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Abstract
A basis of the center of the 0-Hecke algebra of an arbitrary finite Coxeter group

was described by He in 2015. This basis corresponds to certain equivalence classes
of the Coxeter group. We consider the case of the symmetric group Sn. Building on
work of Geck, Kim and Pfeiffer, we obtain a complete set of representatives of the
equivalence classes. This set is naturally parametrized by certain compositions of n
called maximal. We develop an explicit combinatorial description for the equivalence
classes that are parametrized by the maximal compositions whose odd parts form
a hook.
Mathematics Subject Classifications: 05E16, 20B30, 20C08

1 Introduction

LetW be a finite Coxeter group. The Iwahori-Hecke algebra HW (q) ofW is a deformation
of the group algebra of W with nonzero parameter q. Iwahori-Hecke algebras arise in the
representation theory of finite groups of Lie type and Knot theory [9]. Setting q = 0
results in the 0-Hecke algebra HW (0). A first (and thorough) study of HW (0) was carried
out by Norton [23]. Its structure diverges considerably from the generic q 6= 0 case [3].
The 0-Hecke algebras appear in the modular representation theory of finite groups of
Lie type [4, 23]. The Grothendieck ring of the finitely generated modules of the 0-Hecke
algebras of the symmetric groups is isomorphic to the Hopf algebra of quasisymmetric
functions [19]. This article is related to the center Z(Hn(0)) of the 0-Hecke algebra Hn(0)
of the symmetric group Sn.

Fayers mentions the description of Z(HW (0)) as an open problem in [5]. Brichard
gives a formula for the dimension of the center in type A [2]. Yang and Li obtain a lower
bound for the dimension of Z(HW (0)) for irreducibleW in several types other than A [24].
Moreover, they specify the dimension in type I2(n) for n > 5. In [13] He describes a basis
of Z(HW (0)) in arbitrary type indexed by a set of equivalence classes Wmax/≈ of W .
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Motivated by the connection to the center of Hn(0), we are interested in the quotient
set (Sn)max/≈. We want to develop a combinatorial description for certain elements of
(Sn)max/≈. To this end, we introduce a complete set of representatives of (Sn)max/≈.
Other sets of representatives can be deduced from [12] or [2].

Let S be the set of Coxeter generators ofW and ` be the length function ofW . Define
Wmin and Wmax to be the set of elements of W whose length is minimal and maximal
in their conjugacy class, respectively. Geck and Pfeiffer introduce in [8] a relation → on
W . It is the reflexive and transitive closure of the relations s→ for s ∈ S where we have
w

s→ w′ if w′ = sws and `(w′) 6 `(w). By setting w ≈ w′ if and only if w → w′ and
w′ → w one obtains an equivalence relation ≈ on W . The ≈-equivalence classes of W are
known as cyclic shift classes.

In the case whereW is a Weyl group, Geck and Pfeiffer show thatWmin in conjunction
with the relation → has remarkable properties and how these properties can be used in
order to define a character table ofHW (q) with q 6= 0 [8]. Since then their results have been
generalized to finite [6], affine [15] and finally to all Coxeter groups [21]. The relation →
can also be used to describe the conjugacy classes of Coxeter groups [9, 12, 20] in particular
for computational purposes [6, 9]. Geck, Kim and Pfeiffer introduce a twisted version→δ

of the relation belonging to twisted conjugacy classes of W in [7]. Building on the results
of [8], Geck and Rouquier define a basis of Z(HW (q)) for q 6= 0 and W a finite Weyl
group, which is naturally indexed by the conjugacy classes of W [10]. A generalization of
cyclic shift classes related to parabolic character sheaves was given by He [14]. On W/≈
the relation → gives rise to a partial order. Gill considers the corresponding subposets
O/≈ where O is a conjugacy class of W [11].

For an element Σ of the quotient set Wmax/≈, He defines the element T6Σ := ∑
x Tx

where x runs over the order ideal in Bruhat order of W generated by Σ [13]. Then he
shows that the elements T6Σ for Σ ∈ Wmax/≈ form a basis of Z(HW (0)). We consider
He’s approach in Section 2.

For each composition α � n, Kim defines the element in stair form σα ∈ Sn [17].
Moreover, she calls α � n maximal if there is a k > 0 such that the first k parts of α are
even and the remaining parts are odd and weakly decreasing. In this case we write α �e n.
We show in Theorem 18 that the elements in stair form σα for α �e n form a system of
representatives of (Sn)max/≈. For α �e n let Σα ∈ (Sn)max/≈ be the equivalence class
of the element in stair form σα. It follows that the elements T6Σα for α �e n form a basis
of Z(Hn(0)). This leads to an alternative proof of Brichard’s dimension formula from [2],
which she obtained by considering braid diagrams on the Möbius strip. The system of
representatives of the elements in stair form is the topic of Section 3.

Since T6Σα depends on the order ideal generated by Σα, a description of the elements of
Σα is desirable. This is the subject of Section 4. We obtain combinatorial characterizations
of the equivalence classes Σ(n) (Theorem 49) and Σ(k,1n−k) with k odd (Theorem 69) and
a decomposition rule Σ(α1,...,αl) = Σ(α1) � Σ(α2,...,αl) if α1 is even, given by an injective
operator � which we call the inductive product (Theorem 84). From the combination of
Theorem 49 and Theorem 84 it follows that the only unknown part in the description
of Σα is Σα′ where α′ is the maximal composition consisting of the odd parts of α. As
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we know Σα′ in case where α′ is an odd hook from Theorem 69, we can describe Σα

for all α �e n whose odd parts form a hook (Remark 87). In particular, this includes a
characterization of Σ(k,1n−k) for even k as well (Theorem 93). The case of describing Σα

in the case where α has only odd parts and is not a hook remains as an open problem
(see Remark 94).

Let n > 3. Norton showed that Hn(0) has exactly three blocks: one nontrivial block
B and two blocks of dimension one [23]. The author used the results of this paper in
order to show that for each maximal composition α 6= (1n) whose odd parts form a hook,
the basis element T6Σα annihilates all the simple modules belonging to block B [18].

The structure is as follows. In Section 2 we present the background material and
review He’s basis of the center of HW (0) and the connection to the quotient set Wmax/≈.
In Section 3 we obtain the system of representatives of (Sn)max/≈ given by the elements
in stair form. There we encounter several intermediate results which are also applied in
Section 4, where we consider the equivalence classes Σα ∈ (Sn)max/≈.

2 Preliminaries

Let K be an arbitrary field. We set N := {1, 2, . . .} and always assume that n ∈ N.
For a, b ∈ Z we define the discrete interval [a, b] := {c ∈ Z | a 6 c 6 b} and use the
shorthand [a] := [1, a].

2.1 Coxeter groups

We consider basic concepts from the theory of finite Coxeter groups. Our motivation is
the application to the symmetric groups. Refer to [1, 16] for details.

Let S be a set. A Coxeter matrix is a map m : S × S → N ∪ {∞} such that
(1) m(s, s′) = 1 if and only if s′ = s and (2) m(s, s′) = m(s′, s) for all s, s′ ∈ S. The
corresponding Coxeter graph is the undirected graph with vertex set S containing the
edge {s, s′} if and only if m(s, s′) > 3. If m(s, s′) > 4 then the edge {s, s′} is labeled
with m(s, s′). A group W is called a Coxeter group with Coxeter generators S if W is
generated by S subject to the relations
(1) s2 = 1 for all s ∈ S,
(2) (ss′s · · · )m(s,s′) = (s′ss′ · · · )m(s,s′) for all s, s′ ∈ S with s 6= s′ and

m(s, s′) <∞
where (ss′s · · · )p denotes the alternating product of s and s′ with p factors.

Let W be a Coxeter group with Coxeter generators S. We always assume that W is
finite. For I ⊆ S the parabolic subgroup WI is the subgroup of W generated by I. It is a
Coxeter group with Coxeter generators I.

Each w ∈ W can be written as a product w = s1 · · · sk with si ∈ S. Then s1 · · · sk is
called a word for w. If k is minimal among all words for w, s1 · · · sk is a reduced word for
w and `(w) := k is the length of w. The left and the right descent set of w ∈ W are given
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by

DL(w) := {s ∈ S | `(sw) < `(w)} ,
DR(w) := {s ∈ S | `(ws) < `(w)} .

(2.1)

The Bruhat order 6 is the partial order on W given by u 6 w if and only if there
exists a reduced word for w which contains a reduced word of u as a subsequence. The
Bruhat poset is graded by the length function `. Since W is finite, there exists a greatest
element w0 ∈ W in Bruhat order. This element is called the longest element of W . It has
the following useful properties.

Lemma 1 ([1, Proposition 2.3.2 and Corollary 2.3.3]). Let w0 be the longest element of
W . Then we have
(1 ) w2

0 = 1,
(2 ) `(ww0) = `(w0w) = `(w0)− `(w) for all w ∈ W ,
(3 ) `(w0ww0) = `(w) for all w ∈ W .

Lemma 2 ([1, Propositions 2.3.4 and 3.1.5]). For the Bruhat order on W , we have that
(1 ) w 7→ ww0 and w 7→ w0w are antiautomorphisms,
(2 ) w 7→ w0ww0 is an automorphism.

We now define the 0-Hecke algebra of W . Refer to Chapter 1 of [22] for background
information on HW (0).

Definition 3. The 0-Hecke algebra HW (0) of W is the unital associative K-algebra gen-
erated by the elements Ts for s ∈ S subject to the relations
(1) T 2

s = −Ts,
(2) (TsTs′Ts · · · )m(s,s′) = (Ts′TsTs′ · · · )m(s,s′) for all s, s′ ∈ S with s 6= s′.

For w ∈ W define Tw := Ts1 · · ·Tsk where s1 · · · sk is a reduced word for w. The word
property ensures that this is well defined [1, Theorem 3.3.1]. We have that {Tw | w ∈ W}
is a K-basis of HW (0) with multiplication given by

TsTw =

Tsw if `(sw) > `(w)
−Tw if `(sw) < `(w)

for w ∈ W and s ∈ S [22, Theorem 1.13].

2.2 The symmetric group

For a finite set X we define S(X) to be the group formed by all bijections from X to
itself. The symmetric group Sn is the group S([n]). Its elements are called permutations.
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Let S be the set of adjacent transpositions si := (i, i + 1) ∈ Sn for i = 1, . . . , n − 1.
The elements of S generate Sn as a Coxeter group subject to the relations

s2
i = 1,

sisi+1si = si+1sisi+1,

sisj = sjsi if |i− j| > 2

[1, Proposition 1.5.4]. For n > 2, Sn is an irreducible Coxeter group of type An−1. In
the case of the symmetric group Sn, we always assume that S is the set of adjacent
transpositions. For σ ∈ Sn we have

DL(σ) =
{
si ∈ S | σ−1(i) > σ−1(i+ 1)

}
,

DR(σ) = {si ∈ S | σ(i) > σ(i+ 1)}
(2.2)

[1, Proposition 1.5.3]. The longest element w0 of Sn is given by w0(i) = n − i + 1 for
i ∈ [n]. We denote the 0-Hecke algebra of the symmetric group Sn with Hn(0) := HSn(0)
and use the shorthand Ti := Tsi for i ∈ [n− 1].

2.3 Combinatorics

A composition α = (α1, . . . , αl) is a finite sequence of positive integers. The length and the
size of α are given by `(α) := l and |α| := ∑l

i=1 αi, respectively. The αi are called parts of
α. If α has size n, α is called composition of n and we write α � n. A weak composition
of n is a finite sequence of nonnegative integers that sum up to n. We write α �0 n if α
is a weak composition of n. The empty composition ∅ is the unique composition of length
and size 0. A partition is a composition whose parts are weakly decreasing. We write
λ ` n if λ is a partition of size n. For example, (1, 4, 3) � 8 and (4, 3, 1) ` 8. Partitions
of n of the form (k, 1n−k) with k ∈ [n] are called hooks.

A permutation σ ∈ Sn can be represented in cycle notation where cycles of length one
may be omitted. The cycle type (or simply type) of a permutation σ ∈ Sn is the partition
of n whose parts are the sizes of all the cycles of σ. If σ has cycle type (k, 1n−k) for a
k ∈ [n] we also call it a k-cycle. A k-cycle is trivial if k = 1. Writing σ in cycle notation
is the same as expanding σ into a product σ1 · · ·σr of disjoint cycles where the trivial
cycles may be omitted in the expansion. On the other hand, in order to describe the cycle
notation of a permutation combinatorially, it can be useful to include them. In Section 4
we will characterize the elements of certain equivalence classes of Sn by considering them
in cycle notation.

2.4 Centers of 0-Hecke algebras

In this section we introduce He’s basis of the center of Hn(0). Following his approach
in [13], we take a more general point of view and consider the center of HW (0) for a
finite Coxeter group W twisted by an automorphism δ. This enables us to prove a useful
invariance property in Corollary 13. By setting W = Sn and δ = id, we recover the
desired results on the center of Hn(0).
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Let W be a finite Coxeter group with Coxeter generators S and δ be a automorphism
of W with δ(S) = S. For instance, we can choose δ = id. Another example is given
by the conjugation with w0. For u,w ∈ W we use the shorthand wu = uwu−1. Define
ν : W → W , w 7→ ww0 . Then ν is a group automorphism and from Lemma 1 it follows that
`(ν(w)) = `(w) for all w ∈ W so that ν(S) = S. In general, each graph automorphism
of the Coxeter graph of W gives rise to a W -automorphism that fixes S. By the next
lemma, the converse direction is also true. The result is not new. For instance, it was
already used implicitly in [7, Section 2.10].

Lemma 4. Let δ be a group automorphism of W with δ(S) = S. Then
(1 ) δ is an automorphism of the Coxeter graph of W ,
(2 ) δ is an automorphism of the Bruhat order of W .

Proof. For w ∈ W denote the order of w with ord(w). Let m be the Coxeter matrix and
Γ be the Coxeter graph of W . Then m(s, s′) = ord(ss′) for all s, s′ ∈ S. Since δ is a group
automorphism, we have ord(δ(w)) = ord(w) for all w ∈ W . Hence for all s, s′ ∈ S

m(δ(s), δ(s′)) = ord(δ(s)δ(s′)) = ord(ss′) = m(s, s′).

Thus, δ is an automorphism of Γ.
By a comment following [1, Proposition 2.3.4], we have that multiplicatively extending

a graph automorphism of Γ yields a Bruhat order automorphism of W . Hence, δ is such
an automorphism.

Example 5. The Coxeter graph of Sn is shown below.

s1 s2 s3 sn−2 sn−1

This graph has at most two automorphisms: the identity and the mapping given by
si 7→ sn−i. For n > 3 these maps are distinct. Let w0 be the longest element of Sn. Then
w0(j) = n− j + 1 for all j ∈ [n] and therefore sw0

i = (n− i+ 1, n− i) = sn−i. Hence the
second map is ν. Thus, id and ν are the only possibilities for δ if W = Sn.

Two elements w,w′ ∈ W are called δ-conjugate if there is an x ∈ W such that w′ =
xwδ(x)−1. The set of δ-conjugacy classes of W is denoted by cl(W )δ. For O ∈ cl(W )δ the
set of elements of minimal length in O and the set of elements of maximal length in O is
denoted by Omin and Omax, respectively.

We want to decompose these sets using an equivalence relation. Let w,w′ ∈ W . For
s ∈ S we write w s→δ w

′ if w′ = swδ(s) and `(w′) 6 `(w). We write w →δ w
′ if there is

a sequence w = w1, w2, . . . , wk+1 = w′ of elements of W such that for each i ∈ [k] there
exists an s ∈ S such that wi s→δ wi+1. If w →δ w

′ and w′ →δ w we write w ≈δ w′.
Then ≈δ is an equivalence relation. The equivalence classes of W under ≈δ are known
as δ-cyclic shift classes. If w ≈δ w′ then `(w) = `(w′). Thus, for all O ∈ cl(W )δ, Omin
and Omax decompose into equivalence classes of ≈δ. Define Wδ,min := ⋃

O∈cl(W )δ Omin
and Wδ,min/≈δ to be the quotient set of Wδ,min by ≈δ. Analogously, define the sets
Wδ,max := ⋃

O∈cl(W )δ Omax and Wδ,max/≈δ. In the case δ = id we may omit the index δ.
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Example 6. We have (1, 2, 3) (1,2)→ (1, 3, 2) (1,2)→ (1, 2, 3) so that (1, 2, 3) ≈ (1, 3, 2). More-
over, `((1, 2)) = `((2, 3)) = 1 and `((1, 3)) = 3. Hence,

{1} , {(1, 2, 3), (1, 3, 2)} and {(1, 3)}

are the elements of (S3)max/≈.

Since δ is a Bruhat order automorphism of W by Lemma 4, we obtain an algebra
automorphism of HW (0) by setting Ts 7→ Tδ(s) for all s ∈ S and extending multiplicatively
and linearly. This algebra automorphism is also denoted by δ. The δ-center of HW (0) is
given by

Z(HW (0))δ := {z ∈ HW (0) | az = zδ(a) for all a ∈ HW (0)} .

We now come to He’s basis of Z(HW (0))δ. For Σ ∈ Wδ,max/≈δ set

W6Σ := {x ∈ W | x 6 w for some w ∈ Σ}

and

T6Σ :=
∑

x∈W6Σ

Tx.

Theorem 7 ([13, Theorem 5.4]). The elements T6Σ for Σ ∈ Wδ,max/≈δ form a K-basis
of Z(HW (0))δ.

We are concerned with the following special case.

Corollary 8. The elements T6Σ for Σ ∈ (Sn)max/≈ form a basis of Z(Hn(0)).

Example 9. Note that in S3

(1, 2, 3) = s1s2, (1, 3, 2) = s2s1 and (1, 3) = w0.

Thus, Example 6 and Corollary 8 yield that the elements

1, 1 + T1 + T2 + T1T2 + T2T1 and
∑
w∈S3

Tw

form a basis of Z(H3(0)).

The basis of Z(Hn(0)) from Corollary 8 depends on (Sn)max/≈. This is the motivation
for considering (Sn)max/≈ in this paper. The remainder of this section is devoted to
show that ν(Σ) = Σ for all Σ ∈ (Sn)max/≈ in Corollary 13. This result will be useful in
Section 4. In order to obtain it, we further study the quotient sets of Wδ,min and Wδ,max
under ≈δ.

Define δ′ := ν ◦ δ. Then δ′ is a W -automorphism with δ′(S) = S as well. The Bruhat
order antiautomorphism w 7→ ww0 from Lemma 2 relates Wδ,min/≈δ to Wδ′,max/≈δ′ .
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Lemma 10 ([13, Section 2.2]). We have a bijection

Wδ,min/≈δ → Wδ′,max/≈δ′ , Σ 7→ Σw0.

We now come to parametrizations of Wδ,min/≈δ and Wδ,max/≈δ which are due to He.
A δ-conjugacy class O ∈ cl(W )δ is called elliptic (or cuspidal) if O∩WI = ∅ for all I ( S
such that δ(I) = I. Define

Γδ := {(I, C) | I ⊆ S, I = δ(I) and C ∈ cl(WI)δ is elliptic} .

Proposition 11 ([13, Corollaries 4.2 and 4.3]). The maps

Γδ → Wδ,min/≈δ
(I, C) 7→ Cmin

and
Γδ′ → Wδ,max/≈δ

(I, C) 7→ Cminw0

are bijections.

A complete set of representatives of the elliptic ν-conjugacy classes of Sn is given by
[12, Lemma 7.14]. This result can be combined with [12, §7.12] in order to obtain Γν and,
by Proposition 11, representatives for (Sn)max/≈. Our aim is to characterize the elements
of Σ for certain Σ ∈ (Sn)max/≈ combinatorially. To this end, we introduce another set of
representatives in the next section.

From Proposition 11 we deduce the following invariance properties.

Lemma 12.
(1 ) We have δ(Σ) = Σ for each Σ ∈ Wδ,min/≈δ.
(2 ) We have δ′(Σ) = Σ for each Σ ∈ Wδ,max/≈δ.

Proof. (1) Let Σ ∈ Wδ,min/≈δ and w ∈ Σ. By Proposition 11 there exists a tuple
(I, C) ∈ Γδ such that C ∈ cl(WI)δ and Σ = Cmin. Hence w ∈ WI and therefore w−1 ∈ WI .
It follows that

δ(w) = w−1wδ(w−1)−1 ∈ C.

Moreover, `(δ(w)) = `(w) because δ is a Bruhat order automorphism by Lemma 4. There-
fore, δ(w) ∈ Cmin = Σ. Hence, δ(Σ) = Σ.

(2) Let Σ ∈ Wδ,max/≈δ. From Lemma 10 it follows that Σw0 ∈ Wδ′,min/≈δ′ . Hence,

δ′(Σ)w0 = δ′(Σw0) = Σw0,

where we use that δ′ is a group homomorphism with δ′(w0) = w0 for the first and Part (1)
for the second equality. Now multiply from the right with w0.

Setting W = Sn and δ = id in the second part of Lemma 12 yields the desired result
on (Sn)max/≈ and ν.

Corollary 13. We have ν(Σ) = Σ for each Σ ∈ (Sn)max/≈.
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3 Elements in stair form

The goal of this section is to obtain a new set of representatives of (Sn)max/≈ in Theo-
rem 18. As announced in the introduction, the set consists of the elements in stair form
indexed by the maximal compositions of n. This is the foundation of the combinatorial
description of the elements of Σ for the equivalence classes Σ ∈ (Sn)max/≈ considered in
Section 4.

The section is structured as follows. We first define elements in stair form andmaximal
compositions. Then Theorem 18 is stated. We proceed with consequences of Theorem 18
before we come its proof. Along the way, we encounter several intermediary results which
are also important for Section 4. There Lemmas 23 and 25 are used directly. Moreover,
from Lemmas 26 and 27 we infer Proposition 28 at the end of this section, and this result
is then applied in Section 4.

We now begin with the definition of the elements in stair form.

Definition 14 (Kim, [17]). Let α = (α1, . . . , αl) � n. Define the list (x1, x2, . . . , xn) by
setting x2i−1 := i and x2i := n− i+ 1. The element in stair form σα ∈ Sn corresponding
to α is given by

σα := σα1σα2 · · ·σαl

where σαi is the αi-cycle

σαi :=
(
xα1+···+αi−1+1, xα1+···+αi−1+2, . . . , xα1+···+αi−1+αi

)
.

For instance, σ(4,2) = (1, 6, 2, 5)(3, 4). We obtain σα for α = (α1, . . . , αl) � n as
follows. Let di := ∑i

j=1 αi for i = 1, . . . , l and consider the list (x1, x2, . . . , xn) given as
above. Then split the list between xdi and xdi+1 for i = 1, . . . , l−1. The resulting sublists
are the cycles of σα. In particular, if α and β are compositions with σα = σβ then α = β.
We continue with the maximal compositions.

Definition 15 (Kim, [17]). Let α = (α1, . . . , αl) � n. We call α maximal and write
α �e n if there exists a k with 0 6 k 6 l such that αi is even for i 6 k, αi is odd for i > k
and αk+1 > αk+2 > . . . > αl.

For example, among the two compositions (4, 6, 2, 3, 1, 1) and (6, 4, 3, 2, 1, 1) of 17 only
the first one is maximal. The term maximal is justified by the following result, which
goes back to Kim [17]. A proof is given in [7, Theorem 3.3].

Lemma 16. Let α � n. Then σα ∈ (Sn)max if and only if α is a maximal composition.

Thanks to Lemma 16 the following is well defined.

Definition 17. For α �e n define Σα ∈ (Sn)max/≈ to be the ≈-equivalence class of the
element in stair form σα.

We now state the main result of the section.
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Theorem 18. A complete system of representatives of (Sn)max/≈ is given by

{σα | α �e n} .

That is, we have a bijection

{α �e n} → (Sn)max/≈, α 7→ Σα.

Before we begin proving Theorem 18, we discuss some immediate consequences. One
of them is that (Sn)max/≈ is parametrized by the maximal compositions of n. This
can also be shown by using the representatives of (Sn)max/≈ from [12] mentioned after
Proposition 11.

Example 19. For n = 3 we have

α �e 3 (3) (2, 1) (13)
σα (1, 3, 2) (1, 3) 1

which by Theorem 18 is a complete set of representatives of (S3)max/≈.

By combining Corollary 8 and Theorem 18, we obtain the following.

Corollary 20. The elements T6Σα for α �e n form a basis of Z(Hn(0)).

This leads to an alternative proof of Brichard’s dimension formula.

Corollary 21 ([2, Section 5.1]). The dimension of Z(Hn(0)) equals

∑
λ`n

nλ!
mλ

where for λ = (1k1 , 2k2 , . . . ) ` n, mλ := ∏
i>1 k2i! and nλ := ∑

i>1 k2i is the number of even
parts of λ.

Proof. Each summand is the number of maximal compositions that have the same multiset
of parts as λ ` n. Hence, the sum is the number of maximal compositions of n. By
Corollary 20 this is the dimension of Z(Hn(0)).

Remark 22. From Theorem 18 and Lemma 10 it follows that the elements σαw0 for α �e n
form a system of representatives of (Sn)ν,min/≈ν . A basis of the cocenter of Hn(0) twisted
by ν is given by such a system [13, Theorem 6.5].

We now come to the proof of Theorem 18. Because of Lemma 16, it remains to show
the following.
(a) For each Σ ∈ (Sn)max/≈ there is an α �e n such that σα ∈ Σ.
(b) If α, β �e n and σα ≈ σβ then α = β.
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There are two ways of showing

|(Sn)max/≈| = |{α �e n}|

which are independent of Theorem 18: (1) Combining Corollary 8 with Brichard’s dimen-
sion formula (Corollary 21) and (2) using the representatives of [12]. Using one of these,
it would suffice to prove (a). However, we choose to include a prove of (b) because it
follows a direct combinatorial approach and involves the intermediate results Lemmas 25
to 27 that we need for Section 4.

In order to prove Statement (a) we use the following result. It is also applied in the
argumentation leading to Theorem 49.

Lemma 23. Let W be a finite Coxeter group and w,w′ ∈ W be such that w → w′ and
`(w) = `(w′). Then w ≈ w′.

Proof. Let S be the set of Coxeter generators of W . It suffices to consider the case where
w

s→ w′ for some s ∈ S because by definition→ is the transitive closure of all the relations
t→ with t ∈ S. Then w′ = sws. Thus, w = sw′s and since `(w) = `(w′), we have w′ s→ w.
Hence w ≈ w′.

Proof of Statement (a). Let Σ ∈ (Sn)max/≈ and σ ∈ Σ. In [17, Section 3] it is shown
that there is a β � n such that σβ → σ. Moreover, Statement (a′′) of Section 3.1 in [7]
provides the existence of an α �e n such that σα → σβ. Therefore, σα → σ. Hence, σα
and σ are conjugate and `(σα) > `(σ). But the length of σ is maximal in its conjugacy
class. Hence, `(σα) = `(σ) and Lemma 23 yields σα ≈ σ.

We begin working towards Statement (b). It will follow from Lemmas 24 to 27. As
before, we will trace the relation ≈ back to the elementary steps si→ with i ∈ [n − 1].
Consider σ ∈ Sn and τ = siσsi. Then we have τ si→ σ or σ si→ τ depending on `(siσsi)−
`(σ). Moreover σ ≈ τ if and only if the difference vanishes. Thus our first goal is to
determine `(siσsi)− `(σ) depending on σ and si in Lemma 25.

Lemma 24. Let σ ∈ Sn and i, j ∈ [n− 1]. Then {σ(i), σ(i+ 1)} 6= {j, j + 1} if and only
if (sj ∈ DL(σ) ⇐⇒ sj ∈ DL(σsi)).

Proof. We consider all permutations in one-line notation. From Equation (2.2) it follows
for each σ ∈ Sn that j ∈ DL(σ) if and only if j + 1 is left of j in σ.

Now fix σ ∈ Sn. Observe that we obtain σsi from σ by swapping σ(i) and σ(i + 1).
Since these are two consecutive letters in the the one-line notation of σ, the relative
positioning of j and j + 1 is affected by this interchange if and only if {σ(i), σ(i+ 1)} =
{j, j + 1}. Now use the above remark on left descents to deduce the claim.

We now come to the result on `(siσsi) − `(σ). Determining this difference will also
be of interest in Section 4. It comes up when we trace ≈ down to elementary steps (as
explained above) or when we interchange i and i+1 in the cycle notation of σ. Lemma 25
is invoked several times in order to obtain Theorem 49 and Theorem 69.
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Lemma 25. Let σ ∈ Sn and i ∈ [n− 1].
(1 ) If {σ(i), σ(i+ 1)} 6= {i, i+ 1} then

`(siσsi) =


`(σ)− 2 if σ(i) > σ(i+ 1) and σ−1(i) > σ−1(i+ 1),
`(σ) + 2 if σ(i) < σ(i+ 1) and σ−1(i) < σ−1(i+ 1),
`(σ) else.

(2 ) If {σ(i), σ(i+ 1)} = {i, i+ 1} then i and i + 1 either are fixed points of σ or form
a 2-cycle in σ. In particular, siσsi = σ.

Proof. Part (2) should be clear. For Part (1) assume that {σ(i), σ(i+ 1)} 6= {i, i+ 1}.
We have that

`(siσsi)− `(σ) = `(siσsi)− `(σsi) + `(σsi)− `(σ).

Equation Equation (2.1) yields that each of the two differences on the right hand side is
−1 or 1 depending on the truth value of the statements si ∈ DL(σsi) and si ∈ DR(σ),
respectively. From Lemma 24 we have that si ∈ DL(σsi) if and only if si ∈ DL(σ). That
is, the first difference depends on whether si ∈ DL(σ) or not. Thus, Equation (2.2) implies
the claim.

We now show for each α �e n that all elements of Σα have the same orbits of even
length on [n].

Lemma 26. Let α �e n and σ ∈ Sn such that σα ≈ σ. Then we have the following.
(1 ) The orbits of even length of σ and σα on [n] coincide.
(2 ) Let O be an σ-orbit on [n] of even length. Then the orbits of σ2 and σ2

α on O
coincide.

Proof. Since σα ≈ σ, we have σα → σ and `(σα) = `(σ). Using induction on the minimal
number of elementary steps w s→ w′ (with some w,w′ ∈ Sn and s ∈ S) necessary to
relate σα to σ, we may assume that there are τ ∈ Sn and si ∈ S such that σα → τ

si→ σ
and τ satisfies (1) and (2) (σα certainly does). Then `(σα) > `(τ) > `(σ) so that in fact
`(σα) = `(τ) = `(σ) and σα ≈ τ ≈ σ by Lemma 23.

It remains to show that si→ transfers Properties (1) and (2) from τ to σ. Because
σ = siτsi, we obtain σ from τ by interchanging i and i+ 1 in the cycle notation of τ . If i
and i+ 1 both appear in orbits of uneven length of τ then (1) and (2) are not affected by
this interchange. Thus, we are left with two cases.

Case 1. Assume that i and i+ 1 appear in different orbits of τ , say O1 and O2 such
that at least one of them, say O1, has even length. We show that this case does not occur.
To do this, let m1 and m2 be the minimal elements of O1 and O2, respectively. If O2 also
has even length, we assume m1 < m2.

For w ∈ Sn and j ∈ [n] let 〈w〉 denote the subgroup of Sn generated by w and 〈w〉j
be the orbit of j under the natural action of 〈w〉 on [n]. Since τ satisfies Property (2) and
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O1 has even length, there is a p1 > m1 such that

O<1 := 〈τ 2〉m1 = 〈σ2
α〉m1 = {m1,m1 + 1, . . . , p1} ,

O>1 := 〈τ 2〉τ(m1) = 〈σ2
α〉σα(m1) = {n−m1 + 1, n−m1, . . . , n− p1 + 1} .

(3.1)

We claim the following:
Let a ∈ O<1 , b ∈ O2 and c ∈ O>1 . Then a < b < c.

To prove the claim, consider the positions of elements of [n] in the cycle notation σα =
σα1 · · ·σαl given by Definition 14. The elements on odd positions 1, 2, 3, . . . form an
strictly increasing sequence. The elements on even positions n, n− 1, . . . form an strictly
decreasing sequence but they are always greater than the entries on odd positions.

We want to show that the elements of O2 all appear right of the cycle consisting of
the elements of O1. If O2 has even length this is clear. If O2 has odd length, we can use
that by Property (1), the unions of odd orbits of τ and σα coincide and that in σα the
elements of odd orbits are all located right of the elements of the even orbits.

Let a ∈ O<1 . Then a is on an odd position and thus it is smaller than any entry right
of it. On the other hand, c ∈ O>1 implies that c is on an even position and thus is greater
then any entry right of it. Finally, in the last paragraph we have shown that each b ∈ O2
is located right of a and c. This establishes the claim.

Now, we have to deal with two cases.
If i ∈ O1 and i+ 1 ∈ O2 then the claim implies i ∈ O<1 . Then τ−1(i), τ(i) ∈ O>1 . Since

τ−1(i + 1), τ(i + 1) ∈ O2, our claim yields τ−1(i) > τ−1(i + 1) and τ(i) > τ(i + 1). In
addition, since O1 has even length and i + 1 6∈ O1, τ(i) 6= i, i + 1. Thus, we obtain from
Lemma 25 that `(σ) < `(τ), a contradiction to `(τ) = `(σ).

If i + 1 ∈ O1 and i ∈ O2 then the claim implies i + 1 ∈ O>1 and similarly as before
we obtain τ−1(i) > τ−1(i+ 1) and τ(i) > τ(i+ 1) and thus the same contradiction using
Lemma 25. That is, we have shown that i and i+ 1 cannot appear in two different orbits
if one of the latter has even length.

Case 2. Assume that i and i+ 1 appear in the same orbit with even length O1 of τ .
Then (1) also holds for σ.

To show (2), assume i+ 1 ∈ 〈τ 2〉i first. Then both elements appear in the same cycle
of τ 2. As we obtain σ2 from τ 2 by swapping i and i + 1 in cycle notation, (2) also holds
for σ.

Lastly, we show that i+1 ∈ 〈τ 2〉i is always true. For the sake of contradiction, assume
i+ 1 6∈ 〈τ 2〉i.

Suppose in addition that |O1| = 2. Then {τ(i), τ(i+ 1)} = {i, i+ 1} and from
Lemma 25 we obtain σ = siτsi = τ . This contradicts the minimality of the sequence
of arrow relations from σα to σ.

Now suppose |O1| > 2. Then {τ(i), τ(i+ 1)} 6= {i, i+ 1}. Since i + 1 6∈ 〈τ 2〉i,
it follows from Equation (3.1) that i = maxO<1 and i + 1 = minO>1 . Consequently,
τ−1(i), τ(i) ∈ O>1 and τ−1(i+ 1), τ(i+ 1) ∈ O<1 . But this means that

τ−1(i) > τ−1(i+ 1) and τ(i) > τ(i+ 1).
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Because {τ(i), τ(i+ 1)} 6= {i, i+ 1}, we can now apply Lemma 25 and obtain that `(σ) <
`(τ). Again, we end up with a contradiction.

Let σ ∈ Sn. Then the set of orbits of σ on [n] is a set partition of [n]. We denote this
partition by P (σ). The set of even orbits of σ is given by

Pe(σ) := {O ∈ P (σ) | |O| is even} .

If P (σ) = P (σ′) for σ, σ′ ∈ Sn then σ and σ′ have the same type, i.e. they are
conjugate.

Lemma 27. Let α, β �e n such that σα and σβ are conjugate. If Pe(σα) = Pe(σβ) then
α = β.

Proof. Let α = (α1, . . . , αl), β = (β1, . . . , βl′) �e n and (x1, x2, . . . , xn) be the sequence
with x2i−1 = i and x2i = n − i + 1. Since α is maximal, there is a k ∈ [0, l] such that
αi is even for i 6 k and odd for i > k. Assume that σα and σβ are conjugate and
Pe(σα) = Pe(σβ).

Because σα and σβ are conjugate, α and β have the same multiset of parts. In par-
ticular, l = l′. Since α and β are maximal, the odd parts of α and β form an weakly
decreasing sequence at the end of α and β, respectively. As both compositions have the
same length and multiset of parts, it follows that αi = βi for i = k + 1, . . . , l.

We show that αi = βi for i = 1, . . . , k with induction. Assume that i ∈ [k] and αj = βj
for all 1 6 j < i. Define d := ∑i−1

j=1 αi. Then by assumption d = ∑i−1
j=1 βi. Moreover, let

Oαi and Oβi be the orbits of xd+1 under σα and σβ, respectively. From the definition of
elements in stair form it follows that

Oαi = {xd+1, xd+2, . . . , xd+αi} ,
Oβi = {xd+1, xd+2, . . . , xd+βi} .

In particular |Oαi | = αi and |Oβi | = βi. Since i 6 k, αi and βi are even. Consequently,
Oαi and Oβi both have even length. Moreover, they have the element xd+1 in common.
Hence, Pe(σα) = Pe(σβ) implies Oαi = Oβi . Thus, αi = |Oαi | = |Oβi | = βi.

We are now in the position to prove Statement (b), and finish the proof of Theorem 18.

Proof of Statement (b). Let α, β �e n such that σα ≈ σβ. Then σα and σβ are conjugate.
Moreover, Lemma 26 implies Pe(σα) = Pe(σβ). Hence α = β by Lemma 27.

We now use Lemmas 26 and 27 in order to prepare result for the proof of Theorem 84.

Proposition 28. Let α �e n and σ ∈ Sn. Then σ ∈ Σα if and only if
(1 ) σ and σα are conjugate in Sn,
(2 ) `(σ) = `(σα),
(3 ) Pe(σ) = Pe(σα).
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Proof. First, assume σ ∈ Σα. Because σα ∈ Σα and Σα ∈ (Sn)max/≈, σ satisfies (1) and
(2). By Lemma 26, (3) holds as well.

Second, assume that σ satisfies (1) − (3). By (1), σ is in the same conjugacy class
as σα. From (2) it follows, that σ is maximal in its conjugacy class. Then Theorem 18
provides the existence of a β �e n such that σ ∈ Σβ. Using the already proven implication
from left to right, we obtain that σ and σβ are conjugate and Pe(σ) = Pe(σβ). But as σ
satisfies (1) and (3), it follows that σβ and σα are conjugate and Pe(σβ) = Pe(σα). Thus,
Lemma 27 yields β = α as desired.

We end this section with a remark on conjugacy classes.
Remark 29. The conjugacy classes of Sn are parametrized by the partitions of n via the
cycle type. For a composition α we denote the partition obtained by sorting the parts of
α in decreasing order by α̃. Let λ ` n and O be the conjugacy class whose elements have
cycle type λ. From Definition 14 it follows that for α �e n the element in stair form σα is
contained in O if and only if α̃ = λ. Hence, Theorem 18 implies that {σα | α �e n, α̃ = λ}
is a complete set of representatives of Omax/≈. In particular, we have that

|Omax/≈| = 1 if and only if the even parts of λ are all equal.

4 Equivalence classes of (Sn)max under ≈

Let α = (α1, . . . , αl) �e n. Recall that Σα is the ≈-equivalence class of the element in stair
form σα. From Theorem 18 we have that (Sn)max/≈ = {Σα | α �e n}. In Corollary 20
we concluded that the elements T6Σα for α �e n form a basis of Z(Hn(0)). We emphasize
that T6Σα directly depends on Σα since T6Σα = ∑

x Tx where x runs over the order ideal
in Bruhat order generated by Σα. Motivated by this connection, the current section is
devoted to the description of equivalence classes Σα and bijections between them.

Let (α1, . . . , αj) be the even and α′ := (αj+1, . . . , αl) be the odd parts of α. We will
characterize Σα combinatorially in the case where α is a hook (Theorem 93). Moreover,
will see how an injective operator �, the inductive product, can be used to decompose Σα

into Σ(αi) for i = 1, . . . , j and Σα′ (Theorem 84). As we know the Σ(αi) from Theorem 93,
the only unknown in the description of Σα is Σα′ . If α′ is a hook, we can use Theorem 93
again and obtain a description of Σα for all α whose odd parts form a hook (Remark 87).
As an open problem, the case where α has only odd parts but is not a hook remains (see
Remark 94).

The section is structured as follows. In Section 4.1 we consider the case where α has
only one part. The first important result is the characterization of the elements of Σ(n) by
properties of their cycle notation (Theorem 49). From this we obtain bijections relating
Σ(n−1) with Σ(n) for n > 4 (Theorem 50) and a closed formula for the cardinality of Σ(n)
(Corollary 53).

In Section 4.2 we generalize the characterization of Σ(n) to odd hooks, where a hook
α := (k, 1n−k) is called odd if k is odd and even otherwise (Theorem 69). Moreover,
we define a bijection Σ(k) × [m + 1, n − m] → Σ(k,1n−k) where k is odd and m := k−1

2
(Corollary 70). From this we obtain the cardinality of Σ(k,1n−k) for odd k (Corollary 71).
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Table 1: The elements of Σ(n) for small n with the element in stair form σ(n) in the top
row.

α (1) (2) (3) (4) (5) (6)

Σα

(1) (1, 2) (1, 3, 2) (1, 4, 2, 3) (1, 5, 2, 4, 3) (1, 6, 2, 5, 3, 4)
(1, 2, 3) (1, 3, 2, 4) (1, 5, 2, 3, 4) (1, 6, 2, 4, 3, 5)

(1, 5, 3, 2, 4) (1, 6, 3, 4, 2, 5)
(1, 4, 2, 3, 5) (1, 5, 2, 4, 3, 6)
(1, 4, 3, 2, 5) (1, 5, 3, 4, 2, 6)
(1, 3, 4, 2, 5) (1, 4, 3, 5, 2, 6)

In Section 4.3 we consider the inductive product � that allows the decomposition
Σ(α1,...,αl) = Σ(α1) � Σ(α2,...,αl) if α1 is even (Theorem 84). This yields the reduction
mentioned above. Combining it with the results of the other sections, we then infer the
description of Σα for all α �e n whose odd parts form a hook (Remark 87). This includes
the characterization of Σα in the case where α is an even hook (Theorem 93).

4.1 Equivalence classes of n-cycles

In this section we seek a combinatorial description of the elements of Σ(n). Examples
are given in Table 1. Our main goal is to show in Theorem 49 that the elements of
Σ(n) are characterized by two properties: being oscillating and having connected intervals.
From this we infer in Theorem 50 a recursive rule for determining Σ(n). The intermediate
results leading to Theorem 49 can be structured as follows: We first consider the property
of being oscillating in Lemmas 33 to 35 and Corollary 36. Then the second property of
having connected intervals comes into play. We show in Lemma 40 that the element in
stair form σ(n) is oscillating and has connected intervals. Proving in Lemma 46 that the
relation ≈ preserves the two properties is a major step towards Theorem 49. The final
ingredient is an algorithm considered in Lemma 47. This algorithm takes an arbitrary
n-cycle which is oscillating and has connected intervals as input and computes a sequence
of ≈-equivalent n-cycles ending up at the element in stair form σ(n).

We now begin with the property of being oscillating.

Definition 30. We call the n-cycle σ ∈ Sn oscillating if there exists a positive integer
m ∈

{
n−1

2 , n2 ,
n+1

2

}
such that σ([m]) = [n−m+ 1, n].

In Corollary 36 we will obtain a more descriptive characterization of oscillating n-
cycles. It turns out that the n-cycle σ of Sn (represented in cycle notation) is oscillating
if n is even and the entries of σ alternate between the sets [1, n2 ] and [n2 + 1, n] or n is
odd and after deleting the entry n+1

2 from σ the remaining entries alternate between the
sets [1, n−1

2 ] and [n+3
2 , n].

Example 31. (1) Recall that for n ∈ N the element in stair form σ(n) is an n-cycle of
Sn. For

σ(5) = (1, 5, 2, 4, 3), σ−1
(5) = (1, 3, 4, 2, 5) and σ(6) = (1, 6, 2, 5, 3, 4)
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we have

σ(5)([2]) = [4, 5], σ−1
(5)([3]) = [3, 5] and σ(6)([3]) = [4, 6].

Hence, they are oscillating and the integer m used in Definition 30 is given by

m = 2 = 5− 1
2 , m = 3 = 5 + 1

2 and m = 3 = 6
2 ,

respectively. Note that the entries in the cycles alternate as described after Defini-
tion 30.

(2) All the elements shown in Table 1 are oscillating.

We explicitly write down the three cases for m in Definition 30.
Remark 32. Let σ be an oscillating n-cycle σ ∈ Sn with parameter m from Definition 30.
Then we have
(1) n is even and σ([n2 ]) = [n2 + 1, n] if m = n

2 ,
(2) n is odd and σ([n−1

2 ]) = [n+3
2 , n] if m = n−1

2 ,
(3) n is odd and σ([n+1

2 ]) = [n+1
2 , n] if m = n+1

2 .
Our next aim is to give a characterization of the term oscillating in Lemma 35. By

considering complements in [n] we obtain the following.

Lemma 33. Let σ ∈ Sn be an n-cycle and m ∈ [n]. Then σ([m]) = [n−m+ 1, n] if and
only if σ([m+ 1, n]) = [n−m].

Lemma 33 implies that an n-cycle σ ∈ Sn is oscillating with parameter m if and only
if σ([m+ 1, n]) = [n−m].

Lemma 34. Let σ ∈ Sn be an n-cycle. Then σ is oscillating if and only if σ−1 is
oscillating.

Proof. Let M := N ∩
{
n−1

2 , n2 ,
n+1

2

}
. If n = 1 then σ = id = σ−1 (which is oscillating).

Thus assume n > 2. It suffices to show the implication from left to right. Suppose that σ
is oscillating. Then there is an m ∈ M such that σ([m]) = [n−m + 1, n]. Consequently,
σ([m+ 1, n]) = [n−m] by Lemma 33 and hence

σ−1([n−m]) = [m+ 1, n].

Moreover, m + 1 = n − (n −m) + 1 and we have n −m ∈ M since m ∈ M and n > 2.
Therefore, σ−1 is oscillating.

In the following lemma we rephrase Definition 30 from a more local point of view.
The result looks rather technical but its main idea is, that an n-cycle is oscillating if and
only if its entries in cycle notation alternate between entries smaller than n+1

2 and entries
greater than n+1

2 with an extra rule for the neighbors of n+1
2 if n is odd. This result will

also be used in the argumentation leading to the characterization of Σα for α an odd hook
in Section 4.2.
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Lemma 35. Let σ ∈ Sn be an n-cycle. We consider the four implications for all i ∈ [n]
(i) i < n+1

2 =⇒ σ(i) > n+1
2 ,

(ii) i < n+1
2 =⇒ σ−1(i) > n+1

2 ,
(iii) i > n+1

2 =⇒ σ(i) 6 n+1
2 ,

(iv) i > n+1
2 =⇒ σ−1(i) 6 n+1

2 ,
and if n is odd the statement

(A) either σ−1(n+1
2 ) > n+1

2 or σ(n+1
2 ) > n+1

2 .
Then the following are equivalent.
(1 ) σ is oscillating.
(2 ) One of (i) – (iv) is true and if n is odd and n > 3 then also (A) is true.
(3 ) Each one of (i) – (iv) is true and if n is odd and n > 3 then also (A) is true.

Proof. First suppose that n is odd. If n = 1 then σ = id is oscillating and the implications
(i) – (iv) are trivially satisfied.

Assume n > 3. We show for each of the implications (x) that (A) and (x) is true if
and only if σ is oscillating. As n is odd and n > 3, Statement (A) can be expanded as

either σ−1(n+1
2 ) > n+1

2 and σ(n+1
2 ) < n+1

2
or σ−1(n+1

2 ) < n+1
2 and σ(n+1

2 ) > n+1
2 .

Moreover, (i) can be rephrased as σ([n−1
2 ]) ⊆ [n+1

2 , n]. Hence, we have (A) and (i) if and
only if

either σ([n−1
2 ]) = [n+3

2 , n] (if σ−1(n+1
2 ) > n+1

2 and σ(n+1
2 ) < n+1

2 )
or σ([n+1

2 ]) = [n+1
2 , n] (if σ−1(n+1

2 ) < n+1
2 and σ(n+1

2 ) > n+1
2 ).

In other words, σ([m]) = [n−m+1, n] for either m = n−1
2 or m = n+1

2 , i.e. σ is oscillating.
Similarly, we have (A) and (iii) if and only if

either σ([n+1
2 , n]) = [n+1

2 ] or σ([n+3
2 , n]) = [n−1

2 ].
That is, σ([m + 1, n]) = [n−m] for either m = n−1

2 or m = n+1
2 . This is equivalent to σ

being oscillating by Lemma 33.
So far we have shown that

(A) and (i) ⇐⇒ σ is oscillating ⇐⇒ (A) and (iii). (4.1)

By Lemma 34 we therefore also have

(A) and (ii) ⇐⇒ σ is oscillating ⇐⇒ (A) and (iv). (4.2)

This finishes the proof for odd n.
Suppose now that n is even. Note that n+1

2 6∈ [n] as it is not an integer. It is not hard
to see that the equivalences from Equation (4.1) and therefore those from Equation (4.2)
hold if we drop Statement (A).
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We continue with two consequences of Lemma 35. We first infer the description of
oscillating n-cycles mentioned at the beginning of the section.

Corollary 36. Let σ ∈ Sn be an n-cycle. We consider σ in cycle notation. Then σ is
oscillating if and only if one of the following is true.
(1 ) n is even and the entries of σ alternate between the sets

[
n
2

]
and

[
n
2 + 1, n

]
.

(2 ) n is odd and after deleting the entry n+1
2 from σ, the remaining entries alternate

between the sets
[
n−1

2

]
and

[
n+3

2 , n
]
.

Proof. With (A), (i) and (iii) we refer to the statements of Lemma 35.
Suppose that n is even. By Lemma 35, σ is oscillating if and only if the implications

(i) and (iii) are satisfied which is the case if and only if the entries of σ alternate between
[n2 ] and [n2 + 1, n].

Suppose that n is odd. If n > 3 then property (A) states that one of the neighbors
σ−1(n+1

2 ) and σ(n+1
2 ) of n+1

2 in σ is an element of [n−1
2 ] and the other one is an element of

[n+3
2 , n]. Therefore, σ satisfies (A), (i) and (iii) if and only if after deleting n+1

2 from the
cycle notation of σ, the remaining entries alternate between the sets [n−1

2 ] and [n+3
2 , n].

Thus, Lemma 35 yields that the latter property is satisfied if and only if σ is oscillating.

Consider an n-cycle σ in cycle notation such that 1 is the leftmost entry in the cycle.
Then we can rephrase Corollary 36 in a more formal way.

Corollary 37. Let σ ∈ Sn be an n-cycle. If n is odd, let 0 6 l 6 n − 1 be such that
σl(1) = n+1

2 . If n is even, set l := ∞. Then σ is oscillating if and only if for all
0 6 k 6 n− 1 we have

σk(1) < n+ 1
2 if k < l and k is even or k > l and k is odd,

σk(1) > n+ 1
2 if k < l and k is odd or k > l and k is even.

We now come to the second property in the characterization of Σ(n): the property of
having connected intervals. Roughly speaking, an n-cycle of Sn has connected intervals
if in its cycle notation for each 1 6 k 6 n

2 the elements of the interval [k, n − k + 1] are
grouped together.

Definition 38. (1) Let σ ∈ Sn and M ⊆ [n]. We call M connected in σ if there is an
m ∈M such that

M =
{
m,σ(m), σ2(m), . . . , σ|M |−1(m)

}
.

(2) Let σ ∈ Sn be an n-cycle. We say that σ has connected intervals if the interval
[k, n− k + 1] is connected in σ for all integers k with 1 6 k 6 n

2 .

Example 39. All elements shown in Table 1 have connected intervals. In particular,
the element in stair form σ(6) = (1, 6, 2, 5, 3, 4) has connected intervals. In contrast, in
(1, 5, 2, 6, 3, 4) the set [2, 5] is not connected.
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The main result of this section is that an n-cycle σ ∈ Sn is an element of Σ(n) if and
only if σ is oscillating and has connected intervals. We now show that the element in stair
form has these properties.

Lemma 40. The element in stair form σ(n) ∈ Sn is oscillating and has connected inter-
vals.

Proof. By Definition 14,

σ(n) =

(1, n, 2, n− 1, . . . , n2 , n−
n
2 + 1) if n is even

(1, n, 2, n− 1, . . . , n−1
2 , n− n−1

2 + 1, n+1
2 ) if n is odd.

Thus, σ(n)([n2 ]) = [n2 + 1, n] if n is even and σ(n)([n−1
2 ]) = [n+3

2 , n] if n is odd. That is, σ(n)
is oscillating.

For all k ∈ N with 1 6 k 6 n
2 the rightmost |[k, n− k + 1]| elements in the cycle of

σ(n) from above form [k, n− k + 1]. Thus, σ(n) has connected intervals.

Let σ ∈ Sn. Sometimes it will be convenient to consider σw0 instead of σ. We will
now show that conjugation with the longest element w0 of Sn preserves the properties of
being oscillating and having connected intervals.

Lemma 41. Let σ ∈ Sn be an n-cycle.
(1 ) If σ is oscillating then σw0 is oscillating.
(2 ) If σ has connected intervals then σw0 has connected intervals.

Proof. If n = 1 the result is trivial. Thus suppose n > 2.
(1) Set M := N ∩

{
n−1

2 , n2 ,
n+1

2

}
and assume that σ is oscillating. Then there is an

m ∈M such that σ([m]) = [n−m+1, n] and from Lemma 33 it follows that σ([m+1, n]) =
[n−m]. Using w0(i) = n− i+ 1 for i ∈ [n], we obtain

σw0([n−m]) = w0σw0([n−m])
= w0σ([m+ 1, n])
= w0([n−m])
= [n− (n−m) + 1, n].

As n−m ∈M , it follows that σw0 is oscillating.
(2) Let I := [k, n− k + 1] be given by an integer k with 1 6 k 6 n

2 . Then w0(I) = I.
Hence, if I is connected in σ then it is also connected in σw0 .

In the following result we study the interplay between the conjugation with w0 and
the relation ≈. The generalization to all finite Coxeter groups is straight forward.

Lemma 42. Let w,w′ ∈ Sn and ν be the automorphism of Sn given by x 7→ xw0.
(1 ) If w si→ w′ then ν(w) sn−i→ ν(w′).
(2 ) If w ≈ w′ then ν(w) ≈ ν(w′).
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Proof. Assume w si→ w′. Then w′ = siwsi and `(w′) 6 `(w). Since ν(si) = sn−i, we
have ν(w′) = sn−iν(w)sn−i. Moreover, `(ν(w′)) 6 `(ν(w)) because `(x) = `(ν(x)) for all
x ∈ Sn. Thus, ν(w) sn−i→ ν(w′). Now, use the definition of ≈ to obtain (2) from (1).

Consider n = 5, the oscillating n-cycle σ = (1, 4, 2, 3,5) and its connected interval
I = {2, 3, 4}. In the cycle notation of σ, this interval is enclosed by the two elements
a = 1 and b = 5. Note that n+1

2 = 3, a < 3 and b > 3. This illustrates a property of
oscillating n-cycles which is the subject of the next lemma.

Lemma 43. Assume that σ ∈ Sn is an oscillating n-cycle with a connected interval
I := [i, n − i + 1] such that i ∈ N and 2 6 i 6 n+1

2 . Let r := |I| and m ∈ I be such
that I =

{
σk(m) | k = 0, . . . , r − 1

}
. Moreover, set a := σ−1(m) and b := σr(m). Then

a, b 6= n+1
2 and

a <
n+ 1

2 ⇐⇒ b >
n+ 1

2 .

Proof. Let p ∈ [n − 1] be such that σp(1) = a. Then σp+r+1(1) = b. Since i > 1, 1 6∈ I
and thus p+ r + 1 6 n− 1. We have r = n− 2i+ 2. Hence, r has the same parity as n.

We want to apply Corollary 37. If n is odd, let l ∈ [0, n− 1] be such that σl(1) = n+1
2 .

Then n+1
2 ∈ I so that p < l < p + r + 1. In particular, a, b 6= n+1

2 . Clearly, if n is even
then a, b 6= n+1

2 .
Therefore,

a = σp(1) < n+ 1
2 ⇐⇒ p is even

⇐⇒

p+ r + 1 is odd if n even
p+ r + 1 is even if n odd

⇐⇒ b = σp+r+1(1) > n+ 1
2 .

where we use Corollary 37 (and p < l < p + r + 1 if n is odd) for the first and third
equivalence.

Since the → relation is the transitive closure of the si→ relations, we are interested in
the circumstances under which the conjugation with si preserves the property of being
oscillating with connected intervals.

Lemma 44. Let σ ∈ Sn be an oscillating n-cycle with connected intervals, i ∈ [n − 1]
with i 6 n+1

2 and σ′ := siσsi. Then σ′ is oscillating and has connected intervals if and
only if
(1 ) if i = n

2 then n = 2,
(2 ) if i = n−1

2 or i = n+1
2 then σ(i) = i+ 1 or σ−1(i) = i+ 1,
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(3 ) if i < n−1
2 then

σ(i) ∈ I and σ(i+ 1) 6∈ I or σ−1(i) ∈ I and σ−1(i+ 1) 6∈ I

where I := [i+ 1, n− i].

Proof. We will use Lemma 35 without further reference. Note that σ′ = siσsi means
that we obtain σ′ from σ by interchanging i and i + 1 in cycle notation. We show the
equivalence case by case, depending on i.

Case 1. Suppose i = n
2 . In this case n is even. If n = 2 then (1, 2) is the only 2-cycle

in Sn. Thus, σ = σ′ = (1, 2). This element is oscillating and has connected intervals.
Assume now that n > 2. Since σ is oscillating,

σ(i) > n

2 and σ−1(i) > n

2 .

Moreover as n > 2, at most one of σ(i) and σ−1(i) equals i + 1. Since we obtain σ′ from
σ by swapping i and i+ 1 in cycle notation we infer

σ′(i+ 1) > n

2 or σ′−1(i+ 1) > n

2 .

As i+ 1 > n
2 , this means that σ′ is not oscillating

Case 2. Suppose i = n−1
2 or i = n+1

2 . In this case n is odd and n > 3. Moreover,
i, i+1 ∈ [k, n−k+1] for k = 1, . . . , n−1

2 . Hence, each of the intervals remains connected if
we interchange i and i+1. Therefore, σ′ has connected intervals. It remains to determine
in which cases σ′ oscillates. We do this for i = n−1

2 . The proof for i = n+1
2 is similar.

For i = n−1
2 we have i+ 1 = n+1

2 . Since σ is oscillating,

σ(i) > n+ 1
2 and σ−1(i) > n+ 1

2 .

Because n > 3, there is at most one equality among these two inequalities. Assume that
there is no equality at all. Then

σ′
(
n+ 1

2

)
>
n+ 1

2 and σ′−1
(
n+ 1

2

)
>
n+ 1

2
since σ′ = siσsi. Hence, σ′ is not oscillating.

Conversely, assume that σ(i) = i+ 1 or σ−1(i) = i+ 1. In other words, there exists an
ε ∈ {−1, 1} such that σε(i) = i + 1. Since i + 1 = n+1

2 and σ is oscillating, we then have
a := σ−ε(i) > n+1

2 . Moreover, σ−ε(i+ 1) = i < n+1
2 . Thus σ being oscillating implies that

b := σε(i+ 1) > n+1
2 . By definition of a and b,

σε = (a, i, i+ 1, b, . . . ).

As a consequence,

σ′
ε = (a, i+ 1, i, b, . . . )

and σε and σ′ε coincide on the part represented by the dots because σ′ = siσsi. From
a > n+1

2 , i+ 1 = n+1
2 , i < n+1

2 and b > n+1
2 it now follows that σ′ is oscillating.
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Case 3. Suppose i < n−1
2 . Note that then n > 4. Define I := [i + 1, n − i] as in the

theorem and set r := |I|. Since i+1 < n+1
2 , we have r > 1. We show the implication from

left to right first. Assume that σ′ is oscillating and has connected intervals. Note that

τ ε(j) 6= i, i+ 1 for all τ ∈ {σ, σ′} , ε ∈ {−1, 1} and j ∈ {i, i+ 1}

since σ and σ′ are oscillating and i, i + 1 < n+1
2 . Because I is connected in σ′, i + 1 ∈ I

and r > 1, we have that

∃ε ∈ {−1, 1} such that σ′ε(i+ 1) ∈ I.

Therefore,

∃ε ∈ {−1, 1} such that σε(i) ∈ I

as σ′ = siσsi and σ′ε(i+ 1) 6= i, i+ 1. In fact, the statement

∃ε ∈ {−1, 1} such that σε(i) ∈ I and σ−ε(i) 6∈ I (4.3)

is true since otherwise we would have

σ = (n+ i− 1, . . . , σ−1(i), i, σ(i), . . . )

with σ−1(i), σ(i) ∈ I and i, n+ i− 1 6∈ I in which case I would not be connected in σ.
By interchanging the roles played by σ and σ′ in the argumentation leading to Equa-

tion (4.3), we get that

∃ε ∈ {−1, 1} such that σ′ε(i) ∈ I and σ′−ε(i) 6∈ I.

From this we obtain that

∃ε ∈ {−1, 1} such that σε(i+ 1) ∈ I and σ−ε(i+ 1) 6∈ I (4.4)

by swapping i and i+ 1 in cycle notation and using that σ′(i), σ′−1(i) 6= i, i+ 1.
Now, let ε ∈ {−1, 1} be such that σε(i) ∈ I and σ−ε(i) 6∈ I. Then

I =
{
σεk(i) | k = 1, . . . , r

}
(4.5)

since I is connected in σ and i 6∈ I. From Equation (4.4) it follows that i+ 1 appears at
the border of I in the cycle notation of σ. Hence, Equation (4.5) implies that

σε(i) = i+ 1 or σεr(i) = i+ 1.

As σε(i) 6= i+1, it follows that i+1 = σεr(i). Thus, Equation (4.5) yields that σ−ε(i+1) ∈
I and σε(i+ 1) 6∈ I. Therefore, we have σε(i) ∈ I and σε(i+ 1) 6∈ I for an ε ∈ {−1, 1} as
desired.
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Lastly, we prove the direction from right to left of the equivalence. We are still in
the case i < n−1

2 . Thus, assume that there is an ε ∈ {−1, 1} such that σε(i) ∈ I and
σε(i + 1) 6∈ I. Since σ is oscillating and we interchange two elements i, i + 1 < n+1

2 in σ
in order to obtain σ′ from σ, σ′ is also oscillating.

It remains to show that σ′ has connected intervals. Since i 6∈ I, σε(i) ∈ I and I is
connected in σ, we have Equation (4.5). Moreover, from i + 1 ∈ I, σε(i + 1) 6∈ I and I
being connected in σ, it follows that σεr(i) = i+ 1. Thus,

I =
{
σ′
εk(i+ 1) | k = 0, . . . , r − 1

}
because σ′ = siσsi. That is, I is connected in σ′. Let J := [k, n − k + 1] for k ∈ N with
1 6 k 6 n

2 and k 6= i + 1 be an interval different from I. Then either i, i + 1 ∈ J or
i, i + 1 6∈ J . As J is connected in σ and σ′ = siσsi, it follows that J is connected in σ′.
Therefore, σ′ has connected intervals.

Example 45. Consider σ = σ(6) = (1, 6, 2, 5, 3, 4) and σi := siσsi for i = 1, 2. Then σ is
oscillating with connected intervals.

Since σ−1(1) ∈ [2, 5] and σ−1(2) 6∈ [2, 5], Lemma 44 yields that σ1 is oscillating with
connected intervals. In contrast, σ2 is not oscillating with connected intervals because of
σ(2), σ−1(2) 6∈ [3, 4] and Lemma 44. This can also be checked directly. We have

σ1 = (1, 5, 3, 4, 2, 6) and σ2 = (1, 6, 3, 5, 2, 4).

For instance, [3, 4] is not connected in σ2.

In the next result we show that the relation ≈ is compatible with the concept of
oscillating n-cycles with connected intervals.

Lemma 46. Let σ ∈ Sn be an oscillating n-cycle with connected intervals, i ∈ [n − 1]
and σ′ := siσsi. If σ ≈ σ′ then σ′ is oscillating and has connected intervals.

Proof. We do a case analysis depending on i.
Case 1. Suppose i = n

2 . Then n is even. By Lemma 44, σ′ is oscillating with
connected intervals if and only if n = 2. Thus, we have to show that σ 6≈ σ′ if n > 4. In
this case we have σ(i), σ−1(i) > n

2 and σ(i + 1), σ−1(i + 1) 6 n
2 because σ is oscillating.

But then Lemma 25 yields `(σ′) < `(σ) so that σ′ 6≈ σ.
Case 2. Suppose i = n−1

2 or i = n+1
2 . We only do the case i = n−1

2 . The other
one is similar. Let I := [i, n − i + 1] = {i, i+ 1, i+ 2}. We show the contraposition and
assume that σ′ is not oscillating or that it does not have connected intervals. Then from
Lemma 44 it follows that σ(i) 6= i+ 1 and σ−1(i) 6= i+ 1. Furthermore, there is an m ∈ I
such that

I =
{
σ−1(m),m, σ(m)

}
since I is connected in σ. Thus, m = i + 2. Assume σ−1(i + 2) = i and σ(i + 2) = i
(the proof of the other case with σ(i + 2) = i is analogous). Then σ−1(i) > i + 2 as
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σ is oscillating and σ−1(i) 6= i + 1, i + 2. Moreover, Lemma 43 applied to I in σ and
σ−1(i) > n+1

2 yields σ(i+ 1) < n+1
2 = i+ 1. Therefore,

σ(i) = i+ 2 > σ(i+ 1) and σ−1(i) > i+ 2 = σ−1(i+ 1)

so that `(σ′) < `(σ) by Lemma 25 and hence σ′ 6≈ σ.
Case 3. Suppose i < n−1

2 . Then for all j ∈ {i, i+ 1} we have σ(j), σ−1(j) > n+1
2 since

j < n+1
2 and σ is oscillating. We assume σ ≈ σ′ and show that σ′ is oscillating and has

connected intervals. Define Ik := [k, n−k+1] for all k 6 n+1
2 and I := Ii+1 = [i+1, n− i].

Thanks to Lemma 44 it suffices to show

σ(i) ∈ I and σ(i+ 1) 6∈ I or σ−1(i) ∈ I and σ−1(i+ 1) 6∈ I.

Since σ ≈ σ′, `(σ) = `(σ′). Hence, Lemma 25 implies that either σ(i) < σ(i + 1) or
σ−1(i) < σ−1(i+ 1). We assume σ(i) < σ(i+ 1) and σ−1(i) > σ−1(i+ 1). The other case
is similar.

First we show σ(i) ∈ I. Assume σ(i) 6∈ I instead. Then σ(i) > n+1
2 implies σ(i) >

max I. Now we use that σ(i) < σ(i+ 1) to obtain σ(i+ 1) 6∈ I. From this it follows that

I =
{
σ−k(i+ 1) | k = 0, . . . , r − 1

}
where r := |I| since I is connected in σ and i + 1 ∈ I. Now we consider the interval
Ii = [i, n − i + 1] in σ. Because σ is oscillating, σ(i + 1) > n+1

2 . An application of
Lemma 43 to I in σ yields σ−r(i + 1) < n+1

2 . In particular, σ−r(i + 1) 6= n − i + 1. But
we also have i 6= σ−r(i+ 1) because σ(i) 6∈ I. That is σ−r(i+ 1) 6∈ Ii. As a consequence,

Ii =
{
σ−k(i+ 1) | k = 0, . . . , r − 1

}
∪
{
σ(i+ 1), σ2(i+ 1)

}
since I ⊆ Ii and Ii is connected in σ. Hence{

σ(i+ 1), σ2(i+ 1)
}

= {i, n− i+ 1} .

As σ(i+ 1) > n+1
2 , it follows that σ(i+ 1) = n− i+ 1 and σ2(i+ 1) = i. Consequently,

σ(i) > max Ii = n− i+ 1 = σ(i+ 1).

This is a contradiction to σ(i) < σ(i+ 1) and shows that σ(i) ∈ I.
It remains to show that σ(i+ 1) 6∈ I. Because i 6∈ I, σ(i) ∈ I and I is connected,

I =
{
σk(i) | k = 1, . . . , r

}
.

We can apply Lemma 43 to I in σ and i < n+1
2 to obtain σr+1(i) > n+1

2 . Thus σr(i) 6 n+1
2 .

In particular, σr(i) 6= n− i.
If i = n

2 − 1 then I = {i+ 1, n− i} and it follows that σ(i) = n− i and σ2(i) = i+ 1.
That is, σ(i+ 1) 6∈ I as desired.
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Now suppose i < n
2 − 1. Then i + 2 6 n+1

2 and we consider Ii+2 = [i + 2, n − i − 1].
Assume for the sake of contradiction that σ(i+ 1) ∈ I. This means that σr(i) 6= i+ 1. In
addition, we have already seen that σr(i) 6= n − i. Therefore, σr(i) ∈ Ii+2. Since Ii+2 is
connected in σ and Ii+2 ⊆ I, we have

Ii+2 =
{
σk(i) | k = 3, . . . , r

}
.

and hence {σ(i), σ2(i)} = {i+ 1, n− i}. As i < n+1
2 , it follows that σ(i) = n − i and

σ2(i) = i+ 1. But then

σ(i) = n− i > n− i− 1 = max Ii+2 > σ(i+ 1)

which again contradicts the assumption σ(i) < σ(i+ 1) and thus shows that σ(i+ 1) 6∈ I.
Case 4. Suppose i > n+1

2 . Assume σ ≈ σ′ and let ν : Sn → Sn, x 7→ xw0 , τ := ν(σ)
and τ ′ := ν(σ′). Since σ is oscillating and has connected intervals, Lemma 41 implies that
τ is oscillating and has connected intervals. In addition, from Lemma 42 we have τ ≈ τ ′.
Because τ ′ = sn−iτsn−i with n − i < n+1

2 , we now obtain from the already proven cases
that τ ′ is oscillating and has connected intervals. Hence, σ′ = ν(τ ′) and Lemma 41 yield
that σ′ is oscillating with connected intervals.

From Lemma 40 we know that the element in stair form σ(n) is oscillating and has
connected intervals. Recall that σ(n) ∈ Σ(n). Thus by Lemma 46 the relation ≈ propagates
these properties to all elements of Σ(n). In order to prove Theorem 49, it hence remains
to show that each n-cycle which is oscillating and has connected intervals is ≈-equivalent
to σ(n). To this end, we now use an algorithm that takes an oscillating n-cycle σ ∈ Sn

with connected intervals as input and successively conjugates σ with simple reflections
until we obtain σ(n). This algorithm has the property that all permutations appearing as
interim results are oscillating with connected intervals and ≈-equivalent to σ. Eventually,
it follows that σ ≈ σ(n).

The mechanism of the algorithm is due to Kim [17]. She used it in order to show that
for each α �e n the element in stair form σα has maximal length in its conjugacy class.
The next lemma corresponds to one step of the algorithm.
Lemma 47. Let α = (n) and σ ∈ Sn be an oscillating n-cycle with connected intervals
which is different from the element in stair form σα. Then there exists a minimal integer
p such that 1 6 p 6 n− 1 and σp(1) 6= σpα(1). Set a := σp(1), b := σpα(1) and

σ′ :=

sa−1σsa−1 if a > b

saσsa if a < b.

Then σ′ ≈ σ and σ′ is oscillating and has connected intervals.

Proof. Set Ik := [k, n − k + 1] for all k ∈ N with k 6 n+1
2 . Because σ 6= σα and both

permutations are n-cycles, we have p 6 n− 2. Recall that by Definition 14,

σα =

(1, n, 2, n− 1, . . . , n2 ,
n
2 + 1) if n is even

(1, n, 2, n− 1, . . . , n−1
2 , n+3

2 , n+1
2 ) if n is odd.
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If n is odd then n+1
2 = σn−1(1) and hence p 6 n− 2 implies b 6= n+1

2 . If n is even then
b 6= n+1

2 anyway.
We assume b < n+1

2 . The proof in the case b > n+1
2 is similar and therefore omitted.

By the choice of p, we have b 6= 1 so that 1 < b < n+1
2 . The definition of σα implies{

σkα(1) | k = 0, . . . , p− 1
}

= [n] \ Ib,{
σkα(1) | k = p, . . . , n− 1

}
= Ib.

(4.6)

Again by the choice of p, the same equalities hold for σ. Hence, b < a as a ∈ Ib and
b = min Ib. Therefore, we consider σ′ = sa−1σsa−1 and show that σ ≈ σ′. Then Lemma 46
implies that σ′ also is oscillating and has connected intervals.

It follows from the definition of σα and b < n+1
2 that

σ−1(a) = σ−1
α (b) = n− b+ 2 > n+ 1

2 . (4.7)

As σ is oscillating, we obtain that a 6 n+1
2 from Lemma 35. Since Equation (4.6) holds

for σ and p > 0,

σ−1(a) 6∈ Ib ⊇ Ia−1 ⊇ Ia.

Let r := |Ia|. Because Ia is connected in σ, a ∈ Ia and σ−1(a) 6∈ Ia, we have{
σk(a) | k = 0, . . . , r − 1

}
= Ia.

Now we can use that Ia−1 = Ia ∪ {a− 1, n− a+ 2} is connected in σ and that σ−1(a) 6∈
Ia−1 to obtain {

σk(a) | k = 0, . . . , r + 1
}

= Ia−1

The descriptions of Ia and Ia−1 imply that{
σr(a), σr+1(a)

}
= {a− 1, n− a+ 2} .

Lemma 43 applied to Ia in σ and σ−1(a) > n+1
2 now imply that σr(a) < n+1

2 . Thus,
σr(a) = a− 1 and σr+1(a) = n− a+ 2. That is,

σ(a− 1) = n− a+ 2 (4.8)

Moreover, σ−1(a− 1) ∈ Ia implies

σ−1(a− 1) 6 n− a+ 1. (4.9)

We now show

σ(a) 6 n− a+ 1. (4.10)
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and deal with two cases. If a = n+1
2 then n− a+ 1 = a. Furthermore, we then have r = 1

and therefore σ(a) = a− 1 < n− a+ 1. If a < n+1
2 then r > 1 so that σ(a) ∈ Ia and thus

σ(a) 6 n− a+ 1 as desired.
From eqs. (4.7) and (4.9) it follows that

σ−1(a− 1) 6 n− a+ 1 < n− b+ 2 = σ−1(a).

Moreover, eqs. (4.8) and (4.10) imply

σ(a− 1) = n− a+ 2 > n− a+ 1 > σ(a).

Since σ′ = sa−1σsa−1, Lemma 25 now yields `(σ′) = `(σ). Hence, σ′ ≈ σ by Lemma 23.

Example 48. Let n = 5 and α = (n). The n-cycle σ = (1, 3, 4, 2, 5) ∈ Sn is oscillating
and has connected intervals. We can successively use Lemma 47 in order to obtain the
sequence

σ = σ(0) = (1, 3, 4, 2, 5),
σ(1) = (1, 4, 3, 2, 5) = s3σ

(0)s3,

σ(2) = (1, 5, 3, 2, 4) = s4σ
(1)s4,

σ(3) = (1, 5, 2, 3, 4) = s2σ
(2)s2,

σα = σ(4) = (1, 5, 2, 4, 3) = s3σ
(3)s3.

Moreover, Lemma 47 ensures that each σ(j) is oscillating with connected intervals and all
σ(j) are ≈-equivalent. Therefore, σ ∈ Σα by Theorem 18.

We now come to the main result of this section, the characterization of Σ(n).

Theorem 49. Let σ ∈ Sn be an n-cycle. Then σ ∈ Σ(n) if and only if σ is oscillating
and has connected intervals.

Proof. Let σ ∈ Sn be an n-cycle. Recall that σ ∈ Σ(n) if and only if σ ≈ σ(n) by
Theorem 18. Assume that σ ∈ Σ(n). Then σ ≈ σ(n) which by definition of ≈ implies
that there are sequences σα = σ(0), σ(1), . . . , σ(m) = σ ∈ Sn and i1, . . . , im ∈ [n − 1] such
that σ(j−1) ≈ σ(j) and σ(j) = sijσ

(j−1)sij for j ∈ [m]. From Lemma 40 we have that
σ(n) is oscillating and has connected intervals. Moreover, Lemma 46 yields that σ(j) is
oscillating with connected intervals if σ(j−1) is oscillating with connected intervals. Hence,
σ is oscillating and has connected intervals by induction.

Conversely, assume that σ is oscillating and has connected intervals. Then we can use
Lemma 47 iteratively to obtain a sequence of ≈-equivalent n-cycles starting with σ and
eventually ending with σα. Thus σ ≈ σα.

The goal of the remainder of this section is to find bijections that relate Σ(n−1) to Σ(n).
From this we will obtain a recursive description of Σ(n) and a formula for the cardinality
of Σ(n). To achieve our goal, we define two operators ins and del.
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(1, 3, 4, 2, 5) (1, 4, 3, 2, 5) (1, 4, 2, 3, 5)

(1, 3, 2, 4)

(1, 2, 3)

del3
del3

del3

del3

ins3,1
ins3,2

ins3,3

ins3,1

Figure 1: Examples for the operators delk and insk,p appearing in Theorem 50 and its
proof. The lower part of the picture serves as an example for the operators used in the
case when n is even. The upper part is an example for those used in the case when n is
odd. Note that for the integer m from the theorem we have m = n

2 + 1 = 3 if n = 4 and
m = n+1

2 = 3 if n = 5.

Assume that the n-cycle σ ∈ Sn is given in cycle notation starting with 1. Then for
k ∈ [2, n + 1] insk,p(σ) ∈ Sn+1 is the (n + 1)-cycle obtained from σ by adding 1 to each
element greater or equal to k in σ and then inserting k behind the pth element in the
resulting cycle. Likewise, for k ∈ [2, n], delk(σ) ∈ Sn−1 is the (n − 1)-cycle obtained by
first deleting k from σ and then decreasing each element greater than k by 1. See Figure 1
for examples.

We now define ins and del more formally. Let σ ∈ Sn be an n-cycle and k ∈ N. Set

εr :=

0 if σr(1) < k

1 if σr(1) > k

for r = 0, . . . , n − 1. In the following we will assume k > 1. The operators could also
be defined for k = 1 but this is not necessary for our purposes and would only make the
exposition less transparent.

For k ∈ [2, n+ 1] and p ∈ [n], define insk,p(σ) to be the (n+ 1)-cycle of Sn+1 given by

insk,p(σ)r(1) :=


σr(1) + εr if r < p

k if r = p

σr−1(1) + εr−1 if r > p

for r = 0, . . . , n. For k ∈ [2, n], define delk(σ) to be the (n− 1)-cycle of Sn−1 given by

delk(σ)r(1) :=

σr(1)− εr if r < p

σr+1(1)− εr+1 if r > p

for r = 0, . . . , n− 2 where p is the element of [0, n− 1] with σp(1) = k.
The next results relates Σ(n) with Σ(n−1) via a bijection for n > 4.
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Theorem 50. Suppose n > 4. If n is even then set m := n
2 + 1 and

ψ : Σ(n−1) → Σ(n), σ 7→ insm,p(σ)

where p is the element of [n − 1] with σp−1(1) = min
{
σ−1(n2 ), n2

}
. If n is odd then set

m := n+1
2 and

ψ : Σ(n−1) × {0, 1, 2} → Σ(n), (σ, q) 7→ insm,p+q(σ)

where p is the element of [n − 3] with σp−1(1) 6∈ {m− 1,m} and σp(1) ∈ {m− 1,m}.
Then ψ is a bijection.

Corollary 51. Suppose n > 4. Then

∣∣∣Σ(n)

∣∣∣ =


∣∣∣Σ(n−1)

∣∣∣ if n is even
3
∣∣∣Σ(n−1)

∣∣∣ if n is odd.

Proof of Theorem 50. Theorem 49 states that for all n ∈ N, Σ(n) is the set of oscillating n-
cycles of Sn with connected intervals. In this proof we repeatedly use this result without
further notice.

Let n > 4. We consider all permutations in the cycle notation where 1 is the leftmost
entry in its cycle. In particular, deleting an entry from a permutation or inserting an entry
into a permutation means that we do this in the chosen cycle notation. We distinguish
two cases depending on the parity of n.

Case 1. Assume that n is even. Then m = n
2 + 1. For τ ∈ Σ(n−1) let p be given as in

the definition of ψ. Then min
{
τ−1(n2 ), n2

}
is the pth element in the cycle notation of τ .

Hence, we obtain ψ(τ) by increasing each element in τ greater or equal to m by one and
then inserting m behind the element at position p.

Set ϕ : Σ(n) → Σ(n−1), σ 7→ delm(σ). That is, for σ ∈ Σ(n) we obtain ϕ(σ) by first
deleting m from σ and then decreasing each entry greater than m by 1.

We show that ϕ and ψ are well defined and inverse to each other.
(1) We prove that ϕ is well defined. Let σ ∈ Σ(n) and τ := ϕ(σ). We have to show that

τ ∈ Σ(n−1). That is, we have to prove that τ is oscillating and has connected intervals.
To show the latter, let 1 6 i 6 n−1

2 < n
2 . As [i, n− i + 1] is connected in σ there is a

0 6 q 6 n− 1 such that {
σq+1(1), . . . , σq+r(1)

}
= [i, n− i+ 1]

where r := |[i, n− i+ 1]|. Moreover, m ∈ [i, n− i+ 1]. Thus, τ = delm(σ) implies{
τ q+1(1), . . . , τ q+r−1(1)

}
= [i, n− i].

Hence, [i, (n− 1)− i+ 1] is connected in τ . It follows that τ has connected intervals.
We now show that τ is oscillating. Note that n − 1 is odd and (n−1)+1

2 = n
2 . By

Lemma 35, it suffices to show that τ(i) > n
2 for all i ∈ [n2 −1] and that either τ−1

(
n
2

)
> n

2

or τ
(
n
2

)
> n

2 .
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Let i ∈ [n2 − 1]. Since i < n
2 and σ is oscillating, we infer σ(i) > n

2 from Lemma 35.
If σ(i) 6= m then τ(i) = σ(i) − 1 > n

2 . If σ(i) = m then σ2(i) = n
2 since m = n

2 + 1,{
n
2 ,

n
2 + 1

}
is connected in σ and i 6∈

{
n
2 ,

n
2 + 1

}
. Thus, τ(i) = n

2 .
We now show that either τ−1

(
n
2

)
> n

2 or τ
(
n
2

)
> n

2 . Since
{
n
2 ,

n
2 + 1

}
is connected in

σ there is a 0 6 q 6 n− 1 such that{
σq(1), σq+1(1)

}
=
{
n

2 ,
n

2 + 1
}
.

Hence, τ = deln
2 +1(σ) implies τ q(1) = n

2 . Because n > 4, we can apply Lemma 43 to{
n
2 ,

n
2 + 1

}
in σ and obtain that there are a < n

2 and b > n
2 + 1 such that

{
σq−1(1), σq(1), σq+1(1), σq+2(1)

}
=
{
a, b,

n

2 ,
n

2 + 1
}
.

Therefore, τ q(1) = n
2 and τ = deln

2 +1(σ) yield
{
τ−1

(
n
2

)
, τ
(
n
2

)}
= {a, b− 1} . That is,

either τ−1
(
n
2

)
> n

2 or τ
(
n
2

)
> n

2 . Thus, τ is oscillating.
(2) We check that ψ is well defined. Let τ ∈ Σ(n−1) and σ := ψ(τ). We have to show

σ ∈ Σ(n).
The definition of ψ implies that n

2 + 1 is a neighbor of n
2 in σ. In addition, [i, n− i] is

connected in τ for i ∈ [n2 − 1]. Therefore, [i, n− i+ 1] is connected in σ for i ∈ [n2 ]. That
is, σ has connected intervals.

We now show that σ is oscillating. By Lemma 35, it suffices to show that σ(i) > n
2

for all i ∈ [n2 ]. For i < n
2 this can be done as before. Thus, we only consider i = n

2 . As τ
is oscillating, Lemma 35 implies that one of the neighbors of n

2 is smaller than n
2 and the

other one is greater than n
2 . Let a be the smaller and b be the bigger neighbor of n

2 . In
the definition of ψ, p is chosen such that n

2 + 1 is inserted in τ between a and n
2 . Thus,

n
2

has neighbors n
2 + 1 and b+ 1 in σ. Consequently, σ

(
n
2

)
> n

2 .
(3) We now show that ψ ◦ ϕ = id. Let σ ∈ Σ(n). Since

{
n
2 ,

n
2 + 1

}
is connected in σ,

these two elements are neighbors in σ. As σ is oscillating, there is an a < n
2 such that

n
2 + 1 has neighbors a and n

2 . We obtain ϕ(σ) from σ by deleting n
2 + 1 so that a and

n
2 are neighbors in ϕ(σ). On the other hand, we obtain ψ(ϕ(σ)) from ϕ(σ) by inserting
n
2 + 1 between a and n

2 . Thus ψ(ϕ(σ)) = σ.
(4) Finally, we show that ϕ ◦ ψ = id. Let τ ∈ Σ(n−1). Then we obtain ψ(τ) from

τ by inserting n
2 + 1 at some position and get ϕ(ψ(τ)) from ψ(τ) by deleting it again.

Hence, ϕ(ψ(τ)) = τ .
Case 2. Assume that n is odd. Then m = n+1

2 . For τ ∈ Σ(n−1) the set {m− 1,m}
is connected. Thus, there is a unique integer p with 1 6 p 6 n − 3 such that τ p−1(1) 6∈
{m− 1,m} and τ p(1) ∈ {m− 1,m}. That is, the integer p from the definition of ψ in
the theorem is well defined. Note that p is the position of the left neighbor of the set
{m− 1,m} in τ .

Conversely, for σ ∈ Σ(n), I := {m− 1,m,m+ 1} is connected in σ. Hence, there is
a unique 0 6 p 6 n − 1 such that I =

{
σp+k(1) | k = 0, 1, 2

}
and a unique q ∈ {0, 1, 2}
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such that σp+q(1) = m. We define the map ϕ : Σ(n) → Σ(n−1) × {0, 1, 2} by setting
ϕ(σ) := (delm(σ), q). Again, we show that ϕ and ψ are well defined and inverse to each
other.

(1) First we show that the two maps are inverse to each other. Let σ ∈ Σ(n) and
ϕ(σ) = (τ, q). Then we have

q =


0 if m is the left neighbor of {m− 1,m+ 1} in σ,
1 if m is located between m− 1 and m+ 1 in σ,
2 if m is the right neighbor of {m− 1,m+ 1} in σ.

Conversely, let τ ∈ Σ(n−1), q ∈ {0, 1, 2} and σ = ψ(τ, q) then

m is


the left neighbor of {m− 1,m+ 1} in σ if q = 0,
located between m− 1 and m+ 1 in σ if q = 1,
the right neighbor of {m− 1,m+ 1} in σ if q = 2.

(4.11)

From this it follows that ϕ and ψ are inverse to each other.
(2) In order to prove that ϕ is well defined one has to show that delm(σ) ∈ Σ(n−1).

This can be done similarly as in Case 1.
(3) To see that ψ is well defined, let τ ∈ Σ(n−1), q ∈ {0, 1, 2} and σ := ψ(τ, q). We

first show that σ has connected intervals. Recall that m = n+1
2 . Let i 6 n−1

2 = m − 1.
Then [i, n − i] is connected in τ since τ has connected intervals. By the definition of ψ,
we obtain the entries [i, n− i+ 1] in σ by adding 1 to each entry > m of [i, n− i] in τ and
then inserting m such that by Equation (4.11) at least one of the neighbors of m is m− 1
or m + 1. Since m− 1,m,m + 1 ∈ [i, n− i + 1] it follows that [i, n− i + 1] is connected
in σ. Therefore, σ has connected intervals.

In order to show that σ is oscillating, let τ ′ be the (n − 1)-cycle of Sn obtained by
adding 1 to each entry of τ which is greater or equal than m. Since τ is oscillating,
the entries in τ ′ alternate between the sets [m − 1] and [m + 1, n]. Furthermore, we
obtain σ from τ ′ by inserting m somewhere in τ ′. Thus, Corollary 36 implies that σ is
oscillating.

From Table 1 we know Σ(n) for n = 1, 2, 3. That is, Theorem 50 allows us to compute
Σ(n) recursively for each n ∈ N. This is illustrated in the following.

Example 52. We want to compute Σ(n) for n = 4, 5. To do this we use the bijections ψ
and the related notation introduced in Theorem 50.

(1) Consider n = 4. We have

Σ(4) =
{
ψ(σ) | σ ∈ Σ(3)

}
by Theorem 50. From Table 1 we obtain Σ(3) = {(1, 3, 2), (1, 2, 3)}.

For σ = (1, 3, 2) we have p = 3 since

σ3−1(1) = 2 = min {2, 3} = min
{
σ−1

(4
2

)
,
4
2

}
.
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Thus,

ψ(σ) = ins3,3((1, 3, 2)) = (1, 3 + 1, 2, 3) = (1, 4, 2, 3).

For σ = (1, 2, 3) we have p = 1 and

ψ(σ) = ins3,1((1, 2, 3)) = (1, 3, 2, 3 + 1) = (1, 3, 2, 4).

Therefore, Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)}.
(2) Consider n = 5. Theorem 50 yields

Σ(5) =
{
ψ(σ, q) | σ ∈ Σ(4), q ∈ {0, 1, 2}

}
. (4.12)

Let m = 5+1
2 = 3 and I = {m− 1,m} = {2, 3}.

For σ = (1, 4, 2, 3) we have p = 2 since σ2−1(1) = 4 6∈ I and σ2(1) = 2 ∈ I. Thus, for
instance we have

ψ(σ, 1) = ins3,3((1, 4, 2, 3)) = (1, 4 + 1, 2, 3, 3 + 1) = (1, 5, 2, 3, 4).

For σ = (1, 3, 2, 4) we have p = 1. Computing ψ(σ, q) for all σ ∈ Σ(4) and q ∈ {0, 1, 2},
we obtain the following table. By Equation (4.12), it lists all elements of Σ(5).

ψ(σ, q) 0 1 2
(1, 4, 2, 3) (1, 5, 3, 2, 4) (1, 5, 2, 3, 4) (1, 5, 2, 4, 3)
(1, 3, 2, 4) (1, 3, 4, 2, 5) (1, 4, 3, 2, 5) (1, 4, 2, 3, 5)

Corollary 53. Let n ∈ N. Then

∣∣∣Σ(n)

∣∣∣ =

1 if n 6 2
2 · 3b

n−3
2 c if n > 3.

Proof. Let xn := |Σ(n)| for n > 1, y1 := y2 := 1 and yn := 2 · 3b
n−3

2 c for n > 3. We show
that both sequences have the same initial values and recurrence relations. First note that

(x1, x2, x3) = (1, 1, 2) = (y1, y2, y3).

where we obtain the xi from Table 1. Now let n > 4. By Corollary 51 we have to show
that yn = yn−1 if n is even and yn = 3yn−1 if n is odd. If n is even, we have⌊

n− 3
2

⌋
=
⌊
n− 4

2 + 1
2

⌋
= n− 4

2 =
⌊
n− 1− 3

2

⌋
and thus yn = yn−1. If n is odd, we have⌊

n− 3
2

⌋
= n− 3

2 = n− 5
2 + 1 =

⌊
n− 5

2 + 1
2

⌋
+ 1 =

⌊
n− 4

2

⌋
+ 1

and hence yn = 3yn−1.
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4.2 Equivalence classes of odd hook type

Let α = (k, 1n−k) � n be a hook. Then α is a maximal composition. Recall that a
hook α is called odd if k is odd and even otherwise. In the main result of this section,
Theorem 69, we show for each odd hook α that the elements of Σα are characterized by
three combinatorial properties which we call the hook properties (Definition 63). Two
of these properties are generalizations of the concepts of being oscillating and having
connected intervals. The third property is a requirement on the orbits on [n] of the
permutation in question.

We emphasize that the hook properties are defined for all hooks α but in this section
we only show that Σα is characterized by them if α is odd. In the next section we prove
in Theorem 93 that the characterization also holds if α is an even hook. This will follow
from an application of the inductive product, which is the topic of that section.

The current section is structured as follows. We first generalize the properties of being
oscillating and having connected intervals from n-cycles to all permutations. In Corol-
lary 60 and Lemma 61 we then show that the relation ≈ also propagates the generalized
properties. After defining the hook properties in Definition 63, the argumentation leading
to Theorem 69 is similar to that in the last section. Let α be an odd hook. We show
that the element in stair form σα has the hook properties (Lemma 65), that ≈ preserves
the hook properties (Lemma 67) and that for each permutation of cycle type α satisfy-
ing the hook properties there is a chain of ≈-equivalent permutations that ends up at
σα (Lemma 68). The latter result is based on a generalization of the algorithm used in
Lemma 47 for the case of n-cycles. After having established Theorem 69, we use it for
odd k > 3 to obtain a bijection which allows to compute Σ(k,1n−k) from Σ(k) (Corollary 70)
and infer a cardinality formula for Σ(k,1n−k) (Corollary 71).

Lets start with the generalization of being oscillating and having connected intervals.
In order to do this, we standardize cycles in the following way. Let σ := (c1, . . . , ck) ∈ Sn

be a k-cycle. Replace the smallest element among c1, . . . , ck by 1, the second smallest by
2 and so on. The result is a k-cycle with entries 1, 2, . . . , k which can be regarded as an
element Sk. This permutation is called the cycle standardization cst(σ) of σ.

Example 54. Consider σ = (3, 11, 4, 10, 5) ∈ S11. Then cst(σ) = (1, 5, 2, 4, 3) ∈ S5
which is oscillating with connected intervals.

We formally define the cycle standardization as follows.

Definition 55. (1) Given σ ∈ Sn and i ∈ [n], there is a cycle (c1, . . . , ck) of σ contain-
ing i. Then we define

ρσ(i) := |{j ∈ [k] | cj 6 i}| .

(2) Let σ = (c1, . . . , ck) ∈ Sn be a k-cycle. The cycle standardization of σ is the k-cycle
of Sk given by

cst(σ) := (ρσ(c1), ρσ(c2), . . . , ρσ(ck)).
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Note that the permutation cst(σ) is independent from the choice of the cycle notation
σ = (c1, c2, . . . , ck) in Definition 55.
Remark 56. Let σ = (c1, c2, . . . , ck) ∈ Sn be a k-cycle.
(1) The anti-rank of i ∈ [n] among the elements in its cycle in σ is ρσ(i).
(2) For all i, j ∈ [k] we have ci < cj if and only if ρσ(ci) < ρσ(cj).
(3) Let i be an element appearing in the cycle (c1, c2, . . . , ck). Then we have

cst(σ)(ρσ(i)) = ρσ(σ(i)).

We now generalize the notions of being oscillating and having connected intervals to
arbitrary permutations via the cycle decomposition and the cycle standardization. Recall
that trivial cycles are those of length 1.

Definition 57. Let σ ∈ Sn and write σ as a product σ = σ1 · · · σl of disjoint cycles
including the trivial ones.
(1) We say that σ is oscillating if cst(σi) is oscillating for each cycle σi.
(2) We say that σ has connected intervals if cst(σi) has connected intervals for each

cycle σi
Let (c) ∈ Sn be a trivial cycle. Then cst((c)) = (1) ∈ S1 which is oscillating and has

connected intervals. Therefore, in order to show that a permutation σ is oscillating (has
connected intervals) it suffices to consider the nontrivial cycles.

Example 58. Let α = (4, 5, 3, 1) �e 13 and

σα = (1, 13, 2, 12)(3, 11, 4, 10, 5)(9, 6, 8)(7).

The cycle standardizations of the nontrivial cycles of σα are

(1, 4, 2, 3), (1, 5, 2, 4, 3) and (1, 2, 3).

Each of these three permutations is oscillating and has connected intervals (see Table 1).
Thus, σα is oscillating and has connected intervals.

Assume that σ ∈ Sn is an n-cycle. Then σ has only one cycle σ in cycle notation
and cst(σ) = σ. Thus, for n-cycles our new notion of being oscillating (having con-
nected intervals) from Definition 57 is equivalent to the old concept from Definition 30
(Definition 38).

We now prove some general results on oscillating permutations with connected inter-
vals. As in the last section, we are interested in the effect of swapping entries i and i+ 1
in cycle notation (that is, conjugating with si). This will in particular be useful to prove
our results on odd hooks. We consider the case where i and i+1 appear in the same cycle
first.

Lemma 59. Let σ ∈ Sn and write σ as a product σ = σ1 · · ·σl of disjoint cycles. Assume
that there is an i ∈ [n− 1] and a k ∈ [l] such that i and i+ 1 both appear in the cycle σk.
Set i′ := ρσ(i) and τ := cst(σk). Then we have
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(1 ) cst(siσksi) = si′τsi′,
(2 ) siσsi ≈ σ if and only if si′τsi′ ≈ τ .

Proof. By the definition of ρσ, we have that ρσ(j) = ρσk(j) for all entries j in the cycle
σk.

(1) We obtain siσksi from σk by interchanging i and i + 1 in cycle notation. Since i
and i + 1 appear in σk, we have ρσk(i + 1) = i′ + 1. Thus, we obtain cst(siσksi) from
τ = cst(σk) by interchanging i′ and i′ + 1 in cycle notation. That is, cst(siσsi) = si′τsi′ .

(2) We have siσsi ≈ σ if and only if `(siσsi) = `(σ). By Lemma 25, this is the case if
and only if either σ(i) < σ(i+ 1) or σ−1(i) < σ−1(i+ 1). From the definition of the cycle
standardization we obtain that τ(ρσ(j)) = ρσ(σ(j)) for each entry j in σk (cf. Remark 56).
Moreover, by the definition of ρσ and the fact that i and i + 1 appear in the same cycle
of σ,

σ(i) < σ(i+ 1) ⇐⇒ ρσ(σ(i)) < ρσ(σ(i+ 1)).

Hence,

σ(i) < σ(i+ 1) ⇐⇒ τ(i′) < τ(i′ + 1).

Similarly, one shows that this equivalence is also true for σ−1 and τ−1. Therefore, we have
siσsi ≈ σ if and only if either τ(i′) < τ(i′+ 1) or τ−1(i′) < τ−1(i′+ 1). As for σ, the latter
is equivalent to si′τsi′ ≈ τ .

We now infer from Lemma 59 that swaps of i and i+ 1 within a cycle that preserve ≈
also preserve the properties of being oscillating with connected intervals.

Corollary 60. Let σ ∈ Sn be oscillating with connected intervals, i ∈ [n− 1] such that i
and i + 1 appear in the same cycle of σ and σ′ := siσsi. If σ ≈ σ′ then σ′ is oscillating
with connected intervals.

Proof. We write σ as a product σ = σ1 · · ·σl of disjoint cycles and choose k such that i
and i + 1 appear in the cycle σk. Moreover, we set τ := cst(σk), τ ′ := cst(siσksi) and m
to be the length of the cycle σk.

As i and i+1 only appear in σk, σ′ = σ1 · · · σk−1(siσksi)σk+1 · · ·σl is the decomposition
of σ′ in disjoint cycles. Since σ is oscillating with connected intervals, cst(σj) is oscillating
with connected intervals for all j ∈ [l]. Therefore, it remains to show that τ ′ has these
properties. Since σ ≈ σ′, Lemma 59 yields that τ ≈ τ ′. In addition, τ is an oscillating m-
cycle with connected intervals and thus τ ∈ Σ(m) by Theorem 49. Hence, also τ ′ ∈ Σ(m),
i.e. τ ′ is oscillating with connected intervals.

The next result is concerned with the interchange of i and i + 1 between two cycles.
This also preserves the properties of being oscillating and having connected intervals.

Lemma 61. Let σ ∈ Sn be oscillating with connected intervals, i ∈ [n − 1] such that i
and i + 1 appear in different cycles of σ and σ′ := siσsi. Then σ′ is oscillating and has
connected intervals.
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Proof. We obtain σ′ from σ by interchanging i and i + 1 between two cycles in cycle
notation. It is easy to see that this does not affect the cycle standardization of the cycles
in question. In addition, all other cycles of σ′ appear as cycles of σ. Since σ is oscillating
with connected intervals, it follows that the standardization of each cycle of σ′ is oscillating
with connected intervals. That is, σ′ is oscillating with connected intervals.

Note that from Corollary 60 and Lemma 61 it follows that ≈ propagates the properties
of being oscillating and having connected intervals also in the general form. For n-cycles
we showed this in Lemma 46. We now narrow our scope to hooks.

Example 62. Let α = (3, 1, 1) �e 5. The elements of Σα are

(1, 5, 2), (1, 2, 5), (1, 5, 3), (1, 3, 5), (1, 5, 4), (1, 4, 5).

Note that 1 and 5 always appear in the cycle of length 3.

Recall that we use type as a short form for cycle type.

Definition 63. Let α = (k, 1n−k) �e n be a hook, σ ∈ Sn of type α, m := k−1
2 if k is odd

and m := k
2 if k is even. We say that σ satisfies the hook properties if

(1) σ is oscillating,
(2) σ has connected intervals,
(3) if k > 1 then i and n− i+ 1 appear in the cycle of length k of σ for all i ∈ [m].

The permutations from Example 62 satisfy the hook properties. The main result of
this section is that for an odd hook α, the elements of Σα are characterized by the hook
properties (Theorem 69). In Theorem 93 of Section 4.3 we will see that the same is true
for even hooks.

Example 64. (1) Let σ ∈ Sn be of type (1n). Then σ = id and σ satisfies the hook
properties. Moreover, Σ(1n) = {σ}.

(2) Let σ ∈ Sn be of type (n). That is, σ is an n-cycle. Then the third hook property
is satisfied by σ since all elements of [n] appear in the only cycle of σ. Thus, σ has the
hook properties if and only if σ is oscillating with connected intervals. By Theorem 49,
this is equivalent to σ ∈ Σ(n).

(3) Let α = (3, 1, 1) � n. We want to determine all permutations in Sn of type α
that satisfy the hook properties. Let σ ∈ Sn be of type α, σ1 be the cycle of length 3 of
σ and O1 be the set of elements in σ1.

Since σ1 is the only nontrivial cycle of σ, σ is oscillating and has connected intervals
if and only if τ := cst(σ1) has these properties. The type of τ is (3). By Theorem 49, the
oscillating permutations of type (3) with connected intervals form Σ(3). From Table 1 we
read Σ(3) = {(1, 3, 2), (1, 2, 3)}.

The third hook property is satisfied by σ if and only if O1 ∈M where we set

M = {{1, 5} ∪ {j} | j ∈ [2, 4]} = {{1, 2, 5} , {1, 3, 5} , {1, 4, 5}} .
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Therefore, σ fulfills the hook properties if and only if there is a τ ∈ Σ(3) and an O1 ∈ M
such that we obtain σ1 by writing O1 in a cycle such that the relative order of entries
matches that one in τ . For instance, from τ = (1, 3, 2) and O1 = {1, 4, 5} we obtain
σ = (1, 5, 4). Going through all possibilities for τ and O1 we obtain the desired set of
permutations. These are the ones shown in Example 62.

In order to show that Σα is characterized by the hook properties when α is an odd
hook in Theorem 69, we follow the same strategy as in in the case of compositions with
one part from Section 4.1: For any odd hook α we show that σα satisfies the hook
properties (Lemma 65), ≈ is compatible with the hook properties (Lemma 67) and there
is an algorithm that computes a sequence of ≈-equivalent permutations starting with σ
and ending up with σα for each permutation σ of type α satisfying the hook properties
(Lemma 68).

Lemma 65. Let α �e n be an odd hook. Then the element in stair form σα ∈ Sn satisfies
the hook properties.

Proof. Let α = (α1, . . . , αl) = (k, 1n−k) �e n be an odd hook. If k = 1 then σα is
the identity which satisfies the hook properties. Assume k > 1 and set m := k−1

2 . By
definition, the cycle of length k of σα is given by

σα1 = (1, n, 2, n− 1, . . . ,m, n−m+ 1,m+ 1).

Hence, σα satisfies the third hook property. In order to show that σα is oscillating and has
connected intervals, it suffices to consider σα1 because the other cycles of σα are trivial.
From the description of σα1 we obtain its cycle standardization

cst(σα1) = (1, k, 2, k − 1, . . . ,m, k −m+ 1,m+ 1).

That is, cst(σα1) is the element in stair form σ(k) which is oscillating and has connected
intervals by Lemma 40.

Let α �e n be an odd hook and σ ∈ Sn be of type α satisfying the hook properties.
In order to show σα ≈ σ we will successively interchange elements i and i+ 1 in the cycle
notation of σ. The next lemma considers the case where at least one of i and i + 1 is a
fixed point of σ.

Lemma 66. Let α = (k, 1n−k) �e n be an odd hook, m := k−1
2 and σ ∈ Sn of type α

satisfying the hook properties. Furthermore, assume that there are i, i+1 ∈ [m+1, n−m]
such that i or i + 1 is a fixed point of σ. Then siσsi ≈ σ and siσsi satisfies the hook
properties.

Proof. If both i and i+1 are fixed points of σ then siσsi = σ and there is nothing to show.
Therefore, we assume that either i or i + 1 is not a fixed point and call this element j.
By choice of i and i + 1, m < j < n −m + 1. Since σ satisfies the hook properties, the
cycle of length k of σ consists of the elements 1, . . . ,m, j, n−m+ 1, . . . , n.
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First we show that siσsi satisfies the hook properties. As σ is oscillating with connected
intervals and i and i + 1 appear in different cycles of σ, Lemma 61 yields that siσsi is
oscillating with connected intervals too. As we obtain siσsi by interchanging i and i+ 1
in cycle notation of σ and

i, i+ 1 6∈ {1, . . . ,m, n−m+ 1, . . . , n} ,

siσsi satisfies the third hook property.
In order to show siσsi ≈ σ, we assume that i+1 is a fixed point of σ and i is not. The

other case is proven analogously. Let τ := cst(σ) and i′ := ρσ(i). Then i′ = m+1 = k+1
2 by

the description of the cycle of length k from above. Since σ is oscillating, τ is oscillating.
Thus, Lemma 35 implies that there is an ε ∈ {−1, 1} such that

τ ε(i′) > m+ 1 and τ−ε(i′) < m+ 1.

Now we use that τ δ(i′) = ρσ(σδ(i)) for δ = −1, 1 and obtain that

σε(i) > n−m+ 1 and σ−ε(i) 6 m.

As σ(i+ 1) = i+ 1 ∈ [m+ 2, n−m], it follows that

σε(i) > σε(i+ 1) and σ−ε(i) < σ−ε(i+ 1).

Hence, Lemma 25 implies `(siσsi) = `(σ). Therefore, siσsi ≈ σ.

The following lemma shows that ≈ preserves the hook properties. It is an analogue
to Lemma 46.

Lemma 67. Given an odd hook α = (k, 1n−k) �e n, σ ∈ Sn of type α satisfying the hook
properties and σ′ := siσsi with σ ≈ σ′, we have that also σ′ satisfies the hook properties.

Proof. We show that σ′ has the hook properties. If k = 1 then σ = σ′ = id so that
σ′ satisfies the hook properties. Hence, assume k > 1. Set m := k−1

2 , τ := cst(σ) and
τ ′ := cst(σ′). We deal with three cases.

First, assume that neither i nor i+1 is a fixed point of σ. Then i and i+1 both appear
in the cycle of length k of σ. Since σ satisfies the hook properties, it is oscillating and
has connected intervals. Therefore, Corollary 60 yields that also σ′ has these properties.
The elements 1, . . . ,m, n−m+ 1, . . .m all appear in the cycle of length k of σ because σ
satisfies the hook properties. Since we interchange two entries in this cycle to obtain σ′
from σ, all the elements also appear in the cycle of length k of σ′.

Second, assume that i + 1 is a fixed point of σ but i is not. Since σ ≈ σ′, we have
`(σ) = `(σ′) and by Lemma 25

either σ(i) > i+ 1 and σ−1(i) < i+ 1
or σ(i) < i+ 1 and σ−1(i) > i+ 1

(4.13)
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where we used σ(i+1) = i+1. The elements of the cycle of length k of σ are 1, . . . ,m, j, n−
m+ 1, . . . , n where j ∈ [m+ 1, n−m]. We now show that i, i+ 1 ∈ [m+ 1, n−m].

As i+ 1 is a fixed point, we have i+ 1 6 n−m and it remains to show that i > m+ 1.
Assume that i 6 m instead and set i′ := ρσ(i). Then i′ < k+1

2 . Since τ ∈ Sk is an
oscillating k-cycle, Lemma 35 yields that τ−1(i′), τ(i′) > k+1

2 . Because ρσ(j) = k+1
2 , it

follows that σ−1(i), σ(i) > j. Moreover, i + 1 being a fixed point and i 6 m imply that
i+ 1 < j. Hence, σ−1(i), σ(i) > i+ 1 which contradicts Equation (4.13).

Since i, i+ 1 ∈ [m+ 1, n−m] and i+ 1 is a fixed point of σ, we can apply Lemma 66
which implies that σ′ satisfies the hook properties.

In the same vein, one proves the remaining case where i is a fixed point but i + 1 is
not.

We now extend Lemma 47 to the case of odd hooks. That is, we consider one step of
the algorithm mentioned earlier.

Lemma 68. Let α = (k, 1n−k) �e n be an odd hook and σ ∈ Sn such that σ is of type
α, σ satisfies the hook properties and σ 6= σα. Then there exists a minimal integer p such
that 1 6 p 6 k − 1 and σp(1) 6= σpα(1). Set a := σp(1), b := σpα(1) and

σ′ :=

sa−1σsa−1 if a > b

saσsa if a < b.

Then σ′ ≈ σ and σ′ satisfies the hook properties.

Proof. Set m := k−1
2 . If α = (1n) then the only permutation of type α is the identity and

there is nothing to show. If α = (n) then this is Lemma 47. Therefore, assume 1 < k < n.
Since σ satisfies the hook properties, 1 appears in the cycle of length k of σ. By definition,
σα has the form

σα =

(1, n, 2, n− 1, . . . ,m+ 1)(n−m)(m+ 2) · · · (n+3
2 )(n+1

2 ) if n is odd
(1, n, 2, n− 1, . . . ,m+ 1)(n−m)(m+ 2) · · · (n2 )(n2 + 1) if n is even.

In particular, [m + 2, n − m] is the set of fixed points of σα and 1 also appears in the
cycle of length k of σα. Thus, from σ 6= σα it follows that there exists p as claimed. In
particular, we can define a, b and σ′ as in the theorem.

If n is odd, k < n implies that n+1
2 is a fixed point of σα and hence b 6= n+1

2 . If n is
even, we have b 6= n+1

2 anyway. Let τ := cst(σ) and note that cst(σα) is just the element
in stair form σ(k). Moreover set a′ := ρσ(a).

Assume b < n+1
2 . The proof for b > n+1

2 is similar and hence omitted. If b < n+1
2 then

b 6 m+ 1 by the description of σα from above. The choice of p and 1 < b 6 m+ 1 imply

σ−1(a) = σ−1
α (b) = n− b+ 2 > m+ 1

and

{1, 2, . . . , b− 1} ⊆ {σrα(1) | r = 0, . . . , p− 1} = {σr(1) | r = 0, . . . , p− 1} .
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The last equality and a 6= b imply b < a. Thus, we consider σ′ := sa−1σsa−1. From the
hook properties, we obtain that the elements in the cycle of length k of σ are 1, . . . ,m, j, n−
m+ 1, . . . n where j ∈ [m+ 1, n−m]. Thus, σ−1(a) > m+ 1 implies τ−1(a′) > m+ 1. But
since σ is oscillating, τ is oscillating and therefore Lemma 35 implies a′ 6 m + 1. From
the description of the elements in the k-cycle of σ, it now follows that a 6 n−m.

To sum up, we have b < a 6 n − m and σ′ = sa−1σsa−1. Now we have two cases
depending on a− 1. If a− 1 is a fixed point of σ then because of a 6 n−m, we can apply
Lemma 66 and obtain that σ′ ≈ σ and σ′ satisfies the hook properties.

If a − 1 is not a fixed point of σ then ρσ(a − 1) = a′ − 1. Moreover, interchanging
a− 1 and a in σ does not affect the third part of the hook property. Therefore, we obtain
from Lemma 59 that σ′ ≈ σ and σ′ satisfies the hook properties if τ ′ := sa′−1τsa′−1 ≈ τ
and τ ′ is oscillating with connected intervals. By Lemma 47, τ ′ has these properties if
τ r(1) = σr(k)(1) for 0 6 r 6 p − 1, τ p(1) > σp(k)(1) and τ p(1) = a′. This is what remains
be shown.

As σr(1) = σrα(1) for 0 6 r 6 p− 1, we have the following equality of tuples

(τ 0(1), τ 1(1), . . . , τ p−1(1)) = (ρσ(1), ρσ(n), ρσ(2), ρσ(n− 1), . . . , ρσ(n− b+ 2))
= (1, k, 2, k − 1, . . . , k − b+ 2)
= (σ0

(k)(1), σ1
(k)(1), . . . , σp−1

(k) (1)).

Since the cycle of length k of σ contains exactly one element of [m+1, n−m], a−1 and a
appear in this cycle and a 6 n−m, we have that a 6 m+ 1. Moreover, 1, . . . ,m appear
in the cycle of length k of σ and σα. Since b < a 6 m+ 1, this implies

σp(k)(1) = ρσα(b) = b and τ p(1) = ρσ(a) = a.

In particular, a′ = τ p(1). Moreover, we have b < a so that σp(k)(1) < τ p(1) as desired.

We now come to the main result of this section.

Theorem 69. Let α �e n be an odd hook and σ ∈ Sn of type α. Then σ ∈ Σα if and
only if σ satisfies the hook properties.

Proof. Let α = (k, 1n−k) �e n be an odd hook and σα be the element in stair form.
The proof is analogous to the one of Theorem 49. By Lemma 65, σα satisfies the hook
properties. Let σ ∈ Sn.

For the direction from left to right assume that σ ∈ Σα. Then σ ≈ σα. From the
definition of ≈ and Lemma 67 it follows that ≈ transfers the hook properties from σα to
σ.

For the converse direction, assume that σ satisfies the hook properties. By using
Lemma 68 iteratively, we obtain a sequence of ≈-equivalent permutations starting with
σ and ending in σα. Hence σ ∈ Σα.

We continue with a rule for the construction of Σ(k,1n−k) from Σ(k) in the case where k
is odd and k > 3. The rule can be sketched as follows. Given a τ ∈ Σ(k) we can choose a

the electronic journal of combinatorics 30(3) (2023), #P3.16 41



subset of [n] of size k in accordance with the third hook property. Arranging the elements
of this subset in a cycle of length k such that its cycle standardization is τ (and letting the
other elements of [n] be fixed points) then results in an element of Σ(k,1n−k). See Part (3)
of Example 64 for an illustration.

Corollary 70. Let α = (k, 1n−k) �e n be an odd hook with k > 3. Set m := k−1
2 . For

τ ∈ Σ(k) and j ∈ [m+1, n−m] define ϕ(τ, j) to be the element σ ∈ Sn of type α such that
cst(σ) = τ and the entries in the cycle of length k of σ are 1, . . . ,m, j, n−m + 1, . . . , n.
Then

ϕ : Σ(k) × [m+ 1, n−m]→ Σα, (τ, j) 7→ ϕ(τ, j)

is a bijection.

Proof. Given a τ ∈ Σ(k) and a j ∈ [m + 1, n − m] there is only one way (up to cyclic
shift) to write the elements 1, 2, . . . ,m, j, n−m+ 1, . . . , n in a cycle of length k such that
the standardization of the corresponding k-cycle in Sn is τ . This k-cycle is ϕ(τ, j). By
construction, ϕ(τ, j) satisfies the hook properties. Hence, Theorem 69 yields ϕ(τ, j) ∈ Σα.
That is, ϕ is well defined.

Let σ ∈ Σα. Then by Theorem 69, σ satisfies the hook properties. The third hook
property yields that there is a unique j ∈ [m+1, n−m] such that the elements in the cycle
of length k of σ are 1, 2, . . . ,m, j, n − m + 1, . . . , n. From the first two hook properties
it follows that τ := cst(σ) is oscillating and has connected intervals. Thus, τ ∈ Σ(k)
by Theorem 49. By definition of ϕ, the cycles of length k of ϕ(τ, j) and σ contain the
same elements. Moreover, they have the same cycle standardization τ . Consequently,
ϕ(τ, j) = σ. That is, ϕ is surjective. Since (τ, j) uniquely depends on σ, ϕ is also
injective.

In the last result of the section we determine the cardinality of Σα for each odd hook α.

Corollary 71. If α = (k, 1n−k) �e n is an odd hook then

|Σα| =

1 if k = 1
2(n− k + 1)3 k−3

2 if k > 3.

Proof. Let σ ∈ Σα. If k = 1 then Σα = {1}. Now suppose that k > 3 and set m := k−1
2 .

The cardinality of [m + 1, n − m] is n − k + 1. As a consequence, Corollary 70 yields
that |Σα| = (n− k+ 1)|Σ(k)|. In addition, we have |Σ(k)| = 2 · 3 k−3

2 from Corollary 53.

4.3 The inductive product

The inductive product is a binary operator

� : Sn1 ×Sn2 → Sn, (σ1, σ2) 7→ σ1 � σ2

where n1 + n2 = n. The main result of this section is that it restricts to a bijection
� : Σ(α1) × Σ(α2,...,αl) → Σα for all α = (α1, . . . , αl) �e n with α1 even (Theorem 84).
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Thus, we obtain a decomposition rule for Σα in this case. Together with Theorem 69
this leads to a description of Σα for all maximal compositions α whose odd parts form
a hook (Remark 87) and a result on the cardinality of Σα (Corollary 88). We then infer
in Theorem 93 that Σα is characterized by the hook properties if α is an even hook and
hence generalize Theorem 69 to all hooks.

Let α �e n and α′ be the maximal composition consisiting of the odd parts of α.
Combining Theorem 84 with Theorem 49 reduces the problem of describing Σα to Σα′ .
If α′ is an odd hook we can do this with Theorem 69. So the problem that remains is
to describe Σα for all maximal compositions α with only odd parts which are not hooks.
A solution to this problem would be interesting but is out of scope of this paper (see
Remark 94). In the case where α1 is odd, Theorem 84 provides a bijection given by �
only between certain subsets of Σ(α1) × Σ(α2,...,αl) and Σα.

The main steps towards Theorem 84 are the following. We first define and formalize the
inductive product. Then we consider basic properties such as its injectivity (Lemma 79)
and the length ` of certain images under the inductive product (Lemma 80). We then
show in Lemma 83 how the elements in stair form can be decomposed by the inductive
product. These results allow us to show that � : Σ(α1) × Σ(α2,...,αl) → Σα is surjective for
even α1, and we obtain Theorem 84.

We now begin with the definition of the inductive product. Recall that we write γ �0 n
if γ is a weak composition of n, that is, a finite sequence of nonnegative integers that sum
up to n.

Definition 72. Let (n1, n2) �0 n. The inductive product on Sn1 × Sn2 is the binary
operator

� : Sn1 ×Sn2 → Sn

(σ1, σ2) 7→ σ1 � σ2

where σ1 � σ2 is the element of Sn whose cycles are the cycles of σ1 and σ2 altered as
follows:
(1) in the cycles of σ1, add n2 to each entry > k,
(2) in the cycles of σ2, add k to each entry

where k := dn1
2 e.

For two sets X1 ⊆ Sn1 and X2 ⊆ Sn2 we define

X1 �X2 := {σ1 � σ2 | σ1 ∈ X1, σ2 ∈ X2} .

We will see in Lemma 76 that the inductive product is well-defined.

Example 73. (1) Let ∅ ∈ S0 be the empty function and σ ∈ Sn. Then

∅ � σ = σ � ∅ = σ.
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(2) Consider n1 = 6, n2 = 4, n = 10 and the elements in stair form σ(6) ∈ Sn1 and
σ(3,1) ∈ Sn2 . Then k = 3 and

σ(6) � σ(3,1) = (1, 6, 2, 5, 3, 4)� (1, 4, 2)(3)
= (1, 6 + 4, 2, 5 + 4, 3, 4 + 4)(1 + 3, 4 + 3, 2 + 3)(3 + 3)
= (1, 10, 2, 9, 3, 8)(4, 7, 5)(6).

(3) Consider n1 = 5, n2 = 4 and the elements in stair form σ(5) = (1, 5, 2, 4, 3) ∈ Sn1

and σ(3,1) = (1, 4, 2)(3) ∈ Sn2 . Then σw0
(3,1) = (1, 3, 4)(2) where w0 = (1, 4)(2, 3) is

the longest element of S4. We have k = 3 and

σ(5) � σw0
(3,1) = (1, 5 + 4, 2, 4 + 4, 3)(1 + 3, 3 + 3, 4 + 3)(2 + 3)

= (1, 9, 2, 8, 3)(7, 4, 6)(5).

Note that in Parts (2) and (3) we obtain the elements in stair form σ(6,3,1) and σ(5,3,1),
respectively.

In order to work with the inductive product, it is convenient to describe it more
formally. To this end we introduce the following notation which we will use throughout
the section.

Notation 74. Let n > 0, (n1, n2) �0 n, k := dn1
2 e,

N1 := [k] ∪ [k + n2 + 1, n] and N2 := [k + 1, k + n2].

We have that |N1| = n1, |N2| = n2, N1 and N2 are disjoint and N1 ∪ N2 = [n]. Note
that [0] = [1, 0] = ∅. Define the bijections ϕ1 : [n1]→ N1 and ϕ2 : [n2]→ N2 by

ϕ1(i) :=

i if i 6 k

i+ n2 if i > k
and ϕ2(i) := i+ k.

The bijections ϕ1 and ϕ2 formalize the alteration of the cycles of σ1 and σ2 in Defini-
tion 72, respectively. Their inverses are given by

ϕ−1
1 (i) :=

i if i 6 k

i− n2 if i > k
and ϕ−1

2 (i) := i− k.

For i = 1, 2 and σi ∈ Sni, write σ
ϕi
i := ϕi ◦ σi ◦ ϕ−1

i . Then σϕii ∈ S(Ni) and σϕii can
naturally be identified with the element of Sn that acts on Ni as σϕii and fixes all elements
of [n] \Ni.

We will see in Lemma 76 that we obtain σϕii by applying ϕi on each entry in of σi in
cycle notation.
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Example 75. Let n1 = 6 and n2 = 4 and consider the elements in stair form

σ1 := σ(6) = (1, 6, 2, 5, 3, 4) ∈ S6 and σ2 := σ(3,1) = (1, 4, 2)(3) ∈ S4.

Then k = 3 and

σϕ1
1 = (1, 6 + 4, 2, 5 + 4, 3, 4 + 4) = (1, 10, 2, 9, 3, 8),
σϕ2

2 = (1 + 3, 4 + 3, 2 + 3)(3 + 3) = (4, 7, 5)(6).

Thus, from Example 73 it follows that σ1 � σ2 = σϕ1
1 σϕ2

2 . The next lemma shows that
this is true in general.

We now come to the more formal description of the inductive product.

Lemma 76. Let σr ∈ Snr with cycle decomposition σr = σr,1σr,2 · · · σr,pr for r = 1, 2.
(1 ) We have

σ1 � σ2 = σϕ1
1 σϕ2

2 .

(2 ) Let r ∈ {1, 2} and σr,j = (c1, . . . , ct) be a cycle of σr. Then

σϕrr,j = (ϕr(c1), . . . , ϕr(ct)).

(3 ) The decomposition of σ1 � σ2 in disjoint cycles is given by

σ1 � σ2 = σϕ1
1,1 · · ·σ

ϕ1
1,p1 · σ

ϕ2
2,1 · · ·σ

ϕ2
2,p2 .

Proof. Set σ := σ1 � σ2 and σ′ := σϕ1
1 σϕ2

2 . It will turn out that σ = σ′.
We first show Part (2). Let r ∈ {1, 2}, ξ be a cycle of σr and i ∈ [nr]. Then

ξϕr(ϕr(i)) = (ϕr ◦ ξ ◦ ϕ−1
r ◦ ϕr)(i) = ϕr(ξ(i)).

Hence, if ξ = (c1, . . . , ct) ∈ Snr then ξϕr = (ϕr(c1), . . . , ϕr(ct)) ∈ S(Nr).
We continue with showing Part (3) for σ′. For r = 1, 2 we have

σϕrr = ϕr ◦ σr ◦ ϕ−1
r

= ϕr ◦ σr,1 · · ·σr,pr ◦ ϕ−1
r

= (ϕr ◦ σr,1 ◦ ϕ−1
r ) · · · (ϕr ◦ σr,pr ◦ ϕ−1

r )
= σϕrr,1 · · · σϕrr,pr .

Thus,

σ′ = σϕ1
1,1 · · ·σ

ϕ1
1,p1σ

ϕ2
2,1 · · ·σ

ϕ2
1,p2 . (4.14)

The cycles in this decomposition are given by Part (1). As ϕ1 and ϕ2 are bijections with
disjoint images, the cycles are disjoint.

Lastly, we show σ = σ′. From Equation (4.14), Part (2) and the definition of ϕ1 and
ϕ2 it follows that we obtain the cycles of σ′ by altering the cycles of σ1 and σ2 as described
in Definition 72. Hence, σ = σ′.
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Corollary 77. Let σ1 ∈ Sn1 , σ2 ∈ Sn2 and σ := σ1 � σ2. Then

P (σ) = ϕ1(P (σ1)) ∪ ϕ2(P (σ2)).

We continue with basic properties of the inductive product.

Lemma 78. Let σ1 ∈ Sn1 , σ2 ∈ Sn2 and σ := σ1 � σ2. Then for all i ∈ [n]

σ(i) =

σ
ϕ1
1 (i) if i ∈ N1

σϕ2
2 (i) if i ∈ N2.

Proof. By Lemma 76, σ = σϕ1
1 σϕ2

2 . If n1 = 0 or n2 = 0 the claim is trivially true. Thus,
suppose n1, n2 > 1 and let i ∈ [n]. Consider σϕ1

1 and σϕ2
2 as elements of Sn. Since

{N1, N2} is a partition of [n] there is exactly one r ∈ {1, 2} such that i ∈ Nr. We have
that σϕrr (Nr) = Nr and that σϕ2−r+1

2−r+1 fixes each element of Nr. Hence,

σ(i) = σϕ1
1 σϕ2

2 (i) = σϕrr (i).

We now determine the image of the inductive product and show that it is injective.

Lemma 79. Let (n1, n2) �0 n.
(1 ) The image of Sn1 ×Sn2 under � is given by

Sn1 �Sn2 = {σ ∈ Sn | σ(Ni) = Ni for i = 1, 2} .

(2 ) The inductive product on Sn1 ×Sn2 is injective.

Proof. (1) Set Y := {σ ∈ Sn | σ(Ni) = Ni for i = 1, 2}.
We show Sn1�Sn2 ⊆ Y first. Let σ ∈ Sn1�Sn2 . Then there are σi ∈ Sni for i = 1, 2

such that σ = σ1 � σ2. By Lemma 78 we have σ(Ni) = σϕi(Ni) = Ni for i = 1, 2. Hence,
σ ∈ Y .

We now show Y ⊆ Sn1 �Sn2 . Let σ ∈ Y . For i = 1, 2 set σ̃i = σ|Ni (the restriction
to Ni). Consider i ∈ {1, 2}. Since σ ∈ Y , σ̃i(Ni) = Ni and thus σ̃i ∈ S(Ni). Therefore,
σi := ϕ−1

i ◦ σ̃i ◦ ϕi is an element of Sni . Moreover, σϕii considered as an element of Sn

leaves each element of N2−i+1 fixed. Hence, we have

(σ1 � σ2)|Ni = σϕ1
1 σϕ2

2 |Ni = σϕii |Ni = σ̃i|Ni = σ|Ni .

Consequently, σ = σ1 � σ2.
(2) Since |Ni| = ni for i = 1, 2, the cardinality of Y is n1!n2!. This is also the

cardinality of Sn1 ×Sn2 . As the image of Sn1 ×Sn2 under � is Y , it follows that � is
injective.

Recall that for α �e n, each element of Σα has the property that its length is maximal
in its conjugacy class. We want to use this property to prove our main result.

Consider σ = σ1�σ2 such that σ1 has type (n1). We seek a formula for `(σ) depending
on σ1 and σ2. We are particularly interested in the case where the n1-cycle σ1 is oscillating.

Given σ ∈ Sn let Inv(σ) := {(i, j) | 1 6 i < j 6 n, σ(i) > σ(j)} be the set of inversions
of σ. Then `(σ) = | Inv(σ)| by [1, Proposition 1.5.2].
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Lemma 80. Let σ1 ∈ Sn1 be an n1-cycle, σ2 ∈ Sn2, σ := σ1 � σ2,

P := {i ∈ [k] | σ1(i) > k} ,
Q := {i ∈ [k + 1, n1] | σ1(i) 6 k} ,

p := |P | and q := |Q|. Then we have

`(σ) = `(σ1) + `(σ2) + (p+ q)n2.

Moreover,
(1 ) p, q 6 bn1

2 c,
(2 ) if σ1 is oscillating, then p = q =

⌊
n1
2

⌋
.

Proof. Let i, j ∈ [n] and m :=
⌊
n1
2

⌋
. We distinguish three types of pairs (i, j) and count

the number of inversions of σ type by type.
Type 1. There is an r ∈ {1, 2} such that i, j ∈ Nr. In this case let t ∈ {i, j} and set

t′ := ϕ−1
r (t). Then t′ ∈ [nr]. From Lemma 78 we obtain

σ(t) = ϕr(σr(t′)).

In addition, we have

ϕr(σr(i′)) > ϕr(σr(j′)) ⇐⇒ σr(i′) > σr(j′)

since ϕr is a stricly increasing function. As ϕ−1
r is stricly increasing as well, we also have

that

i < j ⇐⇒ i′ < j′.

Hence,

(i, j) ∈ Inv(σ) ⇐⇒ i < j and σ(i) > σ(j)
⇐⇒ i′ < j′ and ϕr(σr(i′)) > ϕr(σr(j′))
⇐⇒ i′ < j′ and σr(i′) > σr(j′)
⇐⇒ (i′, j′) ∈ Inv(σr).

Thus, the number of inversions of Type 1 is

| Inv(σ1)|+ | Inv(σ2)| = `(σ1) + `(σ2).

Type 2. We have i ∈ N1, j ∈ N2 and i < j. Assume that (i, j) is of this type and
recall that N1 = [k]∪ [k+n2 +1, n] and N2 = [k+1, k+n2] where k = dn2 e. Since i < j, we
have i 6 k which in particular means that ϕ−1

1 (i) = i. As σ(j) ∈ N2, k+1 6 σ(j) 6 k+n2.
Moreover, σ(i) = σϕ1

1 (i) by Lemma 78. Consequently,

σ(i) = σϕ1
1 (i) = ϕ1(σ1(i)) =

σ1(i) < σ(j) if σ1(i) 6 k

σ1(i) + n2 > σ(j) if σ1(i) > k.
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Therefore,

(i, j) ∈ Inv(σ) ⇐⇒ σ1(i) > k.

Hence, the number of inversions of Type 2 is the cardinality of the set P ×N2. Thus, we
have pn2 inversions of Type 2.

Type 3. We have i ∈ N2, j ∈ N1 and i < j. Let (i, j) be of Type 3. Then from
i < j we obtain j > k + n2 + 1. In particular, this type can only occur if n1 > 1 because
otherwise n = 1 + n2 < j.

Since i ∈ N2, also σ(i) ∈ N2. That is, k + 1 6 σ(i) 6 k + n2. Moreover, from i < j
and i ∈ N2 it follows that j > k + n2 + 1. Thus,

j′ := ϕ−1
1 (j) = j − n2

and j′ ∈ [k + 1, n1]. Hence,

σ(j) = σϕ1
1 (j) = ϕ1(σ1(j′)) =

σ1(j′) < σ(i) if σ1(j′) 6 k

σ1(j′) + n2 > σ(i) if σ1(j′) > k.

That is,

(i, j) ∈ Inv(σ) ⇐⇒ σ1(j′) 6 k ⇐⇒ j′ ∈ Q ⇐⇒ j ∈ ϕ1(Q)

where we use that j′ ∈ [k + 1, n1] for the second equivalence. Consequently, the set of
inversion of Type 3 is the set N2×ϕ1(Q). Since ϕ1 is a bijection, it follows that there are
exactly qn2 inversions of this type.

Summing up the number of inversions of each type, we obtain the formula for the
length of σ.

We now prove (1) and (2).
(1) By definition, σ1(P ) ⊆ [k+1, n1] and Q ⊆ [k+1, n1]. The cardinality of [k+1, n1]

is
⌊
n1
2

⌋
. Therefore, p, q 6

⌊
n1
2

⌋
.

(2) Assume that σ1 is oscillating. Suppose first that n is even. Then k = n1
2 . Be-

cause σ1 is oscillating, we obtain that

σ1([k]) = [k + 1, n1] and σ1([k + 1, n1]) = [k]

from Definition 30 and Lemma 33. Hence, p = q = k = bn1
2 c.

Suppose now that n is odd. Then k = n1+1
2 . Since σ1 is oscillating, Definition 30 and

Lemma 33 yield that there is an m ∈ {k − 1, k} such that

σ1([m]) = [n1 −m+ 1, n1] and σ1([m+ 1, n1]) = [n1 −m].

It is not hard to see that this implies p = q = k − 1 = bn1
2 c.
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We have seen in Example 73 that the elements in stair form σ(5,3) and σ(6,3) can be
decomposed as

σ(5,3) = σ(5) � σw0
(3) and σ(6,3) = σ(6) � σ(3)

where w0 is the longest element of S3. We want to show that these are special cases
of a general rule for decomposing the element in stair form σα. Before we state the
rule in Lemma 83, we compare the sequences used to define the element in stair form in
Definition 14 for compositions of n, n1 and n2.

Lemma 81. For m ∈ N0 let x(m) be the sequence (x(m)
1 , . . . , x(m)

m ) given by x(m)
2i−1 = i and

x
(m)
2i = m− i+ 1. Set x := x(n), y := x(n1) and z := x(n2).

(1 ) We have ϕ1(yi) = xi for all i ∈ [n1].
(2 ) If n1 is even then ϕ2(zi) = xi+n1 for all i ∈ [n2].
(3 ) If n1 is odd then ϕ2(w0(zi)) = xi+n1 for all i ∈ [n2] where w0 is the longest element

of Sn2.

Proof. Recall that k =
⌈
n1
2

⌉
and (n1, n2) �0 n by Notation 74. Let i ∈ N. We mainly do

straight forward calculations.
(1) Assume 2i− 1 ∈ [n1]. Then i 6 k and thus ϕ1(i) = i. Consequently,

ϕ1(y2i−1) = ϕ1(i) = i = x2i−1.

Now, assume 2i ∈ [n1]. Then

n1 − i+ 1 = dn1 − i+ 1e >
⌈
n1 −

n1

2 + 1
⌉

=
⌈
n1

2 + 1
⌉

=
⌈
n1

2

⌉
+ 1 = k + 1,

i.e. ϕ1(n1 − i+ 1) = n1 + n2 − i+ 1. Therefore,

ϕ1(y2i) = ϕ1(n1 − i+ 1) = n1 + n2 − i+ 1 = n− i+ 1 = x2i.

(2) Assume that n1 is even. Then n1 = 2k. If 2i− 1 ∈ [n2] then we have

2(k + i)− 1 = n1 + 2i− 1 6 n1 + n2 = n.

Thus,

ϕ2(z2i−1) = ϕ2(i) = k + i = x2(k+i)−1 = x2i−1+n1 .

Suppose 2i ∈ [n2]. Then 2(k + i) = n1 + 2i 6 n and

ϕ2(z2i) = k + n2 − i+ 1 = (n− 2k − n2) + k + n2 − i+ 1
= n− k − i+ 1
= x2(k+i) = x2i+n1 .
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(3) Assume that n1 is odd. In this case n1 = 2k − 1. Let w0 be the longest element
of Sn2 . We have w0(j) = n2− j + 1 for all j ∈ [n2]. If 2i− 1 ∈ [n2] then 2i− 1 + n1 ∈ [n]
and

ϕ2(w0(z2i−1)) = ϕ2(w0(i))
= ϕ2(n2 − i+ 1)
= n2 + k − i+ 1
= (n− 2k + 1− n2) + n2 + k − i+ 1
= n− (k + i− 1) + 1
= x2(i+k−1)

= x2i−1+2k−1 = x2i−1+n1 .

If 2i ∈ [n2] then 2i+ n1 ∈ [n] and

ϕ2(w0(z2i)) = ϕ2(w0(n2 − i+ 1)) = ϕ2(i) = i+ k = x2(i+k)−1 = x2i+n1 .

Example 82. Consider n = 9, n1 = 6 and n2 = 3. Then k = 3. Using the notation from
Lemma 81 we obtain

x = (1, 9, 2, 8, 3, 7, 4, 6, 5),
y = (1, 6, 2, 5, 3, 4),
z = (1, 3, 2).

Then x = (ϕ1(y1), . . . , ϕ1(y6), ϕ2(z1), ϕ2(z2), ϕ2(z3)) as predicted by Lemma 81. Moreover,
x, y and z are the sequences used to define the elements in stair form σ(6,3), σ(6) and σ(3),
respectively. Therefore,

σ(6,3) = (ϕ1(y1), . . . , ϕ1(y6))(ϕ2(z1), ϕ2(z2), ϕ2(z3)) = σϕ1
(6)σ

ϕ2
(3) = σ(6) � σ(3).

This also illustrates the idea of the proof of the next lemma on the decomposition of σα.

Lemma 83. Let α = (α1, . . . , αl) �e n with l > 1. Then we have the following.
(1 ) If α1 is even then σα = σ(α1) � σ(α2,...,αl).
(2 ) If α1 is odd then σα = σ(α1) �

(
σ(α2,...,αl)

)w0 where w0 is the longest element of
Sα2+···+αl.

Proof. Set n1 := α1 and n2 := α2 + · · · + αl. As in Lemma 81, let x(m) be the sequence
(x(m)

1 , . . . , x(m)
m ) given by x(m)

2i−1 = i and x(m)
2i = m − i + 1 for m ∈ N0 and set x := x(n),

y := x(n1) and z := x(n2). We have that
(1) σα has the cycles

σαi =
(
xα1+···+αi−1+1, xα1+···+αi−1+2, . . . , xα1+···+αi−1+αi

)
for i = 1, . . . , l,
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(2) σ(α1) = (y1, y2, . . . , yn1) and
(3) σ(α2,...,αl) has the cycles

σ̃αi =
(
zα2+···+αi−1+1, zα2+···+αi−1+2, . . . , zα2+···+αi−1+αi

)
for i = 2, . . . , l.

Assume that α1 is even and set σ := σ(α1) � σ(α2,...,αl). From Lemma 76 we obtain that
σ has the cycles (σ(α1))ϕ1 and (σ̃(αi))ϕ2 for i = 2, . . . , l. By Lemma 81, ϕ1(yj) = xj for
j ∈ [n1] and ϕ2(zj) = xα1+j for j ∈ [n2]. As a consequence,

(σ(α1))ϕ1 = (ϕ1(y1), . . . , ϕ1(yα1)) = (x1, . . . , xα1) = σα1

and

(σ̃αi)ϕ2 =
(
ϕ2(zα2+···+αi−1+1), . . . , ϕ2(zα2+···+αi−1+αi)

)
=
(
xα1+···+αi−1+1, . . . , xα1+···+αi−1+αi

)
= σαi

for i = 2, . . . , l. Hence, σ = σα.
Now let α1 be odd. Set σ := σ(α1) �

(
σ(α2,...,αl)

)w0 where w0 is the longest element of
Sα2+···+αl . Then σ has the cycles (σ(α1))ϕ1 and ((σ̃(αi))w0)ϕ2 for i = 2, . . . , l. Moreover,
from Lemma 81 we have that ϕ2(w0(zj)) = xα1+i for j ∈ [n2]. Thus,

(σ̃(αi))w0)ϕ2 =
(
ϕ2(w0(zα2+···+αi−1+1)), . . . , ϕ2(w0(zα2+···+αi−1+αi)

)
)

=
(
xα1+···+αi−1+1, . . . , xα1+···+αi−1+αi

)
= σαi

for i = 2, . . . , l. As we have already shown that (σ(α1))ϕ1 = σα1 , it follows that σ = σα.

We now come to the main result of the section. It enables us to decompose Σα if α1
is even. Before we can state the result, we need to introduce some more notation. For
α �e n we define

Σ×α := {σ ∈ Σα | P (σ) = P (σα)} .

Below the set (Σ×α )w0 appears where w0 the longest element of Sn. Let σ ∈ Σα. Then by
Corollary 13, σw0 ∈ Σα. Since P (σw0) = w0(P (σ)), we have

σ ∈
(
Σ×α
)w0 ⇐⇒ P (σw0) = P (σα) ⇐⇒ P (σ) = P (σw0

α ). (4.15)

Theorem 84. Let α = (α1, . . . , αl) �e n with l > 1.
(1 ) Suppose that α1 is even. Then the map

Σ(α1) × Σ(α2,...,αl) → Σα, (σ1, σ2) 7→ σ1 � σ2

is a bijection. In particular, we have the decomposition

Σα = Σ(α1) � Σ(α2,...,αl).

the electronic journal of combinatorics 30(3) (2023), #P3.16 51



(2 ) Suppose that α1 is odd and let w0 bet the longest element of Sα2+···+αl. Then the
map

Σ×(α1) ×
(
Σ×(α2,...,αl)

)w0 → Σ×α , (σ1, σ2) 7→ σ1 � σ2

is a bijection. In particular, we have the decomposition

Σ×α = Σ×(α1) �
(
Σ×(α2,...,αl)

)w0
.

Proof. Let α(1) := (α1), α(2) := (α2, . . . , αl), n1 := |α(1)|, n2 := |α(2)| and w0 be the longest
element of Sn2 . We use the inductive product on Sn1 × Sn2 and the related notation.
By Lemma 79 the two maps from the theorem are injective so that it remains to prove
the surjectivity. That is, we have to show the following.
(1) If α1 is even then Σα = Σα(1) � Σα(2) .
(2) If α1 is odd then Σ×α = Σ×

α(1) �
(
Σ×
α(2)

)w0 .
The proofs of (1) and (2) have a lot in common. Hence, we do them simultaneously as
much as possible and separate the cases α1 even and α1 odd only when necessary.

If l = 1 then α = α(1), α(2) = ∅ and thus

Σα(1) � Σα(2) = Σα �S0 = Σα.

Moreover, Σ×(α1) = Σ(α1) and
(
Σ×∅
)w0 = Σ∅. Thus we have (1) and (2) in this case.

Now suppose l > 2. Let σ := σα, σ1 := σα(1) and σ2 := σα(2) if α1 is even and σ2 = σw0
α(2)

if α1 is odd. From Lemma 83 we have σ = σ1�σ2. By Theorem 18, σα(i) ∈ Σα(i) for i = 1, 2.
In addition, Corollary 13 then yields that σw0

α(2) ∈ Σα(2) . Thus, σi ∈ Σα(i) for i = 1, 2.
We begin with the inclusions “⊆”. Let τ ∈ Σα with P (τ) = P (σ) if α1 is odd. First

we show τ ∈ Sn1 � Sn2 . By Lemma 79, we have to show τ(Ni) = Ni for i = 1, 2.
Since {N1, N2} is a set partition of [n], it suffices to show τ(N1) = N1. As σ1 ∈ Sn1 is
an n1-cycle, P (σ1) = {[n1]}. Moreover, Corollary 77 yields P (σ) = ϕ1(P (σ1))∪ϕ2(P (σ2)).
Thus,

N1 = ϕ1([n1]) ∈ ϕ1(P (σ1)) ⊆ P (σ).

If α1 is even then N1 ∈ Pe(σ). Moreover, Proposition 28 yields Pe(τ) = Pe(σ). Thus,
N1 ∈ P (τ) which means that τ(N1) = N1. If α1 is odd then P (τ) = P (σ) by assumption.
Hence, N1 ∈ P (σ) = P (τ) and thus τ(N1) = N1.

Because τ ∈ Sn1 �Sn2 , there are τ1 ∈ Sn1 and τ2 ∈ Sn2 such that τ = τ1 � τ2. Let
i ∈ {1, 2}. We want to show τi ∈ Σα(i) . Recall that σi ∈ Σα(i) . Thus, from Proposition 28
it follows that τi ∈ Σα(i) if and only if
(i) σi and τi are conjugate in Sni ,
(ii) `(σi) = `(τi) and
(iii) Pe(σi) = Pe(τi).
Therefore, we show that τi satisfies (i) – (iii). Let i be arbitrary again.
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(i) For a permutation ξ, let C(ξ) be the multiset of cycle lengths of ξ. Assume
ξ = ξ1 � ξ2 for ξi ∈ Sni and i = 1, 2. From Lemma 76 it follows that

C(ξ) = C(ξ1) ∪ C(ξ2). (4.16)

Since τ = τ1 � τ2, Corollary 77 implies P (τ) = ϕ1(P (τ1)) ∪ ϕ2(P (τ2)). Therefore, from
N1 ∈ P (τ) it follows that P (τ1) = {[n1]}. That is, τ1 is an n1-cycle of Sn1 . By definition,
σ1 is an n1-cycle of Sn1 too. Thus, C(τ1) = C(σ1). Since τ ∈ Σα, τ and σ are conjugate
so that C(τ) = C(σ). Because of Equation (4.16) and C(τ1) = C(σ1), it follows that also
C(τ2) = C(σ2). In other words, τi and σi are conjugate for i = 1, 2.

(ii) Let m :=
⌊
n1
2

⌋
. By Lemma 80, there are p, q 6 m such that

`(τ) = `(τ1) + `(τ2) + (p+ q)n2.

Moreover, we have `(τi) 6 `(σi) for i = 1, 2 because τi and σi are conjugate and σi ∈ Σα(i) .
On the other hand, σ1 is oscillating by Theorem 49 and hence Lemma 80 yields

`(σ) = `(σ1) + `(σ2) + 2mn2.

Since τ ∈ Σα, we have `(τ) = `(σ). Therefore, we obtain from the equalities for `(τ) and
`(σ) and the inequalities for `(τ1), `(τ2), p and q that `(τ1) = `(σ1) and `(τ2) = `(σ2).

(iii) Corollary 77 states that

P (ξ) = ϕ1(P (ξ1)) ∪ ϕ(P (ξ2)) (4.17)

for ξ = σ, τ . This equality remains valid if we replace P by Pe. From τ ∈ Σα and
Proposition 28 it follows that Pe(τ) = Pe(σ). Hence,

ϕ1(Pe(τ1)) ∪ ϕ2(Pe(τ2)) = ϕ1(Pe(σ1)) ∪ ϕ2(Pe(σ2)).

Since ϕ1 and ϕ2 are bijections and the images of ϕ1 and ϕ2 are disjoint, it follows that
Pe(τi) = Pe(σi) for i = 1, 2. This finishes the proof of τ ∈ Σα(1) � Σα(2) .

It remains to show that τ1 ∈ Σ×
α(1) and τ2 ∈

(
Σ×
α(2)

)w0 if α1 is odd. Thus, assume that
α1 is odd. We have already seen that P (τ1) = P (σ1). Hence, τ1 ∈ Σ×

α(1) . Since α1 is
odd, P (τ) = P (σ) by assumption and therefore we deduce from Equation (4.17) as above
that P (τ2) = P (σ2). Now we can use that σ2 = σw0

α(2) and obtain τ2 ∈
(
Σ×
α(2)

)w0 from
Equation (4.15).

We continue with the inclusions “⊇”. Let τi ∈ Σα(i) for i = 1, 2 and τ := τ1� τ2. If α1

is odd, assume that in addition τ1 ∈ Σ×
α(1) and τ2 ∈

(
Σ×
α(2)

)w0 which by Equation (4.15) is
equivalent to P (τi) = P (σi) for i = 1, 2.

We want to show that τ ∈ Σα and again use Proposition 28 to do this. That is, we
show the properties (i) – (iii) for τ and σ.

(i) For i ∈ {1, 2} we have C(τi) = C(σi) since τi ∈ Σα(i) . Hence, from Equation (4.16)
it follows that C(τ) = C(σ), i.e. τ and σ are conjugate.
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(ii) Since τ1, σ1 ∈ Σα(1) , they are oscillating n1-cycles by Theorem 49. Therefore,
Lemma 80 yields

`(ξ) = `(ξ1) + `(ξ2) + 2mn2

for ξ = σ, τ and m = bn1
2 c. Moreover, as σi, τi ∈ Σα(i) , `(τi) = `(σi) for i = 1, 2. As a

consequence, `(τ) = `(σ).
(iii) Since ξ = ξ1 � ξ2 for ξ = σ, τ , Equation Equation (4.17) holds. This equation

remains true if we substitute P by Pe. In addition, from Proposition 28 we obtain that
Pe(τi) = Pe(σi) for i = 1, 2. Thus, Pe(τ) = Pe(σ).
Because of (i) – (iii) we can now apply Proposition 28 and obtain that τ ∈ Σα. In the
case where α1 is odd, it remains to show P (τ) = P (σ). But this is merely a consequence
of P (τi) = P (σi) for i = 1, 2 and Equation (4.17).

Recall that, given a maximal composition α = (α1, . . . , αl) �e n, there exists 0 6 j 6 l
such that α1, . . . , αj are even and αj+1 > . . . > αl are odd. Using Part (1) of Theorem 84
iteratively, we obtain the following decomposition of the elements of Σα.

Corollary 85. Let α = (α1, . . . , αl) �e n, σ ∈ Sn of type α and 0 6 j 6 l be such that
α′ := (αj+1, . . . , αl) are the odd parts of α. Then σ ∈ Σα if and only if there are σi ∈ Σ(αi)
for i = 1, . . . , j and τ ∈ Σα′ such that

σ = σ1 � σ2 � · · · � σj � τ

where the product is evaluated from right to left.

Example 86. Consider α = (2, 4, 3, 1, 1) �e 11. From Table 1 and Example 62 we obtain

Σ(2) = {(1, 2)} ,
Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)} ,

Σ(3,1,1) = {(1, 5, 2), (1, 2, 5), (1, 5, 3), (1, 3, 5), (1, 5, 4), (1, 4, 5)} .

By Corollary 85, Σα consists of all elements (1, 2)� (σ � τ) with σ ∈ Σ(4) and τ ∈ Σ(3,1,1).
Thus, |Σα| = 12. For instance,

(1, 2)� ((1, 3, 2, 4)� (1, 3, 5)) = (1, 2)� (1, 8, 2, 9)(3, 5, 7)
= (1, 11)(2, 9, 3, 10)(4, 6, 8)

is an element of Σα.

Remark 87. For compositions with one part α = (n), Theorem 49 provides a combinatorial
characterization of Σ(n). Therefore, Corollary 85 reduces the problem of describing Σα

for each maximal composition α to the case where α has only odd parts. These α are the
partitions consisting of odds parts.

If α is an odd hook, then Theorem 69 yields that the hook properties characterize
the elements of Σα. That is, we have a description of Σα for all maximal compositions α
whose odd parts form a hook.
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Let α �e n and α′ be the composition formed by the odd parts of α. We infer from
Corollary 85 a formula that expresses |Σα| as a product of |Σα′| and a factor that only
depends on the even parts of α. In the case where α′ is an odd hook, we can determine
|Σα′ | explicitly and thus obtain a closed formula.

Corollary 88. Let α = (α1, . . . , αl) �e n, 0 6 j 6 l be such that (α1, . . . , αj) are the
even and α′ := (αj+1, . . . , αl) are the odd parts of α, n′ := |α′|, P := {i ∈ [j] | αi > 4},
p := |P | and q := −2p+ 1

2
∑
i∈P αi. Then

|Σα| = 2p3q|Σα′|.

Moreover, if α′ is a hook (r, 1n′−r) then

|Σα| =

2p3q if r 6 1
(n′ − r + 1)2p′3q′ if r > 3

where p′ := p+ 1 and q′ := q + r−3
2 .

Proof. Since α1, . . . , αj are the even parts of α, Corollary 85 implies that

|Σα| = |Σα′|
j∏
i=1
|Σ(αi)|. (4.18)

For the same reason, Corollary 53 yields

|Σ(αi)| =

1 if n 6 2
2 · 3

αi−4
2 if n > 4.

for i = 1, . . . , j. Therefore,
j∏
i=1
|Σ(αi)| =

∏
i∈P

2 · 3
αi−4

2 = 2p3−2p+ 1
2
∑

i∈P αi = 2p3q.

and with Equation (4.18) we get the first statement.
For the second part, assume that α′ is a hook. Then, by the choice of j, α′ is an

odd hook. It remains to compute |Σα′|. If α′ = ∅ or α′ = (1n′) we have |Σ′α| = 1. If
α′ = (r, 1n′−r) with r > 3 then Corollary 71 provides the formula

|Σα′ | = 2(n′ − r + 1)3 r−3
2 .

Example 89. Consider α = (2, 8, 4, 5, 1, 1, 1) �e 22. Then α′ = (5, 1, 1, 1) �e 8 is a hook,
P = {2, 3}, p′ = 2 + 1 and q′ = −2 · 2 + 1

2(8 + 4) + 5−3
2 = 3. Thus, Corollary 88 yields

|Σα| = (8− 5 + 1)2333 = 864.

Let α = (l, 1n−l) �e n be a hook. From Corollary 70 we know how to construct Σα

from Σ(l) if k is odd. If l is even, we obtain Σα in the following way.
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Corollary 90. Let α = (l, 1n−l) �e n be an even hook and id ∈ Sn−k. Then the map

Σ(l) → Σα, σ 7→ σ � id

is a bijection.

Proof. Recall that Σ(1n−l) = {id}. Then Theorem 84 yields that the map from the claim
is a bijection.

Example 91. Consider α = (4, 1, 1) and id ∈ S2. From Table 1 we read

Σ(4) = {(1, 4, 2, 3), (1, 3, 2, 4)}

Hence, Corollary 90 yields

σα =
{
σ � id | σ ∈ Σ(4)

}
= {(1, 6, 2, 5), (1, 5, 2, 6)} .

In Theorem 69 we showed that Σα is characterized by the hook properties if α is an
odd hook. In the remainder of the section we want to prove that the same is true for
even hooks. We first show that � is compatible with the concepts of being oscillating and
having connected intervals.

Lemma 92. Let σ1 ∈ Sn1, σ2 ∈ Sn2 and σ := σ1 � σ2. Then σ is oscillating (has
connected intervals) if and only if σ1 and σ2 are oscillating (have connected intervals).

Proof. Let σr = σr,1σr,2 · · ·σr,pr be a decomposition in disjoint cycles for r = 1, 2. Fix an
r ∈ {1, 2} and a cycle (c1, . . . ct) = σr,j of σr. Then by Lemma 76 we have that

σϕrr,j = (ϕr(c1), . . . , ϕr(ct)).

As ϕr is strictly increasing, it preserves the relative order of the cycle elements so that

cst(σr,j) = cst(σϕrr,j).

In addition, Lemma 76 provides the cycle decomposition

σ = σϕ1
1,1 · · ·σ

ϕ1
1,p1 · σ

ϕ2
2,1 · · ·σ

ϕ2
2,p2 .

of σ. Hence, σ is oscillating if and only σ1 and σ2 are oscillating. For the same reason, σ
has connected intervals if and only if σ1 and σ2 have connected intervals.

We now generalize Theorem 69 to all hooks. The hook properties can be looked up in
Definition 63.

Theorem 93. Let α �e n be a hook and σ ∈ Sn of type α. Then σ ∈ Σα if and only if σ
satisfies the hook properties.
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Proof. Let α = (l, 1n−l) �e n and σ ∈ Sn be of type α. The case where l is odd was done
in Theorem 69. Therefore, assume that l is even. If l = n then the third hook property
is satisfied and therefore the n-cycle σ ∈ Sn has the hook properties if and only if it is
oscillating and has connected intervals. By Theorem 49 this is equivalent to σ ∈ Σ(n).
Therefore we now assume l < n. Write σ = (d1, . . . , dl) omitting the trivial cycles. We
consider the inductive product on Sl × Sn−l and id ∈ Sn−l. Following Notation 74 we
then have that

N1 = ϕ1([l]) =
[
l

2

]
∪
[
n− l

2 + 1, n
]
.

Note that σ satisfies the third hook property if and only if {d1, . . . , dl} = N1.
We begin with the implication form left to right. Assume that σ ∈ Σ(l,1n−l). By

Corollary 90 there is τ ∈ Σ(l) such that σ = τ � id. Certainly id is oscillating and has
connected intervals. Moreover, τ has these properties by Theorem 49. Therefore, σ is
oscillating with connected intervals by Lemma 92. Because σ = τ � id, Lemma 76 implies
that we can write τ = (c1, . . . , cl) such that di = ϕ1(ci) for i = 1, . . . , l. Therefore,

{d1, . . . , dl} = ϕ1({c1, . . . cl}) = ϕ1([l]) = N1

which means that σ satisfies the third hook property.
We now show the implication from right to left. Assume that σ fulfills the hook

properties. Then the third hook property yields that {d1, . . . , dl} = N1 which implies
that σ(N1) = N1. Therefore, σ ∈ Sl � Sn−l by Lemma 79, i.e. there are σ1 ∈ Sl and
σ2 ∈ Sn−l such that σ = σ1 � σ2. From Lemma 78 we obtain that σ|N1 = σϕ1

1 so that we
can write σ1 as σ1 = (c1, . . . , cl) with ci = ϕ−1

1 (di) for i = 1, . . . , l. It follows that σ1 is an
l-cycle of Sl. Since σ fixes each element of N2, it follows from Lemma 78 that σ2 = id. As
σ is oscillating with connected intervals, Lemma 92 implies that σ1 has these properties
as well. Thus, σ1 ∈ Σ(l) by Theorem 49. Hence, we can apply Corollary 90 and obtain
that

σ = σ1 � id ∈ Σ(l,1n−l).

Remark 94. In Remark 87 we reduced the problem of describing Σα for all maximal
compositions α to the partitions with only odd parts. As we have such a description for
odd hooks, it remains to find a combinatorial description of Σα in the case where α is a
partition of odd parts which is not a hook. Then Σα consists of all permutations of type
α of maximal length. Unfortunately, the situation is a lot more complex. One reason for
this is the following. For any subset Σ of Sn define

P (Σ) := {P (σ) | σ ∈ Σ} .

In general, P (σα) is not the only element of P (Σα) and there seems to be no obvious
way to describe P (Σα). Moreover, the number of σ ∈ Σα whose orbits yield the same
set partition of [n] depends on this very set partition. For example, Σ(3,3) consists of the
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following elements where elements with the same orbit partition occur in the same row.

(1, 6, 2)(3, 4, 5) (1, 2, 6)(3, 4, 5) (1, 6, 2)(3, 5, 4) (1, 2, 6)(3, 5, 4)
(1, 6, 3)(2, 4, 5) (1, 6, 3)(2, 5, 4) (1, 3, 6)(2, 4, 5) (1, 3, 6)(2, 5, 4)
(1, 4, 5)(2, 6, 3) (1, 5, 4)(2, 3, 6) (1, 5, 4)(2, 6, 3) (1, 4, 5)(2, 3, 6)
(1, 6, 4)(2, 3, 5) (1, 4, 6)(2, 3, 5) (1, 6, 4)(2, 5, 3) (1, 4, 6)(2, 5, 3)
(1, 6, 5)(2, 3, 4) (1, 5, 6)(2, 3, 4) (1, 5, 6)(2, 4, 3) (1, 6, 5)(2, 4, 3)
(1, 5, 3)(2, 4, 6) (1, 3, 5)(2, 6, 4)
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