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Abstract

The total graph of a graph G, denoted by T (G), is defined on the vertex set
V (G) ∪ E(G) with c1, c2 ∈ V (G) ∪ E(G) adjacent whenever c1 and c2 are adjacent
to (or incident on) each other in G. The total chromatic number χ′′(G) of a graph
G is defined to be the chromatic number of its total graph. The well-known Total
Coloring Conjecture or TCC states that for every simple finite graph G having
maximum degree ∆(G), χ′′(G)  ∆(G) + 2. In this paper, we consider two ways to
weaken TCC :

1. Weak TCC: This conjecture states that for a simple finite graph G, χ′′(G) =
χ(T (G))  ∆(G)+3. While weak TCC is known to be true for 4-colorable graphs, it
has remained open for 5-colorable graphs. In this paper, we settle this long pending
case.

2. Hadwiger’s Conjecture for total graphs: We can restate TCC as a conjecture
that proposes the existence of a strong χ-bounding function for the class of total
graphs in the following way: If H is the total graph of a simple finite graph, then
χ(H)  ω(H) + 1, where ω(H) is the clique number of H. A natural way to relax
this question is to replace ω(H) by the Hadwiger number η(H), the number of
vertices in the largest clique minor of H. This leads to the Hadwiger’s Conjecture
(HC ) for total graphs: if H is a total graph then χ(H)  η(H). We prove that this
is true if H is the total graph of a graph with sufficiently large connectivity. It is
known that (European Journal of Combinatorics, 76, 159–174,2019) if Hadwiger’s
Conjecture is proved for the squares of certain special class of split graphs, then it
holds also for the general case. The class of total graphs turns out to be the squares
of graphs obtained by a natural structural modification of this type of split graphs.
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1 Introduction

1.1 Total Coloring Conjecture

Let G be a simple finite graph. For a vertex v ∈ V (G) in G, we define NG(v) := {u ∈
V (G) : u is adjacent to v in G} and EG(v) := {e ∈ E(G) : e is incident on v in G }.
The degree of a vertex v ∈ V (G) is defined as d(v) = |NG(v)| = |EG(v)|. The maximum
degree of G, ∆(G) = maxv∈V (G) d(v).

A vertex coloring is called a proper vertex-coloring if no two adjacent vertices are
assigned the same color. The minimum number of colors required to achieve a proper
vertex-coloring of G is called the chromatic number of G, and is denoted by χ(G). Like
the vertex-coloring problem, the problem of coloring the edges of a graph is also one
that has received much attention in the literature. A coloring of the edges of a graph is
called a proper edge-coloring if no two adjacent edges are assigned the same color. The
minimum number of colors required in any proper edge-coloring of a graph G is called
its edge-chromatic number or chromatic index and is denoted by χ′(G). The following
theorem was proved by Vizing :

Theorem 1 (Vizing’s Theorem). For a simple finite graph G, ∆(G)  χ′(G)  ∆(G)+1.

Vizing’s theorem suggests a classification of simple finite graphs into two classes. A
graph G is said to be in class I if χ′(G) = ∆(G) and in class II if χ′(G) = ∆(G) + 1.

The notion of line graphs allows us to view the edge coloring problem as a vertex
coloring problem. Given a graph G, the line graph of G is the graph L(G) = (V ′, E ′)
where V ′ = E(G) and e1, e2 ∈ V ′ form an edge e1e2 ∈ E ′ whenever e1and e2 are adjacent
edges in G. Clearly χ′(G) = χ(L(G)). The clique number of G, denoted by ω(G), is the
number of vertices in a maximum clique of G. Clearly ω(G)  χ(G) for all graphs. It
is easy to see that ω(L(G))  ∆(G), and therefore Vizing’s theorem guarantees that the
chromatic number of any line graph is at most 1 more than its clique number. Given
a class of graphs F , if there exists a function f such that ∀G ∈ F ,χ(G)  f(ω(G)),
then F is a χ-bounded class and f is a χ-bounding function for F . χ-boundedness of
graph classes is an extensively studied topic, see the survey by Scott and Seymour [26] for
further references. Thus Vizing’s Theorem guarantees a very strong χ-bounding function
for the class of line graphs.

After vertex and edge colorings, it was natural for graph theorists to consider coloring
vertices and edges simultaneously. A total coloring of a graph G is a coloring of all its
elements, that is, vertices and edges, such that no two adjacent elements are assigned the
same color. (When we refer to two adjacent elements of a graph, they are either adjacent
to each other or incident on each other as the case may be.) That is, it is an assignment
c of colors to V (G)∪E(G) such that c|V (G) is a proper vertex-coloring, c|E(G) is a proper
edge-coloring, and c(uv) /∈ {c(u), c(v)} for any edge uv ∈ E(G). The minimum possible
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number of colors in any total coloring of G is called the total chromatic number of G, and
is denoted by χ′′(G).

The total coloring conjecture (or TCC ) was proposed by Behzad [3] and Vizing [27]
independently between 1964 and 1968.

Conjecture 2 (Total coloring conjecture). For any simple, finite graph G,

χ′′(G)  ∆(G) + 2

Theorem 3. If we use multigraphs instead of simple graphs, the above statement may not
hold. This is true of Theorem 1 also. In this paper, we consider only simple finite graphs.

We may state weaker versions of Conjecture 2 by relaxing the upper bound on χ′′(G) as
follows:

Conjecture 4 ((k)-TCC ). Let k  2 be a fixed positive integer. For any graph G,

χ′′(G)  ∆(G) + k

Note 5. (2)-TCC is the same as Conjecture 2; that is, the total coloring conjecture. We
shall refer to (3)-TCC as the weak total coloring conjecture or weak TCC for short.

Even though many researchers have examined TCC over the years, it remains unsolved
to date and is considered one of the hardest open problems in graph coloring. Bollobás and
Harris [6] proved that χ′′(G)  11

6
∆(G), when ∆(G) is sufficiently large. Later Kostochka

[17] proved that χ′′(G)  3
2
∆(G), when ∆(G)  6. The best-known result to date for the

general case was obtained by Molloy and Reed [19] :

Theorem 6. χ′′(G)  ∆(G) + C, where C is equal to 1026.

Theorem 7. Molloy and Reed have mentioned in [19] that though they only show a value
1026 for the constant C, with much more effort it can be brought down to 500.

While TCC remains unsolved for the general case, it is known to hold for some special
classes of graphs. For example, it is easy to see that TCC is true for all complete graphs
and bipartite graphs [4]. The case where the maximum degree of the graph is bounded
above by some small positive integer is studied by many researchers [22, 28, 16]. The best
known result in this direction is the following.

Theorem 8 ([15]). TCC holds for all graphs G with maximum degree at most 5.

Many researchers studied TCC for planar graphs [7, 32, 24]. The total coloring con-
jecture is known to hold for planar graphs except when the maximum degree is 6.

Theorem 9 ([24]). Let G be a planar graph. If ∆(G) ∕= 6, then TCC holds for G,
otherwise χ′′(G)  ∆(G) + 3.
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Considering the difficulty level of TCC, it makes sense to study relaxations of TCC.
We intend to consider two ways to weaken TCC. The first one is the most obvious way:
Increase the upper bound appearing in the statement of TCC. This leads to weak TCC
and (k)-TCC, stated in Conjecture 4. Now we will develop the background for the second
one.

Just like we defined line graphs and used it to perceive the edge coloring problem on G
as a vertex coloring problem on L(G), we can define a similar structure in the context of
total coloring. Given a graphG= (V,E) the total graph ofG is the graph T (G) = (V ′′, E ′′)
where V ′′ = V ∪ E, the set of all elements of G, and c1c2 ∈ E ′′ whenever elements c1,c2
are adjacent in G. Given a class F of graphs, we define T (F) := {T (G) : G ∈ F}. We
use T to denote the class of total graphs i.e. T = T (G), where G is the class of all simple
finite graphs.

Note 10. We shall call vertices in T (G) that correspond to vertices in the original graph G
as v -vertices and vertices that correspond to edges in G as e-vertices. For ease of notation,
we denote an element of G, that is, an edge or a vertex in G, and its corresponding vertex
in T (G), by the same letter. Thus, the v -vertex in T (G) corresponding to x ∈ V (G) is
also denoted by x.

Observation 11. Any total coloring of a graph G corresponds to a proper vertex coloring
of T (G) and vice-versa. Thus, the total chromatic number of G is equal to the chromatic
number of T (G) that is, χ′′(G) = χ(T (G)).

Observation 12. For every vertex x ∈ V (G), the v-vertex corresponding to x and the
e-vertices corresponding to the edges in EG(x) form a clique of order dG(x) + 1 in T (G).
It follows that there exists a clique of order ∆(G) + 1 in T (G). Therefore, ∆(G) + 1 
ω(T (G))  χ(T (G)) = χ′′(G). In fact, it is not difficult to see that the clique number of
the total graph of G, ω(T (G)) = ∆(G) + 1, when ∆(G)  2.

It is easy to see that if ∆(G)  1, then χ′′(G) = ω(T (G)). Thus, in view of observation
12, Conjecture 2 can be thought to be suggesting the existence of a very strong χ-bounding
function for the class of total graphs, and can be restated as follows:

Conjecture 13 (Restatement of total coloring conjecture). ∀H ∈ T ,χ(H)  ω(H) + 1

From the structural perspective, one obvious way to relax Conjecture 13 is to replace
clique number ω(H) by Hadwiger number η(H), the number of vertices in the largest
clique minor of H. This directly leads us to the study of Hadwiger’s Conjecture on
Total Graphs, hereafter abbreviated as “HC on T ”. (See the next section for the formal
statement of Hadwiger’s Conjecture.)

Problem 14 (Hadwiger’s Conjecture on Total Graphs or “HC on T ”).

χ(H)  η(H), ∀H ∈ T

Theorem 15. Careful readers may object that if we replace ω(H) by η(H) in Conjecture
13, the new inequality should be χ(H)  η(H)+1, ∀H ∈ T . But we will show in Theorem
27 that Conjecture 13 indeed implies HC on T as stated in problem 14.
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Needless to say, Hadwiger’s Conjecture is an even more celebrated and long-standing
conjecture than TCC in graph theory, owing its origin to the Four Color Theorem itself.
While the general case of Hadwiger’s Conjecture remains unsolved, it was proved for
several special classes of graphs. For example, Reed and Seymour [20] proved Hadwiger’s
Conjecture for line graphs more than 15 years ago. Chudnovsky and Fradkin [10] even
generalized the result to quasi-line graphs. But to the best of our knowledge, for the class
of total graphs, whose definition is similar in spirit to that of line graphs, Hadwiger’s
Conjecture has not yet been proven or studied.

1.2 Hadwiger’s Conjecture: The connection between the general case and
the case of total graphs

Given an edge e = uv in G, the contraction of the edge e involves the following : deleting
vertices u and v, introducing a new vertex we, and making we adjacent to all vertices in
the set (NG(u) ∪NG(v)) \ {u, v}. The new graph thus obtained is denoted by G/e.

A graph H is said to be a minor of G if a graph isomorphic to H can be obtained from
G, by performing a sequence of operations involving only vertex deletions, edge deletions,
and edge contractions. If G contains H as a minor, then we write H ≼ G.

The celebrated Hadwiger’s Conjecture is a far-reaching generalization of the Four
Color theorem. It was proposed by Hugo Hadwiger [13] in 1943.

Conjecture 16 (Hadwiger’s Conjecture). Given any graph G and t > 0,

χ(G)  t =⇒ Kt ≼ G

In other words, every graph has either a clique minor on t vertices (Kt-minor) or a proper
vertex-coloring using (t− 1) colors.

For t  3, Hadwiger’s Conjecture is easy to prove. The t = 4 case was proved by
Hadwiger himself in [13]. The Four Color Theorem was proved by Appel and Haken [1, 2]
in 1977. Using a result of Wagner [29], it can be shown that the Four Color Theorem
is equivalent to Hadwiger’s Conjecture for t = 5. Robertson, Seymour, and Thomas [21]
proved in 1993 that Hadwiger’s Conjecture holds true for t = 6. The conjecture remains
unsolved for t  7. So far, Hadwiger’s Conjecture has been proved for several classes of
graphs; see [5, 10, 18, 20, 30, 31].

Now we describe a curious observation from [8]. Given a graph G, its square G2 is
defined on the vertex set V (G) with u and v being adjacent in G2 whenever the distance
between u and v in G is at most 2. For a class of graphs F , let F2 denote the set of graphs
{G2 : G ∈ F}. Recall that a split graph is a graph whose vertex set can be partitioned
into an independent set and a clique. Let S denote the special class of split graphs, whose
vertex set is partitioned into an independent set A and a clique B with the following extra
constraints: (1) Each vertex in B has exactly 2 neighbours in A. (2) There are no two
vertices in B having the same neighbourhood in A.

The following fact is from [8]. (In [8], the following fact is not stated explicitly in this
detail, but can be easily read out from the proof of Theorem 1.2, therein.)
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Fact 17. Proving the general case of Hadwiger’s Conjecture is equivalent to proving HC
for the class S2.

Obviously proving HC for S2 is extremely difficult, despite its tantalizingly specialized
appearance, since it is a reformulation of the general case. From this perspective, it is
natural to consider classes of graphs that can be obtained by simple structural modifica-
tions of S and see how difficult it is to prove HC for the squares of such classes. One such
modification is to assume that both A and B are independent sets, keeping everything else
the same, i.e. the class of bipartite graphs with parts A and B with the extra constraints:
(1) Each vertex in B has exactly 2 neighbors in A. (2) No two vertices in B have the
same neighbourhood in A. In other words, get a bipartite graph from each split graph
in S by converting the clique B to an independent set. Let this new class be denoted by
Ŝ. How difficult is it to prove HC for Ŝ2? Careful inspection reveals that Ŝ is a familiar
class of graphs, the sub-divided graphs.

A graph G is a subdivided graph if it can be obtained from another graph H by
subdividing each edge uv in H; that is, replacing uv by a path uwv, where w is a new
vertex. Now if we consider the set of newly introduced vertices as A and the original
vertices of H as B, it is easy to see that G ∈ Ŝ. The converse is also true: it is easy to
verify that if a graph G belongs to Ŝ, then there exists another graph H such that G is
obtained by sub-diving all the edges of H. Interestingly, the class of squares of subdivided
graphs is the same as the class of total graphs.

Fact 18. If H is a graph and G is obtained by subdividing every edge of H, then the graph
G2 is isomorphic to the total graph T (H) of H. In other words, the class of total graphs
T = Ŝ2.

Considering the structural closeness of Ŝ and S and the fact from [8] that HC on S2

is equivalent to the general case of HC, it is not very surprising that proving Hadwiger’s
Conjecture for total graphs turns out be challenging.

Theorem 19. Let G be a graph and let T (G) be its total graph. Denote the set of v-vertices
and the set of e-vertices in T (G) by V and E, respectively. Note that the subgraph of T (G)
induced by V is isomorphic to the original graph G, the subgraph of T (G) induced by E
is isomorphic to the line graph L(G) of G, and the bipartite graph induced by the edges
between the sets V and E is precisely the subdivided graph S(G) of G.

1.3 Our contributions to Hadwiger’s Conjecture on total graphs

In Section 2 and Section 3, we explore the difficulty level of HC on T in comparison
with TCC. Our first result is Theorem 27 which states that if TCC is true for a class F
of graphs that is closed under taking subgraphs, then Hadwiger’s Conjecture holds true
for the class T (F). Taking F = G, the class of simple finite graphs, we infer that TCC
implies HC on T , thus justifying our claim that problem 14 is a relaxation of Conjecture
2 and its restatement, Conjecture 13. But is TCC indeed a stronger statement than HC
on T in the sense that some hypothesis weaker than TCC implies HC on T ? Our next
result confirms this.
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In Theorem 30, we show that if weak TCC (see Conjecture 4) is true for a class F
of graphs that is closed under taking subgraphs, then Hadwiger’s Conjecture is true for
the class T (F). Thus the weaker hypothesis weak TCC implies HC on T ; therefore HC
on T is strictly easier than TCC. A graph G is t-total critical if G is connected and
∀e ∈ E(G),χ′′(G − e) < χ′′(G) = t. We show that for every (∆(G) + 3)-total critical
graph G, T (G) has a clique minor of order ∆(G) + 3.

Can we prove that the weaker hypothesis (k)-TCC (for some fixed positive integer
k  4; see Conjecture 4) implies HC on T ? We do not know the answer, but our
approach of showing the existence of a ∆(G) + k clique minor in T (G), assuming that G
is (∆+k)-total critical, does not seem to work when k  4. More sophisticated approaches
may be needed to answer this question.

However, if we have the additional guarantee that the graph G has a high vertex
connectivity, then Hadwiger’s Conjecture will hold for T (G) if (k)-TCC is true for G. We
show in Theorem 37 that if (k)-TCC is true, then Hadwiger’s Conjecture is true for T (F),
where F := {G : κ(G)  2k − 1} (here, κ(G) denotes the vertex-connectivity of G). By
combining this with the upper bound of Molloy and Reed [19], we get that there exists a
constant C ′ such that Hadwiger’s Conjecture is true for T (F), where F := {G : κ(G) 
C ′}. Here C ′ = 2C−1, where C is the constant from Theorem 6; in [19] Molloy and Reed
proved C = 1026, but mention that with more detailed analysis, C can be brought down
to 500.

1.4 Our contributions to the total coloring literature

In this section we concentrate on the first (and the more straightforward) relaxation of
TCC mentioned earlier: weak TCC.

The first reason that motivated us to go through the known literature on total coloring
to find out the important special classes F of graphs for which weak TCC is known to
hold (while TCC may still remain unsolved), is the promise of Theorem 30 that HC is
true for T (F) for such F . We realized that there are some important graph classes in
this category, for example, planar graphs. Unfortunately, for general graphs, it seems the
chance of either TCC or weak TCC getting proven in the near future is very low.

Is it possible that weak TCC is a more reasonable conjecture than TCC ? It is re-
markable that another very well-known and widely believed conjecture, the list coloring
conjecture, implies the weak TCC, whereas TCC seems beyond its reach. TCC is indeed a
bold conjecture, in the sense that at times it makes us think that it is not unreasonable to
look for counterexamples. For example, despite intense research for decades, the conjec-
ture could not be proved for planar graphs with a maximum degree 6, though it has been
found to hold good for all other cases of planar graphs. On the other hand, it is very easy
to prove weak TCC for all planar graphs: If G is a planar graph, then χ′′(G)  ∆(G)+3.
Moreover, weak TCC is in fact true for a much wider class, namely 4-colorable graphs,
which properly includes planar graphs, whereas proving TCC on 4-colorable graphs seems
to be extremely difficult. This led us to survey the status of weak TCC on 5-colorable
graphs, and try to fill the research gap therein.
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Weak TCC can be proved for 4-colorable graphs (that is, when χ(G)  4) using
the following well-known argument: We color the vertices of the graph using the colors
{1, 2, 3, 4}. Applying Vizing’s theorem we can color the edges of the graph using ∆ + 1
colors from {3, 4, . . . ,∆(G) + 3}. We uncolor all edges with colors 3 or 4. Note that for
every uncolored edge, there exist at least two colors in {1, 2, 3, 4} that are not the colors
assigned to its endpoints. Let us associate with each uncolored edge the list containing
these two colors. It is easy to see that the subgraph induced by the uncolored edges
consists only of paths and even cycles, and is therefore 2-edge-choosable. This proves
weak TCC for 4-colorable graphs. As a special case, planar graphs satisfy weak TCC
since by the four color theorem all planar graphs are 4-colorable.

As mentioned earlier this naturally leads to the question of whether weak TCC can be
proved for k-colorable graphs with k  5. It is not the case that researchers who worked
on total coloring failed to notice this question altogether. In fact, from the early days of
research in total coloring, researchers have tried to find upper bounds for total chromatic
number of a graph in terms of its (vertex) chromatic number.

Theorem 20. If we go through the mainstream literature on total coloring, apart from
efforts to bring the upper bound closer to the conjectured ∆ + 2, there were efforts to
study TCC for graph classes defined by their maximum degree, i.e. ∆  4, ∆  5 etc.
Obviously, the other two parameters for such a study were the chromatic number χ(G)
and the chromatic index χ′(G). The latter is essentially ∆, due to Vizing’s Theorem.
Studying TCC for graphs of bounded chromatic number was the next natural option after
bounded maximum degree graphs.

The most important result in this direction was proved by Hind [14].

Theorem 21 (Hind). For every graph G,

χ′′(G)  χ′(G) + 2


χ(G)

 ∆(G) + 1 + 2


χ(G)


.

We note that for small values of χ(G) (such as  9), Theorem 21 implies χ′′(G) 
∆(G)+ 7. Naturally many researchers have attempted to improve this result using adap-
tations of the technique used in Hind’s proof. One such result was presented by Sánchez-
Arroyo [23] and a slightly better bound was obtained by Chew [9].

Theorem 22 (Chew). For any connected multigraph G,

χ′′(G) 






χ′(G) +

χ(G)
3


+ 1 if χ(G) ≡ 2 (mod 3)

χ′(G) +

χ(G)
3


+ 1 otherwise

This implies that χ′′(G)  χ′(G) + 3, for χ(G)  5. Although weak TCC for class-I
5-colorable graphs follows from this result, weak TCC is not known to hold for the entire
class of 5-colorable graphs to date. In Theorem 40, we prove the following long-pending
result:
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Weak TCC is true for 5-colorable graphs.

Theorem 23. The method used in our proof is completely different from the proofs of
Theorem 21 and Theorem 22. Proving TCC for 5-colorable graphs is likely to be a con-
siderably harder problem. In fact, TCC remains to be proved even for 4-colorable graphs.
As mentioned before the ∆ = 6 case for planar graphs is still open even after decades of
research.

2 Hadwiger’s Conjecture and total coloring

Definition 24 (total-critical graph). A graph G is said to be t-total-critical if G is
connected, χ′′(G) = t and χ′′(G− e)  t− 1, for any edge e of G.

Note that any graph that contains at least one edge has a total chromatic number of
at least 3.

Lemma 25. If a graph H is t-total-critical, where t  ∆(H) + 2, then H has no cut-
vertices.

Proof. Let H be a t-total-critical graph, where t  ∆(H) + 2. Note that it follows from
the definition of a t-total critical graph that H is connected. Let us choose a vertex v
in H with dH(v) = d (say). We claim that v is not a cut-vertex in H. Otherwise if v
is a cut-vertex then 2  d  ∆(H). We can assume that for some s < d, s neighbours
of v say, v1, v2, . . . , vs lie in one connected component C1, while the remaining d − s
neighbours, vs+1, . . . , vd lie in the remaining connected components C2, . . . , Ck (k  2) of
H − v. Let the edge vvi be denoted by ei, for all i  d. Define T1 := H[V (C1) ∪ {v}]
and T2 := H − V (C1). Both T1 and T2 can be total colored with t − 1 colors since H is
t-total-critical.

For i ∈ [2], consider a total coloring ϕi : V (Ti) ∪ E(Ti) → [t− 1] of Ti. By permuting
colors if necessary, we can assume that ϕ1(v) = ϕ2(v) and ϕ1(ET1(v)) ∩ ϕ2(ET2(v)) = ∅.
But now, ϕ1 ∪ ϕ2 is a total coloring of H using at most t− 1 colors, a contradiction.

Lemma 26. Let G be a (∆(G) + k)-total-critical graph on at least 3 vertices, for some
2  k  ∆(G). Then the minimum degree of G is at least k.

Proof. Assume that there exists a vertex w ∈ V (G) with dG(w)  k−1, and let∆(G) = ∆.
Since G has at least three vertices and there are no cut-vertices in G (lemma 25), w cannot
have degree 1. If k = 2, then this is already a contradiction. Hence we assume that k  3.

Let the neighbours of w be v1, v2, . . . , vj, where 2  j  k − 1. Call the edge viw as
ei, for each i ∈ [j − 1] and vjw as f . Then G − f has a total coloring using ∆ + k − 1
colors, which we shall assume to be the set [∆+ k − 1].

Assume that vi is assigned color αi for each i ∈ [j] and the edge ei is assigned color βi

for each i ∈ [j − 1]. Call the color assigned to w as c.
If αj = c, pick a color c′ ∈ {1, 2, . . . ,∆+k−1}\({αi : i ∈ [j−1]}∪{βi : i ∈ [j−1]}∪{c})

(such a c′ exists because k  ∆ implies ∆ + k − 1 > 2(k − 2) + 1), and assign it to the
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vertex w. Now, the vertices w and vj have different colors on them. Else if αj ∕= c, let
c′ := c.

Since dG(vj)  ∆, and therefore dG−f (vj)  ∆ − 1, there exists a list L of at least
(k − 1) colors that are not assigned to vj or its incident edges. If at least one of the
colors in L is not in {c′} ∪ {βi : i ∈ [j − 1]}, assign it to the edge f giving G a total
coloring using at most (∆+ k− 1) colors. Otherwise since |L|  k− 1 and w has at most
k− 2 incident edges in G− f , we have the set of colors that appear on w and its incident
edges is exactly the list L; that is, {c′} ∪ {βi : i ∈ [j − 1]} = L. Choose a color c′′ ∈
{1, 2, . . . ,∆+ k− 1} \ ({c′,αj}∪ {αi : i ∈ [j − 1]}∪ {βi : i ∈ [j − 1]}) (such a c′′ exists as
j  k − 1 < ∆ implies ∆+ k − 1 > 2(k − 2) + 2), and assign it to the vertex w and then
assign color c′ to the edge f , giving G a total coloring using at most (∆+ k − 1) colors.

This is a contradiction as χ′′(G) = ∆ + k by hypothesis. Hence, dG(w)  k for each
vertex w ∈ G.

Theorem 27. Let F be a class of graphs that is closed under the operation of taking
subgraphs. If TCC is true for F , then Hadwiger’s Conjecture holds for the class T (F).

Proof. Assume that TCC holds for all graphs in F . Let G ∈ F and∆ :=∆(G). Therefore
by observation 12, ∆+1  χ′′(G)  ∆+2. Note that the last inequality follows because
TCC holds for F .

Case 1: χ′′(G) = ∆+ 1.

T (G) contains a clique of size ∆+ 1 (observation 12). Therefore, this case is trivial.

Case 2: χ′′(G) = ∆+ 2.

Let H be a (∆ + 2)-total critical subgraph of G. We then have χ′′(H) = ∆ + 2. It
is clear that ∆(H) = ∆, otherwise since H also belongs to F , TCC would imply that
χ′′(H)  ∆ + 1. Choose a vertex v∆ ∈ H such that dH(v∆) = ∆. Let e1, e2, . . . , e∆ be
the edges incident on v∆ in H. From lemma 25 we know H − v∆ is connected. This
implies that the subgraph X of T (G) induced by the elements of H − v∆ is connected.
In T (G), contract the subgraph X into a single vertex w. Since the subgraph X contains
the v -vertex corresponding to every neighbour of v∆, the vertex w is now adjacent to the
e-vertices e1, . . . , e∆ and the v -vertex v∆, forming a (∆+ 2)-clique minor in T (G).

3 Weak total coloring conjecture

The reader may recall the weaker versions of TCC obtained by relaxing the upper bound
on χ′′(G), namely (k)-TCC and weak TCC, which are stated as Conjecture 4. In this
section, we will study these weaker versions in detail. We first make a general observation
about graphs that do not contain cut-vertices.

Claim 28. Suppose that G is a 2-connected graph and v is a vertex in G. Then there
exists a vertex w ∈ N(v) such that {w, v} is not a separator of G.

Proof. Suppose for contradiction that each set in {{v, w}}w∈N(v) is a separator of G. Since
G has no cut-vertices, we can conclude that each set in {{v, w}}w∈N(v) is a minimum
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separator of G. For w ∈ N(v), let F (v, w) be the number of vertices in the smallest
component in G − {v, w}. Choose w ∈ N(v) such that F (v, w) is as small as possible.
Let S be the smallest component in G− {v, w}. Since {v, w} is a minimum separator, v
has a neighbor in each component of G − {v, w}, and so also in S. Let x ∈ S ∩ N(v).
Now consider the graph G − {v, x}. By our assumption, {v, x} is a separator of G, and
hence G− {v, x} is not connected. Since w has a neighbor in each connected component
of G− {v, w} (as {v, w} is a minimum separator), the vertex w together with the vertices
in all the components of G− {v, w} other than S now lie in one connected component of
G − {v, x}. Thus the other connected components of G − {v, x} must all be subgraphs
of S. Since there is at least one other connected component and it cannot contain x ∈ S,
we can conclude that there is a connected component of G − {v, x} that is smaller than
S. This contradicts the choice of w and S.

Lemma 29. Let H be a (∆ + 3)-total-critical graph having maximum degree ∆. Then
η(T (H))  ∆+ 3.

Proof. Since H is (∆ + 3)-total-critical, we have that H is connected. Choose a vertex
v∆ in H, with dH(v∆) = ∆. By lemma 25, H does not contain any cut-vertices. Then by
Claim 28, there exists a w ∈ NH(v∆), such that {v∆, w} is not a separator in H. Recall
that TCC holds for all graphs with maximum degree at most 5 (Theorem 8). Therefore,
∆  6 since χ′′(H) = ∆ + 3 by assumption. It follows from lemma 26 that δ(H)  3.
Let e′ and e′′ be the e-vertices in T (H) corresponding to two edges incident with w in
H − {v∆}.

Our goal is to construct a clique minor of order ∆ + 3 in T (H). For this we use the
following branch sets :

1. The set S0 consisting of the v -vertices that correspond to {v∆, w}. Note that S0 is
connected in T (H) and can be contracted to a vertex z.

2. The singleton {e} for each e-vertex e ∈ T (H) that corresponds to an edge in EH(v∆).
Let S1 denote the set of these ∆ e-vertices.

3. S2 = S ′ ∪ {e′}, where S ′ is the set of e-vertices corresponding to the edges in
E(H \ {v∆, w}). Note that S2 is connected and can be contracted to a single vertex
y.

4. S3 = S ′′ ∪ {e′′}, where S ′′ is the set of v -vertices corresponding to the vertices in
V (H \ {v∆, w}). S3 is also connected and can be contracted to a single vertex x.

It is straightforward to see that the e-vertices in S1 along with x, y and z form the
branch sets of a K∆+3 minor in T (H).

Theorem 30. Let F be a class of graphs that is closed under the operation of taking
subgraphs. If weak TCC is true for F , then Hadwiger’s Conjecture holds for the class
T (F).
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Proof. Let G be a graph in F . Let ∆ = ∆(G). Since weak TCC holds for G, we
know that χ′′(G)  ∆ + 3. Together with observation12, this implies that χ′′(G) ∈
{∆+ 1,∆+ 2,∆+ 3}.

Case 1: χ′′(G) = ∆+ 3

Take a (∆+3)-total-critical subgraphH ofG. Clearly, ∆(H) = ∆; otherwise if∆(H) < ∆,
since H also belongs to F , H would have a total coloring using at most (∆+2) colors by
weak TCC, which is a contradiction. Now by lemma 29, T (H) contains a clique minor of
order ∆+ 3. As T (H) is a subgraph of T (G), we are done.

Case 2: χ′′(G) = ∆+ 2

Let H be a (∆+2)-total critical subgraph of G. Since H, being a subgraph of G, belongs
to F , and therefore satisfies weak TCC, we have that ∆(H)  ∆−1. As observed earlier,
we assume that H is connected, since if not, we can just take the only component of
H that is not an isolated vertex to be H. If ∆(H) = ∆, then choose a vertex v∆ of
H such that dH(v∆) = ∆. By lemma 25, we know that H − v∆ is connected. Then in
T (H), we can contract the v-vertices corresponding to vertices in V (H)− v∆ to a single
vertex z (as in the proof of Theorem 27) so that the e-vertices corresponding to the edges
incident on v∆, the v -vertex corresponding to v∆, and the vertex z form a clique of order
∆ + 2 in the resulting graph. On the other hand, if ∆(H) = ∆ − 1, then since H is
(∆(H) + 3)-total-critical, we have by lemma 29 that T (H) contains a clique minor of
order (∆− 1) + 3 = ∆+ 2.

Case 3: χ′′(G) = ∆+ 1

As we can see from observation12, this case is trivial.

Corollary 31. Hadwiger’s Conjecture holds true for the total graphs of all planar graphs.

Given a graph G with a list Le of colors assigned to each edge e, a list edge coloring
is a proper coloring of E(G) such that each edge e is assigned a color from the list Le. A
graph G is said to be k-edge-choosable if a list edge coloring of G exists for any assignment
of lists of size k to the edges of G. The smallest positive integer k such that G is k-edge-
choosable is called the edge choosability of G, which is denoted as ch′(G). The following
is a well-known fact.

Lemma 32. For any graph G, χ′′(G)  ch′(G) + 2.

The list coloring conjecture is as follows :

Conjecture 33 (List coloring conjecture). For any graph G, ch′(G) = χ′(G).

Theorem 34. Let F be a class of graphs closed under the operation of taking subgraphs.
If F satisfies the list coloring conjecture, then Hadwiger’s Conjecture holds for the class
T (F).

Proof. Since F satisfies the list coloring conjecture, for each G ∈ F , χ′′(G)  ch′(G)+2 =
χ′(G) + 2  ∆(G) + 3 (by lemma 32 and Theorem 1), that is, F satisfies weak TCC. The
theorem then follows from Theorem 30.
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Thus, the validity of the list coloring conjecture would imply that Hadwiger’s Conjec-
ture is true for all total graphs.

4 Connectivity and Hadwiger’s Conjecture for total graphs

Given a partition of the vertex set of a graph, an edge of the graph is said to be a cross-edge
if its endpoints belong to different sets of the partition.

Our next result makes use of the following well-known theorem :

Theorem 35 (Tutte; Nash-Williams; See [11]). A multigraph contains k edge-disjoint
spanning trees if and only if every partition P of its vertex set contains at least k(|P |− 1)
cross-edges.

Corollary 36 (See [11]). Every 2k-edge-connected multigraph G has k edge-disjoint span-
ning trees.

Theorem 37. Let G be a (2k− 1)-connected graph. Then, the total graph T (G) contains
a clique minor of order ∆+ k, where ∆ = ∆(G).

Proof. Since the statement is trivially true when k = 1 (by observation 12), we may
assume that k  2. Let v∆ be a vertex of maximum degree in G. Let the set of e-vertices
in T (G) corresponding to the edges in EG(v∆) be denoted by Z. Note that Z induces a
∆-clique (call it KZ) in T (G). Let H be the graph obtained from G by removing v∆. We
will show that there exist k disjoint but pair-wise adjacent connected induced subgraphs
of T (H), so that by contracting these induced subgraphs we get k more vertices that can
be added to the existing ∆-clique KZ thus achieving the desired (∆+ k)-clique minor in
T (G).

Since G is (2k−1)-connected, the vertex-connectivity of H is at least 2k−2. It follows
that edge-connectivity of H is also at least 2k− 2. Hence, by Corollary 36, H has (k− 1)
pair-wise edge-disjoint spanning trees.

Let T1, . . . , Tk−1 be the pair-wise edge-disjoint spanning trees in H. Let E ′
i be the set

of e-vertices in T (G) corresponding to the edges in E(Ti), for i ∈ [k − 1]. Clearly the
induced subgraph of T (G) on E ′

i is isomorphic to the line graph of Ti and is connected
and therefore, can be contracted to a single vertex, say yi. Let Y := {yi : i ∈ [k − 1]}.
The set of v -vertices of T (G) excluding v∆ is also connected since they induce a subgraph
isomorphic to H itself, and can be contracted to a single vertex v∗. Let F be the graph
so obtained. Since T1, . . . , Tk−1 are all spanning trees of H, it follows that yiyj ∈ E(F )
for distinct i, j ∈ [k − 1] and also that v∗yi ∈ E(F ) for all i ∈ [k − 1]. Further, it can
be seen that in F , each yi ∈ Y and v∗ are adjacent to all the e-vertices in Z. Therefore,
Y ∪Z∪{v∗} forms a clique of order∆+k in F , implying that T (G) contains a (∆+k)-clique
minor.

Corollary 38. If a (2k − 1)-connected graph G satisfies (k)-TCC where k  2, then
Hadwiger’s Conjecture is true for T (G).
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Proof. Since G satisfies (k)-TCC, we have χ(T (G)) = χ′′(G)  ∆(G)+k. By Theorem 37,
η(T (G))  ∆(G) + k. Thus Hadwiger’s Conjecture is true for T (G).

By Theorem 6, we have that (C)-TCC is true, where C is the constant in Theorem 6.
We thus have the following corollary.

Corollary 39. If G is a (2C − 1)-connected graph, then T (G) satisfies Hadwiger’s Con-
jecture, where C is the constant from Theorem 6.

5 Chromatic number and total coloring

Notational notes for this section. Given a coloring of the vertices and edges of a graph,
we call a vertex v or an edge e which is assigned color c, a c-vertex, or a c-edge. Given
a set of colors C, we call a vertex v or an edge e having a color from C a C-vertex or a
C-edge, respectively. We say that the vertex v “sees” the color c if v is a c-vertex, or v
has a c-edge incident on it. Note that the situation that a c-vertex u is adjacent to v is
not referred to by the phrase, “v sees the color c”. For a vertex v, we define Sϕ(v) to be
the set of colors that are “seen” by the vertex v with respect to a given coloring ϕ. For
positive integers i, j such that i  j, we denote by [i, j] the set {i, i + 1, . . . , j}. A trail
in a graph is a sequence of vertices v1v2 . . . vk such that for i ∈ [k − 1], vivi+1 is an edge
of the graph, and the edges v1v2, v2v3, . . . , vk−1vk are all pairwise distinct. Note that a
vertex can appear more than once on a trail. Given two subsets of edges A and B, we
say that a trail v1v2 . . . vk in the graph is an (A,B)-trail if vivi+1 ∈ A when i is odd and
vivi+1 ∈ B when i is even.

Theorem 40. Let G be a simple finite connected graph such that χ(G)  5. Then
χ′′(G)  ∆(G) + 3.

Proof. By the known results, we may assume that χ(G)  5 and so ∆(G)  4. We begin
by coloring V (G) with colors in [5], and E(G) with colors in [3,∆+3], where ∆ := ∆(G).
Recall that such an edge coloring is possible by Theorem 1. Note that this coloring of
V (G) ∪ E(G), which we shall denote by α, need not be a total coloring.

Clearly, in this coloring, no two adjacent vertices have the same color, and no two
adjacent edges have the same color. But there could exist edges of the form e = uv such
that α(e) = α(v) or α(e) = α(u). Note that if that happens, then α(e) ∈ {3, 4, 5}. We
shall call such an edge a “conflicting edge”.

We now create another coloring π : V (G)∪E(G) → [∆+3], by slightly modifying the
coloring α if necessary, so that the following property holds for π.

Property A. There is no 5-vertex v having a 3-edge, 4-edge and 5-edge incident on
it.

The coloring α can be transformed into such a coloring π by repeatedly doing the
following: Consider each 5-vertex v having a 3-edge, 4-edge, and 5-edge incident on it.
Since v can now see at most ∆−3 colors from [6,∆+3], there exists a color c ∈ [6,∆+3]
that is not seen by v. We assign the color c to v. Note that no neighbors of v have
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the color c since the 5-vertices of α formed an independent set and the color c was not
assigned to any vertex in α.

We call this coloring π the “original coloring” of G. We emphasize that:

(i) π|V (G) and π|E(G) are proper colorings of V (G) and E(G), respectively.

(ii) π satisfies Property A.

(iii) Any conflicting edge in π is also a conflicting edge in α. Thus, if e is a conflicting
edge in π, then π(e) ∈ {3, 4, 5}.

Our goal now is to start with the coloring π of G and then recolor each conflicting
edge so that it is no longer a conflicting edge in the resulting coloring. We will do so in
three phases and in each phase, we select a color i ∈ {3, 4, 5} and recolor the conflicting
i-edges one by one. Our recoloring strategy will rely on the following lemma.

Lemma 41. Let ϕ be a coloring of V (G) ∪ E(G) at a certain stage of the recoloring
process. Let i ∈ {3, 4, 5} and let Ai = [i− 1]. Suppose ϕ satisfies the following properties:

(a) ϕ|V (G) = π|V (G),

(b) ϕ|E(G) is a proper edge coloring of G,

(c) there are no conflicting Ai-edges in G (see the notational notes at the beginning of
this section for the definition of Ai-edges),

(d) every Ai-edge in G has original color in {3, 4, . . . , i},

(e) every Ai-edge in G that has original color i has an endpoint colored i, that is, it was
originally a conflicting i-edge, and

(f) if e′ is a conflicting i-edge in G, then it has original color i, that is, π(e′) = ϕ(e′) = i.

Further, let e be a conflicting i-edge in G. Then G can be recolored to a coloring ψ so
that e is no longer a conflicting edge in ψ, and the conditions (a) – (f) hold for this new
coloring ψ too.

Proof. Let e = v0v1, where ϕ(e) = ϕ(v1) = i. By (f), we know that the original color of e
is i.

If there exists a color in Ai \ (Sϕ(v0)∪ Sϕ(v1)), we can recolor e with that color to get
ψ. It is easy to verify that all the properties (a) – (f) hold for ψ.

So we shall assume that Ai ⊆ Sϕ(v0)∪Sϕ(v1). Let X be the set of edges incident on v0
that have original color in [3, i]. Since |[3, i]| = i− 2 and π|E(G) is a proper edge coloring,
we have |X|  i− 2. Since v0v1 has original color i, we have v0v1 ∈ X, which implies that
|X \ {v0v1}|  i− 3. Since ϕ(v0v1) = i, it is not an Ai-edge. Thus there are at most i− 3
Ai-edges in X. Since every Ai-edge has original color in [3, i] by (d), we know that every
Ai-edge incident on v0 is in X. It follows that there are at most i−3 Ai-edges incident on
v0. Considering the possibility that ϕ(v0) also may be in Ai, we have |Sϕ(v0)∩Ai|  i−2.
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This implies that there exists a color γ ∈ Ai \ Sϕ(v0). As Ai ⊆ Sϕ(v0) ∪ Sϕ(v1), we have
γ ∈ Sϕ(v1). Therefore, as ϕ(v1) = i, there exists an edge v1v2 such that ϕ(v1v2) = γ. As
γ /∈ Sϕ(v0), we have v1v2 ∕= v0v1.

We call an edge f in G an i-edge if ϕ(f) ∈ Ai \ {γ} and the original color of f is i.
By (e), we know that one of the endpoints of every i-edge is colored i. Let Γ and I be
the set of all γ- and i-edges in G, respectively.

Now consider a maximal (Γ, I)-trail P = v1v2 . . . vk, where k  2, starting with the
edge v1v2. It is easy to see that every edge on P is an Ai-edge. Then we have the following:

(1) For each odd t ∈ {1, 2, . . . , k}, ϕ(vt) = i.
Note that ϕ(v1) = i. Suppose that for some odd t ∈ {1, 2, . . . , k − 2}, we have

ϕ(vt) = i. Recall that ϕ|V (G) = π|V (G) and that π|V (G) is a proper vertex coloring of G.

Then clearly ϕ(vt+1) ∕= i, and since vt+1vt+2 is an i-edge and an endpoint of every i-edge
must be colored i, we have ϕ(vt+2) = i.

(2) v0P is a path.
Otherwise, some vertex must be repeated while traversing v0P . Let v be the first

such vertex. If v ∕= v0, then it either has two edges having original color i or two γ-
edges incident on it; as both ϕ|E(G) and π|E(G) are proper edge colorings of G, this is a
contradiction. Now, let v = v0. Recall that by choice of γ, the vertex v0 has no incident γ-
edge. Then, since v0v1 has original color i, there must be two incident edges with original
color i at v0; another contradiction. It follows that v0P is a path.

Note that the last vertex vk on P satisfies the following properties:

(3a) If vk−1vk is an i-edge, γ /∈ Sϕ(vk).

(3b) If vk−1vk is a γ-edge, then there exists c′ ∈ Ai \ Sϕ(vk). (Note that c′ ∕= γ.)

To see this, note that in the first case, we have that k is odd, and then by (1), ϕ(vk) =
i ∕= γ. By the maximality of P , we have that vk has no incident γ-edges. In the second
case, suppose Ai ⊆ Sϕ(vk). This happens only if, for each c ∈ Ai \ {ϕ(vk)}, vk has an
c-edge incident on it. By property (d) and the fact that π|E(G) is a proper edge coloring,
these i− 2 edges have a distinct original color from the set [3, i]. Since |[3, i]| = i− 2, we
can conclude that vk has an incident edge vkw with original color i and ϕ(vkw) ∈ Ai. Is
it possible that w = vk−1? Recall that in this case, k− 1 is odd and vk−2vk−1 is an i-edge
(when k = 2) or an i-edge (when k > 2). As π|E(G) is a proper edge-coloring, vk−1vk
cannot have original color i and so w ∕= vk−1. As ϕ(vk−1vk) = γ, we have ϕ(vkw) ∕= γ,
and so vkw is an i-edge. This means vk has an incident i-edge outside of P . This violates
the maximality of the trail P . So there exists a color c′ ∈ Ai \ Sϕ(vk).

Now we recolor the edges on v0P by the following color shift strategy :

• For each 1  t  k − 1, assign ϕ(vtvt+1) to the preceding edge vt−1vt by setting
ψ(vt−1vt) := ϕ(vtvt+1).

• If the last edge vk−1vk on P is an i-edge, set ψ(vk−1vk) := γ.
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• If vk−1vk is a γ-edge, pick a color c′ ∈ Ai \ Sϕ(vk) and set ψ(vk−1vk) := c′. Such a c′

exists by (3b).

Finally, set ψ(v) := ϕ(v), for each vertex v ∈ V (G), and ψ(e) := ϕ(e), for each edge
e ∈ E(G) \ E(v0P ).

It is easy to see that properties (a), (d), (e), and (f) hold for this new coloring ψ: We
have not recolored any vertex, therefore (a) holds; Other than v0v1, all the edges that we
have recolored are Ai-edges (with respect to ϕ) and they remain Ai-edges with respect to
ψ as well; The only new Ai-edge with respect to ψ is e = v0v1. This is consistent with
(d) and (e); the set of conflicting i-edges with respect to ψ is the set of conflicting i-edges
with respect to ϕ minus v0v1, therefore (f) holds. We shall now proceed to show that the
color shift strategy produces no new conflicts, ensuring that ψ satisfies properties (b) and
(c).

We first show that for any t ∈ {1, 2, . . . , k − 1}, we have ψ(vt−1vt) ∕= ψ(vtvt+1).
For t  k − 2, we know that ψ(vt−1vt) = ϕ(vtvt+1), ψ(vtvt+1) = ϕ(vt+1vt+2), and that
ϕ(vtvt+1) ∕= ϕ(vt+1vt+2) (as ϕ satisfies (b)). It follows that ψ(vt−1vt) ∕= ψ(vtvt+1). Next,
if t = k − 1, then ψ(vk−2vk−1) = ϕ(vk−1vk) and by (3a) and (3b), ψ(vk−1vk) /∈ Sϕ(vk).
Since ϕ(vk−1vk) ∈ Sϕ(vk), this means that ψ(vk−2vk−1) ∕= ψ(vk−1vk). Thus in ψ, no two
consecutive edges of v0P have the same color.

Since we are recoloring only the edges on v0P , if (b) or (c) is violated in ψ, there
must be an edge on v0P such that it conflicts either with one of its end-points or with
an adjacent edge. Let t be any index such that vtvt+1 is such an edge with respect to
ψ. Let c = ψ(vtvt+1). We will say that the edge vtvt+1 has a conflict at the end-point
vt+1, if either ψ(vt+1) = c or vt+1 has an incident edge vt+1u ∕= vtvt+1 with ψ(vt+1u) = c.
Otherwise, the conflict has to be at the end-point vt.

We claim that vtvt+1 cannot have a conflict at the end-point vt+1. If t = k − 1, this
is obvious from (3a) and (3b). For t  k − 2, ψ(vtvt+1) = ϕ(vt+1vt+2) = c. Suppose
that ψ(vt+1) = c. Then since we are recoloring only edges, we have ϕ(vt+1) = c, which
contradicts the fact that ϕ satisfies (c). Next, suppose that there exists an edge vt+1u ∕=
vtvt+1 such that ψ(vt+1u) = c. Since no two consecutive edges of v0P have the same
color in ψ, we know that u ∕= vt+2. Then vt+1u is not an edge of v0P which means that
ϕ(vt+1u) = ψ(vt+1u) = c, which implies that there are two edges with color c incident at
vt+1 in ϕ. This contradicts the fact that ϕ satisfied (b). Therefore, in ψ, the edge vtvt+1

cannot have a conflict at the end-point vt+1.
Hence, vtvt+1 has a conflict at the end-point vt. We consider the two possible cases

separately.

Case 1: ψ(vtvt+1) = γ.

In this case the edge vtvt+1 is an i-edge (if t > 0) or i-edge (if t = 0) before the
recoloring. Note that this means that t + 1 is odd. If t = 0, then by the choice of γ,
we have γ /∈ Sϕ(v0) and thus the edge v0v1 has no conflict at the end-point v0 in ψ. For
t  2, since ϕ(vt−1vt) = γ, and ϕ satisfied (c) and (b), we know that ψ(vt) = ϕ(vt) ∕= γ
and that no edge incident at vt other than vt−1vt, vtvt+1 has the color γ in ψ. Since in
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ψ, no two consecutive edges on v0P have the same color, ψ(vt−1vt) ∕= γ, and so we can
conclude that vtvt+1 has no conflict at the end-point vt in ψ in this case.

Case 2: ψ(vtvt+1) ∕= γ.

In this case, (ϕ(vt+1vt+2) = ψ(vtvt+1)) ∕= γ, which implies that vt+1vt+2 is an i-edge
before the recoloring. Then t is odd and ϕ(vtvt+1) = γ. By (1), ψ(vt) = ϕ(vt) = i. Since
ψ(vtvt+1) ∈ Ai and vtvt+1 has a conflict at the end-point vt, this implies that there exists
some edge vtx ∕= vtvt+1 such that ψ(vtx) = ψ(vtvt+1). As no two consecutive edges on
v0P have the same color in ψ, we have that x ∕= vt−1. Then ϕ(vtx) = ψ(vtx) = ψ(vtvt+1).
Thus, the three edges vt−1vt, vtx, and vtvt+1 are all Ai-edges with respect to ϕ, and
by property (d) have original colors in [3, i]. Since π|E(G) is a proper edge-coloring, all
these three edges should have distinct colors with respect to π. This can happen only if
|[3, i]|  3, which happens only if i = 5. Then with respect to π, vt is a 5-vertex with a
3-edge, a 4-edge, and a 5-edge all incident on it. This contradicts the fact that π satisfies
Property A.

Thus, we conclude that in ψ, no edge on v0P has a conflict at either of its end-points,
which also implies that e = v0v1 is not a conflicting edge in ψ. Thus ψ satisfies (b),
and since e is the only new Ai-edge in ψ, property (c) holds for ψ. This completes the
proof.

With the help of the above lemma, we can start with the original coloring π and
proceed with the recoloring in three phases. In each phase, we recolor all the conflicting
i-edges by invoking lemma 41 first with i = 3 in phase I, then i = 4 in phase II, and
finally i = 5 in phase III. Note that after the phase corresponding to i, there are no
conflicting i-edges in G. Therefore, after the three phases there are no conflicts in G.
Thus, we have a total coloring of G using colors from {1, 2, 3, . . . ,∆ + 3} implying that,
χ′′(G)  ∆+ 3.

6 Open problems

1. Corollary 39 states that Hadwiger’s Conjecture is true for graphs with high vertex-
connectivity, that is, at least C ′ where C ′ is a constant.

It is interesting to see whether a similar statement can be made with respect to
edge-connectivity instead of vertex-connectivity. Note that Theorem 35 uses only
edge-connectivity. Hence, it would be natural to expect Corollary 39 to be expressed
in terms of edge-connectivity. Unfortunately, we could not find a way to do it.

Of course, it would be most desirable to prove Hadwiger’s Conjecture for all total
graphs dropping any constraints.

2. In Theorem 30, we show that if weak TCC holds for all graphs, then Hadwiger’s
Conjecture is true for all total graphs. However, improving this result to get the
following remains challenging.
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“If (k)-TCC is true for all graphs, then Hadwiger’s Conjecture is true for all total
graphs.”

for some fixed positive integer k > 3. We think that the case when k = 4 itself
would be interesting for it may require a new idea compared to the one used for
proving the k = 3 case.

3. Since we could not prove Hadwiger’s Conjecture for all total graphs, it is interesting
to try to prove Hadwiger’s Conjecture for total graphs of specialized graph classes
for which weak TCC is not yet known to hold.

4. It remains hard to prove weak TCC for the general case. In Theorem 40, we proved
it for 5-colorable graphs. The current best upper bound on the total chromatic
number of k-colorable graphs when 6  k  8 is ∆ + 4. Proving weak TCC for
k-colorable graphs even for small values of k, say k = 6, 7, . . ., remains open.

5. In the proof of Theorem 40, χ′(G) colors are used to do the initial proper edge
coloring and an additional two colors are used to get a proper vertex coloring. This
suggests the question whether it is possible, when χ′(G) = ∆(G) (that is, when G is
class I ), to obtain the bound χ′′(G)  ∆(G)+2, instead of the ∆(G)+3 bound that
we proved in Theorem 40. Unfortunately, our proof fails to achieve this since even
when dealing with class I graphs, we need one extra color, the (∆+ 3)-th color, to
establish the Property A for the original coloring. Property A is crucial in phase III
of the recoloring process, that is when conflicting 5-edges are recolored (see proof
of lemma 41).

It would be interesting to prove χ′′(G)  ∆(G) + 2 when G is a class I graph with
chromatic number 5, possibly by some clever tweaking of the proof of Theorem 40.
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