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Abstract

Let D = (V,A) be a digraph. A vertex set K ⊆ V is a quasi-kernel of D if K
is an independent set in D and for every vertex v ∈ V \K, v is at most distance 2
from K. In 1974, Chvátal and Lovász proved that every digraph has a quasi-kernel.
P. L. Erdős and L. A. Székely in 1976 conjectured that if every vertex of D has a
positive indegree, then D has a quasi-kernel of size at most |V |/2. This conjecture
is only confirmed for narrow classes of digraphs, such as semicomplete multipartite,
quasi-transitive, or locally semicomplete digraphs. In this note, we state a similar
conjecture for all digraphs, show that the two conjectures are equivalent, and prove
that both conjectures hold for a class of digraphs containing all orientations of
4-colorable graphs (in particular, of all planar graphs).

Mathematics Subject Classifications: 05C20, 05C35, 05C69

1 Introduction and notation

The digraphs in this note may have antiparallel arcs, but do not have loops. Let D be
a digraph. We denote by V (D) and A(D) the vertex set and the arc set of D, respectively.
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We say D is weakly connected if the underlying graph of D is connected. Let x ∈ V (D).
The open (closed) outneighborhood and inneighborhood of x in D, denoted N+

D (x) (N+
D [x])

and N−D (x) (N−D [x]) are defined as follows.

N+
D (x) = {y ∈ V (D) |xy ∈ A(D)}, N+

D [x] = N+
D (x) ∪ {x},

N−D (x) = {y ∈ V (D) | yx ∈ A(D)}, N−D [x] = N−D (x) ∪ {x}.

The outdegree of x in D is d+D(x) = |N+
D (x)|, and the indegree of x in D is d−D(x) = |N−D (x)|.

Vertices of indegree zero in D are called sources of D and vertices of outdegree zero in D
are called sinks of D. By δ+(D) (respectively, δ−(D)) we denote the minimum outdegree
(respectively, indegree) in D among all vertices of D. For each X ⊆ V (D), we let

N+
D (X) =

⋃
x∈X

N+
D (x) \X, N+

D [X] = N+
D (X) ∪X,

N−D (X) =
⋃
x∈X

N−D (x) \X, N−D [X] = N−D (X) ∪X.

Let u, v ∈ V (D) and K ⊆ V (D). The distance from u to v in D, denoted distD(u, v),
is the length of a shortest directed path from u to v. The distance from K to v in D, is
distD(K, v) = min{distD(x, v) |x ∈ K}. We say K is a kernel of D if K is independent
in D and for every v ∈ V (D) \K, distD(K, v) = 1. We say K is a quasi-kernel of D if K
is independent in D and for every v ∈ V (D) \K, distD(K, v) 6 2. 1

A digraphD is kernel-perfect if every induced subdigraph of it has a kernel. Richardson
proved the following result.

Theorem 1 (Richardson [10]). Every digraph without directed odd cycles is kernel-perfect.

The proof gives rise to an algorithm to find one. On the other hand, Chvátal [4] showed
that in general it is NP-complete to decide whether a digraph has a kernel, and by a result
of Fraenkel [6] it is NP-complete even in the class of planar digraphs of degree at most 3.
While not every digraph has a kernel, Chvátal and Lovász [5] proved that every digraph
has a quasi-kernel. In 1976, P.L. Erdős and S. A. Székely made the following conjecture
on the size of a quasi-kernel in a digraph.

Conjecture 2 (Erdős–Székely [1]). Every n-vertex digraph D with δ+(D) > 1 has a
quasi-kernel of size at most n

2
.

If D is an n-vertex digraph consisting of the disjoint union of directed 2- and 4-cycles,
then every kernel or quasi-kernel of D has size exactly n

2
. Thus, Conjecture 2 is sharp.

In 1996, Jacob and Meyniel [9] showed that a digraph without a kernel contains at least
three distinct quasi-kernels. Gutin et al. [7] characterized digraphs with exactly one and
two quasi-kernels, thus provided necessary and sufficient conditions for a digraph to have

1Our definition of a kernel is the digraph dual of what was originally defined in [6], and it is “consistent”
with the definition of a quasi-kernel.
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at least three quasi-kernels. However, these results do not discuss the sizes of the quasi-
kernels. Heard and Huang [8] in 2008 showed that each digraph D with δ+(D) > 1 has two
disjoint quasi-kernels if D is semicomplete multipartite (including tournaments), quasi-
transitive (including transitive digraphs), or locally semicomplete. As a consequence,
Conjecture 2 is true for these three classes of digraphs.

We propose a conjecture which formally implies Conjecture 2. It suggests a bound for
digraphs that may have sources. Note that each quasi-kernel of a digraph contains all of
its source vertices and hence contains no outneighbors of the source vertices.

Conjecture 3. Let D be an n-vertex digraph, and let S be the set of sources of D. Then
D has a quasi-kernel K such that

|K| 6 n+ |S| − |N+
D (S)|

2
.

To show that the upper bound above is best possible, consider the following examples.

• Let S be a nonempty set of isolated vertices, and let D be a digraph obtained from
a directed triangle by adding an arc from every vertex in S to the same vertex in
the triangle. Then every quasi-kernel of D has size |S|+ 1 = (|S|+3)+|S|−1

2
.

• Let D be an orientation of a connected bipartite graph with parts S and T where
each arc goes from S to T . Then S forms a quasi-kernel of D of size |S| =
(|S|+|T |)+|S|−|T |

2
.

In this paper, we support Conjectures 2 and 3 by showing the following results.

Theorem 4. Let D be an n-vertex digraph and S be the set of sources of D. Suppose that
V (D) \ N+

D [S] has a partition V1 ∪ V2 such that D[Vi] is kernel-perfect for each i = 1, 2.

Then D has a quasi-kernel of size at most
n+|S|−|N+

D(S)|
2

.

Since by Theorem 1, every digraph without directed odd cycles is kernel-perfect, The-
orem 4 immediately yields:

Corollary 5. Conjectures 2 and 3 hold for every orientation of each graph with chromatic
number at most 4.

By the Four Color Theorem [2, 3], Corollary 5 yields that Conjectures 2 and 3 hold
for every digraph whose underlying graph is planar.

Theorem 6. If Conjecture 3 fails and D is a counterexample to it with the minimum
number of vertices, then D has no source.

Since Conjecture 3 implies Conjecture 2, Theorem 6 implies that the two conjectures
are equivalent.

In the next section we prove Theorem 4 and in Section 3 prove Theorem 6.
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2 Proof of Theorem 4

Let D′ = D − N+
D [S] be the digraph obtained by removing the source vertices and

their outneighbors, and V1∪V2 = V (D′) be a partition of V (D′) such that D[Vi] is kernel-
perfect for each i = 1, 2. In addition, we choose such a partition so that |V2| is as small as
possible. Observe that adding a source vertex v to a kernel-perfect digraph H results in
a new kernel-perfect digraph: let H ′ be the resulting digraph, and let F be a subdigraph
of H ′ that contains v. Then K ∪{v} is a kernel of F where K is any kernel of F −N+

H′ [v]
in H.

If there exists some v ∈ V2 with no inneighbors in V1, then we may move v from V2 to
V1, and obtain a new partition of V (D′) into kernel-perfect subgraphs with a smaller V2
by Theorem 1. Thus, by the choice of V2,

N−D′(v) ∩ V1 6= ∅ for every v ∈ V2. (1)

For a digraph F and an independent set R ⊆ V (F ), we say R0 ⊆ R is a concise set
of R in F if N+

F (R0) = N+
F (R) and |R0| 6 |N+

F (R0)|. Indeed, every independent set has
a concise set—iteratively add vertices v from R to R0 if and only if |N+

F (R0 ∪ {v})| >
|N+

F (R0)|.
Since D[V1] is kernel-perfect, it has a kernel R. Let R0 be a concise set of R in D′.

Let D′′ = D′− (R0 ∪N+
D′(R)) = D′−N+

D′ [R0]. We partition R \R0 into sets S ′′ and T of
sources and non-sources in D′′ respectively. Note that since each v ∈ S ′′ was not a source
in the original digraph D, v must have an inneighbor in V (D)− V (D′′).

Set K = S ∪ R0 ∪ T . We will show that K is a quasi-kernel of D. We first show
that it is independent. Indeed, K ∩ R is independent, since R was a kernel of D[V1].
There are no arcs from K ∩ R to K \ R = S because each vertex in S is a source in
D. Similarly, there are no arcs from S to S. Finally, there are no arcs from S to K \ S
because K \ S ⊆ V (D′) = V (D)−N+

D [S].
Now we check that each vertex is at distance at most 2 from K. For any v ∈ N+

D [K],
we have distD(K, v) 6 1. Consider v ∈ V1 \N+

D [K]. Recall that R is a kernel of D[V1], so
V1 ⊆ N+

D [R]. It follows that since R0 is a concise set of R, the vertex v must be contained
in R \ K = S ′′. Therefore v has an inneighbor in N+

D [S] ∪ N+
D′ [R0] ⊆ N+

D [K], hence
distD(K, v) 6 2.

Now suppose v ∈ V2 \N+
D [K]. By (1), v has an inneighbor u ∈ V1. If u ∈ N+

D [K], then
distD(K, v) 6 2. So we may assume u ∈ V1 \ N+

D [K] = S ′′. Since S ′′ ⊆ R, v ∈ N+
D′ [R].

But R0 is a concise set of R, so v ∈ N+
D′(R0) ⊆ N+

D [K]. We get distD(K, v) 6 1.
Therefore, K is a quasi-kernel of D. If |T | 6 |V (D′′) \ T | (so 2|T | 6 |V (D′′) ∪ T | =

|V (D′′)|), then using the fact that R0 is a concise set,

|K| = |S|+ |R0|+ |T | 6 |S|+
1

2
|R0 ∪N+

D′(R)|+ 1

2
|V (D′′)|

6 |S|+ 1

2
|V (D) \N+

D [S]| 6 1

2
(n+ |S| − |N+

D (S)|),

and the theorem holds. Thus, assume that |T | > |V (D′′)\T | (so |V (D′′)\T | < |V (D′′)|/2).
Note that V (D′′)\T = (V2\N+

D′(R))∪S ′′. Since D[V2] is kernel-perfect and adding source
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vertices preserves kernel-perfectness, the digraph D′′−T is also kernel-perfect. Let W be
a kernel of D′′ − T and set K ′ = (S ∪R0 ∪W ) \N+

D (W ).
Similarly to K, the set K ′ is independent in D. Since |T | > |V (D′′) \ T |,

|K ′| 6 |S|+ |R0|+ |W | 6 |S|+
1

2
|R0 ∪N+

D′(R)|+ 1

2
|V (D′′)| 6 n+ |S| − |N+

D (S)|
2

.

We now show that distD(K ′, v) 6 2 for every v ∈ V (D) \K ′.
Observe that S ′′ ⊆ W since the vertices in S ′′ are sources in D′′− T . Clearly, we have

that each vertex v ∈ V (D′′− T ) has distD(K ′, v) 6 1. Now suppose v ∈ T . Since v is not
a source in D′′, it has an inneighbor in V (D′′), and this neighbor cannot be in T because
T ⊂ R is independent. Hence distD(K ′, v) 6 2.

We have distD(K ′, v) 6 1 for all v ∈ N+
D [S]. It remains to consider v ∈ V (D′) \

V (D′′) = N+
D′ [R0]. If v ∈ R0, then either v ∈ K ′ or v ∈ N+

D (W ). Hence distD(K ′, v) 6 1.
It follows that distD(K ′, v) 6 2 for all v ∈ N+

D′(R0). Therefore K ′ is a quasi-kernel of
D.

3 Proof of Theorem 6

Assume Conjecture 3 fails and D is a counterexample to it with the fewest vertices.
Let n = |V (D)|. We assume n > 4 as the cases n 6 3 are verifiable by hand. By the
minimality of n, D is weakly connected. Let S be the set of sources of D. We show that
S = ∅. Assume instead that S 6= ∅.

Case 1: |N+
D [S]| > 3. Let D1 be obtained from D by deleting all vertices in N+

D [S],
adding two new vertices x and y, adding an arc from y to every vertex of D−N+

D [S] that
is an outneighbor of some vertex of N+

D (S) in D, and adding an arc from x to y. Then x is
the only source vertex of D1, and N+

D1
(x) = {y}. Since |V (D1)| = |V (D)|− |N+

D [S]|+ 2 6
|V (D)| − 1, the minimality of n implies that D1 has a quasi-kernel K1 of size at most
n−|N+

D [S]|+2+1−1
2

. Then K = (K1 \ {x}) ∪ S is a quasi-kernel of G that has size at most

n− |N+
D [S]|+ 2 + 1− 1

2
− 1 + |S| = n+ |S| − |N+

D (S)|
2

,

as desired.
Case 2: |N+

D [S]| 6 2. Since D is weakly connected, and |S| > 1, we get |S| = 1 and
|N+

D (S)| = 1. Let D1 = D − N+
D [S]. If D1 has no sources, then by the minimality of

D, digraph D1 has a quasi-kernel K1 with |K1| 6 n−2
2

. Then K = K1 ∪ S is a desired
quasi-kernel of D. Therefore, we assume that D1 has a source. Let

S1 = {v ∈ V (D1) | d−D1
(v) = 0}.

If |N+
D1

(S1)| 6 |S1|, we let D2 = D1 − S1. By the minimality of D, D2 has a quasi-kernel

K1 of size at most
n−2−|S1|+|ND1

(S1)|
2

6 n−2
2

. Then K = K1 ∪ S is a desired quasi-kernel of
D. Thus, we assume that |ND1(S1)| > |S1|. Let D2 be obtained from D1 by deleting all
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vertices in N+
D1

[S1], adding two new vertices x and y, adding an arc from y to every vertex
of D1 −N+

D1
[S1] that is an outneighbor of some vertex of N+

D1
(S1) in D1, and adding an

arc from x to y. Note that x is the only source of D2, and N+
D2

(x) = {y}. Again, by

the minimality of D, D2 has a quasi-kernel K1 of size at most
n−2−|N+

D1
[S1]|+2+1−1
2

. Then
K = (K1 \ {x}) ∪ S ∪ S1 is a quasi-kernel of D that has size at most

n− 2− |N+
D1

[S1]|+ 2 + 1− 1

2
− 1 + |S|+ |S1| 6

n− 1

2
,

as desired.
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