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Abstract

The correspondence between perfect difference sets and transitive projective
planes is well-known. We observe that all known dense (i.e., close to square-root
size) Sidon subsets of abelian groups come from projective planes through a similar
construction. We classify the Sidon sets arising in this manner from desarguesian
planes and find essentially no new examples. There are many further examples
arising from nondesarguesian planes.

We conjecture that all dense Sidon sets arise from finite projective planes in this
way. If true, this implies that all abelian groups of most orders do not have dense
Sidon subsets. In particular if σn denotes the size of the largest Sidon subset of
Z/nZ, this implies lim infn→∞ σn/n

1/2 < 1.
We also give a brief bestiary of somewhat smaller Sidon sets with a variety of

algebraic origins, and for some of them provide an overarching pattern.

Mathematics Subject Classifications: 05B10,11B13

1 Dense Sidon sets

Let G be an abelian group. A Sidon set (or B2 set) is a subset S ⊂ G such that

x+ y = z + w =⇒ {x, y} = {z, w} (x, y, z, w ∈ S).

We call a solution (x, y, z, w) to x+ y = z +w an additive quadruple, and a trivial additive
quadruple if {x, y} = {z, w}, so a Sidon set is a set all of whose additive quadruples are
trivial. We call S a perfect difference set if moreover S − S = G.
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Sidon sets are interesting in additive combinatorics for being extremely unstructured:
they have maximum doubling constant and minimum additive energy (see [TV10, Chap-
ter 2] for the definitions of these terms). It is curious therefore that all known Sidon sets
which are nearly as large as possible appear to be rather structured in some other way
(while for instance Sidon sets constructed randomly or greedily have much smaller size).
As Ruzsa put it, “somehow all known constructions of dense Sidon sets involve the primes”
([Ruz99, Section 11]).

Let S be a Sidon set in an abelian group G of order n. Since the differences x− y with
x 6= y are all distinct and nontrivial, we must have |S|(|S|−1) 6 n−1, or |S|2−|S|+1 6 n.
Call S dense if |S| > (1− o(1))n1/2. The following are the best-known examples of dense
Sidon sets.

Construction 1 (Erdős–Turán [ET41]). We give this example first, slightly out of
chronological order, because it is the simplest to describe and understand. Let K be a
finite field. Assume charK 6= 2. Let G = K2. Let S be the parabola

S = {(x, x2) : x ∈ K}.

It is a simple exercise to check the Sidon property. Suppose

(x, x2), (y, y2), (z, z2), (w,w2)

form an additive quadruple. Then

x+ y = z + w

x2 + y2 = z2 + w2.

Hence
2xy = (x+ y)2 − (x2 + y2) = (z + w)2 − (z2 + w2) = 2zw.

Since charK 6= 2, xy = zw. Hence the polynomials (t− x)(t− y) and (t− z)(t− w) are
equal, so {x, y} = {z, w}.

Parameters: |G| = q2 and |S| = q, where q = |K|.

Construction 2 (Singer [Sin38]). Let K be a finite field and let L be an extension of K
of degree 3. Let G = L×/K×. Let H be a K-plane in L, say

H = {x ∈ L : trx = 0}.

Let S = (H ∩ L×)/K×.
To check the Sidon property, suppose x, y, z, w ∈ S form an additive quadruple. Let

x̃, ỹ, z̃, w̃ be lifts to L×. Then x̃ỹz̃−1w̃−1 ∈ K×. Let

H ′ = x̃z̃−1H = w̃ỹ−1H.

Note that H and H ′ both contain both x̃ and w̃. Hence either H = H ′ or x̃/w̃ ∈ K×. In
other words, either x = z or x = w, as required.

Parameters: |G| = q2 + q + 1 and |S| = q + 1, where q = |K| (S is a perfect difference
set).
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Construction 3 (Bose [Bos42]). Let K be a finite field and let L be an extension of K
of degree 2. Let G = L×. Let H be a K-line in L, let u ∈ L \H, and let S = u+H.

The verification of the Sidon property is much as in Construction 2.
Parameters: |G| = q2 − 1 and |S| = q, where q = |K|.

Construction 4 (Spence: see Ganley [Gan77], Ruzsa [Ruz93, Theorem 4.4]). Let K be a
finite field, let G = K× ×K, and let S = {(x, x) : x ∈ K×}.

If (x, x), (y, y), (z, z), (w,w) form an additive quadruple then x+y = z+w and xy = zw,
so {x, y} = {z, w}, as in Construction 1.

Parameters: |G| = q(q − 1) and |S| = q − 1, where q = |K|.

Construction 5 (Hughes [Hug55], Cilleruelo [Cil12, Example 3]). Let K be a finite field,
let G = K× ×K×, and let S = {(x, y) : x, y 6= 0, x+ y = 1}.

Suppose (x, 1− x), (y, 1− y), (z, 1− z), (w, 1− w) form an additive quadruple. Then

xy = zw

(1− x)(1− y) = (1− z)(1− w).

We deduce x+ y = z + w, and it follows that {x, y} = {z, w} as in Constructions 1 and 4.
Parameters: |G| = (q − 1)2 and |S| = q − 2, where q = |K|.

In the literature there is particular emphasis on Sidon sets in cyclic groups, since those
may be used to define Sidon sets in Z. The groups in Constructions 2 and 3 are cyclic,
the groups in Constructions 1 and 5 are not, and the group in Construction 4 is cyclic if
and only if q is prime. In this paper we are equally interested in all abelian groups.

Our first main observation is that the five constructions presented above are not as
varied as they appear. In fact there is a correspondence with the largest abelian subgroups
of PGL3(K). The correspondence associates to each abelian subgroup G 6 PGL3(K) the
Sidon set given as the point-line stabilizer

S = {g ∈ G : pg ∈ `},

for some point p and line ` in the projective plane P2(K) such that the stabilizers Gp and
G` are trivial. There are essentially no further examples in this correspondence. All this is
covered in Section 2 and Section 3.

On the other hand, the correspondence is valid for arbitrary finite projective planes,
desarguesian1 or not. The plane should have a large abelian group of automorphisms,
playing the role of G 6 PGL3(K) in the desarguesian case, which significantly constrains
the projective planes to be considered. Nevertheless, many further examples arise in this
way; see Section 4.

Conversely, the correspondence also shows that any dense Sidon set gives rise to an
object that is “almost” a projective plane. We cannot show, but it is natural to conjecture,
that these objects are always true projective planes with some points and lines missing,

1A projective plane is called desarguesian if it satisfies Desargues’s theorem. Desarguesian finite
projective planes are exactly those of the form P2(K) for some finite field K.
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meaning that all dense Sidon sets are obtained from projective planes. We will state some
precise conjectures of this form in Section 5.

Assuming this conjecture, known results on projective planes having large abelian
automorphism groups (specifically, the Dembowski–Piper classification) limits which
abelian groups G could possibly admit dense Sidon sets S ⊆ G. In particular, the
conjecture would imply that lim infn→∞max

{
|S| : S ⊆ Z/nZ Sidon

}
/n1/2 < 1.

Even Sidon sets which are significantly smaller than (1− o(1))n1/2, e.g., by a constant
factor or a power of log n, seem to be rather structured, although the situation is less rigid.
In Section 6 we gather some apparently varied existing constructions, and show—similarly
to the dense case above—that many of them fit a common pattern. We also use this
general pattern to generate new examples.

1.1 Notation

We adopt the group-theoretic conventions that, for a group G acting on a set X and g ∈ G,
x ∈ X, xg denotes the action of g on x and Gx denotes the stabilizer of x in G. We will
also use standard big O and little o notation occasionally (as we have done already), as
well as the Vinogradov notation X � Y to mean X = O(Y ).

2 The correspondence

An incidence structure L is abstractly just a triple (P,L, I) of sets such that I ⊂ P × L
(this is also the abstract definition of a bipartite graph). Conventionally we call the
elements of P points, the elements of L lines, and the elements of I incidences. We say
that p ∈ P and ` ∈ L are incident if (p, `) ∈ I, and we may write p ∈ `. We freely use
further geometric language: we say ` and `′ intersect if there is a point p incident to both
of them, we say p and p′ are joined by a line if there is a line incident to both of them, etc.
The following definitions, of increasing specialization, are standard.

1. An incidence structure L is a partial linear space if any two distinct points are incident
with at most one line. (Equivalently, the bipartite graph defined by I ⊂ P × L
contains no C4.)

2. A partial linear space L is

(a) a linear space if any two points are joined by a line,

(b) a dual linear space2 if any two lines intersect.

3. A partial linear space which is both a linear space and a dual linear space is a
projective plane.

2sometimes a semiplane or a partial projective plane
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A collineation or morphism φ between incidence structures L = (P,L, I) and L′ =
(P ′, L′, I ′) is a pair of maps P → P ′ and L→ L′ (both denoted φ) such that

p ∈ ` =⇒ pφ ∈ `φ.

As usual, an isomorphism is a morphism with an inverse morphism. We write AutL for
the group of automorphisms of L.

Now let G be an abelian group. The following proposition articulates a basic equivalence
between Sidon sets S ⊂ G and partial linear spaces L with a regular G-action.

Proposition 2.1. Suppose L is a partial linear space and G is an abelian subgroup of
AutL such that the action of G is regular on both points and lines. Then for any point p
and line `, the set

S = {g ∈ G : pg ∈ `}

is a Sidon set in G.
Conversely, suppose G is an abelian group and S ⊂ G. The development dev(S) of S

is the incidence structure (P,L, I) with P = L = G and

I = {(p, `) ∈ G2 : p− ` ∈ S}.

The incidence structure dev(S) is a partial linear space if (and only if) S is a Sidon set.
Every point is contained in |S| lines and every line contains |S| points, and G acts regularly
on both points and lines.

Proof. For the first part, suppose x, y, z, w ∈ S and xz−1 = wy−1. Let

q = pxz
−1

= pwy
−1

.

Then
p, q ∈ `z−1

, `y
−1

.

Since L is a partial linear space, this implies p = q or `z
−1

= `y
−1

. Since the action is
regular, this implies x = z or y = z. Hence S is a Sidon set, as claimed.

For the second part, let L = dev(S), and suppose p1, p2 ∈ `1, `2. Then p1 − `1, p1 −
`2, p2 − `1, p2 − `2 ∈ S. Since

(p1 − `1) + (p2 − `2) = (p1 − `2) + (p2 − `1),

the Sidon condition implies that p1 = p2 or `1 = `2. Hence L is a partial linear space. The
further claims are clear.

Remark 2.2. The dual L∗ of an incidence structure L is the incidence structure (L, P, I∗),
where I∗ = {(`, p) : (p, `) ∈ I}. An incidence structure L is self-dual if L ∼= L∗. The
development dev(S) of a set S ⊂ G is always self-dual: the dual incidence set is dev(−S),
and the maps P → L∗, x 7→ −x and L→ P ∗, x 7→ −x define an isomorphism.
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Remark 2.3. Proposition 2.1 is well-established in the design theory literature in the
extreme case of perfect difference sets and projective planes, but less well-known in the
general case. The reason is more cultural than mathematical: design theorists are not
interested in Sidon sets beyond the cases of difference sets and relative difference sets,
while additive-combinatorialists are interested in quite sparse Sidon sets (anything above
cube-root density, usually in {1, . . . , n}) and the development dev(S) is less interesting in
that case.

Recall that for any projective plane P there is a positive integer q, called the order
of P, such that there are q2 + q + 1 points, q2 + q + 1 lines, and the incidence graph is
(q + 1)-regular.

Corollary 2.4. Let P be a projective plane of order q, and let G be an abelian subgroup
of AutP. Let p be a point and ` a line such that Gp = G` = 1, and suppose ` contains d
points of P \Gp. Then S = {g ∈ G : pg ∈ `} is a Sidon set of size q + 1− d, and

d 6 (q + 1)

(
q2 + q + 1

|G|
− 1

)
. (2.1)

Proof. A partial linear space with a regular G-action is obtained by restricting to the
orbits of p and `, so the fact that S is a Sidon set follows from Proposition 2.1. Since
` contains q + 1 − d points of Gp and the action of G on Gp is regular, it is clear that
|S| = q + 1− d. We must prove the bound on d.

Consider the bipartite incidence graph between P \Gp and G`. The degree of each
vertex in G` is d, while the degree of each vertex in P \Gp is at most q+ 1, so by counting
edges we have

d|G| 6 (q + 1)(q2 + q + 1− |G|).
Rearranging gives (2.1).

Note that Corollary 2.4 guarantees a dense Sidon set if and only if |G| = (1− o(1))(q2 +
q + 1). In other words, almost all the points of P must be in a single G-orbit and the
same for the lines. We will see that this is a harsh restriction.

3 Desarguesian constructions

The desarguesian projective plane P2(K) over the finite field K is defined by taking the
points and lines to be the lines and planes, respectively, in the three-dimensional vector
space K3, with incidence defined naturally. In this section we establish that the five
constructions of Sidon sets listed in the introduction arise from Corollary 2.4 applied to
P2(K) and the maximal abelian subgroups of PGL3(K).3 No further examples arise in
this way (apart from a variant of Construction 1 in even characteristic).

3It was previously observed by Tait and Timmons [TT16] that the Cayley graph of the Bose Sidon set
(Construction 3) is a large subset of an “orthogonal polarity graph”, i.e., P2(K) with the points and lines
identified by a self-duality. This is essentially a special case of this general correspondence. In unpublished
work, Timmons made similar observations about the Erdős–Turán and Spence examples (Constructions 1
and 4) (Michael Tait, personal communication).
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Proposition 3.1. Let K be the finite field Fq. Let Z ∼= K× be the center of GL3(K).
The maximal abelian subgroups of PGL3(K) = GL3(K)/Z, are, up to conjugacy:

(i) identifying K3 with the field L = Fq3, the cyclic group L×/K×;

(ii) identifying K3 with L×K where L = Fq2, the group L×K×/K×;

(iii) the group (K×)3/Z ∼= (K×)2 of diagonal matrices mod Z;

(iv) 
r a 0

0 r 0
0 0 1

 : r ∈ K×, a ∈ K

Z/Z ∼= K× ×K;

(v) 
1 a b

0 1 a
0 0 1

 : a, b ∈ K

Z/Z ∼=

{
K2 : q odd,

Cd
4 : q = 2d;

(vi) 
1 0 b

0 1 a
0 0 1

 : a, b ∈ K

Z/Z ∼= K2;

(vii) 
1 a b

0 1 0
0 0 1

 : a, b ∈ K

Z/Z ∼= K2,

(viii) (only if q ≡ 1 (mod 3)) the group 〈g, h〉Z/Z ∼= C3 × C3, where

g =

1 0 0
0 ω 0
0 0 ω2

 , h =

0 0 1
1 0 0
0 1 0

 ,

where ω ∈ K is a primitive cube root of unity;

(ix) (only if q ≡ 1 (mod 3)) identifying K3 with L = Fq3, the group

〈(K×)1/3,Frobq〉K×/K× ∼= C3 × C3,

where Frobq is the x 7→ xq automorphism of L/K.

Proof. It is equivalent to classify maximal subgroups G 6 GL3(K) such that Z 6 G and
G′ 6 Z.

First suppose G′ = 1. Let g ∈ G. If h ∈ G then h preserves the generalized eigenspaces
of g over K̄, the algebraic closure of K. If g has an eigenvalue of degree 3 then we are in
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case (i), while if g has an eigenvalue of degree 2 then we are in case (ii). Hence we may
assume all eigenvalues of all g ∈ G are in K.

Let m be maximum number of distinct eigenvalues of any g ∈ G, so m ∈ {1, 2, 3}.
If m = 3 then we are in case (iii). Suppose m = 2. Then some g ∈ G has two distinct
eigenvalues, one with algebraic multiplicity 2, so G preserves a decomposion of the form
K3 = U ⊕W where dimU = 2 and dimW = 1. By maximality, G is the direct product
of its projections to GL(U) ∼= GL2(K) and GL(W ) ∼= K×. In the GL2(K) factor, each
element must have the form scalar× unipotent, so we can assume G is upper-triangular.4

This is case (iv).
Hence assume m = 1, so all g ∈ G have the form scalar × unipotent, and again we

may choose a basis in which G is upper-triangular. Since G is maximal, G = ZU for some
unipotent subgroup

U 6

1 ∗ ∗
0 1 ∗
0 0 1

 .

Since U is abelian, we must have

U =


1 tx0 z

0 1 ty0
0 0 1

 : t, z ∈ K

 (x0, y0 ∈ K).

By conjugating by a diagonal matrix can assume x0, y0 ∈ {0, 1}, and by maximality
(x0, y0) ∈ {(1, 1), (0, 1), (1, 0)}, giving cases (v), (vi), and (vii), respectively.

Now suppose G′ is a nontrivial subgroup of Z. Pick g, h ∈ G such that [g, h] is some
nontrivial scalar ω ∈ K. Then h permutes the generalized eigenspaces of g and the
eigenvalues according to λ 7→ ωλ, so we must have ω3 = 1 and g has eigenvalues λ, ωλ, ω2λ
for some λ ∈ K̄. The determinant of g is λ3, so λ ∈ (K×)1/3. Similarly, h has eigenvalues
µ, ωµ, ω2µ for some µ ∈ (K×)1/3.

We claim that G = 〈g, h〉Z. Suppose x ∈ G. Then [x, g], [x, h] ∈ Z, so [x, g] = ωi and
[x, h] = ωj for some i, j ∈ {0, 1, 2}. Let y = xg−jhi. Then [y, g] = [y, h] = 1. But the
centralizer of {g, h} is Z, so y ∈ Z, so x ∈ 〈g, h〉Z.

Suppose λ, µ ∈ K. By replacing g and h with g/λ and h/µ we may assume λ = µ = 1.
Then g3 = h3 = 1, and there is a basis in which g and h have the form stated in case (viii).

Alternatively suppose one of λ and µ is not in K, say λ. By replacing h with hg or hg2

we may assume µ ∈ K, and then by replacing h with h/µ we may assume µ = 1 and hence
h3 = 1. Since λ has degree 3 over K, we may identify K3 with L = Fq3 in such a way that
g is multiplication by λ. Since h is an Fq-linear map which sends λ 7→ ωλ 7→ ω2λ 7→ λ, it
must be Frobq or Frob2

q. Hence we get case (ix).

Remark 3.2. The subgroup structure of PSL3(Fq) was completely determined by Mitchell
and Hartley in the early 20th century: see the survey by King [Kin05, Section 2.2]. The

4Unipotent subgroups can be upper-triangularized: see [Weh73, Corollary 1.21]. Alternatively, it is
elementary that commuting sets of matrices can be upper-triangularized (over any field containing all
their eigenvalues), by finding a common eigenvector e1 and using induction on the quotient by 〈e1〉.
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theorem above is essentially a special case of those classical results (apart from the wrinkle
to do with PGL vs PSL).

Generally, maximal subgroups of classical groups are classified by a famous theorem
of Aschbacher [Asc84]. However, maximal abelian subgroups are usually not maximal
subgroups.

Via Corollary 2.4, the subgroups (i)–(v) give precisely the five constructions from
the introduction (not in that order). Let us recover, for example, Construction 1. The
subgroup (v) is

G =


1 a b

0 1 a
0 0 1

 : a, b ∈ K

Z/Z ∼=

{
K2 : q odd,

Cd
4 : q = 2d.

In Corollary 2.4 take p = (0 : 0 : 1) and ` = {(X : Y : Z) : X = 0}. Then the point–line
stabilizer {g ∈ G : pg ∈ `} is the subgroup defined by b = 0. If q is odd, an isomorphism
between K2 and G is given by

(x, y) 7→

1 x y + x(x− 1)/2
0 1 x
0 0 1

 .

Hence a Sidon subset of K2 is defined by y + x(x− 1)/2 = 0, which is indeed equivalent
to Construction 1 up to a change of coordinates. If q is even, we find a Sidon subset of Cd

4

of size 2d. An analogous derivation of the other constructions is left as amusement for the
reader.

The four other cases (vi)–(ix) of Proposition 3.1 are unproductive from the point of
view of Corollary 2.4. Indeed, (vi) has no large line orbit while (vii) has no large point
orbit, and the other cases are simply too small.

While the previous proposition classifies maximal abelian subgroups of PGL3(K),
the fundamental theorem of projective geometry asserts that the full collineation group
AutP2(K) is the projective semilinear group

PΓL3(K) ∼= PGL3(K) o Gal(K),

where Gal(K) is the Galois group of K over the prime subfield Fp. There are many further
maximal abelian subgroups of PΓL3(K) not contained in PGL3(K), but the following
proposition establishes that, like the cases (vi)–(ix) of Proposition 3.1, they are not useful
for Corollary 2.4.

Proposition 3.3. Let G be an abelian subgroup of PΓL3(K) not contained in PGL3(K).
Then |G| � q.

The proof of this proposition is somewhat off-topic so is placed in Appendix A.
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4 Nondesarguesian constructions

We now consider Sidon sets coming from nondesarguesian planes. Although a dizzying
variety of nondesarguesian projective planes are known (see [Wei07] or [JJB07]), the
existence of a large abelian group of collineations cuts down the possibilities considerably,
as established by a fundamental classification theorem of Dembowski and Piper [DP67].
Since we will rely on this theory in the next section, we now briefly summarize what is
known and conjectured in this area.

Let G be an abelian (or, more generally, quasiregular) collineation group of a projective
plane P of order q, and assume |G| > 1

2
(q2 + q+ 1). Let t be the number of point orbits. It

is possible to show that t is also the number of line orbits. Let F be the incidence structure
consisting of the fixed points and the fixed lines. The Dembowski–Piper classification
asserts that one of the following holds (the labelling of the cases is standard):

(a) |G| = q2 + q + 1, t = 1, and F is empty. In this case G is transitive.

(b) |G| = q2, t = 3, and F is a flag, i.e., an incident point-line pair.

(c) |G| = q2, t = q + 2, and F is either a line and all its points or dually a point and all
its lines.

(d) |G| = q2 − 1, t = 3, and F is an antiflag, i.e., a nonincident point-line pair.

(e) |G| = q2 − q1/2, t = 2, and F is empty. In this case one point orbit and one line
orbit form a subplane of order q1/2.

(f) |G| = q(q − 1), t = 5, and F consists of two points u, v, the line ` through u and v,
and another line `′ 6= ` through v.

(g) |G| = (q − 1)2, t = 7, and F consits of the vertices and sides of a triangle.

(We have omitted a case included in [DP67] that was later shown not to arise in [GM75].)
It is conjectured5 that all nondesarguesian planes in the Dembowski–Piper classification

are type (b) (see Zhou [Zho13, Section 1.9]), and the prime power conjecture for type (b)
planes is known [BJS02], so from now on assume q = pd for some prime p and d > 1. In
even characteristic we must have G = Cd

4 : see [Zho13]. In odd characteristic, all known
examples have the following special form.

A planar function (often called a perfect nonlinear function or bent function in computer
science literature), introduced by Dembowski and Ostrom [DO68], is a function φ : Fq → Fq

such that x 7→ φ(x + h)− φ(x) is a bijection for each h 6= 0. For any planar function φ
the graph

S = {(x, φ(x)) : x ∈ Fq} ⊂ F2
q

is a Sidon set of size q with F2
q \ (S − S) = {0} × Fq \ {0}.

5This is an amalgamation of several conjectures, including in particular the well-known conjecture that
all cyclic projective planes are desarguesian.
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If φ is quadratic then we get Construction 1. All planar functions over prime fields are
quadratic [Glu90,RS89,Hir89], but over general finite fields many nonquadratic examples
are known. Monomial examples include

φ(x) = xp
α+1 (q = pd, d/(α, d) odd),

φ(x) = x(3
α+1)/2 (q = 3d, (α, 2d) = 1).

The latter example was a breakthrough discovery of Coulter and Matthews [CM97]. There
is a conjecture that these are in fact the only monomial examples: see Zieve [Zie15] for
progress on this conjecture.

All known examples of planar functions besides the Coulter–Matthews functions have
the generalized quadratic form (sometimes called a Dembowski–Ostrom polynomial)

φ(x) =
d−1∑
i,j=0

aijx
pi+pj . (4.1)

It is easily proved that φ is planar function if and only if the polarization

β(x, y) = φ(x+ y)− φ(x)− φ(y) =
d−1∑
i,j=0

aij(x
piyp

j

+ xp
j

yp
i

)

is nondegenerate in the sense that

β(x, y) = 0 =⇒ x = 0 or y = 0. (4.2)

For example, following [CM97, Theorem 3.4], consider q = 3d, d odd, and

φ(x) = x10 ± x6 − x2.

The polarization is

β(x, y) = xy9 + x9y ∓ x3y3 + xy = xy((x4 + y4)2 + (x2y2 ± 1)2).

Since a2 + b2 = 0 implies a = b = 0 in K, the second factor is never zero, so β is
nondegenerate and φ is a planar function.

Classifying planar functions of the form (4.1) is equivalent to classifying symmetric
bilinear maps β : Fd

p×Fd
p → Fd

p satisfying nondegeneracy (4.2), which in turn is equivalent
to classifying commutative semifields up to isotopy. See Kantor [Kan06] for a slew of
examples.

5 Conjectures

Recall that a Sidon subset S of a group G of order n is called dense if |S| > (1− o(1))n1/2.
The examples we know (just Constructions 1 to 5 and the examples in Section 4) point to
the following conjecture.
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Conjecture 5.1. Suppose S is a dense Sidon set in an abelian group G of order n. Then
G acts faithfully on a projective plane P of size |P| = (1 + o(1))n in such a way that for
some point p and line `, S ⊂ {g ∈ G : pg ∈ `}.

Equivalently, the development dev(S) may be completed to a projective plane by
adding o(|G|) points and lines. The following conjecture is slightly weaker.

Conjecture 5.2. Suppose S is a dense maximal Sidon set in a group G of order n. Then
T = G \ (S − S) ∪ 0 is the union of O(1) subgroups.

For example, in Construction 5, T is the union of three subgroups. It may be that this
is the worst case.

We have no idea how to approach these conjectures. Maybe they are false and we are
just bad at constructing examples. We are unable to solve even the following basic cases.

Conjecture 5.3. Let G = F2
p. Suppose S ⊂ G is a Sidon set of size p. Then T =

G \ (S − S) ∪ 0 is a subgroup of order p.

Note that if the conclusion above holds then S is a linear transformation of the graph
of a function. By the results cited in Section 4, it then follows that S is a parabola. This
problem was independently posed by Cilleruelo: see [CRS18, Problem 3].

Conjecture 5.4 (Michael Tait, personal communication). Let p be a (sufficiently large)
prime and let G = Cp2+p+1. Suppose S ⊂ G is a Sidon set of size p. Then S is a subset of
some perfect difference set S ′ of size p+ 1.

If true, however, Conjecture 5.1 places serious constraints on which abelian groups
admit dense Sidon subsets, since we can import the constraints mentioned in Section 4.
One concrete example is the following.

Corollary 5.5. Suppose Conjecture 5.1 holds. Then there is a constant ε > 0 such that
the following is true. Suppose S is a dense Sidon set in an abelian group G of order n,
and suppose |S| > (1− ε)n1/2. Then

|G| ∈ {q2 + q + 1, q2, q2 − 1, q2 − q1/2, q(q − 1), (q − 1)2}

for some integer q > 1. In particular,

lim inf
n→∞

max
{
|S| : S ⊆ Z/nZ Sidon

}
/n1/2 < 1.

Proof. Suppose there is no such constant ε > 0. Then there is a sequence of abelian
groups Gi of order ni and Sidon sets Si ⊂ Gi such that |Si| > (1 − o(1))n

1/2
i and such

that ni is not of any of the given forms. Assuming Conjecture 5.1 holds, Gi acts faithfully
on a projective plane Pi of size |Pi| = (1 + o(1))ni. In particular ni > |Pi|/2. Now the
Dembowski–Piper classification gives a contradiction.

Further refinements are possible if we also assume some of the conjectures discussed
in Section 4. For example, it should be true that if G admits a dense Sidon set then
either it is one of the groups appearing in Proposition 3.1, or |G| = q2 for q a prime power.
Extracting further consequences of this type is left to the reader.
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6 Less dense Sidon sets

6.1 Background

As we have mentioned, random or greedy constructions of Sidon sets in a group of order n
tend to have size only n1/3 or so, while Sidon sets of size (1 − o(1))n1/2 appear to have
very restricted structure. Between these two extremes there is a lot of variety and it is
unclear what if any sort of structure should exist in general.

As in the introduction, we collect some examples of these less dense Sidon sets (both
published and unpublished) and in some cases their justifications, so that we may later
observe a general pattern. In accordance with Ruzsa’s maxim, the constructions all involve
the primes in some way.

First, Ruzsa [Ruz98] constructed an infinite Sidon set containing n
√
2−1+o(1) elements of

{1, . . . , n} for all n.6 The construction starts with the observation that {log p : p prime}
is a Sidon set of real numbers. As observed by Cilleruelo (see Gowers [Gow12]), a finite
version of the same argument produces a Sidon subset of {1, . . . , n} of size n1/2/(log n)3/2.

Construction A (Logarithms of primes). Let PX be the set of all primes p 6 X, for
some parameter X to be determined. For primes p, q, r, s ∈ PX , by unique factorization if
{p, q} 6= {r, s} we have pq 6= rs, so |pq − rs| > 1. Since log x has derivative 1/x it follows
that

| log(pq)− log(rs)| > X−2.

Hence
|3X2 log p+ 3X2 log q − 3X2 log r − 3X2 log s| > 3

and, defining λp = b3X2 log pc,

|λp + λq − λr − λs| > 1.

Thus S = {λp : p ∈ PX} is a Sidon set in {1, . . . , b3X2 logXc}. Taking X so that
3X2 logX ∼ n, we have a Sidon set in {1, . . . , n} of size

|S| = π(X) ∼ X

logX
� n1/2

(log n)3/2
.

The next simple example has not appeared much in the literature. To the best of our
knowledge it was first mentioned by Cilleruelo in [Cil14].

Construction B (Primes in a quotient ring). Let m be a positive integer and set
G = (Z/mZ)×. The set

S = {p mod m : p prime, 1 < p 6 m1/2}
6Any of the finite constructions (Constructions 1 to 5) can be adapted to construction an infinite Sidon

set S ⊂ Z such that lim sup |S ∩ {1, . . . , n}|/n1/2 > 0, but constructing Sidon sets with |S ∩ {1, . . . , n}|
large for all n is a different ball game. Despite considerable attention, the exponent

√
2− 1 has not been

improved.

the electronic journal of combinatorics 30(1) (2023), #P1.33 13



is Sidon: indeed, if four primes 1 < p1, . . . , p4 6 m1/2 obey p1p2 ≡ p3p4 (mod m), i.e.
m | (p1p2 − p3p4), then as |p1p2 − p3p4| < m we must have p1p2 = p3p4 and hence
{p1, p2} = {p3, p4} by unique factorization. We have

|S| = π(m1/2) ∼ 2m1/2/ logm

and |G| = φ(m) which is asymptotically somewhere between m and m/ log logm.

The following is a neat variant of Ruzsa’s construction. See Maldonado [ML11,
Theorem 2.2] for details.

Construction C. For each (rational) prime p ≡ 1 (mod 4), factorize p = ρpρ̄p in Z[i],
normalized so that 0 < =ρp < <ρp, and let φp = arg(ρ4p)/2π ∈ (0, 1/2). Take S = {bnφpc :

p 6 n1/2/4}.
The construction achieves |S| � n1/2/ log n.

The next one was related to us by Ben Green, who heard it from Ellenberg and
Venkatesh.

Construction D. Assume the Generalized Riemann Hypothesis (GRH). Let K =
Q(
√
−D) and let G = Cl(K) be the class group. Let S ⊂ G be a maximal set of

prime ideal classes [p] with Np < D1/4/2 having no solutions to x+ y = 0. Then

|G| 6 D1/2(logD)O(1),

|S| > cD1/4/ logD.

Indeed, for each rational prime p < D1/4/2 which splits (but does not ramify) in K, we
may add exactly one of its prime factors (p) = pp̄ to S, and we claim that different primes
p contribute different classes. Indeed, if p1, p2 < D1/4 and p1 | p1, p2 | p2 and p1 ∼ p2, then
p1p̄2 is principal, say (a+ b

√
−D), and of norm less than D1/2/4, so b = 0, so p1p̄2 = (a).

Comparing norms, we have p1 | a, hence p1p̄1 = (p1) | (a), and by unique factorization we
deduce that p1 = p2.

By much the same argument we claim S is Sidon. Suppose pi ∈ S (1 6 i 6 4) satisfy
pi | pi and p1p2 ∼ p3p4. Then as above, p1p2p̄3p̄4 = (a) for some a ∈ Z. Taking norms, we
deduce that pi|a for each i and hence pip̄i|(a) for each i. By unique factorization, it follows
that p1, p2, p̄3, p̄4 can be arranged into two conjugate pairs. But since p ∈ S ⇒ p̄ /∈ S by
construction, this implies {p1, p2} = {p3, p4}.

We give a variation of Construction A that is also very similar to Construction D.

Construction E. Set K = Q(
√
D). Suppose also that K has class number 1.7 Let

u ∈ O×K be a fundamental unit, and write r = log |u| > 0 for the regulator. Let M = dre.
Define S ⊂ Z/MZ as follows: for each prime p, 1 < p 6 D1/4/10 that splits in K,

factor p = pp̄ where p = a + b
√
D and p̄ denotes the Galois conjugate a − b

√
D. Then

7It is open to show that there are infinitely many such K, even on GRH, but in practice this should
occur a positive fraction of the time.
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add the element b(M/r) log |p/p̄|c mod M to S. (Note this definition is unaffected if we
change p by a unit.)

We claim that different p give different elements of S, as in Section D. Note that if
x = a+ b

√
D ∈ OK then either b = 0 or |x/x̄| > D/4N(x) or |x/x̄| < 4N(x)/D: indeed,

if a, b > 0 then |x| >
√
D/2 and |x/x̄| = |x|2/N(x), and the other cases are analogous.

Hence, if 1 < p1, p2 6 D1/4/10 and
∣∣log |p1/p̄1| − log |p2/p̄2|

∣∣ < 1 we set x = p1p̄2 and
obtain a contradiction unless x ∈ Z, in which case p1 = p2 by unique factorization.

The proof that S is Sidon is by extending this argument in exactly the same way as in
Section D, and we omit the details.

On GRH8, we have r 6 D1/2(logD)O(1), so S is again fairly dense.

6.2 A common generalization

We now observe that Constructions A to E can be placed into a common framework using
(essentially) the notion of Hecke characters.

Let L be a number field with integers OL. Write σ1, . . . , σr : L→ R and τ1, . . . , τs : L→
C for its real and complex embeddings, up to isomorphism. Let ` : L× → (R×)r × (C×)s

be the homomorphism defined by

`(x) = (σ1(x), . . . , σr(x), τ1(x), . . . , τs(x)).

Let m ⊂ OL be an ideal. Let Im denote the abelian group of fractional ideals of L coprime
to m, and for some parameter R let

PR =
{
p ∈ Im : p prime, Np 6 R

}
.

For a metric abelian group H, a group homomorphism φ : Im → H is termed admissible9 if
there is a continuous homomorphism ψ : (R×)r × (C×)s → H such that φ

(
(x)
)

= ψ(`(x))
whenever x ∈ L×, x ≡ 1 (mod m), and σi(x) > 0 for all i ∈ [r]. Finally, let Λ ⊆ H be a
lattice (discrete co-compact subgroup) and write [x] for the nearest point in Λ to x ∈ H,
resolving ambiguity in some arbitrary way. Let

S = {[φ(p)] : p ∈ PR} ⊆ Λ.

If necessary, discard elements from S so that it contains no pair {x,−x}. Then S is a
Sidon if we can show, for a particular choice of m, R,H,Λ, that

(i) [φ(p1)] + [φ(p2)] = [φ(p3)] + [φ(p4)] =⇒ φ(p1) + φ(p2) = φ(p3) + φ(p4),

(ii) p1p2 ≡ p3p4 (mod kerφ) =⇒ p1p2 = p3p4

for all p1, p2, p3, p4 ∈ PR.
Then Constructions A to E are the following special cases (with minor modifications):

8More precisely, the class number formula relates r |Cl(K)| to the residue of ζK(s) at 1, which is
controlled by GRH, and we have assumed |Cl(K)| = 1.

9This condition is natural in the setting of L-functions or class field theory. Its appearance here is
motivated only by the previous examples.
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• in Construction A, L = Q, m = (1), H = R, φ((t)) = log |t|, and Λ = 1/(3R2)Z;

• in Construction B, L = Q, m = (m), H = Λ = (Z/mZ)×, R = m1/2, and
φ((x)) = |x| mod m;

• in Construction C, L = Q(i), m = (1), H = R/Z, φ((z)) = arg(z4)/2π, and
Λ = (1/16R2)Z/Z;

• in Construction D, L = Q(
√
−D), m = (1), H = Λ = Cl(L), and φ the quotient

map I1 → Cl(L).

• in Construction E, L = Q(
√
D), m = (1), H = R/rZ, Λ = (r/M)Z/rZ and φ is the

map (t) 7→ log |t/t̄|.

Here a few “hybrid” examples:

• Let L = Q, m = (m), H = R × (Z/mZ)×, and φ((x)) = (log |x|, x mod m) and
Λ = (m/5R2)Z×(Z/mZ)×. This gives a dense Sidon set by combining the arguments
in Construction A and Construction B.

• Let L = Q(
√
−D), m = (m) for some positive integer m, and H = Im/Pm (the ray

class group), where Pm = {(x) : x ∈ L×, x mod m = 1}. Let φ : Im → H be the
quotient map and let R = D1/4m1/2/2. This gives a dense Sidon set (on GRH) by
combining and extending the observations in Construction B and Construction D.
(Crucially, when writing p1p2p̄3p̄4 = (a+ b

√
−D), now m | b, which given Npi 6 R

forces b = 0.)

• In Construction E, we can similarly augment H to R/rZ× Cl(K) and remove the
inconvenient requirement that |Cl(K)| = 1.

There is a standard correspondence between Hecke characters and characters on the
idèle class group, so it would be equivalent to phrase this construction in terms of idèles.

6.3 Other examples

We finish by mentioning some further examples of somewhat dense Sidon sets that do not
fit the pattern stated above. A precise classification in general seems hopeless for now,
though there are some suggestive analogies.

Construction F. Let K be a finite field, charK > 3, let G = K2, and let

S = {(x, x3) : x ∈ U} ⊆ F2
p

where U ⊂ K is some subset. One can show that S is a Sidon set if and only if U has
at most one solution to x + y = 0, as in Construction D. The largest S can be in this
construction is therefore (q + 1)/2, where |G| = q2.
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Construction G. Recently Forey and Kowalski found a construction involving Jacobian
varieties [FK21]. Let K be a finite field and C a (hyperelliptic) curve of genus two with a
K-rational point. There is a natural map ι from C to its Jacobian variety G, which is a
finite abelian group. It can be shown that S = ι(C(K)) is a Sidon set up to a factor of two,
similarly to the previous example. Moreover, it follows from Weil’s proof of the Riemann
hypothesis over finite fields that |S| ∼ |G|1/2, so we get a Sidon set of size ∼ |G|1/2/2 in A.

This is spiritually related to Construction D or Section 6.2, under the “arithmetic
geometry” analogy between ideal/idèle class groups and divisor class groups.

Construction H. As noted by Gowers [Gow12], if S is a Sidon subset of {1, . . . , n} then
S ′ = {5s+ ε(s) : s ∈ S} is a Sidon subset of {1, . . . , 5n+ 1}, where ε : S → {−1, 0, 1} is
arbitrary. Thus, if S has some algebraic structure, S ′ will have somewhat less, and its
density will be smaller only by a constant factor. As noted by Ben Green, one could also
use an irrational multiplier, such as s 7→

⌊
s
√

2
⌋
.

A Proof of Proposition 3.3

Recall we wish to show that if K = Fq and H 6 PΓL3(K) is an abelian subgroup not
contained in PGL3(K) then |H| � q.

Let G be the subgroup of ΓL3(K) = GL3(K) o Gal(K) upstairs corresponding to H.
Hence Z 6 G, G is not contained in GL3(K), G′ 6 Z, and |G| = (q − 1)|H|. We wish to
show that |G| � q2.

Let G0 = G ∩GL3(K). Fix an element h = gσ ∈ G such that σ ∈ Gal(K) generates
the (nontrivial) image of G in the cyclic group Gal(K). Let k ⊂ K denote the fixed field
of σ, and write d = [K : k] for the degree of K over k; equivalently, d is the order of σ in
Gal(K). Hence, |G| = d |G0|.

If G0 is nonabelian, it is a subgroup of either (viii) or (ix) in Proposition 3.1, so
|G0| � q, |G| � dq 6 q logp q and we are done. We now assume that G0 is abelian.

Consider the function λ : G0 → K× defined by [h, a] = hah−1a−1 = λ(a)I. We observe
it is a group homomorphism. Moreover,

λ(a)a = hah−1 = gσ(a)g−1

and hence
λ(a)3 (det a) = det σ(a) = σ(det a)

so λ(a)3 has the form σ(t)/t for some t ∈ K×, hence NK/k(λ(a)3) = 1. There are |K×|/|k×|
elements u ∈ K× with NK/k(u) = 1, so |λ(G0)| 6 3|K×|/|k×|.

Let G00 = kerλ 6 G0. By definition, for all a ∈ G00 we have

σ(a) = g−1ag. (A.1)

Let Ak = spank(G00) 6M3(K) and AK = spanK(G00) 6M3(K). Note AK is a commuta-
tive K-subalgebra of M3(K), and by a theorem of Schur [Sch05,Mir98]10 any commutative
K-subalgebra of M3(K) has K-dimension at most 3, so dimK(AK) 6 3.

10Alternatively, in dimension 3, this could be extracted from Proposition 3.1 or its proof.
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We claim dimk(Ak) 6 3. Indeed, any a1, a2, a3, a4 ∈ Ak must be linearly dependent over
K (as they lie in AK): say

∑4
i=1 tiai = 0 for some ti ∈ K, not all zero. Applying (A.1),

4∑
i=1

σ(ti) ai = 0

and by iterating this and summing, we obtain

4∑
i=1

trK/k(ti) ai = 0.

Finally, we may apply this replacing ti with uti for any u ∈ K throughout, and u may
be chosen so that some trK/k(uti) is non-zero. Hence a1, . . . , a4 are necessarily linearly
dependent over k, so dimk(Ak) 6 3 as claimed.

It follows that |G00| 6 |k|3 − 1 (as 0 ∈ Ak). Putting everything together, we deduce

|G| 6 3d
|K×|
|k×|

(|k|3 − 1) = 3d(q − 1)(q2/d + q1/d + 1).

When d = 2 this is O(q2) as claimed,11 and for 3 6 d 6 logp q this implies an even stronger
bound.
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