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Abstract

The augmented Bergman complex of a closure operator on a finite set inter-
polates between the order complex of proper flats and the independence complex
of the operator. In 2020, Braden, Huh, Matherne, Proudfoot, and Wang showed
that augmented Bergman complexes of matroids are always gallery-connected, and
recently Bullock, Kelley, Reiner, Ren, Shemy, Shen, Sun, Tao, and Zhang strength-
ened “gallery-connected” to “shellable” by providing two classes of shelling orders:
“flag-to-basis” shellings and “basis-to-flag” shellings.

We show that augmented Bergman complexes of matroids are vertex decom-
posable, a stronger property than shellable. We also prove that the augmented
Bergman complex of any closure operator is shellable if and only if the order com-
plex of its lattice of flats (that is, its non-augmented Bergman complex) is shellable.
As a consequence, an augmented Bergman complex is shellable if and only if it
admits a flag-to-basis shelling. Perhaps surprisingly, the same does not hold for
basis-to-flag shellings: we describe a closure operator whose augmented Bergman
complex is shellable, but has no shelling order with bases appearing first.

Mathematics Subject Classifications: 05B35, 52B22, 06A07

1 Introduction

A closure operator on a finite set E is a function f : 2E → 2E satisfying the following
axioms for every A,B ⊆ E:

C1. A ⊆ f(A),

C2. A ⊆ B implies f(A) ⊆ f(B), and
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C3. f(f(A)) = f(A).

Each closure operator is determined by its lattice of flats (sometimes called closed sets),
which is F(f) := {F ⊆ E | f(F ) = F}. In particular, the meet of two flats is their
intersection, and for any A ⊆ E, f(A) is equal to the intersection of all flats containing
A.

To study the structure of a closure operator, one may associate it to three simplicial
complexes: its Bergman complex ∆f , its independence complex I(f), and its augmented
Bergman complex ∆f . The Bergman complex is the order complex of the lattice F(f),
with the cone vertices f(∅) and E removed, and the independence complex records subsets
of E whose closure gets smaller when any element is deleted. The augmented Bergman
complex “interpolates” between these two complexes, and in particular contains each as
a full-dimensional induced subcomplex. Formally, these objects are defined as follows:

• The Bergman complex ∆f has a vertex xF for every proper nonempty flat F of f ,
and faces of the form {xF1 , xF2 , . . . , xF`

} where f(∅) ( F1 ( F2 ( · · · ( F` ( E is a
flag, i.e. a chain of flats of f . We will sometimes refer to the cone over the Bergman
complex, denoted cone(∆f ), in which we allow F1 = f(∅), or equivalently include
the cone vertex xf(∅).

• The independence complex I(f) has a vertex yi for every i ∈ E, and its faces are
of the form {yi | i ∈ I} where I ⊆ E is an independent set of f , which means that
f(I \ {i}) ( f(I) for every i ∈ I. Independent sets with f(I) = E are called bases.

• The augmented Bergman complex ∆f has vertex set

{yi | i ∈ E} t {xF | F is a proper flat of f}

and its faces are
{yi | i ∈ I} t {xF1 , . . . , xF`

}
where I is an independent set of f , and f(I) ⊆ F1 ( F2 ( · · · ( F` ( E.

Observe that cone(∆f ) is the induced subcomplex of ∆f on the xF vertices, and I(f)
is the induced subcomplex of ∆f on the yi vertices.

An important special case is when f is the closure operator of a matroid M . In this
case I(f) is the usual independence complex of M , and ∆f is the usual Bergman complex
of M , i.e. the order complex of the proper part of its lattice of flats. We will use ∆M

to denote the augmented Bergman complex in this case. Augmented Bergman complexes
of matroids played an important role in the recent foundational work of Braden, Huh,
Matherne, Proudfoot, and Wang [6, 5], in which it was shown that they are connected in
codimension-1 (or “gallery connected”). Recently, Bullock, Kelley, Reiner, Ren, Shemy,
Shen, Sun, Tao, and Zhang [7] strengthened this result by showing that the augmented
Bergman complex of a matroid is always shellable. In particular, they showed that the
augmented Bergman complex of a matroid admits two classes of shelling orders: flag-to-
basis shellings in which maximal flags appear first and bases appear last, and basis-to-flag
shellings in which the reverse occurs.
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We will show that the augmented Bergman complex of a matroid is vertex decom-
posable, a stronger property than shellability. For formal definitions of shellability and
vertex decomposability, see Section 2.

Theorem 1. The augmented Bergman complex of a matroid is vertex decomposable.

The proof of Theorem 1 proceeds by deleting vertices corresponding to flats according
to a linear extension of the lattice of flats. One side effect of this strategy is that we obtain
a variety of induced subcomplexes of the augmented Bergman complex that are vertex
decomposable. Our proof depends on the matroid structure of M , and the fact that the
independence complex and Bergman complex of a matroid are both vertex decomposable.
See Proposition 6 for details.

We also show, for any closure operator f , that shellability of ∆f is completely de-
termined by shellability of ∆f . In particular, whenever ∆f is shellable we construct a
shelling order of ∆f with maximal flags appearing first and bases last. Our shelling or-
ders are a very slight generalization of the flag-to-basis shellings constructed by [7] in the
matroidal case, see Remark 7. Below, f/F is the contraction of f by a proper flat F ,
defined formally in Section 2.

Theorem 2. Let f be a closure operator on a finite set E. The following are equivalent:

(i) The Bergman complex ∆f is shellable,

(ii) For every proper flat F of f , the Bergman complex ∆f/F is shellable,

(iii) The augmented Bergman complex ∆f admits a shelling order with maximal flags
appearing first and bases appearing last, and

(iv) The augmented Bergman complex ∆f is shellable.

Given the equivalence of (iii) and (iv) above, and the results of [7], one might also
expect that ∆f is shellable if and only if it admits a basis-to-flag shelling. However,
the following example refutes this by providing a closure operator whose bases do not
generate a shellable complex. In fact, the bases of this operator are exactly the maximal
independent sets, so ∆f is shellable while I(f) is not.

Example 3. Let E = {1, 2, 3, 4, 5} and let f be the closure operator whose proper flats
are the empty set, all singleton sets, and the pairs {1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, and
{4, 5}. One may check that the independence complex of f consists of a complete graph
on E, plus the triangles {1, 2, 3} and {3, 4, 5}, and the maximal independent sets are
exactly the bases. Note that I(f) is not shellable because the two triangles share only a
single vertex.

Figure 1 shows the augmented Bergman complex of f , in three layers. The bottom
layer is cone(∆f ), the top layer is I(f), and the middle layer consists of the “hybrid”
faces in ∆f , which contain vertices corresponding to both flats and ground set elements.
One can form a shelling order of ∆f by first shelling the bottom layer, then adding the
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facets from the middle layer which share an edge with the bottom, then adding the facets
in the middle layer which share only one vertex with the bottom layer, and finally adding
the facets from the top layer in any order. Our proof of Theorem 2 will generalize this
approach to shelling the augmented Bergman complex.

Figure 1: The augmented Bergman complex of the operator f from Example 3, broken
into three layers.

2 Background

We first recall some general definitions and notation regarding simplicial complexes.
A (not necessarily pure) simplicial complex ∆ is shellable if its facets can be ordered
σ1, σ2, . . . , σk so that for 2 6 i 6 k the simplicial complex

〈σ1, σ2, . . . , σi−1〉 ∩ 〈σi〉
is pure of dimension dim(σi)− 1. Above, 〈σ1, σ2, . . . , σi−1〉 denotes the simplicial complex
generated by a collection of faces. The deletion of a face σ in ∆ is the simplicial complex

del∆(σ) := {τ \ σ | τ ∈ ∆}.
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The link of a face σ in ∆ is the simplicial complex

lk∆(σ) := {τ \ σ | σ ⊆ τ ∈ ∆}.

If ∆ and Γ are simplicial complexes on disjoint vertex sets, the join of ∆ and Γ is the
simplicial complex

∆ ∗ Γ := {σ ∪ τ | σ ∈ ∆ and τ ∈ Γ}.

Definition 4. A simplicial complex ∆ is vertex decomposable if ∆ is a simplex (including
the possibility ∆ = {∅}) or, inductively, if there is a vertex v of ∆ so that

(i) del∆(v) and lk∆(v) are both vertex decomposable, and

(ii) every facet of del∆(v) is also a facet of ∆.

A vertex satisfying these conditions is called a decomposing vertex. A vertex that satis-
fies (ii) is called a shedding vertex.

Note that v is a shedding vertex if and only if the following holds: for each facet σ
containing v, there is another facet τ with σ \ τ = {v}.

Every vertex decomposable complex is shellable. Indeed, given a decomposing vertex
v in ∆, one may form a shelling order

σ1, σ2, . . . , σk, τ1 ∪ {v}, τ2 ∪ {v}, . . . , τ` ∪ {v}

of ∆, where the σi are a shelling of del∆(v) and the τj are a shelling of lk∆(v). Furthermore,
if ∆ and Γ are vertex decomposable, then so is ∆ ∗ Γ, a fact that we will make use of
later.

Now let us establish some conventions and definitions that are specific to augmented
Bergman complexes and closure operators. If F is a flat of a closure operator f , the
contraction of f by F is the closure operator f/F : 2E\F → 2E\F with (f/F )(A) :=
f(A ∪ F ) \ F . The restriction of f to F is the closure operator f |F : 2F → 2F defined by
(f |F )(A) := f(A). Observe that the flats of f/F are exactly the flats of f that contain
F , but with the elements of F removed. Moreover, I(f |F ) consists of the faces of I(f)
that are contained in F . Lastly, note that when f is the closure operator of a matroid
M , f/F is the closure operator arising from the contraction of M by F (denoted M/F ),
and f |F is the closure operator arising from the restriction of M to F (denoted M |F ).

Following [7], we will denote faces of the augmented Bergman complex by pairs φ =
(I, F•) where I is an independent set and F• denotes a flag F1 ( F2 ( · · · ( F` of proper
flats that is compatible with I in the sense that I ⊆ F1. We sometimes abuse notation and
regard F• as a flag of proper flats of f/F1. Observe that if φ is a facet, then f(I) = F1,
or F• is empty and f(I) = E.

We need one last observation regarding augmented Bergman complexes. The following
lemma is straightforward, but plays a crucial role in our later proofs.
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Lemma 5. Let F be a proper flat of a closure operator f . Then

lk∆f
(xF ) ∼= ∆f |F ∗∆f/F .

In words, the link of xF in the augmented Bergman complex of f is the join of the aug-
mented Bergman complex of f |F with the Bergman complex of f/F .

Proof. The faces (I, F•) of lk∆f
(xF ) are exactly those for which I ⊆ F and F can be

inserted into the chain F•. We may write these faces uniquely as (I, F ′•) t F ′′• where F ′•
consists of the flats in F• that are properly contained in F , and F ′′• consists of the flats
in F• that properly contain F . Note that the pairs (I, F ′•) are exactly the faces of the
augmented Bergman complex of f |F , while the chains F ′′• are exactly the faces of ∆f/F .
This proves the result.

3 Vertex Decomposability

We are now ready to prove Theorem 1. In fact, we will prove a somewhat stronger result,
arguing that the augmented Bergman complex of a matroid has a variety of induced
subcomplexes that are vertex decomposable, each with concrete choices of decomposing
vertex. Below, an upper-set of proper flats L is a collection of proper flats so that if F ∈ L
and F ′ is a proper flat containing F , then F ′ ∈ L. The complexes ∆M(L) appearing below
mirror the definition of a Bergman fan associated to an upper-set (or order filter) given
by Adiprasito, Huh, and Katz [1, Definition 3.2], but we make no restriction on which
independent sets are included.

Note that Theorem 1 follows from Proposition 6 by choosing L = F(M) \ {E}.

Proposition 6. Let M be a matroid on ground set E. Let L be an upper-set of proper
flats, and let ∆M(L) be the subcomplex of ∆M induced on the vertex set {yi | i ∈ E}t{xF |
F ∈ L}. Then ∆M(L) is vertex decomposable. Moreover, if F0 is a minimal element of
L, then xF0 is a decomposing vertex of ∆M(L).

Proof. We work by induction on the size of L. When L is empty, ∆M(L) is just I(M). The
independence complex of a matroid is always vertex decomposable (Provan and Billera [8]
observed that any vertex is a decomposing vertex) and so the result follows in this case.
For the inductive step, suppose that L is nonempty and let F0 be a minimal element of
L. The deletion del∆M (L)(xF0) is equal to ∆M(L \ {xF0}), which is vertex decomposable
by inductive hypothesis.

By Lemma 5, the link of xF0 in ∆M is ∆M |F0
∗ ∆M/F0

. In ∆M(L) we have deleted
all vertices corresponding to flats contained in F0, but no vertices corresponding to flats
containing F0. Thus when considering the link of xF0 in ∆M(L) the first term in the join
above becomes I(M |F0) while the second term is unaltered, and we have

lk∆M (L)(xF0)
∼= I(M |F0) ∗∆M/F0

.

As noted above, the independence complex of a matroid is vertex decomposable. More-
over, the lattice of flats of a matroid admits a CL-labeling (see [4, Section 7.6]), which
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implies that its order complex (i.e. the Bergman complex of the matroid) is vertex de-
composable (see [3, Theorem 11.6]). Thus both terms in the join above are vertex decom-
posable, and we conclude that lk∆M (L)(xF0) is vertex decomposable.

It remains to argue that xF0 is a shedding vertex. Let (I, F•) be a facet of ∆M(L)
that contains xF0 . Then I ⊆ F0, and F0 is equal to the first element of the chain F•. If
F0 is the only flat in F• then—because M is a matroid—we may choose a ∈ E \ I so that
I ∪ {a} is an independent set. Then the facet (I ∪ {a}, ∅) contains all vertices of (I, F•)
except for xF0 . If F• is a chain F0 = F1 ( F2 ( · · · ( F`, then—again, because M is a
matroid—we may choose a ∈ F2 \ I so that I ∪{a} is an independent set. Define F ′• to be
the flag F2 ( · · · ( F`, and observe that the facet corresponding to (I ∪ {a}, F ′•) contains
all vertices of (I, F•) except for xF0 , proving the result.

4 Shellability

We now proceed to our proof of Theorem 2. The main substance of the argument lies in
proving that (ii) implies (iii). We apply techniques similar to [7] to construct the desired
shelling order, but the details of our proof are somewhat different since we are not working
with the closure operator of a matroid.

Theorem 2. Let f be a closure operator on a finite set E. The following are equivalent:

(i) The Bergman complex ∆f is shellable,

(ii) For every proper flat F of f , the Bergman complex ∆f/F is shellable,

(iii) The augmented Bergman complex ∆f admits a shelling order with maximal flags
appearing first and bases appearing last, and

(iv) The augmented Bergman complex ∆f is shellable.

Proof. Clearly (iii) implies (iv). Furthermore, (iv) implies (i) since the link of xf(∅) in ∆f

is ∆f , and shellability is inherited by links. To see that (i) implies (ii), first note that
the link of xF in ∆f is ∆f |F ∗∆f/F , and a join of two complexes is shellable if and only
if both complexes are shellable (see [3, Remark 10.22]). Thus shellability of ∆f implies
shellability of ∆f |F ∗∆f/F for every proper flat, which in turn implies shellability of ∆f/F

as desired. It remains to argue that (ii) implies (iii).
Suppose that (ii) holds, and fix a shelling order for every Bergman complex ∆f/F

where F is a proper flat. Let < be a linear extension of the independence complex I(f)—
that is, < is a total order on independent sets so that I < I ′ whenever I ⊆ I ′. Then
define a total order ≺ on the facets of ∆f as follows. If φ = (I, F•) and φ′ = (I ′, F ′•) both
have nonempty flags, then φ ≺ φ′ whenever

(a) I < I ′, or

(b) I = I ′ and F• \ {xf(I)} precedes F ′• \ {xf(I)} in our fixed shelling of ∆f/f(I).
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Extend ≺ to facets with empty flags by placing them after the facets with nonempty flags,
in any order. Observe that ≺ begins with with facets of the form (∅, F•), i.e. maximal
flags, and ends with facets of the form (I, ∅), i.e. bases.

We must argue that ≺ is a shelling order. This amounts to showing that for every φ
and φ′ with φ ≺ φ′ we can construct φ′′ so that φ′′ ≺ φ′, φ ∩ φ′ ⊆ φ′′, and |φ′ \ φ′′| = 1.
We consider two cases.

Case 1: Suppose that I 6= I ′. Our ordering guarantees that I ′ is not contained in I, so
we may choose a ∈ I ′ \ I. Define I ′′ = I ′ \{a}, and note that f(I ′′) is a flat properly
contained in f(I ′). Hence we may choose a flag F ′′• which is maximal among flags
whose minimal element is f(I ′′) and which contain F ′•. The facet φ′′ = (I ′′, F ′′• )
precedes φ′ since I ′′ < I ′, and it contains every vertex of φ′ except ya. Since ya is
not a vertex of φ, we see that φ′′ contains φ ∩ φ′.

Case 2: Suppose that I = I ′. Then F• \{xf(I)} precedes F ′• \{xf(I)} in our fixed shelling
of ∆f/f(I), and we may choose a facet of ∆f/f(I) that precedes the latter facet,
contains all but one of its vertices, and contains the intersection of these two facets.
Let F ′′• be the result of adding xf(I) to this facet, and note that φ′′ = (I ′′, F ′′• ) is a
facet of ∆f , where I ′′ = I. By construction, φ′′ precedes φ′, contains φ ∩ φ′, and
contains all but one vertex of φ′.

We conclude that ≺ is a shelling order, and the theorem follows.

Remark 7. Conditions (a) and (b) above are analogous to the conditions in the definition
of a flag-to-basis shelling given in [7, Definition 3.1]. Our conditions are very slightly more
general, in that we allow for linear extensions of the independence complex that are not
necessarily monotone in the size of independent sets. However, if one restricts to linear
extensions that are monotone in the size of independent sets, then our shelling order is
exactly a flag-to-basis shelling.

Remark 8. In any shelling order for a simplicial complex, each facet F can be associated
to its restriction set, denoted R(F ), which is the unique minimal face contained in F but
no previous facet. The shelling order ≺ that we constructed in the proof of Theorem 2
has the advantage that its restriction sets can be described succinctly. One may verify
that for a facet φ = (I, F•) with F• nonempty, we have R(φ) = I tR(F• \ {xF1}), where
R(F• \ {xF1}) is the restriction set of F• \ {xF1} in the fixed shelling of ∆f/F1

used to
define ≺. Furthermore, if F• is empty, then R(φ) is simply I.

For pure shellable complexes, restriction sets can be used to compute the h-vector,
an important numerical invariant of the complex. In this context it turns out that hi,
the i-th entry of the h-vector, is exactly the number of facets whose restriction set has
size i (see Section 2 of Chapter III in [9]). Often it is convenient to record the h-vector
of a d-dimensional complex ∆ by the h-polynomial h(∆, t) :=

∑d
i=0 hit

i. Our observation
about the restriction sets of the shelling order above yields the following formula for the
h-polynomial of a shellable augmented Bergman complex, provided that it is additionally
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pure (which happens, for example, when f is the closure operator of a matroid):

h(∆f , t) =
∑

I∈I(f)

t|I|h(∆f/f(I), t).

Above, h(∆f/f(I), t) = 1 whenever I is a basis.
We conclude by noting that this formula can fail when ∆f is not pure. The closure

operator from Example 3 has an augmented Bergman complex that is shellable, but whose
h-vector is equal to (1, 14, 19,−2). However, the Bergman complexes of its contractions
by proper flats are all pure and shellable, so the formula above would give nonnegative
coefficients for its h-polynomial. Thus the formula above does not hold for this closure
operator, despite the fact that its augmented Bergman complex is shellable. It may be
possible to obtain similar formulas for nonpure shellable complexes using the h-triangle
defined by Björner and Wachs [2, Section 3].
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