.e., (ρ, . . . , ρ, ρ− 1, ρ) ∈ X.
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Next we observe that, since X is stable and Xn(ρ+ 1) ∕= ∅, then the set

D =
&
(ρ, . . . , ρ,m) ∈ Zn

!0 : m = 0, . . . , ρ
'
⊆ {ρ}× {0, . . . , ρ}n−1

satisfies that D ∩X = ∅, since otherwise we would have cn(X) = (ρ+ 1)n−1 and thus, by
Remark 29, that X = {0, . . . , ρ}n, a contradiction. Furthermore,

B = {ρ}×X1(ρ) ⊆ {ρ}× {0, . . . , ρ}n−1,

which yields |B| " |{ρ} × {0, . . . , ρ}n−1| − |D| = (ρ + 1)n−1 − (ρ + 1), and we are going
to see that, in fact, equality holds. Firstly, it is easy to see that if

(/ρ, ρ, . . . , ρ, ρ− 1, ρ) ≺ x0 ≼ (/ρ, ρ, . . . , ρ),

for some x0 ∈ Zn
!0, then x0=(/ρ, ρ, . . . , ρ,m) for somem ∈ {0, . . . , ρ}. Since r((/ρ, ρ, . . . , ρ))

= (ρ+1)n−1, this implies that r((/ρ, ρ, . . . , ρ, ρ− 1, ρ)) = (ρ+1)n−1 − (ρ+1). Now, given
that (/ρ, ρ, . . . , ρ, ρ−1, ρ) ∈ X1(ρ), and thatX1(ρ) is an (n−1)-dimensional initial segment,
we know that |X1(ρ)| ! r((/ρ, ρ, . . . , ρ, ρ− 1, ρ)). Consequently, we have that

|B| =
!!X1(ρ)

!! ! r((/ρ, ρ, . . . , ρ, ρ− 1, ρ)) = (ρ+ 1)n−1 − (ρ+ 1).

To sum up, |B| = (ρ+1)n−1− (ρ+1), and by (37), |A| = ρ+1. This contradicts the fact
that |A| > (ρ− 1)ρn−2, except when n = 3 and ρ = 2. In this case, the set X is shown in
Figure 6, and a direct computation allows us to see that X is not minimal.

Figure 6: The stable set X ⊆ Z3
!0 from the proof of Lemma 34. The sets A and B are

shown in red and blue, respectively.

We are now in the position to prove Theorem 17.

Proof of Theorem 17. We proceed by induction on s ∈ Z>0. Let s = 1. Since J(ρ+1)n =
{0, . . . , ρ}n, then

!!J(ρ+1)n + {0, 1}n
!! =

!!{0, . . . , ρ + 1}n
!! = (ρ + 2)n, and so we have to

prove that
if
!!X + {0, 1}n

!! = (ρ+ 2)n, then X is a lattice cube. (38)

If ρ = 0 the result is trivial. Thus, we assume ρ ! 1 and we proceed by induction on the
dimension. If n = 1 then, in order to have

!!(X + {0, 1})\X
!! = 1, necessarily it must be

X = {0, . . . , ρ} up to translations, i.e., a lattice cube. The case n = 2 is Lemma 24.
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So we assume n ! 3. Then, there exists a sequence of sets {Xj}rj=1 given recursively

by Xj+1 = (Xj)ij for some ij ∈ {1, . . . , n}, j = 1, . . . , r− 1, with X1 = X, such that Xr is

stable (we recall here that Y k is the k-normalization of Y ⊆ Zn
!0, see Definition 28). In-

deed, since the normalization process either leaves the set unchanged or strictly decreases
its rank (see Lemma 30), which is bounded from below, such a sequence always exists.

By Lemma 9 the set X is minimal, and so Lemma 31 ensures that all Xj are also
minimal for j = 1, . . . , r. Therefore, if ρ = 1, Corollary 33 ensures that Xr is the lattice
cube {0, 1}n, whereas for ρ ! 2, Lemma 34 shows that Xr = {0, . . . , ρ}n.

Let us now focus on Xr−1. Since Xr−1 is minimal, Corollary 26 yields

n(Xr−1) =

!!!!!

, )

m∈Z!0

(Xr−1)
ir−1 (m)

-
+ {0, 1}n−1

!!!!!+
(

m∈Z!0

!!!Nn−1

(Xr−1)
ir−1 (m)

!!! . (39)

Moreover, we have
(Xr−1)ir−1

= Xr = {0, . . . , ρ}n.

We show next that this last normalization procedure does not involve the third step
of the normalization process. Indeed, since all non-empty sections of the lattice cube
Xr = {0, . . . , ρ}n are of the form {0, . . . , ρ}n−1, applying step (iii) of the normalization
process toXr−1 would imply the existence of a section (Xr−1)

ir−1 (m0), for somem0 ∈ Z!0,
that becomes empty during such a step. But then, due to (39), an analogous argument
to the one of the proof of Lemma 31 would show that n(Xr−1) > n(Xr), contradicting the
minimality of Xr−1.

Therefore, only the steps (i) and (ii) in Definition 28 are used in the last normalization
(Xr−1)ir−1

, which ensures that Xr−1 has exactly ρ+1 non-empty sections (Xr−1)
ir−1 (m),

each of them with cardinality (ρ+1)n−1. We also know that all these (non-empty) sections
(Xr−1)

ir−1 (m) are minimal sets in Zn−1
!0 (see Corollary 26), and so

!!!(Xr−1)
ir−1 (m) + {0, 1}n−1

!!! = (ρ+ 2)n−1.

Thus, the induction hypothesis allows us to conclude that every (non-empty) section
(Xr−1)

ir−1 (m) is an (n − 1)-dimensional lattice cube. Furthermore, since Xr−1 is mini-
mal, Proposition 22 ensures it is connected, and hence all these sections are consecutive.
Finally, they must all be equal as well: indeed, otherwise, for any non-empty section
(Xr−1)

ir−1 (m0), m0 ∈ Z!0, we would have

(Xr−1)
ir−1 (m0) + {0, 1}n−1 ⊊

, )

m∈Z!0

(Xr−1)
ir−1 (m)

-
+ {0, 1}n−1,

and we could translate the sections such that for all non-empty (Xr−1)
ir−1 (m), m ∈ Z!0,

we had (Xr−1)
ir−1 (m) = (Xr−1)

ir−1 (m0), strictly reducing the functional n(·) (see (39));
this would contradict the minimality of Xr−1. Therefore, Xr−1 is itself a lattice cube.
Since this argumentation does not depend on the index, but only on the fact that Xr is a
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lattice cube, we can argue inductively for j = r, . . . , 1. In particular, X = X1 is a lattice
cube, which concludes the proof of the case s = 1. Thus we have shown (38).

Assume now that s > 1 and that the result holds for s − 1. On the one hand,
Corollary 11 ensures that |X + {0, . . . , s − 1}n| ! |J(ρ+1)n + {0, . . . , s − 1}n| = (ρ + s)n.
On the other hand, if |X + {0, . . . , s− 1}n| > (ρ+ s)n, then Lemma 20 would imply that
|X + {0, . . . , s}n| > (ρ + s + 1)n = |J(ρ+1)n + {0, . . . , s}n|, a contradiction. Therefore,
|X + {0, . . . , s − 1}n| = |J(ρ+1)n + {0, . . . , s − 1}n|, and thus, the induction hypothesis
yields that X is a lattice cube, as desired.

3.3 Characterizations of lattice cubes via discrete isoperimetric and Brunn-
Minkowski type inequalities

We are now in the position to prove Theorems 1 and 2:

Proof of Theorem 1. Let r = (ρ+1)n. By the translation invariance of the cardinality we
may assume, without loss of generality, that X ⊆ Zn

!0. Then Corollaries 11 and 16 yield

|X+{−1, 0, 1}n| = |X+{0, 1, 2}n| ! |Jr+{0, 1, 2}n| = |Ir+{0, 1, 2}n| = |Ir+{−1, 0, 1}n|.

Thus, if |X+{−1, 0, 1}n| = |Ir+{−1, 0, 1}n|, we get that |X+{0, 1, 2}n| = |Jr+{0, 1, 2}n|,
and Theorem 17 shows that X is a lattice cube. The converse is obvious.

Proof of Theorem 2. Let r = (ρ+ 1)n. By Corollary 11 and (9) for Jr, we have

|(X + {−1, 0, 1}n) ∩ Zn
!0| ! |X + {0, 1}n| ! |Jr + {0, 1}n| = |(Jr + {−1, 0, 1}n) ∩ Zn

!0|.

Thus, if equality holds in (6), we get, in particular, that |X + {0, 1}n| = |Jr + {0, 1}n|,
and Theorem 17 shows that X is a lattice cube. Furthermore, it is clear that in order
to have |(X + {−1, 0, 1}n) ∩ Zn

!0| = |X + {0, 1}n|, it must in fact be X = {0, . . . , ρ}n, as
desired. The converse is obvious.

Furthermore, as a consequence of Theorem 17, we can characterize the equality case
in (2) in some particular cases:

Corollary 35. Let X ⊆ Zn be a finite set with |X| = (ρ + 1)n for some ρ ∈ Z!0 and let
Y be a lattice cube. Then

!!X + Y + {0, 1}n
!!1/n = |X|1/n + |Y |1/n

if and only if X is a lattice cube.

Proof. If X is a lattice cube then Theorem A shows the result. So we assume that!!X + Y + {0, 1}n
!!1/n = |X|1/n + |Y |1/n, and let Y = {0, . . . , s}n for some s ∈ Z!0. Then,

by applying Corollary 11, we have

(ρ+ s+ 2)n = |X + Y + {0, 1}n| ! |J(ρ+1)n + Y + {0, 1}n| = (ρ+ s+ 2)n.

Thus, |X + {0, . . . , s + 1}n| = |J(ρ+1)n + {0, . . . , s + 1}n| and Theorem 17 concludes the
proof.
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Remark 36. We note that there are examples of sets (even with the cardinality of a lattice
cube) reaching equality in Theorem A which are not lattice cubes (see Figure 7). We point
out that we have not been able to find an example in this regard different from a lattice
box.

Figure 7: A setX ⊆ Z2 with |X| = 16 which is not a lattice cube (left), andX+X+{0, 1}2
(right), satisfying the equality in (2): |X +X + {0, 1}2|1/2 = 8 = 2|X|1/2.

4 Isoperimetric inequality for the lattice point enumerator

This section is devoted to show the isoperimetric type inequality for the lattice point
enumerator Gn(·) given in Theorem 3. To this end, we recall the definition of extended
cubes first introduced in [13]:

Definition 37. For a non-empty bounded set M ⊆ Rn, we write

CM = {(λ1x1, . . . ,λnxn) ∈ Rn : (x1, . . . , xn) ∈ M,λi ∈ [0, 1] for i = 1, . . . , n}.

For the sake of brevity, we just write Cx := C{x} for any x ∈ Rn.

Figure 8: Left: A set X ⊆ R2 (four black dots) and CX ⊆ R2 (grey set).
Right: CJ44 ⊆ R3.

As usual in the literature, we will denote the integer part of t ! 0 by ⌊t⌋.

Proof of Theorem 3. First, we show that for every λ ∈ [0, 1) we have

CJr + [0,λ]n ⊆ Jr + [0, 1)n. (40)

Indeed, if y ∈ CJr + [0,λ]n, then y ∈ Cx + [0,λ]n for some x ∈ Jr. Hence yi " xi + λ and
xi ∈ Z!0 for all i = 1, . . . , n, and so ⌊yi⌋ " xi, i = 1, . . . , n. Then Remark 7 implies that
(⌊y1⌋, . . . , ⌊yn⌋) ≼ x, and therefore

y ∈ (⌊y1⌋, . . . , ⌊yn⌋) + [0, 1)n ⊆ Jr + [0, 1)n.
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Let t > 0 (the case t = 0 is trivial). By applying (40) with λ = t−⌊t⌋ and adding the
cube [0, ⌊t⌋]n, we immediately get

CJr + t[0, 1]n ⊆ Jr + (1 + ⌊t⌋)[0, 1)n.

This completes the proof of the claimed inequality since, by applying Corollary 11 with
s = ⌊t⌋, we get

Gn (K + t[0, 1]n) ! Gn ((K ∩ Zn) + t[0, 1]n) = |(K ∩ Zn) + {0, . . . , ⌊t⌋}n|
! |Jr + {0, . . . , ⌊t⌋}n| = Gn(Jr + (1 + ⌊t⌋)[0, 1)n)
! Gn (CJr + t[0, 1]n) .

(41)

Now, assume that Gn(K) = (ρ + 1)n for some ρ ∈ Z!0. In order to characterize the
equality in (41), we first note that we have

(Jr + (1 + ⌊t⌋)[0, 1)n) ∩ Zn = Jr + {0, . . . , ⌊t⌋}n = (CJr ∩ Zn) + (t[0, 1]n ∩ Zn)

⊆ (CJr + t[0, 1]n) ∩ Zn,

which gives equality in the last inequality of (41).
So we have equality in (41) if and only if the relations

Gn (K + t[0, 1]n) = Gn ((K ∩ Zn) + t[0, 1]n)

and
|(K ∩ Zn) + {0, . . . , ⌊t⌋}n| = |Jr + {0, . . . , ⌊t⌋}n|

hold. The first one is equivalent to

(K + t[0, 1]n) ∩ Zn = (K ∩ Zn) + (t[0, 1]n ∩ Zn),

whereas the second one holds if and only if we have equality in Corollary 11, i.e., when
K ∩ Zn is a lattice cube (see Theorem 17), as desired.

Remark 38. In order to find a global minimal set, i.e., a set attaining equality in Theorem 3
for all values of t ! 0, we observe that if we have a non-empty bounded set K ⊆ Rn such
that (K+ [0, 1)n)∩Zn = K ∩Zn, then, by repeatedly adding the lattice cube {0, 1}n, one
gets

(K + t[0, 1]n) ∩ Zn = (K ∩ Zn) + (t[0, 1]n ∩ Zn)

for all t ! 0. This shows that we have equality in Theorem 3 for all t ! 0 if and
only if K ∩ Zn is a lattice cube and K satisfies (K + [0, 1)n) ∩ Zn = K ∩ Zn, provided
Gn(K) = (ρ+ 1)n for some ρ ∈ Z!0.

Remark 39. We note that the role of the set CJr in Theorem 3 can also be played by any
non-empty bounded set M ⊆ Rn satisfying Gn(M) = r and M + [0, 1)n ⊆ Jr + (−1, 1)n.
Nevertheless, CJr are the largest sets (with respect to set inclusion) contained in Rn

!0 such
that both of these properties hold. Indeed, in [13, Remark 2.1] the authors showed that
the sets CIr are the largest ones (with respect to set inclusion) satisfying Gn(CIr) = r and
CIr + (−1, 1)n ⊆ Ir + (−1, 1)n, and so by intersecting with the positive cone Rn

!0 we get
the desired properties.
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Remark 40. Theorem 3 also holds for an arbitrary lattice Λ ⊆ Rn: if B = {v1, . . . , vn} is
a basis of Λ, we denote by GΛ(M) = |M ∩ Λ| for any M ⊆ Rn and by ϕ : Rn −→ Rn

the linear (bijective) map given by ϕ(x) =
.n

i=1 xivi for any x = (x1, . . . , xn) ∈ Rn, then
Theorem 3 yields

GΛ

,
K + tϕ

$
[0, 1]n

%-
! GΛ

,
ϕ(CJr) + tϕ

$
[0, 1]n

%-

for any bounded set K ⊆ Rn with GΛ(K) = r > 0 and all t ! 0.

We conclude this section by showing that Theorem 3 implies Theorem D. Conse-
quently, and due to the homogeneity and translation invariance of the volume, it will also
imply the neighborhood form (4) of the isoperimetric inequality for the cube E = [0, 1]n.

Proposition 41. The discrete inequality (8) implies (7).

Proof. Fix t ! 0 and r > 0, and let r′ = Gn(CJr + t[0, 1]n). It is clear from the definition
that, if A,B ⊆ Rn

!0, then CA+B = CA + CB. In particular, since Jr′ = Jr + {0, . . . , ⌊t⌋}n,
we have CJr′ = CJr + ⌊t⌋[0, 1]n. Furthermore, Corollary 16 implies that

Gn(CIr + t[−1, 1]n) = Gn(CIr + ⌊t⌋[−1, 1]n) = Gn(CJr + ⌊t⌋[−1, 1]n).

Therefore,

Gn(CIr + t[−1, 1]n) = Gn(CJr + ⌊t⌋[−1, 1]n) = Gn(−CJr + ⌊t⌋[−1, 1]n)

= Gn(−CJr + ⌊t⌋[−1, 0]n + ⌊t⌋[0, 1]n) = Gn(−CJr′ + ⌊t⌋[0, 1]n)
" Gn(CJr′ + t[0, 1]n).

Finally, using Theorem 3 with the set −K, we have

r′ = Gn(CJr + t[0, 1]n) " Gn(−K + t[0, 1]n) = Gn(K + t[−1, 0]n).

Consequently, Theorem 3 applied now to the set K + t[−1, 0]n yields

Gn(CIr + t[−1, 1]n) " Gn(CJr′ + t[0, 1]n) " Gn(K + t[−1, 0]n + t[0, 1]n)

= Gn(K + t[−1, 1]n),

as desired.
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