The Davenport Constant of the Group $C_{2}^{r-1} \oplus C_{2 k}$

Kevin Zhao
School of Mathematics and Statistics
Nanning Normal University
Nanning, China
Center for Applied Mathematics of Guangxi
Nanning Normal University
Nanning, China
zhkw-hebei@163.com

Submitted: Apr 16, 2022; Accepted: Dec 27, 2022; Published: Mar 10, 2023
(C) The author. Released under the CC BY-ND license (International 4.0).

Abstract

Let G be a finite abelian group. The Davenport constant $\mathrm{D}(G)$ is the maximal length of minimal zero-sum sequences over G. For groups of the form $C_{2}^{r-1} \oplus C_{2 k}$ the Davenport constant is known for $r \leqslant 5$. In this paper, we get the precise value of $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)$ for $k \geqslant 149$. It is also worth pointing out that our result can imply the precise value of $\mathrm{D}\left(C_{2}^{4} \oplus C_{2 k}\right)$.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

Let G be an additively written finite abelian group. A sequence α over G is a multi-set with elements from G, i.e., $\alpha=g_{1} \cdots g_{\ell}$, where the repetition of elements are allowed and their order are disregarded. The number ℓ is called the length of α, also denoted by $|\alpha|$ sometimes. In particular $\ell=0$ when α is empty. One can also write a sequence as $\alpha=\prod_{g \in G} g^{\mathrm{v}_{g}(\alpha)}$, where $\mathrm{v}_{g}(\alpha) \in \mathbb{Z}_{\geqslant 0}$ is called the multiplicity of g in α. A sequence T is called a subsequence of α if $\mathrm{v}_{g}(T) \leqslant \mathrm{v}_{g}(\alpha)$ for every $g \in G$, and T is a proper subsequence of α if $\mathrm{v}_{g}(T)<\mathrm{v}_{g}(\alpha)$ for at least one g. Althrough this paper, when we refer to sequences or subsequences, we always mean nonempty ones unless otherwise stated. A zero-sum sequence is a sequence such that the sum of all its elements is equal to the zero element of G. A minimal zero-sum sequence is a zero-sum sequence over G such that none of its proper subsequences is zero-sum. The Davenport constant of G is defined as the maximal length of all minimal zero-sum sequences over G, denoted by $\mathrm{D}(G)$.

In general it is a hard problem to determine this constant $\mathrm{D}(G)$, so far its actual value is only known for a few types of groups. For a finite abelian group G, we have $|G|=1$ or
$G=C_{n_{1}} \oplus C_{n_{2}} \cdots \oplus C_{n_{r}}$ with $1<n_{1}\left|n_{2} \cdots\right| n_{r}$. Set

$$
\mathrm{D}^{*}(G):=1+\sum_{i=1}^{r}\left(n_{i}-1\right) .
$$

It is known that $\mathrm{D}(G) \geqslant \mathrm{D}^{*}(G)$ for all finite abelian groups G, and the equality happens if G is a p-group or G is of rank one or two. Also the equality $\mathrm{D}(G)=\mathrm{D}^{*}(G)$ is conjectured to be true for groups G of rank three or $G=C_{n}^{r}$ (see, e.g.,[4] Conjecture 3.5). For more results, one can refer [1, 2, 5, 6]. In particular, van Emde Boas [1] proved the following result:

Lemma 1 ([1]). Let p be a prime and m, n be positive integers. If $G=C_{m p^{n}} \oplus H$ with H being a finite abelian p-group and $p^{n} \geqslant D^{*}(H)$, then $\mathrm{D}(G)=\mathrm{D}^{*}(G)$.

It is interesting to study the Davenport constant for the case $p^{n}<D^{*}(H)$ in the above lemma. Hence, the groups of the form $G=C_{2}^{r-1} \oplus C_{2 k}$ draws much attention. For sufficiently large r, A. Plagne and W . Schmid [9] got an upper bound of $\mathrm{D}(G)$. For $r \leqslant 4$, it is known that $\mathrm{D}(G)=\mathrm{D}^{*}(G)$. For $r=5$ and $k \geqslant 70$, F. Chen and S. Savchev [11] proved that $\mathrm{D}(G)=\mathrm{D}^{*}(G)+1$ if k is odd, otherwise, $\mathrm{D}(G)=\mathrm{D}^{*}(G)$. Actually for $r \geqslant 5$ and k odd it is known that $\mathrm{D}(G)>\mathrm{D}^{*}(G)$, and a lower bound for the gap between these two constants is given in [8], (see also [3, 7]). In [10], W. Schmid also studied the inverse problem of $\mathrm{D}(G)$ for $r=3$. In this paper, we determine the precise value of $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)$ for $k \geqslant 149$.

Theorem 2. For each $k \geqslant 149$, the Davenport constant of the group $C_{2}^{5} \oplus C_{2 k}$ is

$$
\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)= \begin{cases}2 k+5=\mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right), & \text { if } k \text { is even } . \\ 2 k+6=\mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right)+1, & \text { if } k \text { is odd } .\end{cases}
$$

In [11], the authors mainly research the structure of long minimal zero-sum sequences over $C_{2}^{r-1} \oplus C_{2 k}$ with $k \geqslant\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil-r+2$ (the condition imposed on k occurs in section 5 of [11]). In this paper, we improve their method and have the same condition imposed on k. Besides, most of the proofs that follow require k to be relatively large as compared to r : the modest $k \geqslant 2 r^{2}$ suffices for the purpose. Fix

$$
k_{0}=\max \left\{2 r^{2},\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil-r+2\right\}
$$

and let $k \geqslant k_{0}$. To prove Theorem 2, we need the following result which is of general interest for the study of Davenport's constant of groups of the form $C_{2}^{r-1} \oplus C_{2 k}$.

Theorem 3. Let $G=C_{2}^{r-1} \oplus C_{2 k}$ with $k \geqslant k_{0}$ and let α be a minimal zero-sum sequence of length $\mathrm{D}(G)$. If $\mathrm{D}(G)>\mathrm{D}^{*}(G)$ and there exists a unit block $U \mid \alpha$ with $d(U) \geqslant r-3$, then k is odd.

Remark: For a unit block and $d(U)$ in Theorem 3, one can see Definition 7 and the definition of Defect in section 2, respectivrly.

For determining the precise value of $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)$, we suppose $\mathrm{D}(G)>\mathrm{D}^{*}(G)$ and let α be a minimal zero-sum sequence of length $\mathrm{D}(G)$ over G, where $G=\mathrm{D}\left(C_{2}^{r-1} \oplus C_{2 k}\right)$ with $r \geqslant 6$. In section 2 , we improve Chen's result" $2 \leqslant d\left(W_{\mathscr{F}}\right) \leqslant r-2$ " to " $3 \leqslant d\left(W_{\mathscr{F}}\right) \leqslant$ $r-2$ ". In section 3, we prove that if $d\left(W_{\mathscr{F}}\right)=r-2$ or $r-3$, then k is odd, i.e., Theorem 3. Besides, we completely characterize the structure of α with $d\left(W_{\mathscr{F}}\right)=r-2$ or $r-3$. In section 4 , let $r=6$, and then we have $r-3=3 \leqslant d\left(W_{\mathscr{F}}\right) \leqslant r-2$, i.e., k is odd by Theorem 3. Hence, we have $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)=\mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right)$ for k even. By the structure of α with $d\left(W_{\mathscr{F}}\right)=r-2$ or $r-3$, we can easily prove that $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right) \leqslant \mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right)+1$ for k odd. It has been known that $\mathrm{D}\left(C_{2}^{r-1} \oplus C_{2 k}\right) \geqslant \mathrm{D}^{*}\left(C_{2}^{r-1} \oplus C_{2 k}\right)+1$ for k odd and $r \geqslant 5$. The proof is complete.

2 Preliminaries

Let

$$
\alpha=g_{1} \cdots \cdot g_{\ell}=\prod_{g \in G} g^{v_{g}(\alpha)}
$$

be a sequence over G. Denote by $\operatorname{Supp}(\alpha)=\left\{g: \mathrm{v}_{g}(\alpha) \geqslant 1\right\}$. The sum and the sumset of a sequence α are denoted by $\sigma(\alpha)$ and $\sum(\alpha)$ respectively. For a subsequence β of α we say that α is divisible by β or β divides α, and write $\beta \mid \alpha$. The complementary subsequence of β is denoted by $\alpha \beta^{-1}$. For subsequences β, γ of α, if their union $\beta \gamma$ is still a subsequence of α, then we say that β, γ are disjoint subsequences of α, and call $\beta \gamma$ the product of β, γ.

Let a sequence α be the product of its disjoint subsequences $\alpha_{1}, \ldots, \alpha_{m}$. We say that the α_{i} 's form a decomposition of α with factors $\alpha_{1}, \ldots, \alpha_{m}$ and write $\alpha=\prod_{i=1}^{m} \alpha_{i}$. Quite often we study the sequence with terms $\sigma\left(\alpha_{1}\right), \ldots, \sigma\left(\alpha_{m}\right)$. For convenience of speech it is also said to be a decomposition of α with factors $\alpha_{1}, \ldots, \alpha_{m}$; sometimes we call terms $\alpha_{1}, \ldots, \alpha_{m}$ themselves.

Let H be a subgroup of G. Each sequence over G with sum in H is called an H-block. For a sequence that is an H-block, an H-decomposition of the sequence is a decomposition whose factors are H-blocks. An H-block is minimal if its projection onto the factor group G / H under the natural homomorphism is a minimal zero-sum sequence. An H decomposition whose factors are minimal H-blocks is called an H-factorization.

Let $G=C_{2}^{r-1} \oplus C_{2 k}$ and $a \in G$ be an element of order $2 k$. We consider the subgroup $\langle a\rangle$ of G. For convenience, " $\langle a\rangle$-block", " $\langle a\rangle$-decomposition" and " $\langle a\rangle$-factorization" are usually abbreviated to "block", "decomposition", "factorization". However decomposition also keeps its general meaning, a partition of a sequence into arbitrary disjoint subsequences. The context excludes ambiguity. Denote by \bar{t} the coset $t+\langle a\rangle$, and $u \sim v$ if $\bar{u}=\bar{v}$. For a sequence $\gamma=\prod t_{i}$ over G, denote by $\bar{\gamma}$ the sequence $\prod \bar{t}_{i}$ over $G /\langle a\rangle$, and $\langle\bar{\gamma}\rangle$ the subgroup of $G /\langle a\rangle$ generated by all terms $\bar{\gamma}$. For any $\langle a\rangle$-block B, there exists a unique $x \in[1,2 k]$ such that $\sigma(B)=x a$. Write $x_{a}(B):=x$. Let α be a minimal zero-sum sequence and $\alpha=\prod_{i=1}^{n} B_{i}$ be a $\langle a\rangle$-decomposition of α. We call $\{a\}$ a basis of $\prod_{i=1}^{n} B_{i}$ if $\sum_{i=1}^{n} x_{a}\left(B_{i}\right)=2 k$. We have the following important proposition.

Proposition 4 ([11], Proposition 4.1). Let $G=C_{2}^{r-1} \oplus C_{2 k}$ where $r \geqslant 2$, and let α be a minimal zero-sum sequence over G with length $|\alpha| \geqslant k+\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil+1$. There exists an order- $2 k$ term a of α with the following properties:
(i) Every $\langle a\rangle$-decomposition of α has basis $\{a\}$.
(ii) If $B \mid \alpha$ is a minimal $\langle a\rangle$-block, then $0<x_{a}(B)<k$.
(iii) If $B \mid \alpha$ is a $\langle a\rangle$-block and $B=B_{1} \cdots B_{m}$ is a $\langle a\rangle$-decomposition of B, then $x_{a}(B)=$ $x_{a}\left(B_{1}\right)+\cdots+x_{a}\left(B_{m}\right)$.
(iv) If $\alpha=B_{1} \cdots B_{m}$ is a $\langle a\rangle$-factorization of α, then $x_{a}(\alpha)=2 k=x_{a}\left(B_{1}\right)+\cdots+$ $x_{a}\left(B_{m}\right)$ with each $x_{a}\left(B_{i}\right) \in(0, k)$.
(v) Every $\langle a\rangle$-block $B \mid \alpha$ with $x_{a}(B)=1$ is minimal.

For the rest of the paper, we let α be a minimal zero-sum sequence of maximal length in $C_{2}^{r-1} \oplus C_{2 k}$. Obviously α has Proposition 4. It follows since by $k \geqslant k_{0}=\max \left\{2 r^{2},\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil-r+2\right\} \geqslant\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil-r+2$

$$
|\alpha|=\mathrm{D}(G) \geqslant \mathrm{D}^{*}(G)=2 k+r-1 \geqslant k+\left\lceil\frac{3 r-1}{r+1}\left(2^{r}-1\right)\right\rceil+1
$$

Fix an order $2 k$ term a of α as Proposition 4 predicted. Recall two unconventional notations from [11].

The DEFECT. For every $\langle a\rangle$-block $B \mid \alpha$, define $d(B)=|B|-x_{a}(B)$ and call $d(B)$ the defect of B. As indicated in Proposition 4, the defect is additive: for each $\langle a\rangle$ decomposition $B=\prod_{i=1}^{m} B_{i}$ of B one has $d(B)=\sum_{i=1}^{m} d\left(B_{i}\right)$. In particular the entire α is an $\langle a\rangle$-block with defect $d(\alpha)=|\alpha|-x_{a}(\alpha)=|\alpha|-2 k$ and $|\alpha|=2 k+d(\alpha)$.

The δ-QUANTITY. Let $B \mid \alpha$ be a $\langle a\rangle$-block and $X \mid B$ a proper subsequence. Then $X^{\prime}=B X^{-1}$ is also proper; sometimes we say that $B=X X^{\prime}$ is a proper decomposition of B. As $\sigma(X)$ and $\sigma\left(X^{\prime}\right)$ are in the same $\langle a\rangle$-coset, they differ by a multiple of a. Hence there is a unique integer $\delta_{B}(X) \in[0, k]$ such that $\sigma\left(X^{\prime}\right)=\sigma(X)+\delta_{B}(X) a$ or $\sigma(X)=\sigma\left(X^{\prime}\right)+\delta_{B}(X)$ a. This $\delta_{B}(X)$ is called δ-quantity of $B=X X^{\prime}$, and is denoted by $\delta(X)$ for short.

If, e.g., $\sigma\left(X^{\prime}\right)=\sigma(X)+\delta(X) a$, then $\sigma(X)+\sigma\left(X^{\prime}\right)=x_{a}(B) a$ leads to the relations $2 \sigma\left(X^{\prime}\right)=\left(x_{a}(B)+\delta(X)\right) a$ and $2 \sigma(X)=\left(x_{a}(B)-\delta(X)\right) a$. As $2 \sigma(X) \in 2 G$ and $2 a$ generates $2 G$, we see that $\delta(X)$ and $x_{a}(B)$ are of the same parity. It follows that there is an element e in the $\langle a\rangle$-coset $\overline{\sigma(X)}$ such that $2 e=0$ and

$$
\left\{\sigma(X), \sigma\left(X^{\prime}\right)\right\}=\left\{e+\frac{1}{2}\left(x_{a}(B)-\delta(X)\right) a, e+\frac{1}{2}\left(x_{a}(B)+\delta(X)\right) a\right\}
$$

Define the lower member X^{*} of the decomposition $B=X X^{\prime}$ (of the pair X, X^{\prime}). Namely let $X^{*}:=X$ or X^{\prime} according as $\sigma(X)=e+\frac{1}{2}\left(x_{a}(B)-\delta(X)\right) a$ or $\sigma\left(X^{\prime}\right)=e+\frac{1}{2}\left(x_{a}(B)-\right.$ $\delta(X)) a$. Thus $\sigma\left(X^{*}\right)=e+\frac{1}{2}\left(x_{a}\left(B_{i}\right)-\delta\left(X_{i}\right)\right) a$. Note that if $\delta(X)=0$, then either one of X and X^{\prime} can be taken as X^{*}.

For the two notions, we have the following frequently-used results.
Lemma 5 ([11], Corollary 5.3). Every $\langle a\rangle$-block in α has nonnegative defect.

Lemma 6 ([11], Lemma 4.2). Let B_{1}, \ldots, B_{m} be disjoint blocks in α with $x_{a}\left(B_{1}\right)+\cdots+\underline{x_{a}\left(B_{m}\right)<k \text {, and let } B_{i}=X_{i} X_{i}^{\prime} \text { be proper decompositions, } i=1, \ldots, m \text {, }, \text {, }{ }^{\sigma}\left(X_{i}\right)}$ such that $\sum_{i=1}^{m} \overline{\sigma\left(X_{i}\right)}=\overline{0}$. Then
(i) The product of the lower members $X_{1}^{*}, \ldots, X_{m}^{*}$ is a block dividing $B_{1} \cdots B_{m}$ with a-coordinate

$$
x_{a}\left(X_{1}^{*} \cdots X_{m}^{*}\right)=\frac{1}{2}\left(\sum_{i=1}^{m} x_{a}\left(B_{i}\right)-\sum_{i=1}^{m} \delta\left(X_{i}\right)\right)
$$

In addition $\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant \sum_{i=1}^{m} x_{a}\left(B_{i}\right)-2$.
(ii) For each $i=1, \ldots, m$ there exists an element $e_{i} \in \overline{\sigma\left(X_{i}\right)}$ such that $2 e_{i}=0$,

$$
\left\{\sigma\left(X_{i}\right), \sigma\left(X_{i}^{\prime}\right)\right\}=\left\{e_{i}+\frac{1}{2}\left(x_{a}\left(B_{i}\right)-\delta\left(X_{i}\right)\right) a, e_{i}+\frac{1}{2}\left(x_{a}\left(B_{i}\right)+\delta\left(X_{i}\right)\right) a\right\}
$$

and e_{1}, \ldots, e_{m} satisfy $e_{1}+\cdots+e_{m}=0$.
Definition 7. An (ℓ, s)-block means a minimal $\langle a\rangle$-block B with length ℓ and sum sa with $\ell>s$. That is $d(B)>0$ is assumed. Obviously, $\ell \leqslant r$. The phrase " B is an (ℓ, s)-block" is shortened to " B is (ℓ, s) " whenever convenient. We write $(*, s)$-block or $(\ell, *)$-block if ℓ or s is irrelevant. Furthermore a unit block is a product of ($*, 1$)-blocks.

We have the following corollary from Lemma 6.
Corollary 8. Let $U \mid \alpha$ be a unit block, and B_{1}, \ldots, B_{m} be disjoint minimal blocks in αU^{-1} with positive defect such that $x_{a}(U)+\sum_{i=1}^{m} x_{a}\left(B_{i}\right)<k$. If there exist a decomposition $U=Y Y^{\prime}$ and proper decompositions $B_{i}=X_{i} X_{i}^{\prime}(1 \leqslant i \leqslant m)$ such that $Y X_{1} \cdots X_{m}$ is an $\langle a\rangle$-block, then $\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant \sum_{i=1}^{m} x_{a}\left(B_{i}\right)-2$.
Proof. If $U=Y Y^{\prime}$ is not proper, then Lemma 6 (i) completes our proof. Now suppose that $U=Y Y^{\prime}$ is a proper decomposition. Let $U=U_{1} \cdots U_{n}$ be a decomposition of U such that U_{i} is $(*, 1)$, and let $Y=Y_{1} \cdots Y_{n}$ be a decomposition of Y such that $Y_{i} \mid U_{i}$. Let U^{\prime} be the product of the U_{i} 's such that Y_{i} is neither empty nor equal to U_{i}. Without loss of generality, suppose $U^{\prime}=U_{1} \cdots U_{n^{\prime}}$ for some $n^{\prime} \leqslant n$. Then $\delta\left(Y_{i}\right) \geqslant 1$ for $1 \leqslant i \leqslant n^{\prime}$ since $\delta\left(Y_{i}\right)$ shares the same parity with $x_{a}\left(U_{i}\right)$. By Lemma 6 (i), we deduce that

$$
n^{\prime}+\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant \sum_{i=1}^{n^{\prime}} \delta\left(Y_{i}\right)+\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant n^{\prime}+\sum_{i=1}^{m} x_{a}\left(B_{i}\right)-2 .
$$

That is $\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant \sum_{i=1}^{m} x_{a}\left(B_{i}\right)-2$.
For circumstances it is convenient to introduce the following notation. For any sequence X, there exist an element $e \in \overline{\sigma(X)}$ of order 2 and a unique integer in $\left(-\frac{k-1}{2}, \frac{k+1}{2}\right]$, denoted by $x_{a}^{\prime}(X)$, such that $\sigma(X)=e+x_{a}^{\prime}(X) a$. In particular $x_{a}^{\prime}(b)$ is defined for $b \in G$ by treating b as a sequence of length one. Note that $x_{a}^{\prime}(B)$ may not coincide with $x_{a}(B)$ if B is a block. However $x_{a}(B) \equiv x_{a}^{\prime}(B) \equiv \sum_{b \mid B} x_{a}^{\prime}(b) \bmod k$. In particular, if $B=T_{1} \cdots T_{\ell}$ is a
decomposition with each $x_{a}^{\prime}\left(T_{i}\right) \in\left[0, \frac{k+1}{2}\right]$ and $\sum_{i=1}^{\ell} x_{a}^{\prime}\left(T_{i}\right) \leqslant \frac{k+1}{2}$, then it is easy to see that $x_{a}(B)=\sum_{i=1}^{\ell} x_{a}^{\prime}\left(T_{i}\right)$, which will be used repeatedly in this paper.

For minimal blocks B_{1}, \ldots, B_{m} of α and proper decompositions $B_{i}=X_{i} X_{i}^{\prime}$ satisfying the hypothesis of Lemma 6 or Corollary 8 , by $\sum_{i=1}^{m} \delta\left(X_{i}\right) \leqslant \sum_{i=1}^{m} x_{a}\left(B_{i}\right)-2$ and $x_{a}\left(B_{i}\right) \leqslant$ $\left|B_{i}\right| \leqslant r$ we obtain

$$
\begin{aligned}
\frac{(1-r)(m-1)}{2}+1 & \leqslant \frac{1}{2} \sum_{i \neq j}\left(\delta\left(X_{i}\right)-x_{a}\left(B_{i}\right)\right)+1 \leqslant \frac{1}{2}\left(x_{a}\left(B_{j}\right)-\delta\left(X_{j}\right)\right) \\
& \leqslant \frac{1}{2}\left(x_{a}\left(B_{j}\right)+\delta\left(X_{j}\right)\right) \leqslant x_{a}\left(B_{j}\right)-1+\frac{1}{2} \sum_{i \neq j}\left(x_{a}\left(B_{i}\right)-\delta\left(X_{i}\right)\right) \\
& \leqslant r-2+\frac{(r-1)(m-1)}{2}
\end{aligned}
$$

When m is small such that $r-2+\frac{(r-1)(m-1)}{2} \leqslant \frac{k+1}{2}$, then

$$
\begin{equation*}
\frac{1}{2} \sum_{i \neq j}\left(\delta\left(X_{i}\right)-x_{a}\left(B_{i}\right)\right)+1 \leqslant x_{a}^{\prime}\left(X_{j}\right) \leqslant x_{a}\left(B_{j}\right)-1+\frac{1}{2} \sum_{i \neq j}\left(x_{a}\left(B_{i}\right)-\delta\left(X_{i}\right)\right) \tag{1}
\end{equation*}
$$

In particular if $m=1$, we get $1 \leqslant x_{a}^{\prime}(X) \leqslant r-2$. This bound will be frequently used in the next section.

The following lemma together with Proposition $4(\mathrm{v})$ ensure that there are $(*, 1)$-blocks dividing α, hence there exist unit blocks dividing α. Actually, we may get that every term of α which is not an element of $\langle a\rangle$ is contained in a $(*, 1)$-block.

Lemma 9 ([11], Lemma 5.1). Let G be a finite abelian group and α a minimal zero-sum sequence of maximum length over G. For each term $t \mid \alpha$ and each element $g \in G$ there is a subsequence of α that contains t and has sum g. In particular $\sum(\alpha)=G$.

Note that if $\sum(\alpha)=G$, then $\langle\alpha\rangle=G$. Some results concerning unit blocks dividing α are given below.

Lemma 10 ([11], Lemma 4.8). For each unit block $U \mid \alpha$, the subgroup $\langle\bar{U}\rangle$ of $G /\langle a\rangle$ has rank $d(U)$. Consequently $d(U) \leqslant r-1$.

Lemma 11 ([11], Lemma 4.11). (i) Let U be $a(l, 1)$-block and B be a $(m, 2)$-block in α. If U, B are disjoint blocks such that $\bar{u} \in\langle\bar{B}\rangle$ for every term $u \mid U$, then the product $U B$ is divisible by $a(*, 1)$-block V with $d(V)>d(U)$. Moreover if $m \geqslant 5$, then $d(V)>d(U)$ can be strengthened to $d(V)>d(U)+1$.
(ii) Let U be a $(l, 1)$-block and B be $a(m, 3)$-block in α. If U, B are disjoint blocks such that $\bar{u} \in\langle\bar{B}\rangle$ for every term $u \mid U$, and $U B$ is not divisible by a unit block V with $d(V)>d(U)$, then $l=2$ and $U B$ is divisible by a $(m, 2)$-block.

Lemma 12 ([11], Corollary 4.12). Suppose that G has rank $r \geqslant 5$. Let U_{1}, U_{2} be both $(2,1)$-blocks and B be a $(r, 3)$-block such that U_{1}, U_{2}, B are disjoint in α. Then the product $U_{1} U_{2} B$ is divisible by a unit block V with $d(V)>d\left(U_{1} U_{2}\right)$.

Fix the notation $W_{\mathscr{F}}$ for the product of all $(*, 1)$-blocks in a factorization \mathscr{F} of α. Let $d^{*}(\alpha)=\max \left\{d\left(W_{\mathscr{F}}\right): \mathscr{F}\right.$ is a factorization of $\left.\alpha\right\}$.

Definition 13. A factorization \mathscr{F} of α is canonical if $d\left(W_{\mathscr{F}}\right)=d^{*}(\alpha)$.
Lemma 14 ([11]). Let \mathscr{F} be a canonical factorization of α. Then
(i) The complementary block $\alpha W_{\mathscr{F}}^{-1}$ of $W_{\mathscr{F}}$ is not divisible by a unit block. More generally let B_{1}, \ldots, B_{m} be blocks in \mathscr{F}, and let d be the combined defect of the $(*, 1)$ blocks among them. Then the product $B_{1} \cdots B_{m}$ is not divisible by a unit block V with defect $d(V)>d$.
(ii) $2 \leqslant d\left(W_{\mathscr{F}}\right) \leqslant r-2$ and $d\left(\alpha W_{\mathscr{F}}^{-1}\right) \geqslant 2$.

We can strengthen Lemma 14 (ii) if $r \geqslant 4$ and $\mathrm{D}(G)>\mathrm{D}^{*}(G)$.
Lemma 15. Let $r \geqslant 4$ and $\mathrm{D}(G)>\mathrm{D}^{*}(G)$. If α is a longest minimal zero-sum sequence over G and \mathscr{F} is a canonical factorization of α, then $d\left(W_{\mathscr{F}}\right) \geqslant 3$.

Proof. Suppose to the contrary $d\left(W_{\mathscr{F}}\right)<3$. Then $d\left(W_{\mathscr{F}}\right)=2$ by Lemma 14 (ii). It follows that every term of α which is not an element of $\langle a\rangle$ is a term of a $(2,1)$ or $(3,1)$-block dividing α. We show first that there is a $(3,1)$-block dividing α. Let \mathscr{F} be a canonical factorization of α. Then either $W_{\mathscr{F}}$ is $(3,1)$ or $W_{\mathscr{F}}=U V$ where U, V are $(2,1)$-blocks. If $W_{\mathscr{F}}$ is $(3,1)$, then we are done. For the latter case, there exist $\langle a\rangle$-cosets $g_{1}+\langle a\rangle$ and $g_{2}+\langle a\rangle$ such that all terms of U and V are contained in $g_{1}+\langle a\rangle$ and $g_{2}+\langle a\rangle$ respectively. Then for any term g of α with $g \notin\left\langle g_{1}, g_{2}, a\right\rangle$, there is a $(*, 1)$-block U^{\prime} containing g. Obviously U^{\prime} is not a $(2,1)$-block, or else $U V$ and U^{\prime} are disjoint and $d\left(U V U^{\prime}\right)=3>2$ which contradicts $d\left(W_{\mathscr{F}}\right)=2$. Hence U^{\prime} is a (3,1)-block. This proves the existence of a (3, 1)-block.

Now let $U=u_{1} u_{2} u_{2}^{\prime}$ be a (3,1)-block dividing α. Since $r \geqslant 4$ and $\sum(\alpha)=G$, there is a term u_{3} of α with $u_{3} \notin\left\langle u_{1}, u_{2}, a\right\rangle$. Let $U_{1} \mid \alpha$ be a $(*, 1)$-block containing u_{3}. Then U_{1} is $(3,1)$, or else U_{1} is $(2,1)$ implying that U and U_{1} are disjoint and $d\left(U U_{1}\right)>2$, a contradiction. Obviously U_{1} and U can not be disjoint. Then we must have $\left|\operatorname{gcd}\left(U, U_{1}\right)\right|=$ 1. Without loss of generality, suppose $\operatorname{gcd}\left(U, U_{1}\right)=u_{1}$. Write $U_{1}=u_{1} u_{3} u_{3}^{\prime}$. Similarly, there exists $u_{4} \notin\left\langle u_{1}, u_{2}, u_{3}, a\right\rangle$ such that a $(3,1)$-block U_{2} contains u_{4} and $\left|\operatorname{gcd}\left(U_{2}, U\right)\right|=$ $\left|\operatorname{gcd}\left(U_{2}, U_{1}\right)\right|=1$. It follows that $\operatorname{gcd}\left(U_{2}, U\right)=u_{1}$, since otherwise $\operatorname{gcd}\left(U_{2}, U_{1}\right)$ is empty. Continue this process we will find u_{1}, \ldots, u_{r-1} such that $u_{i} \notin\left\langle u_{1}, \ldots, u_{i-1}, a\right\rangle$ for all $2 \leqslant i \leqslant r-1$ and $u_{1} u_{i} u_{i}^{\prime}$ are (3,1)-blocks. Additionally we derive that $\mathrm{v}_{u_{1}}(\alpha)=1$, and for any term $u \notin\left\langle u_{1}, a\right\rangle, u$ can not be a term of a (2,1)-block, instead there is a (3,1)-block $u_{1} u u^{\prime}$ dividing α.

If there are two terms g_{1} and g_{2} belonging to the same $\langle a\rangle$-coset other than $\langle a\rangle$ and $u_{1}+\langle a\rangle$, then $g_{1} g_{2}$ is an $\langle a\rangle$-block and $g_{1} g_{2}$ is not $(2,1)$, hence $x_{a}\left(g_{1} g_{2}\right)=2$. In particular, if $g \notin\left\langle u_{1}, a\right\rangle$ and $\mathrm{v}_{g}(\alpha) \geqslant 2$, then $g+g=2 a$, and hence $x_{a}^{\prime}(g)=1$.

Consider the following decomposition of α :

$$
\begin{equation*}
\alpha=S_{0} \cdot S_{1} \cdot S_{2} \cdot S_{2}^{\prime} \cdot S_{3} \tag{2}
\end{equation*}
$$

where S_{0} consists of terms of α that are elements of $\langle a\rangle, S_{1}$ consists of terms of α that are elements of $u_{1}+\langle a\rangle, S_{2}=\prod_{i=2}^{r-1} u_{i}, S_{2}^{\prime}=\prod_{i=2}^{r-1} u_{i}^{\prime}$ and $S_{3}=\alpha\left(S_{0} S_{1} S_{2} S_{2}^{\prime}\right)^{-1}$.

For a term g of S_{0}, we have $g=a$ according to Lemma 5. So $\sigma\left(S_{0}\right)=\left|S_{0}\right| a$. Write $u_{i}=e_{i}+x_{a}^{\prime}\left(u_{i}\right) a$ with $2 e_{i}=0$ for $1 \leqslant i \leqslant r-1$. Then $\sigma\left(S_{2} S_{2}^{\prime}\right)=\left|S_{2}\right|\left(e_{1}+\left(1-x_{a}^{\prime}\left(u_{1}\right)\right) a\right)$. Since $u_{1} u_{2} u_{2}^{\prime}$ and $u_{1} u_{3} u_{3}^{\prime}$ are (3,1)-blocks, $V:=u_{2} u_{2}^{\prime} u_{3} u_{3}^{\prime}$ is an minimal $\langle a\rangle$-block with $d(V) \geqslant 0$. We have $2\left(1-x_{a}^{\prime}\left(u_{1}\right)\right) \equiv x_{a}(V)=2$ or $4 \bmod 2 k$. So $x_{a}^{\prime}\left(u_{1}\right)=0$ or -1 since $x_{a}^{\prime}\left(u_{1}\right) \in\left(-\frac{k-1}{2}, \frac{k+1}{2}\right]$. We distinguish the following two cases to complete our proof:

Case 1: $x_{a}^{\prime}\left(u_{1}\right)=0$. Claim that $\operatorname{Supp}\left(S_{3}\right) \subset \operatorname{Supp}\left(S_{2} S_{2}^{\prime}\right)$. Assume to the contrary there is a term u_{0} of S_{3} with $u_{0} \nmid S_{2} S_{2}^{\prime}$. Then there exists a term u_{0}^{\prime} of S_{3} with $u_{0}^{\prime} \nmid S_{2} S_{2}^{\prime}$ such that $u_{1} u_{0} u_{0}^{\prime}$ is $(3,1)$. It is easy to see either u_{0} or u_{0}^{\prime} is an element of $\left\langle u_{2}, \ldots, u_{r-1}, a\right\rangle$. Without loss of generality, suppose $u_{0} \in\left\langle u_{2}, \ldots, u_{r-1}, a\right\rangle$. Then there must exist a minimal block $B \mid u_{0} S_{2}$ containing u_{0}. For any $u_{i} \mid B(0 \leqslant i \leqslant r-1), C:=B u_{i}^{-1} u_{1} u_{i}^{\prime}$ is also a minimal block with length $|B|+1$ satisfying that $x_{a}(C) \equiv x_{a}(B)+1-2 x_{a}^{\prime}\left(u_{i}\right) \bmod 2 k$. So by $1 \leqslant x_{a}(C) \leqslant|B|+1 \leqslant r$ we derive that $\frac{2-r}{2} \leqslant x_{a}^{\prime}\left(u_{i}\right) \leqslant \frac{r-1}{2}$. Replacing $u_{i} \mid B$ by u_{i}^{\prime} for all u_{i} with $1 \leqslant x_{a}^{\prime}\left(u_{i}\right) \leqslant \frac{r-1}{2}$, we get a new sequence dividing α, which by abuse of notation, is still denoted by B. Then B or $B u_{1}$ is a minimal block. Noting that $-\frac{r-3}{2} \leqslant x_{a}^{\prime}\left(u_{i}^{\prime}\right) \leqslant 0$ if $1 \leqslant x_{a}^{\prime}\left(u_{i}\right) \leqslant \frac{r-1}{2}$, we have $\frac{2-r}{2} \leqslant x_{a}^{\prime}(b) \leqslant 0$ for each $b \mid B$. Thus

$$
0 \geqslant \sum_{b \mid B} x_{a}^{\prime}(b) \geqslant|B| \cdot \frac{2-r}{2} \geqslant \frac{(2-r)(r-1)}{2}>-\frac{k-1}{2}
$$

If B is a minimal block, it follows from $x_{a}(B) \equiv \sum_{b \mid B} x_{a}^{\prime}(B) \bmod k$ and Proposition 4 (ii) that $x_{a}(B)>\frac{k}{2}>r>|B|$, which contradicts Lemma 5 . By the same argument we derive $x_{a}\left(B u_{1}\right)>\frac{k}{2}>r \geqslant\left|B u_{1}\right|$ if $B u_{1}$ is a minimal block, which also contradicts Lemma 5 . Thus the claim is true. So for every $u_{0} \mid S_{3}, \mathrm{v}_{u_{0}}(\alpha) \geqslant 2$, and hence $u_{0} \in a+\left\langle e_{1}, \ldots, e_{r-1}\right\rangle$. We then derive that $\sigma\left(S_{3}\right) \in\left|S_{3}\right| a+\left\langle e_{1}, \ldots, e_{r-1}\right\rangle$.

If $\left|S_{1}\right|=1$, i.e., $S_{1}=u_{1}=e_{1}$, then $0=\sigma(\alpha) \in\left(\left|S_{0}\right|+\left|S_{2}\right|+\left|S_{3}\right|\right) a++\left\langle e_{1}, \ldots, e_{r-1}\right\rangle$, which implies $\left|S_{0}\right|+\left|S_{2}\right|+\left|S_{3}\right|=2 k$. From $|\alpha|=\left|S_{0}\right|+\left|S_{1}\right|+2\left|S_{2}\right|+\left|S_{3}\right|>$ D* $^{*}(G)$, it follows that $|\alpha|=1+\left|S_{2}\right|+2 k=r-1+2 k>\mathrm{D}^{*}(G)$, a contradiction.

If $\left|S_{1}\right| \geqslant 2$, then for any $e_{1}+x a$ contained in $S_{1} \cdot e_{1}^{-1},\left(e_{1}+x a\right) \cdot e_{1}$ is a minimal $\langle a\rangle$-block, so $x=1$ or 2 from Lemma 5 .

If $e_{1}+2 a \mid S_{1}$, then $\left|S_{1}\right|=2$, since otherwise there is a minimal block $\left(e_{1}+2 a\right)\left(e_{1}+\right.$ $x a) \mid S_{1}$ with $x=1$ or 2 , which contradicts Lemma 5. Thus $\sigma\left(S_{1}\right)=\left|S_{1}\right| a$. So $2 k=$ $\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{3}\right|$. From $|\alpha|=\left|S_{0}\right|+\left|S_{1}\right|+2\left|S_{2}\right|+\left|S_{3}\right|>\mathrm{D}^{*}(G)$, it follows that $|\alpha|=\left|S_{2}\right|+2 k=r-2+2 k>\mathrm{D}^{*}(G)$, a contradiction.

If $x=1$ for any $e_{1}+x a$ contained in $S_{1} \backslash\left\{e_{1}\right\}$, then $2 k=\left|S_{0}\right|+\left|S_{1}\right|-1+\left|S_{2}\right|+\left|S_{3}\right|$. From $|\alpha|=\left|S_{0}\right|+\left|S_{1}\right|+2\left|S_{2}\right|+\left|S_{3}\right|>\mathrm{D}^{*}(G)$, it follows that $|\alpha|=\left|S_{2}\right|+2 k+1=r-1+2 k>\mathrm{D}^{*}(G)$, a contradiction. This finishes the proof for case 1 .

Case 2: $x_{a}^{\prime}\left(u_{1}\right)=-1$. Let u_{0} be a term of S_{3}. If $\mathrm{v}_{u_{0}}(\alpha)=1$, there exists $u_{0}^{\prime} \mid S_{3}$ such that $u_{1} u_{0} u_{0}^{\prime}$ is $(3,1)$, so $u_{0}+u_{0}^{\prime}=e_{1}+2 a$. If $\mathrm{v}_{u_{0}}(\alpha) \geqslant 2$, by $u_{0} \notin\left\langle u_{1}, a\right\rangle$ we have $u_{0} \in a+\left\langle e_{1}, \ldots, e_{r-1}\right\rangle$. Let S_{3}^{\prime} be products of pairs $s s^{\prime} \mid S_{3}$ such that $u_{1} s s^{\prime}$ is $(3,1)$ and
at least one of s and s^{\prime} is of multiplicity one, and let $S_{3}^{\prime \prime}=S_{3} S_{3}^{\prime-1}$. Then

$$
\sigma\left(S_{3}\right)=\sigma\left(S_{3}^{\prime}\right)+\sigma\left(S_{3}^{\prime \prime}\right) \in\left|S_{3}^{\prime}\right| a+\left|S_{3}^{\prime \prime}\right| a+\left\langle e_{1}, \ldots, e_{r-1}\right\rangle=\left|S_{3}\right| a+\left\langle e_{1}, \ldots, e_{r-1}\right\rangle
$$

If $\left|S_{1}\right|=1$, then $2 k=\left|S_{0}\right|-\left|S_{1}\right|+2\left|S_{2}\right|+\left|S_{3}\right|$. From $|\alpha|=\left|S_{0}\right|+\left|S_{1}\right|+2\left|S_{2}\right|+\left|S_{3}\right|>$ $\mathrm{D}^{*}(G)$, it follows that $|\alpha|=2 k+2>\mathrm{D}^{*}(G)$, which is impossible.

If $\left|S_{1}\right| \geqslant 2$, then from Lemma 5 it follows that for any $e_{1}+x a$ contained in $S_{1}\left(e_{1}-\right.$ $a)^{-1},\left(e_{1}+x a\right)\left(e_{1}-a\right)$ is a $\langle a\rangle$-block with $x-1=1$ or 2 , i.e., $x=2$ or 3 . It follows that $\left|S_{1}\right|=2$, since otherwise there is a minimal block of the form $\left(e_{1}+x a\right)\left(e_{1}+y a\right)$ contained in $S_{1}\left(e_{1}-a\right)^{-1}$ with negative defect. So $\sigma\left(S_{1}\right)=a$ or $2 a$. It yields that $2 k=\left|S_{0}\right|+2\left|S_{2}\right|+\left|S_{3}\right|+x-1$ with $x=2$ or 3 . From $|\alpha|=2+\left|S_{0}\right|+2\left|S_{2}\right|+\left|S_{3}\right|>\mathrm{D}^{*}(G)$, it follows that $|\alpha|=2+2 k+1-x>\mathrm{D}^{*}(G)$, which is impossible. This ends the proof of Case 2 and proves the lemma.

Lemma 16. Let \mathscr{F} be a canonical decomposition of α and $r \geqslant 6$.
(i) \mathscr{F} does not contains a $(r, 3)$-block.
(ii) If U is a $(l, 1)$-block and B is a $(r-t, 2)$-block in \mathscr{F} such that U, B are disjoint and $|\langle\bar{U}\rangle \cap\langle\bar{B}\rangle|>1$, then $\left\lceil\frac{r-t}{2}\right\rceil \leqslant t+1$.

Proof. (i) Suppose to the contrary that \mathscr{F} contains a $(r, 3)$-block B, and let $U \mid W_{\mathscr{F}}$ be a $(*, 1)$-block. By Lemma 11 (ii), $W_{\mathscr{F}}$ contains only (2,1)-blocks. Note that there are at least two of them by Lemma 14 (ii). Let U_{1} and U_{2} be such blocks. Lemma 12 states that the product $U_{1} U_{2} B$ is divisible by a unit block V with $d(V)>d\left(U_{1} U_{2}\right)$, which yields a contradiction. So \mathscr{F} does not contains a $(r, 3)$-block.
(ii) Suppose $\left\lceil\frac{r-t}{2}\right\rceil>t+1$. Since $\langle\bar{B}\rangle$ is a subgroup of $G /\langle a\rangle$ with index $\frac{2^{r-1}}{2^{r-t-1}}=2^{t}$ and $|\langle\bar{U}\rangle \cap\langle\bar{B}\rangle|>1$, there exists a proper decomposition $U=X_{1} \cdots X_{v}$ with $\sigma\left(\overline{X_{i}}\right) \in\langle\bar{B}\rangle$ and $\left|X_{i}\right| \leqslant t+1$. By $x_{a}(B)=2$, Lemma 6 implies $\delta\left(X_{i}\right)=1$ and $\sigma\left(X_{i}\right) \in\left\{e_{i}, e_{i}+a\right\}$ for $1 \leqslant i \leqslant v$, where $e_{i} \in \sigma\left(\overline{X_{i}}\right)$ is of order two. Since $x_{a}(U)=1$, there is at least one X_{i}, say X_{1}, such that $\sigma\left(X_{1}\right)=e_{1}+a$ and $\sigma\left(U X_{1}^{-1}\right)=e_{1}$, or else multiplying $\sum_{i=1}^{v} \sigma\left(X_{i}\right)=a$ by 2 yields the impossible $2 a=0$. Consider the proper decompositions $U=X_{1}\left(U X_{1}^{-1}\right)$ and $B=Y Y^{\prime}$, where $\sigma\left(X_{1}\right) \sim \sigma(Y)$ and $Y^{\prime}=B Y^{-1}$. Lemma 6 implies that $\delta(Y)=0$ and $\sigma(Y)=\sigma\left(Y^{\prime}\right)=e_{1}+a$. By symmetry let $|Y| \geqslant\left|Y^{\prime}\right|$. We have that $V=\left(U X_{1}^{-1}\right) Y$ is a block with sum $e_{1}+\left(e_{1}+a\right)=a$ and length $\ell^{\prime}=\ell-\left|X_{1}\right|+|Y|$. Note that $\ell^{\prime}>1$ since $\left|X_{1}\right|<\ell$, so V is an ($\ell^{\prime}, 1$)-block dividing $U B$. Since $\left\lceil\frac{r-t}{2}\right\rceil>t+1,\left|X_{1}\right| \leqslant t+1$ and $|Y| \geqslant\left\lceil\frac{r-t}{2}\right\rceil$, we have $\ell^{\prime} \geqslant \ell-(t+1)+\left\lceil\frac{r-t}{2}\right\rceil \geqslant \ell+1$. So $d(V) \geqslant \ell>d(U)$, a contradiction.

3 Proof of Theorem 3

In this section we mainly prove Theorem 3. The following lemma is a key ingredient.
Lemma 17. Let $a_{1} a_{1}^{\prime}$ be a subsequence of α such that $x_{a}^{\prime}\left(a_{1} a_{1}^{\prime}\right)=1$. If there exists a subsequence T in $\alpha\left(a_{1} a_{1}^{\prime}\right)^{-1}$ such that $x_{a}^{\prime}\left(a_{1} T\right)=x_{a}^{\prime}\left(a_{1}^{\prime} T\right)$, then k is odd and $x_{a}^{\prime}\left(a_{1}\right)=$ $x_{a}^{\prime}\left(a_{1}^{\prime}\right)=\frac{k+1}{2}$.

Furthermore,
(i) let $T_{1}=a_{1} a_{2}$ and $T_{2}=b_{1} b_{2} b_{3}$ be two disjoint subsequences of α such that $x_{a}^{\prime}\left(a_{1} a_{2}\right)=$ $x_{a}^{\prime}\left(b_{1} b_{2} b_{3}\right)=1$. If $1 \leqslant x_{a}^{\prime}\left(a_{i} b_{2} b_{3}\right), x_{a}^{\prime}\left(a_{i} b_{1}\right) \leqslant \frac{k+1}{2}$ for $i=1,2$, then k is odd and $x_{a}^{\prime}\left(a_{1}\right)=$ $x_{a}^{\prime}\left(a_{2}\right)=\frac{k+1}{2}$.
(ii) let T_{1}, \ldots, T_{ℓ} be ℓ disjoint subsequences of α of length 2 such that $x_{a}^{\prime}\left(T_{1}\right)=\cdots=$ $x_{a}^{\prime}\left(T_{\ell}\right)=1$. If $\ell=2$ or 3 and $1 \leqslant x_{a}^{\prime}\left(t_{1} \cdots t_{\ell}\right) \leqslant \frac{k+1}{2}$ for any $t_{i} \mid T_{i}(1 \leqslant i \leqslant \ell)$, then k is odd. In particular, if $\ell=2$, then $x_{a}^{\prime}(t)=\frac{k+1}{2}$ for any $t \mid T_{1} T_{2}$.

Proof. Since $x_{a}^{\prime}\left(a_{1} T\right)=x_{a}^{\prime}\left(a_{1}^{\prime} T\right)$, we have that $x_{a}^{\prime}\left(a_{1}\right)+x_{a}^{\prime}(T) \equiv x_{a}^{\prime}\left(a_{1}^{\prime}\right)+x_{a}^{\prime}(T)(\bmod k)$, i.e., $x_{a}^{\prime}\left(a_{1}\right) \equiv x_{a}^{\prime}\left(a_{1}^{\prime}\right)(\bmod k)$. It follows $x_{a}^{\prime}\left(a_{1} a_{1}^{\prime}\right)=1 \equiv x_{a}^{\prime}\left(a_{1}\right)+x_{a}^{\prime}\left(a_{1}^{\prime}\right) \equiv 2 x_{a}^{\prime}\left(a_{1}\right)(\bmod$ $k)$. This implies that $x_{a}^{\prime}\left(a_{1}\right)=x_{a}^{\prime}\left(a_{1}^{\prime}\right)=\frac{k+1}{2}$ and k is odd. We complete the proof of the first assertion.
(i) Since $x_{a}^{\prime}\left(a_{1} a_{2}\right)=x_{a}^{\prime}\left(b_{1} b_{2} b_{3}\right)=1$ and $1 \leqslant x_{a}^{\prime}\left(a_{i} b_{2} b_{3}\right), x_{a}^{\prime}\left(a_{i} b_{1}\right) \leqslant \frac{k+1}{2}$ for $i=1,2$, we have $x_{a}^{\prime}\left(a_{1} a_{2} b_{1} b_{2} b_{3}\right)=x_{a}^{\prime}\left(a_{1} a_{2}\right)+x_{a}^{\prime}\left(b_{1} b_{2} b_{3}\right)=2=x_{a}^{\prime}\left(a_{1} b_{2} b_{3}\right)+x_{a}^{\prime}\left(a_{2} b_{1}\right)=x_{a}^{\prime}\left(a_{2} b_{2} b_{3}\right)+$ $x_{a}^{\prime}\left(a_{1} b_{1}\right)$. It follows that $x_{a}^{\prime}\left(a_{1} b_{2} b_{3}\right)=x_{a}^{\prime}\left(a_{2} b_{2} b_{3}\right)=1$. The first assertion completes our proof.
(ii) Set $T_{i}=t_{i} t_{i}^{\prime}$ for $1 \leqslant i \leqslant \ell$. If $\ell=2$, then by $x_{a}^{\prime}\left(T_{1}\right)=x_{a}^{\prime}\left(T_{2}\right)=1$ and $1 \leqslant$ $x_{a}^{\prime}\left(a_{1} a_{2}\right) \leqslant \frac{k+1}{2}$ for any $a_{1}\left|T_{1}, a_{2}\right| T_{2}$, we have $x_{a}^{\prime}\left(t t^{\prime}\right)=1$ for any $t t^{\prime} \mid T_{1} T_{2}$, since otherwise $x_{a}^{\prime}\left(T_{1} T_{2}\right)=x_{a}^{\prime}\left(T_{1}\right)+x_{a}^{\prime}\left(T_{2}\right)=2=x_{a}^{\prime}\left(t t^{\prime}\right)+x_{a}^{\prime}\left(T_{1} T_{2}\left(t t^{\prime}\right)^{-1}\right)>2$. In particular, $x_{a}^{\prime}\left(t_{1} t_{2}\right)=x_{a}^{\prime}\left(t_{1}^{\prime} t_{2}\right)=1$. The first assertion implies that k is odd and $x_{a}^{\prime}\left(t_{1}\right)=x_{a}^{\prime}\left(t_{1}^{\prime}\right)=\frac{k+1}{2}$. Similarly, $x_{a}^{\prime}\left(t_{2}\right)=x_{a}^{\prime}\left(t_{2}^{\prime}\right)=\frac{k+1}{2}$.

If $\ell=3$, then by $x_{a}^{\prime}\left(T_{1}\right)=x_{a}^{\prime}\left(T_{2}\right)=x_{a}^{\prime}\left(T_{3}\right)=1$ and $1 \leqslant x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right) \leqslant \frac{k+1}{2}$ for any $a_{i} \mid T_{i}(i=1,2,3)$, we have $x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)=1$ or 2 for any $a_{i} \mid T_{i}$, since otherwise $x_{a}^{\prime}\left(T_{1} T_{2} T_{3}\right)=x_{a}^{\prime}\left(T_{1}\right)+x_{a}^{\prime}\left(T_{2}\right)+x_{a}^{\prime}\left(T_{3}\right)=3=x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)+x_{a}^{\prime}\left(T_{1} T_{2} T_{3}\left(a_{1} a_{2} a_{3}\right)^{-1}\right) \geqslant 4$. In addition, it is easy to see that there exist $a_{1}\left|T_{1}, a_{2}\right| T_{2}, a_{3} \mid T_{3}$ such that $x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)=1$. Without loss of generality, suppose $x_{a}^{\prime}\left(t_{1} t_{2} t_{3}\right)=1$. If $x_{a}^{\prime}\left(t_{1} t_{2} t_{3} t_{i}^{\prime}\left(t_{i}\right)^{-1}\right)=1$ for some $i \in[1,3]$, the first assertion completes our proof. If $x_{a}^{\prime}\left(t_{1} t_{2} t_{3} t_{i}^{\prime}\left(t_{i}\right)^{-1}\right)=2$ for all $i \in[1,3]$, then modular $k x_{a}^{\prime}\left(t_{1} t_{2} t_{3}\right)+1=2=x_{a}^{\prime}\left(t_{1} t_{2} t_{3} t_{i}^{\prime}\left(t_{i}\right)^{-1}\right) \equiv x_{a}^{\prime}\left(t_{i}\right)+1+x_{a}^{\prime}\left(t_{1} t_{2} t_{3}\left(t_{i}\right)^{-1}\right) \equiv$ $x_{a}^{\prime}\left(t_{i}^{\prime}\right)+x_{a}^{\prime}\left(t_{1} t_{2} t_{3}\left(t_{i}\right)^{-1}\right)$, i.e., $x_{a}^{\prime}\left(t_{i}\right)+1 \equiv x_{a}^{\prime}\left(t_{i}^{\prime}\right)$. It follows that $x_{a}^{\prime}\left(t_{i} t_{i}^{\prime}\right)=1 \equiv x_{a}^{\prime}\left(t_{i}\right)+$ $x_{a}^{\prime}\left(t_{i}^{\prime}\right) \equiv 2 x_{a}^{\prime}\left(t_{i}\right)+1(\bmod k)$, i.e., $x_{a}^{\prime}\left(t_{i}\right)=0$ or $\frac{k}{2}$. This implies $x_{a}^{\prime}\left(t_{1} t_{2} t_{3}\right)=1 \equiv$ $x_{a}^{\prime}\left(t_{1}\right)+x_{a}^{\prime}\left(t_{2}\right)+x_{a}^{\prime}\left(t_{3}\right) \equiv 0$ or $\frac{k}{2}(\bmod k)$, which is impossible. This proof is complete.

Lemma 18. Let $U \mid \alpha$ be a unit block, and $B \mid \alpha U^{-1}$ be a minimal block with positive defect. Then $\mathrm{r}(\langle\overline{U B}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1$.

Proof. If $\mathrm{r}(\langle\overline{U B}\rangle)<\mathrm{r}(\langle\bar{U}\rangle)+1$, then $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)$, i.e., $\langle\bar{B}\rangle \subset\langle\bar{U}\rangle$. For any $b \mid B$, there is a proper subsequence $Y \mid U$ such that $Y \cdot b$ is a block. Hence by (1) one deduces $1 \leqslant x_{a}^{\prime}(b) \leqslant r-2$ for all $b \mid B$. It follows that

$$
k>(r-2)|B| \geqslant \sum_{b \mid B} x_{a}^{\prime}(b)=x_{a}(B) \geqslant|B|,
$$

a contradiction to $d(B)>0$. Hence $\mathrm{r}(\langle\overline{U B}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1$.

Lemma 19. Let $U \mid \alpha$ be a unit block, B, C be two disjoint minimal blocks with positive defect in αU^{-1} such that $\langle\bar{C}\rangle \subset\langle\overline{U B}\rangle$. Let B_{2} and C_{2} be sequences (possibly empty) consisting of terms $b \mid B$ with $\bar{b} \in\langle\bar{U}\rangle$ and $c \mid C$ with $\bar{c} \in\langle\bar{U}\rangle$ respectively. Set $B_{1}=B B_{2}^{-1}$ and $C_{1}=C C_{2}^{-1}$.
(i) If $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$, then $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for any $c_{1} \mid C_{1}$. In addition there exists $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)=0$, i.e., c_{1} is of order 2 .
(ii) If $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$ and there exists some $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)<0$, then $\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$, and
(a) $C_{1}=\left(e+k_{1} a\right)\left(e^{\prime}+k_{2} a\right)$, where $k_{1}+k_{2}=1$ and $e, e^{\prime} \in\langle\overline{U C}\rangle \backslash\langle\bar{U}\rangle$ satisfying $2 e=2 e^{\prime}=0 ;$
(b) $C_{2}=\left(e_{1}+a\right) \cdots\left(e_{\left|C_{2}\right|}+a\right)$, where $e_{i} \in\langle\bar{U}\rangle$ has order 2 for $1 \leqslant i \leqslant\left|C_{2}\right|$;
(c) there does not exist a minimal block D with positive defect in $\alpha(U B C)^{-1}$ such that $\langle\bar{D}\rangle \subset\langle\overline{U B}\rangle$.

Proof. (i) For each term c_{2} of C_{2}, since $\left\langle\overline{C_{2}}\right\rangle \subset\langle\bar{U}\rangle$, there exists a subsequence $Y \mid U$ such that $Y c_{2}$ is a block. Then (1) yields $1 \leqslant x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$. Similarly we have $1 \leqslant x_{a}^{\prime}\left(b_{2}\right) \leqslant r-2$ for $b_{2} \mid B_{2}$.

Since $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$, by $\langle\bar{C}\rangle \subset\langle\overline{U B}\rangle$ and Lemma 18 there exists e such that $\langle\overline{U B}\rangle=\langle\overline{U C}\rangle=\langle\bar{U}, e\rangle$. Obviously all terms of \bar{B}_{1} and \bar{C}_{1} are elements of $e+\langle\bar{U}\rangle$, and $\left|B_{1}\right|,\left|C_{1}\right|>0$. For $c_{1} \mid C_{1}$ and $b_{1} \mid B_{1}, b_{1} c_{1}$ is a block or there exists proper $Y \mid U$ such that $Y b_{1} c_{1}$ is a block. Applying (1) we derive that

$$
\frac{\delta\left(b_{1}\right)-x_{a}(B)}{2}+1 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2} .
$$

Thus we get $x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$. To show $0 \leqslant x_{a}^{\prime}\left(c_{1}\right)$, we suppose there exists $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right) \leqslant-1$. Then $\frac{\delta\left(b_{1}\right)-x_{a}(B)}{2}+1 \leqslant-1$ for each $b_{1} \mid B_{1}$, which yields

$$
2 \leqslant \frac{1}{2}\left(x_{a}(B)-\delta\left(b_{1}\right)\right) \leqslant \frac{1}{2}\left(x_{a}(B)+\delta\left(b_{1}\right)\right) \leqslant x_{a}(B)-2 .
$$

Hence $1 \leqslant x_{a}^{\prime}\left(b_{1}\right) \leqslant r-3$. It follows that

$$
2\left|B_{1}\right|+\left|B_{2}\right| \leqslant \sum_{b_{1} \mid B_{1}} x_{a}^{\prime}\left(b_{1}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \leqslant r(r-2) \leqslant k .
$$

Consequently $x_{a}(B)=\sum_{b_{1} \mid B_{1}} x_{a}^{\prime}\left(b_{1}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right)>|B|$, a contradiction to $d(B)>0$. Therefore $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $c_{1} \mid C_{1}$. It is left to show there exists c_{1} such that $x_{a}^{\prime}\left(c_{1}\right)=0$.

Assume to the contrary that $x_{a}^{\prime}\left(c_{1}\right) \geqslant 1$ for all $c_{1} \mid C_{1}$. Then by $1 \leqslant x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$ for $c_{2} \mid C_{2}$ and $1 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for $c_{1} \mid C_{1}$ we get $k>\sum_{c \mid C} x_{a}^{\prime}(c)=x_{a}(C) \geqslant|C|$, which contradicts $d(C)>0$. As a result there exists $c_{1} \mid C_{1}$ with $x_{a}^{\prime}\left(C_{1}\right)=0$.
(ii) Since $\mathbf{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$, there are e_{1}, e_{2} of order 2 such that $\langle\overline{U B}\rangle=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$. Let c_{1} be a fixed term of C_{1} with $x_{a}^{\prime}\left(c_{1}\right)<0$. Without loss of generality, one may suppose
$c_{1} \in e_{1}+\langle\bar{U}\rangle$. Write $B_{1}=A_{1} A_{2} A_{3}$ with $\operatorname{Supp}\left(\overline{A_{1}}\right), \operatorname{Supp}\left(\overline{A_{2}}\right)$ and $\operatorname{Supp}\left(\overline{A_{3}}\right)$ being subsets of $e_{1}+\langle\bar{U}\rangle, e_{2}+\langle\bar{U}\rangle$ and $e_{1}+e_{2}+\langle\bar{U}\rangle$ respectively. By symmetry we can suppose $\left|A_{2}\right| \leqslant\left|A_{3}\right|$. Consider the decomposition $B=A_{1} A_{2} A_{3}^{\prime} A_{3}^{\prime \prime}$, where A_{3}^{\prime} is any subsequence of A_{3} with $\left|A_{3}^{\prime}\right|=\left|A_{2}\right|$ and $A_{3}^{\prime \prime}=A_{3} A_{3}^{\prime-1}$. It is easy to see that $\left|A_{3}^{\prime \prime}\right|$ is even.

Take $X=a_{1}$ with $a_{1} \mid A_{1}$ or $X=a_{2} a_{3}$ with $a_{2}\left|A_{2}, a_{3}\right| A_{3}^{\prime}$. Then there exists a $Y \mid U$ such that $X Y c_{1}$ is a block. Then (1) and $x_{a}^{\prime}\left(c_{1}\right)<0$ gives us

$$
\begin{equation*}
\frac{3-r}{2} \leqslant \frac{\delta(X)-x_{a}(B)}{2}+1 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant-1 . \tag{3}
\end{equation*}
$$

This implies $\delta(X) \leqslant x_{a}(B)-4$ and hence

$$
2 \leqslant \frac{1}{2}\left(x_{a}(B)-\delta(X)\right) \leqslant \frac{1}{2}\left(x_{a}(B)+\delta(X)\right) \leqslant x_{a}(B)-2 .
$$

It follows that $2 \leqslant x_{a}^{\prime}(X) \leqslant x_{a}(B)-2$. For any $T \mid A_{3}^{\prime \prime}$ of length two, we have $\sigma(\bar{T}) \in\langle\bar{U}\rangle$ and hence there exists a $Y \mid U$ such that $Y T$ is a block. One deduces from (1) that $1 \leqslant x_{a}^{\prime}(T) \leqslant r-2$. It is worth mentioning that if there exist two disjoint subsequences of $A_{3}^{\prime \prime}$ of length two, say T_{1}, T_{2}, such that $x_{a}^{\prime}\left(T_{1}\right)=x_{a}^{\prime}\left(T_{2}\right)=1$, then by Lemma 17 (ii) we have $x_{a}^{\prime}(g)=\frac{k+1}{2}$ for any $g \mid T_{1} T_{2}$.

Assume $\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$. Then $\langle\overline{U C}\rangle=\langle\overline{U B}\rangle$, and hence $\langle\bar{B}\rangle \subset\langle\overline{U C}\rangle$. For each $b_{1} \mid B_{1}$, there exist $Z \mid C$ and $Y \mid U$ such that $Z Y b_{1}$ is a block, where Y is empty if $Z b_{1}$ is already a block. Then by (1)

$$
\begin{equation*}
1-\frac{r-1}{2} \leqslant \frac{\delta(Z)-x_{a}(C)}{2}+1 \leqslant x_{a}^{\prime}\left(b_{1}\right) \leqslant \frac{3 r-5}{2} \tag{4}
\end{equation*}
$$

So there is no $b_{1} \mid B_{1}$ with $x_{a}^{\prime}\left(b_{1}\right)=\frac{k+1}{2}$, and hence there exists at most one $T \mid A_{3}^{\prime \prime}$ satisfying $x_{a}^{\prime}(T)=1$. Write $A_{2} A_{3}^{\prime}=Q_{1} \cdots Q_{s}$ with each Q_{i} consisting of exactly one term from A_{2} and one from A_{3}^{\prime}. Let $A_{3}^{\prime \prime}=T_{1} T_{2} \cdots T_{t}$ be any decomposition of $A_{3}^{\prime \prime}$ with $\left|T_{i}\right|=2$ for all $1 \leqslant i \leqslant t$. To sum up, we have

$$
\begin{aligned}
k & \geqslant \sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right)+\sum_{a_{1} \mid A_{1}} x_{a}^{\prime}\left(a_{1}\right)+\sum_{i=1}^{s} x_{a}^{\prime}\left(Q_{i}\right)+\sum_{i=1}^{t} x_{a}^{\prime}\left(T_{i}\right) \\
& \geqslant\left|B_{2}\right|+2\left|A_{1}\right|+2\left|A_{2}\right|+\left|A_{3}^{\prime \prime}\right|-1=|B|+\left|A_{1}\right|-1 .
\end{aligned}
$$

It follows that $|B|+\left|A_{1}\right|-1 \leqslant x_{a}(B)$. To have $|B|>x_{a}(B)$, one must have $\left|A_{1}\right|=0$, one of T_{1}, \ldots, T_{t}, say T_{1}, satisfies $x_{a}^{\prime}\left(T_{1}\right)=1$ and others satisfy $x_{a}^{\prime}\left(T_{i}\right)=2$, as well as $x_{a}^{\prime}\left(Q_{i}\right)=2$ for $1 \leqslant i \leqslant s$. By $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$ and $\left|A_{1}\right|=0$, we have $\left|A_{2}\right|,\left|A_{3}\right|>0$. Since A_{3}^{\prime} is arbitrarily chosen, we get $x_{a}^{\prime}\left(a_{2} a_{3}\right)=2$ for any $a_{2} \mid A_{2}$ and $a_{3} \mid A_{3}$. It follows that all $x_{a}^{\prime}\left(a_{3}\right)$ are equal for $a_{3} \mid A_{3}$. Their common value $x \in\left(-\frac{k-1}{2}, \frac{k+1}{2}\right]$ satisfies the congruence $x_{a}^{\prime}\left(T_{1}\right)=1 \equiv 2 x(\bmod k)$, i.e., $x=\frac{k+1}{2}$, contradicting (4). Hence $\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$.

Recall that $\overline{c_{1}} \in e_{1}+\langle\bar{U}\rangle$. From $\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$ we get $\operatorname{Supp}\left(\overline{C_{1}}\right) \subset e_{1}+\langle\bar{U}\rangle$, which derives $\sigma\left(\overline{c_{1} c_{1}^{\prime}}\right) \in\langle\bar{U}\rangle$ for all $c_{1}^{\prime} \mid C_{1}$. Then there exists a $Y \mid U$ such that $Y c_{1} c_{1}^{\prime}$ is a block. Consequently $1 \leqslant x_{a}^{\prime}\left(c_{1} c_{1}^{\prime}\right) \leqslant r-2$ by (1). By the same argument used to derive (4), we can obtain $\frac{3-r}{2}<x_{a}^{\prime}\left(c_{1}^{\prime}\right)<\frac{3 r-5}{2}$, which together with (3) gives us $3-r<x_{a}^{\prime}\left(c_{1}\right)+x_{a}^{\prime}\left(c_{1}^{\prime}\right) \leqslant \frac{3 r-7}{2}$. It implies $x_{a}^{\prime}\left(c_{1} c_{1}^{\prime}\right)=x_{a}^{\prime}\left(c_{1}\right)+x_{a}^{\prime}\left(c_{1}^{\prime}\right)$ and hence

$$
2 \leqslant 1-x_{a}^{\prime}\left(c_{1}\right) \leqslant x_{a}^{\prime}\left(c_{1}^{\prime}\right) \leqslant r-2-x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-7}{2}<k .
$$

It follows that $C_{1}=c_{1} c_{1}^{\prime}$ with $x_{a}^{\prime}\left(C_{1}\right)=1$ and $x_{a}^{\prime}\left(c_{2}\right)=1$ for any $c_{2} \mid C_{2}$, since otherwise $k>x_{a}(C)=\sum_{c \mid C} x_{a}^{\prime}(c) \geqslant|C|$, i.e., $d(C) \leqslant 0$.

Assume to the contrary that there exists a minimal block D with positive defect in $\alpha(U B C)^{-1}$ such that $\langle\bar{D}\rangle \subset\langle\overline{U B}\rangle$. Let D_{2} be a sequence (possibly empty) consisting of terms $d \mid D$ with $\bar{d} \in\langle\bar{U}\rangle$. Set $D_{1}=D D_{2}^{-1}$. Then (1) yields $1 \leqslant x_{a}^{\prime}\left(d_{2}\right) \leqslant r-2$ for $d_{2} \mid D_{2}$. For any $d_{1} \mid D_{1}$, there exists a proper $X \mid B_{1}$ such that either $X d_{1}$ is a block or $X Y d_{1}$ is a block for some proper $Y \mid U$. Applying (1) we derive that

$$
\frac{\delta(X)-x_{a}(B)}{2}+1 \leqslant x_{a}^{\prime}\left(d_{1}\right) \leqslant \frac{3 r-5}{2}
$$

Obviously, there exists $d_{1} \mid D_{1}$ such that $x_{a}^{\prime}\left(d_{1}\right) \leqslant 0$, since otherwise $1 \leqslant x_{a}^{\prime}\left(d_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $d_{1} \mid D_{1}$, and then $x_{a}(D)=\sum_{d_{1} \mid D_{1}} x_{a}^{\prime}\left(d_{1}\right)+\sum_{d_{2} \mid D_{2}} x_{a}^{\prime}\left(d_{2}\right) \geqslant|D|$, a contradiction to $d(D)>0$. If $\overline{d_{1}} \in e_{1}+\langle\bar{U}\rangle$, by $\operatorname{Supp}\left(\overline{C_{1}}\right) \subset e_{1}+\langle\bar{U}\rangle$ we get that $c_{1} d_{1}$ is a block or there exists a proper $Y \mid U$ such that $Y c_{1} d_{1}$ is a block, where $c_{1} \mid C_{1}$ with $x_{a}^{\prime}\left(c_{1}\right)<0$. By $x_{a}^{\prime}\left(d_{1}\right) \leqslant 0$ and $x_{a}^{\prime}\left(c_{1}\right)<0$, we have $\delta\left(d_{1}\right) \geqslant x_{a}(D)$ and $\delta\left(c_{1}\right)>x_{a}(C)$. It follows from Corollary 8 that $x_{a}(D)+x_{a}(C)+1 \leqslant \delta\left(d_{1}\right)+\delta\left(c_{1}\right) \leqslant x_{a}(D)+x_{a}(C)-2$, a contradiction. If $\overline{d_{1}} \in e_{2}+\langle\bar{U}\rangle$ or $\overline{d_{1}} \in e_{1}+e_{2}+\langle\bar{U}\rangle$, then for any $b_{1} \mid B_{1}$, one of $\left\{\sigma\left(\overline{b_{1} c_{1}}\right), \sigma\left(\overline{b_{1} d_{1}}\right), \sigma\left(\overline{b_{1} c_{1} d_{1}}\right)\right\}$ is contained in $\langle\bar{U}\rangle$, where $c_{1} \mid C_{1}$ with $x_{a}^{\prime}\left(c_{1}\right)<0$. Then there exists a proper $Y \mid U$ such that one of $\left\{Y b_{1} c_{1}, Y b_{1} d_{1}, Y b_{1} c_{1} d_{1}\right\}$ is a block. By $x_{a}^{\prime}\left(d_{1}\right) \leqslant 0, x_{a}^{\prime}\left(c_{1}\right)<0$ and Corollary 8 , we have $\delta\left(b_{1}\right) \leqslant x_{a}(B)-2$. It implies that

$$
1 \leqslant \frac{1}{2}\left(x_{a}(B)-\delta\left(b_{1}\right)\right) \leqslant \frac{1}{2}\left(x_{a}(B)+\delta\left(b_{1}\right)\right) \leqslant x_{a}(B)-1 .
$$

Hence, $1 \leqslant x_{a}^{\prime}\left(b_{1}\right) \leqslant x_{a}(B)-1$ for all $b_{1} \mid B_{1}$. Since $1 \leqslant x_{a}^{\prime}\left(b_{2}\right) \leqslant r-2$ for all $b_{2} \mid B_{2}$, we have that $x_{a}(B)=\sum_{b_{1} \mid B_{1}} x_{a}^{\prime}\left(b_{1}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \geqslant|B|$, a contradiction to $d(B)>0$. The proof is completed.
Lemma 20. Let $U \mid \alpha$ be a unit block, and write $r_{U}:=\mathrm{r}(\langle\bar{U}\rangle)$. For $1 \leqslant i \leqslant 3$, let B_{i} be disjoint minimal blocks with positive defect in αU^{-1} such that $\mathrm{r}\left(\left\langle\overline{U B_{i}}\right\rangle\right)=r_{U}+1$ and

$$
\mathrm{r}\left(\left\langle\overline{U B_{1} B_{2} B_{3}}\right\rangle\right)=\mathrm{r}\left(\left\langle\overline{U B_{i} B_{j}}\right\rangle\right)=r_{U}+2 \text { for } 1 \leqslant i<j \leqslant 3
$$

Denote by V_{i} the longest subsequence of B_{i} with $\operatorname{Supp}\left(\overline{V_{i}}\right) \subset\langle\bar{U}\rangle$, and $V_{i}^{\prime}=B_{i} V_{i}^{-1}$. Then $1 \leqslant x_{a}^{\prime}(v) \leqslant r-2$ for all $v \mid V_{i}$ and $0 \leqslant x_{a}^{\prime}(v) \leqslant 2 r-3$ for all $v \mid V_{i}^{\prime}$. In particular, there exists some $v \mid V_{i}^{\prime}$ with $x_{a}^{\prime}(v)=0$.

Proof. For $v \mid V_{i}$, there exists a proper subsequence $W \mid U$ such that $W v$ is a block. Applying (1) to the decompositions $V_{i}=v \cdot V_{i} v^{-1}$ and $U=W \cdot\left(U W^{-1}\right)$ one deduces that $1 \leqslant x_{a}^{\prime}(v) \leqslant r-2$.

For $1 \leqslant i \leqslant 3$, let v_{i} be any term of V_{i}^{\prime}. Then $\sigma\left(\overline{v_{1} v_{2} v_{3}}\right) \in\langle\bar{U}\rangle$. So there exists a subsequence $W \mid U$ such that $W v_{1} v_{2} v_{3}$ is a block, where W is empty if $v_{1} v_{2} v_{3}$ is a block. Then by (1) we derive

$$
\begin{equation*}
3-r \leqslant \frac{\delta\left(v_{h}\right)-x_{a}\left(B_{h}\right)}{2}+\frac{\delta\left(v_{j}\right)-x_{a}\left(B_{j}\right)}{2}+1 \leqslant x_{a}^{\prime}\left(v_{i}\right) \leqslant 2 r-3<\frac{k+1}{2} \tag{5}
\end{equation*}
$$

where $1 \leqslant h, i, j \leqslant 3$ are different integers. Hence $3-r \leqslant x_{a}^{\prime}\left(v_{i}\right) \leqslant 2 r-3$.
Assume that there is a $v_{1} \mid V_{1}^{\prime}$ with $x_{a}^{\prime}\left(v_{1}\right) \leqslant-1$. Then by (5) we have

$$
\frac{\delta\left(v_{2}\right)-x_{a}\left(B_{2}\right)}{2}+\frac{\delta\left(v_{3}\right)-x_{a}\left(B_{3}\right)}{2}+1 \leqslant-1
$$

for all $v_{2} \mid V_{2}^{\prime}$ and $v_{3} \mid V_{3}^{\prime}$.
If $x_{a}^{\prime}\left(v_{2}\right) \geqslant 1$ for all $v_{2} \mid V_{2}^{\prime}$, then $\left|B_{2}\right| \geqslant x_{a}\left(B_{2}\right) \geqslant\left|V_{2}\right|+\left|V_{2}^{\prime}\right|=\left|B_{2}\right|$, contradiction to $d\left(B_{2}\right)>0$. If $x_{a}^{\prime}\left(v_{2}\right) \leqslant 0$ for some $v_{2} \mid V_{2}^{\prime}$, then $\delta\left(v_{2}\right) \geqslant x_{a}\left(B_{2}\right)$. It follows that $\delta\left(v_{3}\right) \leqslant x_{a}\left(B_{3}\right)-4$, and hence

$$
2 \leqslant \frac{1}{2}\left(x_{a}\left(B_{3}\right)-\delta\left(v_{3}\right)\right) \leqslant \frac{1}{2}\left(x_{a}\left(B_{3}\right)+\delta\left(v_{3}\right)\right) \leqslant x_{a}\left(B_{3}\right)-2 .
$$

Thus $2 \leqslant x_{a}^{\prime}\left(v_{3}\right) \leqslant x_{a}\left(B_{3}\right)-2$ for all $v_{3} \mid V_{3}^{\prime}$. This together with $1 \leqslant x_{a}^{\prime}\left(v_{3}\right) \leqslant r-2$ for $v_{3} \mid V_{3}$ implies that $x_{a}\left(B_{3}\right) \geqslant\left|V_{3}\right|+2\left|V_{3}^{\prime}\right|>\left|B_{3}\right|$, a contradiction. Hence we conclude that $x_{a}^{\prime}\left(v_{1}\right) \geqslant 0$ for all $v_{1} \mid V_{1}^{\prime}$. Similarly we can prove $x_{a}^{\prime}(v) \geqslant 0$ for v dividing V_{2}^{\prime} or V_{3}^{\prime}.

Finally, if there exists no $v \mid V_{i}^{\prime}$ with $x_{a}^{\prime}(v)=0$, then $1 \leqslant x_{a}^{\prime}(v) \leqslant 2 r-3$ for all $v \mid V_{i}^{\prime}$. Consequently $x_{a}\left(B_{i}\right)=\sum_{v \mid V_{i}} x_{a}^{\prime}(v)+\sum_{v \mid V_{i}^{\prime}} x_{a}^{\prime}(v) \geqslant\left|B_{i}\right|$, a contradiction. This proves the existence of $v \mid V_{i}^{\prime}$ with $x_{a}^{\prime}(v)=0$.

Lemma 21. Let $U \mid \alpha$ be a unit block. If there is a minimal block $B \mid \alpha U^{-1}$ with $d(B) \geqslant 2$ and $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$. Then k is odd.

Proof. Since $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$, there is an $e \mid B$ such that $\langle\overline{U B}\rangle=\langle\bar{U}, \bar{e}\rangle$. Write $B=B_{1} B_{2}$ with $\operatorname{Supp}\left(\overline{B_{1}}\right) \subset \bar{e}+\langle\bar{U}\rangle$ and $\operatorname{Supp}\left(\overline{B_{2}}\right) \subset\langle\bar{U}\rangle$. Then $\left|B_{1}\right| \geqslant 2$ is even and each pair of terms of B_{1} has sum in $\langle\bar{U}\rangle$. Consider any decomposition $B_{1}=T_{1} \cdots T_{m}$ with $\left|T_{i}\right|=2$. For each $T_{i} \mid B_{1}$, since $\sigma\left(\overline{T_{i}}\right) \in\langle\bar{U}\rangle$, there exists a subsequence W of U such that $T_{i} W$ is a block. Then from (1) it follows that $1 \leqslant x_{a}^{\prime}\left(T_{i}\right) \leqslant r-2$. On the other hand, we can similarly get $1 \leqslant x_{a}^{\prime}\left(b_{2}\right) \leqslant r-2$ for any $b_{2} \mid B_{2}$. If there exists at most one T_{i}, say T_{1}, such that $x_{a}^{\prime}\left(T_{1}\right)=1$, then $2 \leqslant x_{a}^{\prime}\left(T_{i}\right) \leqslant r-2$ for $2 \leqslant i \leqslant m$. It follows that

$$
x_{a}(B)=\sum_{i=1}^{m} x_{a}^{\prime}\left(T_{i}\right)+\sum_{b \mid B_{2}} x_{a}^{\prime}(b) \geqslant 1+2(m-1)+\left|B_{2}\right|=|B|-1,
$$

contradicting $d(B) \geqslant 2$. So there exist T_{i} and T_{j} such that $x_{a}^{\prime}\left(T_{i}\right)=x_{a}^{\prime}\left(T_{j}\right)=1$. Then Lemma 17 (ii) tells that k is odd.

Lemma 22. Let $U \mid \alpha$ be a unit block with $d(U)=r-2$. Then there exists exactly one minimal block with positive defect in αU^{-1}.

Proof. Since $d(\alpha)=|\alpha|-2 k \geqslant r$ and $d(U)=r-2$, by the additivity of defect we have $d\left(\alpha U^{-1}\right)=d(\alpha)-d(U) \geqslant 2$, i.e., there exists at least one minimal block with positive defect in αU^{-1}. Assume to the contrary that there exist two disjoint minimal blocks B and C with positive defect in αU^{-1}. Combining Lemma 10 with Lemma 18 yields that $\mathrm{r}(\langle\overline{U B}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1=d(U)+1=r-1$ and $\mathrm{r}(\langle\overline{U B}\rangle) \leqslant \mathrm{r}(\bar{G})=r-1$. Then $\langle\overline{U B}\rangle=\bar{G}$. Similarly, $\langle\overline{U C}\rangle=\bar{G}$. By Lemma 19 (i) there exist b_{1} and c_{1} of order 2 of $\bar{G} \backslash\langle\bar{U}\rangle$ contained in B and C respectively. Then $\delta\left(b_{1}\right)=x_{a}(B)$ and $\delta\left(c_{1}\right)=x_{a}(C)$. Since $\langle\bar{U}\rangle$ is an index-2 subgroup of \bar{G}, there exists a $Y \mid U$ such that $Y b_{1} c_{1}$ is a $\langle a\rangle$-block. It follows from Corollary 8 that $\delta\left(b_{1}\right)+\delta\left(c_{1}\right)=x_{a}(B)+x_{a}(C) \leqslant x_{a}(B)+x_{a}(C)-2$, a contradiction. This proves the lemma.

Lemma 23. Let $U \mid \alpha$ be a unit block with $d(U)=r-3$. Then there exists at most two disjoint minimal blocks in αU^{-1} with positive defect.

Furthermore if there exist two minimal blocks B, C in αU^{-1} with positive defect, then $\langle\overline{U B}\rangle \neq\langle\overline{U C}\rangle$ and one of the following two holds:
(i) if $\langle\overline{U B}\rangle$ and $\langle\overline{U C}\rangle$ do not contain each other, then $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)=r-2$.
(ii) if $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$, then $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)+1=r-1, d(B) \geqslant 2, d(C)=1$ and

$$
C=\left(e_{1}^{\prime}+k_{1} a\right) \cdot\left(e_{2}^{\prime}+k_{2} a\right) \cdot\left(e_{3}^{\prime}+a\right) \cdots \cdot\left(e_{|C|}^{\prime}+a\right),
$$

where $k_{1}+k_{2}=1, k_{1} \leqslant 0,\left(e_{1}^{\prime}+k_{1} a\right) \mid C_{1}$ and $e_{i}^{\prime} \in G$ has order two.
Proof. Suppose that there exist two disjoint minimal blocks B, C in αU^{-1} with positive defect. Let B_{2} and C_{2} be sequences (possibly empty) consisting of terms $b \mid B$ with $\bar{b} \in\langle\bar{U}\rangle$ and $c \mid C$ with $\bar{c} \in\langle\bar{U}\rangle$ respectively. Set $B_{1}=B B_{2}^{-1}$ and $C_{1}=C C_{2}^{-1}$.

Claim: Suppose $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$.
(a) If there exists some $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)<0$, then $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2=r-1$. In particular, $\langle\overline{U B}\rangle=\bar{G}$.
(b) If $x_{a}^{\prime}\left(c_{1}\right) \geqslant 0$ for any $c_{1} \mid C_{1}$, then $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for any $c_{1} \mid C_{1}$. In addition, there exists $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)=0$, i.e., c_{1} is of order 2
(a) Suppose to the contrary $r(\langle\overline{U B}\rangle)<r-1$. By Lemma 18 we have $r(\langle\overline{U B}\rangle) \geqslant$ $\mathrm{r}(\langle\bar{U}\rangle)+1=d(U)+1=r-2$. Then $\mathrm{r}(\langle\overline{U B}\rangle)=r-2=\mathrm{r}(\langle\bar{U}\rangle)+1$. By Lemma 19 (i) we get $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for any $c_{1} \mid C_{1}$, a contradiction.
(b) Since $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$, by (1) we get $1 \leqslant x_{a}^{\prime}\left(b_{2}\right), x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$ for all $b_{2} \mid B_{2}$ and $c_{2} \mid C_{2}$. In addition, for any $c_{1} \mid C_{1}$ there exist proper $X \mid B$ and $Y \mid U$ (Y may be empty) such that $X Y c_{1}$ is a block. Applying (1) we derive that

$$
\frac{\delta(X)-x_{a}(B)}{2}+1 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2} .
$$

Hence, $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$. If $1 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $c_{1} \mid C_{1}$, then by $1 \leqslant x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$ for $c_{2} \mid C_{2}$ we get $k>\sum_{c \mid C} x_{a}^{\prime}(c)=x_{a}(C) \geqslant|C|$, which contradicts $d(C)>0$. We complete the proof of the claim.

Step $1:\langle\overline{U B}\rangle \neq\langle\overline{U C}\rangle$.
Assume to the contrary that $\langle\overline{U B}\rangle=\langle\overline{U C}\rangle$, i.e., $\langle\bar{B}\rangle \subset\langle\overline{U C}\rangle$ and $\langle\bar{C}\rangle \subset\langle\overline{U B}\rangle$. If there exists some $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)<0$, then by Claim (a) we have $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$. It follows from Lemma 19 (ii) that $\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1$, which implies that $\langle\overline{U B}\rangle \neq\langle\overline{U C}\rangle$.

If $x_{a}^{\prime}\left(c_{1}\right) \geqslant 0$ for any $c_{1} \mid C_{1}$, then Claim (b) yields $0 \leqslant x_{a}^{\prime}\left(b_{1}\right), x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $b_{1}\left|B_{1}, c_{1}\right| C_{1}$ and there exists $e\left|B_{1}, e^{\prime}\right| C_{1}$ such that e, e^{\prime} are of order 2. If $\mathrm{r}(\langle\overline{U B}\rangle)=r-2$, by Lemma 18 we have $\mathrm{r}(\langle\overline{U B}\rangle)=r-2 \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1=d(U)+1=r-2$, i.e., $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1=r-2$. Then there exists e_{1} such that $\langle\overline{U B}\rangle=\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{1}\right\rangle$. It follows that $e, e^{\prime} \in e_{1}+\langle\bar{U}\rangle$. Then $e e^{\prime}$ is a block. Since $\delta(e)=x_{a}(B)$ and $\delta\left(e^{\prime}\right)=x_{a}(C)$, applying Corollary 8 we derive that $x_{a}(B)+x_{a}(C)=\delta(e)+\delta\left(e^{\prime}\right) \leqslant x_{a}(B)+x_{a}(C)-2$, a contradiction.

Since $\mathrm{r}(\langle\overline{U B}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1=r-2$ and $\mathrm{r}(\langle\overline{U B}\rangle) \leqslant \mathrm{r}(\bar{G})=r-1$, we have $\mathrm{r}(\langle\overline{U B}\rangle)=r-2$ or $r-1$. Then it suffices to prove our result if $r(\langle\overline{U B}\rangle)=r-1$. By $\langle\overline{U C}\rangle=\langle\overline{U B}\rangle$ there exist e_{1}, e_{2} such that $\langle\overline{U B}\rangle=\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle=\bar{G}$. It follows that there exists exactly one element of order 2 in B_{1}, C_{1} respectively. Assume to the contrary that there exist two elements c_{1}, c_{1}^{\prime} of order 2 in C_{1}. Let b_{1} be an element of order 2 in B_{1}. Obviously, one of $\left\{c_{1} c_{1}^{\prime}, b_{1} c_{1}, b_{1} c_{1}^{\prime}, b_{1} c_{1} c_{1}^{\prime}\right\}$ is contained in $\langle\bar{U}\rangle$. Since $\delta\left(b_{1}\right)=x_{a}(B)$ and $\delta\left(c_{1}\right)=\delta\left(c_{1}^{\prime}\right)=$ $\delta\left(c_{1} c_{1}^{\prime}\right)=x_{a}(C)$, by Corollary 8 we get that either $x_{a}(C)=\delta\left(c_{1} c_{1}^{\prime}\right) \leqslant x_{a}(C)-2$ or $x_{a}(B)+x_{a}(C)=\delta\left(b_{1}\right)+\delta(X) \leqslant x_{a}(B)+x_{a}(C)-2$ for $X b_{1} \in\left\{b_{1} c_{1}, b_{1} c_{1}^{\prime}, b_{1} c_{1} c_{1}^{\prime}\right\}$ contained in $\langle\bar{U}\rangle$. This is a contradiction. Let e and e^{\prime} are elements of order 2 in B_{1}, C_{1} respectively. Then we have $x_{a}^{\prime}(e)=x_{a}^{\prime}\left(e^{\prime}\right)=0$ and $x_{a}^{\prime}(b) \geqslant 1, x_{a}^{\prime}(c) \geqslant 1$ for all $b \mid B_{1} e^{-1}$ and $c \mid C_{1} e^{\prime-1}$. Hence, by $0 \leqslant x_{a}^{\prime}\left(b_{1}\right), x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $b_{1}\left|B_{1}, c_{1}\right| C_{1}$ and $1 \leqslant x_{a}^{\prime}\left(b_{2}\right), x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$ for all $b_{2}\left|B_{2}, c_{2}\right| C_{2}$, we get

$$
\begin{aligned}
& \frac{k+1}{2}>\frac{3 r-5}{2}(r-1) \geqslant \sum_{b \mid B e^{-1}} x_{a}^{\prime}(b)=x_{a}(B) \geqslant|B|-1 \geqslant x_{a}(B) \text { and } \\
& \frac{k+1}{2}>\frac{3 r-5}{2}(r-1) \geqslant \sum_{c \mid C e^{\prime-1}} x_{a}^{\prime}(c)=x_{a}(C) \geqslant|C|-1 \geqslant x_{a}(C) .
\end{aligned}
$$

It follows that $|B|=x_{a}(B)+1,|C|=x_{a}(C)+1$ and $x_{a}^{\prime}(b)=x_{a}^{\prime}(c)=1$ for all $b \mid B e^{-1}$ and $c \mid C e^{\prime-1}$, which implies that $d(B)=d(C)=1$. In addition, by the proof of $\mathrm{r}(\langle\overline{U B}\rangle)=r-2$, it is easy to see that e and e^{\prime} can not be contained in the same $\langle\bar{U}\rangle$ coset, i.e., $\bar{e} \neq \overline{e^{\prime}}$. Since $d\left(\alpha U^{-1}\right) \geqslant 3$, there exists a minimal block D in $\alpha(U B C)^{-1}$ with positive defect. Since $\langle\overline{U B}\rangle=\bar{G}$, we have $\langle\bar{D}\rangle \subset\langle\overline{U B}\rangle$. Repeat the reasoning of C and we have that $\langle\overline{U B}\rangle=\langle\overline{U D}\rangle=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle=\bar{G}, d(D)=1$ and there exists exactly one element of order 2 in D_{1}. Set $e^{\prime \prime}$ is the order-2 element of D_{1} and we have that $\bar{e}, \overline{e^{\prime}}, \overline{e^{\prime \prime}}$ are pairwise distinct contained in $\left\langle e_{1}, e_{2}\right\rangle$. Hence, $\sigma\left(\overline{e e^{\prime} e^{\prime \prime}}\right)=\overline{0}$. Since $\delta(e)=x_{a}(B), \delta\left(e^{\prime}\right)=x_{a}(C)$ and $\delta\left(e^{\prime \prime}\right)=x_{a}(D)$, by Corollary 8 we get that $x_{a}(B)+x_{a}(C)+x_{a}(D)=\delta(e)+\delta\left(e^{\prime}\right)+\delta\left(e^{\prime \prime}\right) \leqslant$ $x_{a}(B)+x_{a}(C)+x_{a}(D)-2$, a contradiction.

By step 1 it is easy to see that any two disjoint minimal blocks B, C in αU^{-1} with positive defect satisfy $\langle\overline{U B}\rangle \neq\langle\overline{U C}\rangle$.

Step 2: If $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$, then (ii) holds and there exist exactly two disjoint minimal blocks in αU^{-1} with positive defect.

If there exists some $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)<0$, then by $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$ and Claim (a) we have $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+2$ and $\langle\overline{U B}\rangle=\bar{G}$. It follows from Lemma 19 (ii) that (1) $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)+1=\mathrm{r}(\langle\bar{U}\rangle)+2=r-1$; (2) $C=\left(e_{1}^{\prime}+k_{1} a\right) \cdot\left(e_{2}^{\prime}+k_{2} a\right) \cdot\left(e_{3}^{\prime}+\right.$ a) $\cdots\left(e_{|C|}^{\prime}+a\right)$, where $k_{1}+k_{2}=1, k_{1}<0$ and $e_{i}^{\prime} \in G$ has order two, and this implies $d(C)=1 ;(3)$ there does not exist a minimal block D with positive defect in $\alpha(U B C)^{-1}$ $(\langle\bar{D}\rangle \subset\langle\overline{U B}\rangle=\bar{G})$, which implies that $d(B)=d(\alpha)-d(U)-d(C) \geqslant 2$ by the additivity of defect. Hence, our result is true.

Now suppose $x_{a}^{\prime}\left(c_{1}\right) \geqslant 0$ for any $c_{1} \mid C_{1}$. Since $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$ and $\langle\overline{U C}\rangle \neq\langle\overline{U B}\rangle$, by Lemma 18 we have $\mathrm{r}(\langle\overline{U B}\rangle) \geqslant \mathrm{r}(\langle\overline{U C}\rangle)+1 \geqslant \mathrm{r}(\langle\bar{U}\rangle)+2=d(U)+2=r-1$. By $\mathrm{r}(\langle\overline{U B}\rangle) \leqslant \mathrm{r}(\bar{G})=r-1$, we derive that $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)+1=\mathrm{r}(\langle\bar{U}\rangle)+2=r-1$, $\langle\overline{U B}\rangle=\bar{G}$ and there exists e_{1}, e_{2} such that $\langle\overline{U B}\rangle=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$ and $\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{1}\right\rangle$. By (1) and Claim (b) we get $1 \leqslant x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2,0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $c_{2}\left|C_{2}, c_{1}\right| C_{1}$, and there exists $c_{1} \mid C_{1}$ such that $x_{a}^{\prime}\left(c_{1}\right)=0$. It follows that there exists exactly one element of order 2 in C_{1}. Assume to the contrary that there exist two elements c_{1}, c_{1}^{\prime} of order 2 in C_{1}. It follows from $\langle\overline{U C}\rangle=\langle\bar{U}, e\rangle$ that $\overline{c_{1}}, \overline{c_{1}^{\prime}} \in e_{1}+\langle\bar{U}\rangle$. Then $c_{1} c_{1}^{\prime}$ is a block. Since $\delta\left(c_{1} c_{1}^{\prime}\right)=x_{a}(C)$, applying Corollary 8 we derive that $x_{a}(C)=\delta\left(c_{1} c_{1}^{\prime}\right) \leqslant x_{a}(C)-2$, a contradiction. Let e_{1}^{\prime} be the element of order 2 in C_{1}. Then we have $x_{a}\left(e_{1}^{\prime}\right)=0$ and $x_{a}(c) \geqslant 1$ for all $c \mid C_{1} e_{1}^{\prime-1}$. Hence, by $0 \leqslant x_{a}^{\prime}\left(c_{1}\right) \leqslant \frac{3 r-5}{2}$ for all $c_{1} \mid C_{1}$ and $1 \leqslant x_{a}^{\prime}\left(c_{2}\right) \leqslant r-2$ for all $c_{2} \mid C_{2}$, we get

$$
\frac{k+1}{2}>\frac{3 r-5}{2}(r-1) \geqslant \sum_{c \mid C e_{1}^{\prime-1}} x_{a}^{\prime}(c)=x_{a}(C) \geqslant|C|-1 \geqslant x_{a}(C)
$$

It follows that $|C|=x_{a}(C)+1$ and $x_{a}^{\prime}(c)=1$ for all $c \mid C e_{1}^{\prime-1}$, which implies that $d(C)=1$ and $C=e_{1}^{\prime} \cdot\left(e_{2}^{\prime}+a\right) \cdot\left(e_{3}^{\prime}+a\right) \cdots \cdots\left(e_{|C|}^{\prime}+a\right)$, where $e_{i}^{\prime} \in G$ has order two.

If there does not exist minimal blocks in $\alpha(U B C)^{-1}$ with positive defect, then by the additivity of defect, $d(B)=d(\alpha)-d(U)-d(C) \geqslant 2$. Hence, it suffices to prove that there does not exist minimal blocks in $\alpha(U B C)^{-1}$ with positive defect. Assume to the contrary that there exists a minimal block D in $\alpha(U B C)^{-1}$ with positive defect. Let D_{2} be the sequence (possibly empty) consisting of terms $d \mid D$ with $\bar{d} \in\langle\bar{U}\rangle$. Set $D_{1}=D D_{2}^{-1}$. By step 1 we can see that $\langle\overline{U D}\rangle \neq\langle\overline{U B}\rangle$ and $\langle\overline{U D}\rangle \neq\langle\overline{U C}\rangle$. Since $\langle\overline{U B}\rangle=\bar{G}$, we have $\langle\overline{U D}\rangle \subset\langle\overline{U B}\rangle$. By the proof of the structure of C, we can derive that

$$
D=\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right) \cdot\left(e_{2}^{\prime \prime}+k_{2}^{\prime} a\right) \cdot\left(e_{3}^{\prime \prime}+a\right) \cdots \cdot\left(e_{|D|}^{\prime \prime}+a\right),
$$

where $k_{1}^{\prime}+k_{2}^{\prime}=1, k_{1}^{\prime} \leqslant 0,\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right) \mid D_{1}$ and $e_{i}^{\prime \prime} \in G$ has order two. Since $r(\langle\overline{U B}\rangle)=$ $r-1,\langle\overline{U B}\rangle=\bar{G}$, we have $r-1>\mathrm{r}(\langle\overline{U D}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1=r-2$, i.e., $\mathrm{r}(\langle\overline{U D}\rangle)=$ $r-2$. Since $\langle\overline{U B}\rangle=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle,\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{1}\right\rangle$ and $\langle\overline{U D}\rangle \neq\langle\overline{U C}\rangle$, we must have either $\langle\overline{U D}\rangle=\left\langle\bar{U}, e_{2}\right\rangle$ or $\langle\overline{U D}\rangle=\left\langle\bar{U}, e_{1}+e_{2}\right\rangle$. By $\overline{e_{1}^{\prime}} \in e_{1}+\langle\bar{U}\rangle$ and $\overline{e_{1}^{\prime \prime}+k_{1}^{\prime} a} \in e_{2}+\langle\bar{U}\rangle$ or
$e_{1}+e_{2}+\langle\bar{U}\rangle$, we have that for any $b_{1} \mid B_{1}$ there exists a proper $Y \mid U$ such that one of $\left\{Y b_{1} e_{1}^{\prime}, Y b_{1}\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right), Y b_{1} e_{1}^{\prime}\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right)\right\}$ is a block. By $\delta\left(e_{1}^{\prime}\right)=x_{a}(C), \delta\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right) \geqslant x_{a}(D)$ and Corollary 8, we get that

$$
\begin{gathered}
\delta\left(b_{1}\right)+x_{a}(C)=\delta\left(b_{1}\right)+\delta\left(e_{1}^{\prime}\right) \leqslant x_{a}(B)+x_{a}(C)-2 \text { or } \\
\delta\left(b_{1}\right)+x_{a}(D) \leqslant \delta\left(b_{1}\right)+\delta\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right) \leqslant x_{a}(B)+x_{a}(D)-2 \text { or } \\
\delta\left(b_{1}\right)+x_{a}(C)+x_{a}(D) \leqslant \delta\left(b_{1}\right)+\delta\left(e_{1}^{\prime}\right)+\delta\left(e_{1}^{\prime \prime}+k_{1}^{\prime} a\right) \leqslant x_{a}(B)+x_{a}(C)+x_{a}(D)-2 .
\end{gathered}
$$

This implies $\delta\left(b_{1}\right) \leqslant x_{a}(B)-2$ and hence

$$
1 \leqslant \frac{1}{2}\left(x_{a}(B)-\delta\left(b_{1}\right)\right) \leqslant \frac{1}{2}\left(x_{a}(B)+\delta\left(b_{1}\right)\right) \leqslant x_{a}(B)-1
$$

It follows that $1 \leqslant x_{a}^{\prime}\left(b_{1}\right) \leqslant x_{a}(B)-1$ for any $b_{1} \mid B_{1}$. By (1) we have $1 \leqslant x_{a}^{\prime}\left(b_{2}\right) \leqslant r-2$ for any $b_{2} \mid B_{2}$. Hence, $k>\sum_{b_{1} \mid B_{1}} x_{a}^{\prime}\left(b_{1}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right)=x_{a}(B) \geqslant|B|$, a contradiction to $d(B)>0$. We complete the proof of step 2 .

By step 2 we can suppose that any two disjoint minimal blocks B, C in αU^{-1} with positive defect satisfy that $\langle\overline{U B}\rangle$ and $\langle\overline{U C}\rangle$ do not contain each other.

Step 3: If $\langle\overline{U B}\rangle$ and $\langle\overline{U C}\rangle$ do not contain each other, then (i) holds and there exist exactly two disjoint minimal blocks in αU^{-1} with positive defect.

Since $\langle\overline{U B}\rangle \nsubseteq\langle\overline{U C}\rangle$ and $\langle\overline{U C}\rangle \nsubseteq\langle\overline{U B}\rangle$, we have $r(\langle\overline{U B}\rangle), r(\langle\overline{U C}\rangle)<r(\langle\overline{U B C}\rangle) \leqslant$ $\mathrm{r}(\bar{G})=r-1$. By $\mathrm{r}(\langle\overline{U B}\rangle), \mathrm{r}(\langle\overline{U C}\rangle) \geqslant \mathrm{r}(\langle\bar{U}\rangle)+1=r-2$, we derive that $\mathrm{r}(\langle\overline{U B}\rangle)=$ $\mathrm{r}(\langle\overline{U C}\rangle)=r-2$ and $\mathrm{r}(\langle\overline{U B C}\rangle)=r-1$.

Suppose that there exists a minimal block D in $\alpha(U B C)^{-1}$ with positive defect. Let D_{2} be the sequence (possibly empty) consisting of terms $d \mid D$ with $\bar{d} \in\langle\bar{U}\rangle$. Set $D_{1}=D D_{2}^{-1}$. By step 2 we can see that any two of $\{\langle\overline{U B}\rangle,\langle\overline{U C}\rangle,\langle\overline{U D}\rangle\}$ do not contain each other. Hence, $\mathrm{r}(\langle\overline{U D}\rangle)=r-2$ and $\mathrm{r}(\langle\overline{U B C}\rangle)=\mathrm{r}(\langle\overline{U B D}\rangle)=\mathrm{r}(\langle\overline{U C D}\rangle)=r-1$. By $\mathbf{r}(\langle\bar{U}\rangle)=r-3$ and Lemma 20, we get that $1 \leqslant x_{a}^{\prime}\left(v_{2}\right) \leqslant r-2,0 \leqslant x_{a}^{\prime}\left(v_{1}\right) \leqslant 2 r-3$ for all $v_{2}\left|B_{2} C_{2} D_{2}, v_{1}\right| B_{1} C_{1} D_{1}$, and there exist some $b_{1}\left|B_{1}, c_{1}\right| C_{1}, d_{1} \mid D_{1}$ with $x_{a}^{\prime}\left(b_{1}\right)=$ $x_{a}^{\prime}\left(c_{1}\right)=x_{a}^{\prime}\left(d_{1}\right)=0$. In addition, there exist e_{1}, e_{2} such that $\bar{G}=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$. Without loss of generality, we can suppose $\langle\overline{U B}\rangle=\left\langle\bar{U}, e_{1}\right\rangle,\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{2}\right\rangle$ and $\langle\overline{U D}\rangle=\left\langle\bar{U}, e_{1}+e_{2}\right\rangle$. It follows that $\overline{b_{1}}=e_{1}, \overline{c_{1}}=e_{2}$ and $\overline{d_{1}}=e_{1}+e_{2}$. Hence, $b_{1} c_{1} d_{1}$ is a block and $\delta\left(b_{1}\right)=x_{a}(B)$, $\delta\left(c_{1}\right)=x_{a}(C), \delta\left(d_{1}\right)=x_{a}(D)$. By Corollary 8 we have $x_{a}(B)+x_{a}(C)+x_{a}(D)=$ $\delta\left(b_{1}\right)+\delta\left(c_{1}\right)+\delta\left(d_{1}\right) \leqslant x_{a}(B)+x_{a}(C)+x_{a}(D)-2$, a contradiction.

Lemma 24. If there is a unit block U of α with $d(U)=r-3$, then k is odd.
Proof. Since $d(U)=r-3$, from Lemma 23 it follows that there exist at most two disjoint minimal blocks in αU^{-1} with positive defect. Since $r(\langle\bar{U}\rangle)=r-3$, there exist e_{1}, e_{2} such that $\bar{G}=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$. We consider the following two cases to complete our proof:

Case 1: There exist two disjoint minimal blocks B, C in αU^{-1} with positive defect.
Let B_{2} and C_{2} be sequences (possibly empty) consisting of terms $b \mid B$ with $\bar{b} \in\langle\bar{U}\rangle$ and $c \mid C$ with $\bar{c} \in\langle\bar{U}\rangle$ respectively. Set $B_{1}=B B_{2}^{-1}$ and $C_{1}=C C_{2}^{-1}$. By the additivity of defect $d(B)+d(C)=d(\alpha)-d(U) \geqslant 3$. By $d(B)>0$ and $d(C)>0$, we have $d(B) \geqslant 2$
or $d(C) \geqslant 2$. If $\langle\overline{U B}\rangle$ and $\langle\overline{U C}\rangle$ do not contain each other, then Lemma 23 (i) tells us that $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)=\mathrm{r}(\langle\bar{U}\rangle)+1=r-2$. Lemma 21 yields that k is odd.

If $\langle\overline{U C}\rangle \subset\langle\overline{U B}\rangle$, then by Lemma 23 (ii) we have that $\mathrm{r}(\langle\overline{U B}\rangle)=\mathrm{r}(\langle\overline{U C}\rangle)+1=r-1$, $d(B) \geqslant 2, d(C)=1$ and

$$
C=\left(e_{1}^{\prime}+k_{1} a\right) \cdot\left(e_{2}^{\prime}+k_{2} a\right) \cdot\left(e_{3}^{\prime}+a\right) \cdots \cdot\left(e_{|C|}^{\prime}+a\right),
$$

where $k_{1}+k_{2}=1, k_{1} \leqslant 0,\left(e_{1}^{\prime}+k_{1} a\right) \mid C_{1}$ and $e_{i}^{\prime} \in G$ has order two. It follows that $\langle\overline{U B}\rangle=\bar{G}=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$. Without loss of generality, we can suppose $\langle\overline{U C}\rangle=\left\langle\bar{U}, e_{1}\right\rangle$ with $\operatorname{Supp}\left(\overline{C_{1}}\right) \subset e_{1}+\langle\bar{U}\rangle$. Write $B_{1}=A_{1} A_{2} A_{3}$ with $\operatorname{Supp}\left(\overline{A_{1}}\right), \operatorname{Supp}\left(\overline{A_{2}}\right)$ and $\operatorname{Supp}\left(\overline{A_{3}}\right)$ being subsets of $e_{1}+\langle\bar{U}\rangle, e_{2}+\langle\bar{U}\rangle$ and $e_{1}+e_{2}+\langle\bar{U}\rangle$ respectively. By
symmetry we can suppose $\left|A_{2}\right| \leqslant\left|A_{3}\right|$. Consider the decomposition $B=A_{1} A_{2} A_{3}^{\prime} A_{3}^{\prime \prime}$, where A_{3}^{\prime} is any subsequence of A_{3} with $\left|A_{3}^{\prime}\right|=\left|A_{2}\right|$ and $A_{3}^{\prime \prime}=A_{3} A_{3}^{\prime-1}$. It is easy to see that $\left|A_{3}^{\prime \prime}\right|$ is even and $\left|A_{2}\right|+\left|A_{3}\right| \geqslant 2$ is also even.

Take $X=a_{1}$ with $a_{1} \mid A_{1}$ or $X=a_{2} a_{3}$ with $a_{2}\left|A_{2}, a_{3}\right| A_{3}$. Then there exists a $Y \mid U$ such that $X Y\left(e_{1}^{\prime}+k_{1} a\right)$ is a block. Then (1) and $x_{a}^{\prime}\left(e_{1}^{\prime}+k_{1} a\right) \leqslant 0$ give us

$$
\frac{3-r}{2} \leqslant \frac{\delta(X)-x_{a}(B)}{2}+1 \leqslant x_{a}^{\prime}\left(e_{1}^{\prime}+k_{1} a\right) \leqslant 0
$$

This implies $\delta(X) \leqslant x_{a}(B)-2$ and hence

$$
1 \leqslant \frac{1}{2}\left(x_{a}(B)-\delta(X)\right) \leqslant \frac{1}{2}\left(x_{a}(B)+\delta(X)\right) \leqslant x_{a}(B)-1
$$

It follows that $1 \leqslant x_{a}^{\prime}(X) \leqslant x_{a}(B)-1$. It is worth mentioning that if there exist two disjoint subsequences T_{1}, T_{2} of $A_{2} A_{3}$ of length two such that $x_{a}^{\prime}\left(T_{1}\right)=x_{a}^{\prime}\left(T_{2}\right)=1$, then by Lemma 17 (ii) and $1 \leqslant x_{a}^{\prime}\left(a_{2} a_{3}\right) \leqslant x_{a}(B)-1$ for all $a_{2}\left|A_{2}, a_{3}\right| A_{3}$ we have that k is odd. In addition, it is easy to see that the above conditional assumption must hold. Assume to the contrary and then for a decomposition $A_{2} A_{3}=T_{1} \cdots T_{\ell}$ with each $\left|T_{i}\right|=2$, there exists at most one T_{i}, say T_{1}, such that $x_{a}^{\prime}\left(T_{1}\right)=1$ and $2 \leqslant x_{a}^{\prime}\left(T_{i}\right) \leqslant x_{a}(B)-1$ for $2 \leqslant i \leqslant \ell$. For any $T=b_{2} \mid B_{2}$ or $T \mid A_{i}$ of length two $(i=2,3)$, we have $\sigma(\bar{T}) \in\langle\bar{U}\rangle$ and hence there exists a $Y \mid U$ such that $Y T$ is a block. One deduces from (1) that $1 \leqslant x_{a}^{\prime}(T) \leqslant r-2$. It follows from $d(B) \geqslant 2$ that

$$
\begin{aligned}
|B|-2 & \geqslant x_{a}(B)=\sum_{a_{1} \mid A_{1}} x_{a}^{\prime}\left(a_{1}\right)+\sum_{i=1}^{\ell} x_{a}^{\prime}\left(T_{i}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \\
& \geqslant\left|A_{1}\right|+\left|B_{2}\right|+\left|A_{2}\right|+\left|A_{3}\right|-1=|B|-1
\end{aligned}
$$

This is a contradiction.
Case 2 : There exists exactly one minimal block B in αU^{-1}.
Then $d(B)=d(\alpha)-d(U) \geqslant 3$. Since $r(\langle\overline{U B}\rangle) \geqslant r(\langle\bar{U}\rangle)+1=r-2$ and $r(\langle\overline{U B}\rangle) \leqslant$ $r(\bar{G})=r-1$, by Lemma 21 we can suppose $r(\langle\overline{U B}\rangle)=r-1$. It follows that $\langle\overline{U B}\rangle=$ $\bar{G}=\left\langle\bar{U}, e_{1}, e_{2}\right\rangle$. Let B_{2} be a sequence (possibly empty) consisting of terms $b \mid B$ with $\bar{b} \in\langle\bar{U}\rangle$. Set $B_{1}=B B_{2}^{-1}$. Write $B_{1}=A_{1} A_{2} A_{3}$ with $\operatorname{Supp}\left(\overline{A_{1}}\right), \operatorname{Supp}\left(\overline{A_{2}}\right)$ and $\operatorname{Supp}\left(\overline{A_{3}}\right)$
being subsets of $e_{1}+\langle\bar{U}\rangle, e_{2}+\langle\bar{U}\rangle$ and $e_{1}+e_{2}+\langle\bar{U}\rangle$ respectively. Take $T=b_{2} \mid B_{2}$ or $T=a_{1} a_{2} a_{3}$ for $a_{i} \mid A_{i}(i=1,2,3)$ or $T \mid A_{i}$ of length two for $1 \leqslant i \leqslant 3$, we have $\sigma(\bar{T}) \in\langle\bar{U}\rangle$ and hence there exists a $Y \mid U$ such that $Y T$ is a block. One deduces from (1) that $1 \leqslant x_{a}^{\prime}(T) \leqslant r-2$. It is easy to see that at least two A_{i} are nonempty for $1 \leqslant i \leqslant 3$, and either all $\left|A_{i}\right|$ are even or all $\left|A_{i}\right|$ are odd.

If all $\left|A_{i}\right|$ are even, then let $A_{i}=T_{i 1} \cdots T_{i t_{i}}$ be a product of some subsequences of length two. We can find three subsequences of length two, say T_{1}, T_{2}, T_{3}, such that $x_{a}^{\prime}\left(T_{1}\right)=$ $x_{a}^{\prime}\left(T_{2}\right)=x_{a}^{\prime}\left(T_{3}\right)=1$. Assume to the contrary there exist at most two subsequences of length two, say T_{1}, T_{2}, such that $x_{a}^{\prime}\left(T_{1}\right)=x_{a}^{\prime}\left(T_{2}\right)=1$. Since $1 \leqslant x_{a}^{\prime}\left(T_{i j}\right) \leqslant r-2$ for all $T_{i j}$, we have $2 \leqslant x_{a}^{\prime}\left(T_{i j}\right) \leqslant r-2$ except for T_{1}, T_{2}. By $d(B) \geqslant 3$ we have that

$$
\begin{aligned}
|B|-3 & \geqslant x_{a}(B)=\sum_{T_{i j} \neq T_{1}, T_{2}} x_{a}^{\prime}\left(T_{i j}\right)+x_{a}^{\prime}\left(T_{1}\right)+x_{a}^{\prime}\left(T_{2}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \\
& \geqslant\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|-2+\left|B_{2}\right|=|B|-2 .
\end{aligned}
$$

This is a contradiction. If there exist two T_{i}, say T_{1}, T_{2}, in $\left\{T_{1}, T_{2}, T_{3}\right\}$ contained in the same A_{j} for $1 \leqslant j \leqslant 3$, then for any $t_{1}\left|T_{1}, t_{2}\right| T_{2}$ there exists a $Y \mid U$ such that $Y t_{1} t_{2}$ is a block. It follows from (1) that $1 \leqslant x_{a}^{\prime}\left(t_{1} t_{2}\right) \leqslant r-2$. From Lemma 17 (ii) one deduces that k is odd. If T_{1}, T_{2}, T_{3} are contained in distinct A_{j} respectively, then by $1 \leqslant x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right) \leqslant r-2$ for any $a_{i} \mid A_{i}(i=1,2,3)$, Lemma 17 (ii) yields that k is odd.

If all $\left|A_{i}\right|$ are odd, then let $A_{i} a_{i}^{-1}=T_{i 1} \cdots T_{i t_{i}}$ be a product of some subsequences of length two for $a_{i} \mid A_{i}$. By Lemma 17 (i) we can suppose that either $2 \leqslant x_{a}^{\prime}\left(T_{i j}\right) \leqslant r-2$ for all $T_{i j}$ or $2 \leqslant x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right) \leqslant r-2$ for any $a_{i} \mid A_{i}(i=1,2,3)$. If the former holds, then by $d(B) \geqslant 3$ we have

$$
\begin{aligned}
|B|-3 \geqslant x_{a}(B) & =x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)+\sum_{i, j} x_{a}^{\prime}\left(T_{i j}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \\
& \geqslant 1+2\left(\frac{\left|B_{1}\right|-3}{2}\right)+\left|B_{2}\right|=|B|-2 .
\end{aligned}
$$

This is a contradiction. If the latter holds, then by Lemma 17 (ii) we can suppose that there exists at most one $T_{i j}$ in each A_{i}, say $T_{i 1}$, such that $x_{a}^{\prime}\left(T_{i 1}\right)=1$. By $1 \leqslant x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right) \leqslant$ $r-2$ for any $a_{i} \mid A_{i}(i=1,2,3)$ and Lemma 17 (ii) we can again suppose that at most two of $\left\{x_{a}^{\prime}\left(T_{11}\right), x_{a}^{\prime}\left(T_{21}\right), x_{a}^{\prime}\left(T_{31}\right)\right\}$ equal 1. It follows from $d(B) \geqslant 3$ that

$$
\begin{aligned}
|B|-3 \geqslant x_{a}(B) & =x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)+\sum_{i, j} x_{a}^{\prime}\left(T_{i j}\right)+\sum_{b_{2} \mid B_{2}} x_{a}^{\prime}\left(b_{2}\right) \\
& \geqslant 2+2+2\left(\frac{\left|B_{1}\right|-3}{2}-2\right)+\left|B_{2}\right|=|B|-3 .
\end{aligned}
$$

Then we must have that $x_{a}^{\prime}\left(a_{1} a_{2} a_{3}\right)=2$ for any $a_{i} \mid A_{i}(i=1,2,3)$ and there exist exactly two of $\left\{x_{a}^{\prime}\left(T_{11}\right), x_{a}^{\prime}\left(T_{21}\right), x_{a}^{\prime}\left(T_{31}\right)\right\}$, say T_{11}, T_{21}, such that $x_{a}^{\prime}\left(T_{11}\right)=x_{a}^{\prime}\left(T_{21}\right)=1$. Set $T_{11}=t_{1} t_{1}^{\prime} \mid A_{1}$ and we have $x_{a}^{\prime}\left(t_{1} a_{2} a_{3}\right)=x_{a}^{\prime}\left(t_{1}^{\prime} a_{2} a_{3}\right)=2$ for $a_{2}\left|A_{2}, a_{3}\right| A_{3}$. Lemma 17 implies that k is odd. We complete the proof.

Proof of Theorem 3: Immediately from Lemma 21 and Lemma 24.

4 Proof of Theorem 2

Proof of Theorem 2. Set $C_{2}^{5} \oplus C_{2 k}=\langle e\rangle \oplus G_{1}$, where $2 e=0$ and $G_{1} \cong C_{2}^{4} \oplus C_{2 k}$. We have known that $\mathrm{D}\left(C_{2}^{4} \oplus C_{2 k}\right)=2 k+5$, if k is odd with $k \geqslant 70$. Thus there exists a zero-sum free sequence T of length $2 k+4$ over G_{1}, if k is odd with $k \geqslant 70$. It follows that $S=e T$ is a zero-sum free sequence of length $2 k+5$ over $C_{2}^{5} \oplus C_{2 k}$, i.e, $\mathrm{D}\left(C_{2}^{4} \oplus C_{2 k}\right) \geqslant 2 k+6$, if k is odd with $k \geqslant 70$.

Suppose that a group $C_{2}^{5} \oplus C_{2 k}$ with $k \geqslant 149$ satisfies the excessive inequality $\mathrm{D}\left(C_{2}^{5} \oplus\right.$ $\left.C_{2 k}\right)>\mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right)=2 k+5$. Let $r=6$ be the rank of $C_{2}^{5} \oplus C_{2 k}$, let α be an arbitrary minimal zero-sum sequence of maximum length over this group, and let $a \mid \alpha$ be a distinguished term, i.e., a is a generator of $C_{2 k}$. Then $d(\alpha) \geqslant 6$. By Lemma 15 and Lemma 14 (ii), we have $r-3=3 \leqslant d\left(W_{\mathscr{F}}\right) \leqslant r-2=4$. It follows from Theorem 3 that k is odd. Hence, if $k \geqslant 149$ is even, then $\mathrm{D}\left(C_{2}^{5} \oplus C_{2 k}\right)=\mathrm{D}^{*}\left(C_{2}^{5} \oplus C_{2 k}\right)=2 k+5$. Let $W_{\mathscr{F}}=T_{1} T_{2} \ldots T_{m}$ be a product of $(*, 1)$-blocks T_{i}. By Proposition 4 we have that $x_{a}\left(W_{\mathscr{F}}\right)=x_{a}\left(T_{1}\right)+x_{a}\left(T_{2}\right)+\cdots+x_{a}\left(T_{m}\right)=m$. It follows from Lemma 18 that for any (ℓ, s)-block B with positive defect in $\alpha W_{\mathscr{F}}^{-1}$, we have $2 \leqslant s<\ell \leqslant r-1=5$, since otherwise $\ell=6$ and then $r\left(\overline{C_{2}^{5} \oplus C_{2 k}}\right)=5=r(\langle\bar{B}\rangle) \leqslant r\left(\left\langle\overline{W_{\mathscr{F}} B}\right\rangle\right) \leqslant r\left(\overline{C_{2}^{5} \oplus C_{2 k}}\right)$, i.e., $r(\langle\bar{B}\rangle)=r\left(\left\langle\overline{W_{\mathscr{F}} B}\right\rangle\right)$.

If $d\left(W_{\mathscr{F}}\right)=4$, then $d\left(\alpha W_{\mathscr{F}}^{-1}\right) \geqslant 2$ and $\left|W_{\mathscr{F}}\right|=x_{a}\left(W_{\mathscr{F}}\right)+d\left(W_{\mathscr{F}}\right)=m+4$. By Lemma 22 there exists exactly a (ℓ, s)-block B with $2 \leqslant s<\ell \leqslant 5$ in $\alpha W_{\mathscr{F}}^{-1}$. Thus $\alpha=W_{\mathscr{F}} B \alpha^{\prime}$ with $d\left(\alpha W_{\mathscr{F}}^{-1}\right)=d(B)=\ell-s \geqslant 2$, where α^{\prime} is a product of some minimal block D with $d(D)=0$. It follows that $5 \geqslant \ell \geqslant s+2 \geqslant 4$ and $x_{a}\left(\alpha^{\prime}\right)=\left|\alpha^{\prime}\right|$. This implies that B is $(5,3),(5,2)$, or $(4,2)$. Combining with Lemma 16 yields that B is not $(5,2)$, i.e., B is $(s+2, s)$ with $2 \leqslant s \leqslant 3$. Since $x_{a}\left(\alpha^{\prime}\right)=\left|\alpha^{\prime}\right|$ and $x_{a}(\alpha)=2 k$, by Proposition 4 we have

$$
x_{a}(\alpha)=2 k=x_{a}\left(W_{\mathscr{F}}\right)+x_{a}(B)+x_{a}\left(\alpha^{\prime}\right)=m+s+\left|\alpha^{\prime}\right| .
$$

Hence,

$$
|\alpha|=\left|W_{\mathscr{F}}\right|+|B|+\left|\alpha^{\prime}\right|=(m+4)+(s+2)+(2 k-s-m)=2 k+6 .
$$

If $d\left(W_{\mathscr{F}}\right)=3$, then $d\left(\alpha W_{\mathscr{F}}^{-1}\right) \geqslant 3$ and $\left|W_{\mathscr{F}}\right|=x_{a}\left(W_{\mathscr{F}}\right)+d\left(W_{\mathscr{F}}\right)=m+3$. By Lemma 23 there exist at most two disjoint minimal blocks with positive defect in $\alpha W_{\mathscr{F}}^{-1}$. If there exists exactly a (ℓ, s)-block B with positive defect in $\alpha W_{\mathscr{F}}^{-1}$, then $2 \leqslant s<\ell \leqslant 5$ and $d(B)=d\left(\alpha W_{\mathscr{F}}^{-1}\right) \geqslant 3$. It follows that $\ell=s+3=5$, i.e., B is $(5,2)$. This is a contradiction to Lemma 16.

If there exist a (ℓ, s)-block B and a $\left(\ell_{1}, s_{1}\right)$-block C with positive defects in $\alpha W_{\mathscr{F}}^{-1}$ such that B, C are disjoint, then $2 \leqslant s<\ell \leqslant 5$ and $2 \leqslant s_{1}<\ell_{1} \leqslant 5$. Set $\alpha=W_{\mathscr{F}} B C \alpha^{\prime}$, where α^{\prime} is a product of some minimal block D with $d(D)=0$. It follows from Lemma 23 that either $d(B) \geqslant 2, d(C)=1$ or

$$
r\left(\left\langle\overline{W_{\mathscr{F}} B}\right\rangle\right)=r\left(\left\langle\overline{W_{\mathscr{F}} C}\right\rangle\right)=4,\langle\bar{C}\rangle \nsubseteq\left\langle\overline{W_{\mathscr{F}} B}\right\rangle \text { and }\langle\bar{B}\rangle \nsubseteq\left\langle\overline{W_{\mathscr{F}} C}\right\rangle .
$$

If the former holds, then $\ell_{1}-s_{1}=1$ and $4 \leqslant s+2 \leqslant \ell \leqslant 5$, i.e., B is $(5,3),(5,2)$ or $(4,2)$. Combining with Lemma 16 yields that B is not (5,2), i.e., B is $(s+2, s)$ with $2 \leqslant s \leqslant 3$.

Since $x_{a}(\alpha)=2 k$ and $x_{a}\left(\alpha^{\prime}\right)=\left|\alpha^{\prime}\right|$, by Proposition 4 we have

$$
x_{a}(\alpha)=2 k=x_{a}\left(W_{\mathscr{F}}\right)+x_{a}(B)+x_{a}(C)+x_{a}\left(\alpha^{\prime}\right)=m+s+s_{1}+\left|\alpha^{\prime}\right| .
$$

Hence,

$$
|\alpha|=\left|W_{\mathscr{F}}\right|+|B|+|C|+\left|\alpha^{\prime}\right|=(m+3)+(s+2)+\ell_{1}+\left(2 k-m-s-s_{1}\right)=2 k+6 .
$$

If the latter holds, then $2 \leqslant s \leqslant \ell \leqslant 5$ and $2 \leqslant s_{1} \leqslant \ell_{1} \leqslant 5$, i.e., B and C are contained in $\{(4,2),(4,3),(5,2),(5,3),(5,4)\}$. By Lemma $16 B$ is not $(5,2)$. If B is $(5,3)$, then $r(\langle\bar{B}\rangle)=4=r\left(\left\langle\overline{W_{\mathscr{F}} B}\right\rangle\right)$, a contradiction to Lemma 18. Hence, B is $(4,2),(4,3)$ or $(5,4)$. Similarly, C is $(4,2),(4,3)$ or $(5,4)$. From $d\left(\alpha W_{\mathscr{F}}^{-1}\right)=d(B)+d(C) \geqslant 3$ it is easy to see that one of B, C must be $(4,2)$. Without loss of generality, suppose B is $(4,2)$.

If C is $(4,3)$ or $(5,4)$, then by $x_{a}(\alpha)=2 k, x_{a}\left(\alpha^{\prime}\right)=\left|\alpha^{\prime}\right|$ and Proposition 4 we have

$$
x_{a}(\alpha)=2 k=x_{a}\left(W_{\mathscr{F}}\right)+x_{a}(B)+x_{a}(C)+x_{a}\left(\alpha^{\prime}\right)=m+2+s_{1}+\left|\alpha^{\prime}\right| .
$$

Hence,

$$
|\alpha|=\left|W_{\mathscr{F}}\right|+|B|+|C|+\left|\alpha^{\prime}\right|=(m+3)+4+\ell_{1}+\left(2 k-s_{1}-m-2\right)=2 k+6 .
$$

If C is $(4,2)$, then by $d\left(W_{\mathscr{F}}\right)=r\left(\left\langle\overline{W_{\mathscr{F}}}\right\rangle\right)=3$ and $r(\bar{G})=5$, there exist $e_{0}, e_{0}^{\prime}, e_{1}, e_{2}, e_{3}$ such that $\bar{G}=\left\langle e_{1}, e_{2}, e_{3}, e_{0}, e_{0}^{\prime}\right\rangle$, where $\left\langle\overline{W_{\mathscr{F}}}\right\rangle=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Since $r\left(\left\langle\overline{W_{\mathscr{F}}} \bar{B}\right\rangle\right)=r\left(\left\langle\overline{W_{\mathscr{F}}} \overline{ }\right\rangle\right)=4,\langle\bar{C}\rangle \nsubseteq\left\langle\overline{W_{\mathscr{F}} B}\right\rangle$ and $\left.\langle\bar{B}\rangle \nsubseteq\left\langle\overline{W_{\mathscr{F}}}\right\rangle\right\rangle$, without loss of generality we can suppose $\left\langle\overline{W_{\mathscr{F}}} \bar{B}\right\rangle=\left\langle\overline{W_{\mathscr{F}}}, e_{0}\right\rangle$ and $\left\langle\overline{W_{\mathscr{F}} C}\right\rangle=\left\langle\overline{W_{\mathscr{F}}}, e_{0}^{\prime}\right\rangle$. Let B_{2} and C_{2} be sequences (possibly empty) consisting of terms $b \mid B$ with $\bar{b} \in\left\langle\overline{W_{\mathscr{F}}}\right\rangle$ and $c \mid C$ with $\bar{c} \in\left\langle\overline{W_{\mathscr{F}}}\right\rangle$ respectively. Set $B_{1}=B B_{2}^{-1}$ and $C_{1}=C C_{2}^{-1}$. It is easy to see that $\operatorname{Supp}\left(\overline{B_{1}}\right) \subset e_{0}+\left\langle\overline{W_{\mathscr{F}}}\right\rangle, \operatorname{Supp}\left(\overline{C_{1}}\right) \subset e_{0}^{\prime}+\left\langle\overline{W_{\mathscr{F}}}\right\rangle$ and $\left|B_{1}\right|,\left|C_{1}\right| \in\{2,4\}$. Let $X=b_{1} b_{1}^{\prime} \mid B_{1}$ or $X=c_{1} c_{1}^{\prime} \mid C_{1}$ or $X=b_{2} \mid B_{2}$ or $X=c_{2} \mid C_{2}$ and we have $\sigma(\bar{X}) \in\left\langle\overline{W_{\mathscr{F}}}\right\rangle$. Then there is a proper subsequence $Y \mid W_{\mathscr{F}}$ such that $Y X$ is a block. By (1) one deduces $1 \leqslant x_{a}^{\prime}(X) \leqslant r-2=4$. It follows that $\left|B_{2}\right|=0$, since otherwise $\left|B_{2}\right|=\left|B_{1}\right|=2$ and then $x_{a}(B)=2=x_{a}^{\prime}\left(b_{1} b_{1}^{\prime}\right)+x_{a}^{\prime}\left(b_{2}\right)+x_{a}^{\prime}\left(b_{2}^{\prime}\right)>2$, where $B_{1}=b_{1} b_{1}^{\prime}$ and $B_{2}=b_{2} b_{2}^{\prime}$. Set $B=b_{1} b_{2} b_{3} b_{4}$ with all $\overline{b_{i}} \in e_{0}+\left\langle\overline{W_{\mathscr{F}}}\right\rangle$ and we have $1 \leqslant x_{a}^{\prime}\left(b_{i} b_{j}\right) \leqslant 4$ for $1 \leqslant i<j \leqslant 4$. Then $x_{a}(B)=2=x_{a}^{\prime}\left(b_{i} b_{j}\right)+x_{a}^{\prime}\left(B\left(b_{i} b_{j}\right)^{-1}\right) \geqslant 2$ i.e., $x_{a}^{\prime}\left(b_{i} b_{j}\right)=1$. It follows from Lemma 17 (ii) that $x_{a}^{\prime}\left(b_{i}\right)=\frac{k+1}{2}$ for $1 \leqslant i \leqslant 4$. Without loss of generality, we can set

$$
B=e_{0}+\left(e_{1}^{\prime}+\frac{k+1}{2} a\right)\left(e_{2}^{\prime}+\frac{k+1}{2} a\right)\left(e_{3}^{\prime}+\frac{k+1}{2} a\right)\left(e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}+\frac{k+1}{2} a\right),
$$

where each e_{i}^{\prime} is of order two with $\left\langle\overline{e_{1}^{\prime}}, \overline{e_{2}^{\prime}}, \overline{e_{3}^{\prime}}\right\rangle=\left\langle\overline{W_{\mathscr{F}}}\right\rangle=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$. Similarly, we can set

$$
C=e_{0}^{\prime}+\left(e_{1}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{2}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{3}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{1}^{\prime \prime}+e_{2}^{\prime \prime}+e_{3}^{\prime \prime}+\frac{k+1}{2} a\right),
$$

where each $e_{i}^{\prime \prime}$ is of order two with $\left\langle\overline{e_{1}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}}, \overline{e_{3}^{\prime \prime}}\right\rangle=\left\langle\overline{W_{\mathscr{F}}}\right\rangle=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$.
We claim that at least one of $\left\{\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}, \overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}+e_{3}^{\prime \prime}}\right\}$ equal to $\overline{e_{i}^{\prime}+e_{j}^{\prime}}$ for some $1 \leqslant$ $i<j \leqslant 3$. If not, then we have $\left\{\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}, \overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}+e_{3}^{\prime \prime}}\right\} \subset\left\{\overline{e_{1}^{\prime}}, \overline{e_{2}^{\prime}}, \overline{e_{3}^{\prime}}, \overline{e_{1}^{\prime}+e_{2}^{\prime}+e_{3}^{\prime}}\right\}$.

Since $\overline{e_{1}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}}, \overline{e_{3}^{\prime \prime}}$ are distinct, we have that $\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}, \overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}+e_{3}^{\prime \prime}}$ are distinct. Thus two of $\left\{\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}, \overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}, \overline{e_{2}^{\prime \prime}+e_{3}^{\prime \prime}}\right\}$ are contained in $\left\{\overline{e_{1}^{\prime}}, \overline{e_{2}^{\prime}}, \overline{e_{3}^{\prime}}\right\}$, say $\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}=\overline{e_{1}^{\prime}}$ and $\overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}=\overline{e_{2}^{\prime}}$, which implies that $\left(\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}\right)+\left(\overline{e_{1}^{\prime \prime}+e_{3}^{\prime \prime}}\right)=\overline{e_{2}^{\prime \prime}}+e_{3}^{\prime \prime}=\overline{e_{1}^{\prime}+e_{2}^{\prime}}$. This is a contradiction. Without loss of generality, let $\overline{e_{1}^{\prime \prime}+e_{2}^{\prime \prime}}=\overline{e_{1}^{\prime}+e_{3}^{\prime}}$. Furthermore, we have $e_{1}^{\prime \prime}+e_{2}^{\prime \prime}=e_{1}^{\prime}+e_{3}^{\prime}$. Assume to contrary that $e_{1}^{\prime \prime}+e_{2}^{\prime \prime}=e_{1}^{\prime}+e_{3}^{\prime}+k a$. Take $\left.X=\left(e_{0}+e_{1}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}+e_{3}^{\prime}+\frac{k+1}{2} a\right) \right\rvert\, B$ and $\left.Z=\left(e_{0}^{\prime}+e_{1}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{0}^{\prime}+e_{2}^{\prime \prime}+\frac{k+1}{2} a\right) \right\rvert\, C$. Then $\sigma(X Z)=(k+2) a$, i.e., $X Z$ is $(4, k+2)$. Lemma 5 implies that $4 \geqslant k+2$, which is impossible. Hence,

$$
\begin{align*}
& \sigma\left(\left(e_{0}+e_{1}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}+e_{2}^{\prime}+\frac{k+1}{2} a\right)\right. \\
& \left.\quad\left(e_{0}^{\prime}+e_{1}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{0}^{\prime}+e_{2}^{\prime \prime}+\frac{k+1}{2} a\right)\right)=e_{2}^{\prime}+e_{3}^{\prime}+2 a . \tag{6}
\end{align*}
$$

Take $\left.X=\left(e_{0}+e_{2}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}+e_{3}^{\prime}+\frac{k+1}{2} a\right) \right\rvert\, B$. Since $\sigma(\bar{X}) \in\left\langle\overline{W_{\mathscr{F}}}\right\rangle$, there exists a proper $Y \mid W_{\mathscr{F}}$ such that $Y X$ is a block. From $\sigma(X)=\left(e_{2}^{\prime}+e_{3}^{\prime}+k a\right)+a$ it is easy to see that $x_{a}^{\prime}(X)=1$ and $\delta(X)=0$. Set $\sigma(X)=e+a$ with $e=e_{2}^{\prime}+e_{3}^{\prime}+k a$. Let $Y=Y_{1}^{*} \cdots Y_{m}^{*}$, where $Y_{i}^{*} \mid T_{i}$. Since each T_{i} is a ($*, 1$)-block, we have $\delta\left(Y_{i}^{*}\right) \geqslant 1$ is odd. Since $\delta(X)=0$, $x_{a}(B)=2$ and $x_{a}\left(W_{\mathscr{F}}\right)=m$, by Lemma 6 (i) we have that

$$
m \leqslant \sum_{i=1}^{m} \delta\left(Y_{i}^{*}\right)=\delta(Y)+\delta(X) \leqslant x_{a}\left(W_{\mathscr{F}}\right)+x_{a}(B)-2=m
$$

i.e., $\delta(Y)=m$. It follows from Lemma 6 (ii) that $\left\{\sigma(Y), \sigma\left(W_{\mathscr{F}} Y^{-1}\right)\right\}=\left\{e+\frac{1}{2}\left(x_{a}\left(W_{\mathscr{F}}\right)-\delta(Y)\right) a, e+\frac{1}{2}\left(x_{a}\left(W_{\mathscr{F}}\right)+\delta(Y)\right) a\right\}=\{e, e+m a\}$.

Then $\sigma(Y)=e$. Combining (6) yields that

$$
\begin{aligned}
& \sigma\left(Y\left(e_{0}+e_{1}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}+e_{2}^{\prime}+\frac{k+1}{2} a\right)\right. \\
& \left.\left(e_{0}^{\prime}+e_{1}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{0}^{\prime}+e_{2}^{\prime \prime}+\frac{k+1}{2} a\right)\right)=e+e_{2}^{\prime}+e_{3}^{\prime}+2 a=(k+2) a,
\end{aligned}
$$

i.e, $Y\left(e_{0}+e_{1}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}+e_{2}^{\prime}+\frac{k+1}{2} a\right)\left(e_{0}^{\prime}+e_{1}^{\prime \prime}+\frac{k+1}{2} a\right)\left(e_{0}^{\prime}+e_{2}^{\prime \prime}+\frac{k+1}{2} a\right)=(|Y|+4, k+2)$. Since $d\left(W_{\mathscr{F}}\right)=3$ and $d\left(T_{i}\right) \geqslant 1$, by the additivity of defect, we have $d\left(W_{\mathscr{F}}\right)=3=$ $\left|W_{\mathscr{F}}\right|-x_{a}\left(W_{\mathscr{F}}\right)=\left|W_{\mathscr{F}}\right|-m=\sum_{i=1}^{m} d\left(T_{i}\right) \geqslant m$. This implies that $m \leqslant 3$ and $\left|W_{\mathscr{F}}\right| \leqslant 6$. By Lemma 5 we have that $|Y|+4 \geqslant k+2$, i.e., $k-2 \leqslant|Y| \leqslant\left|W_{\mathscr{F}}\right| \leqslant 6$. This is impossible and the proof is completed.

Acknowledgements

This work is supported by Guangxi Key Lab of Human-machine Interaction and Intelligent Decision, Nanning Normal University The author wishes to express his gratitude to C. L. Wang for his instruction. The author is sincerely grateful to the anonymous referee for useful comments and suggestions.

References

[1] P. van Emde Boas. A combinatorial problem on finite abelian groups II. Reports ZW1969C007, Mathematical Centre, Amsterdam, 1969.
[2] A. Geroldinger and F. Halter-Koch. Non-unique Factorizations, Algebraic, Combinatorial and Analytic Theory. Pure and Applied Mathematics, vol.278, Chapman and Hall/CRC, 2006.
[3] A. Geroldinger and R. Schneider. On Davenport's constant. J. Comb. Theory Ser. A, 61:147-152, 1992.
[4] W. Gao and A. Geroldinger. Zero-sum problems in finite abelian groups-a survey. Expo. Math., 24:337-369, 2006.
[5] W. Gao, A. Geroldinger, and D. Grynkiewicz. Inverse zero-sum problems III. Acta Arith., 141:103-152, 2010.
[6] C. Reiher. A proof of the theorem according to which every prime number possesses property B. PhD thesis, University of Rostock, Germany, 2010.
[7] C. Liu. On the lower bounds of Davenport's constant. J. Comb. Theory Ser. A, 171, 2020, 105162.
[8] M. Mazur. A note on the growth of Davenport's constant. Manuscripta Mathematica, 74(1):229-235, 1992.
[9] A. Plagne and W. Schmid. An application of coding theory to estimating Davenport constants. Designs, Codes and Crytography, 61(1):105-118, 2011.
[10] W. Schmid. The inverse problem associated to the Davenport constant for $C_{2} \oplus C_{2} \oplus$ $C_{2 n}$ and applications to the arithmetical characterization of class groups. Electron. J. Combin., 18(1):\#P33, 2011.
[11] S. Savchev and F. Chen. Long minimal zero-sum sequences in the group $C_{2}^{r-1} \oplus C_{2 k}$. Integers., 14:A23, 2014.

