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Abstract

This paper proves an identity between flagged Schur polynomials, giving a dual-
ity between row flags and column flags. This identity generalises both the binomial
determinant duality theorem due to Gessel and Viennot and the symmetric function
duality theorem due to Aitken. As corollaries we obtain the lifts of the binomial
determinant duality theorem to q-binomial coefficients and to symmetric polynomi-
als. Our method is a path counting argument on a novel lattice generalising that
used by Gessel and Viennot.

Mathematics Subject Classifications: 05-A10, 05-A19, 05-E05

1 Introduction

We generalise the following identities, due respectively to Gessel and Viennot and to
Aitken. For n a nonnegative integer, we write [n]0 = {0, 1, . . . , n}.

Theorem 1.1 (Binomial determinant duality theorem [GV85, Proposition 7]). Let n be
a nonnegative integer, let A and B be subsets of [n]0 of equal size, and let Ac and Bc be
their complements in [n]0. Then

det

((
b

a

))
a∈A,b∈B

= det

((
a′

b′

))
a′∈Ac,b′∈Bc

.

Theorem 1.2 (Symmetric function duality theorem [Ait31, §2]). Let n be a nonnegative
integer, let A and B be subsets of [n]0 of equal size, and let Ac and Bc be their complements
in [n]0. Then

det
(
hb−a

)
a∈A,b∈B

= det
(
ea′−b′

)
a′∈Ac,b′∈Bc

.
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Here hi and ei denote the complete homogeneous and elementary symmetric functions
of degree i respectively, where by convention e0 = h0 = 1 and ed = hd = 0 for d < 0. For
the purposes of indexing matrices, we consider finite subsets of Z to be ordered smallest
element to largest.

We state our main theorem here in a slightly weakened form to avoid a technical
condition whose necessity becomes clear only in the proof; the full statement with a
weaker requirement on the parameters is given in Theorem 2.9.

Theorem 1.3. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Let α and β be partitions with n
parts (with parts equal to 0 permitted) such that αi 6 βi for all i ∈ [n]. Suppose each part
of α and β is at most 1 less than the preceding part. Then the determinants

det
(
hb−a(xαa+1+1, xαa+1+2, . . . , xβb)

)
a∈A,b∈B

and
det
(
ea′−b′(xαa′+1, xαa′+2, . . . , xβb′+1

)
)
a′∈Ac,b′∈Bc

are equal.

We illustrate this statement in Example 1.7 at the end of this section. Note that
symmetric functions of positive degree over an empty set of variables are considered to
equal 0.

The determinants in Theorem 1.3 are equal to flagged (skew) Schur polynomials. These
polynomials were introduced by Lascoux and Schützenberger [LS82]; we recall the def-
initions in §2.5. Our first determinant equals a row-flagged polynomial; the second, a
column-flagged polynomial. We therefore obtain the following duality theorem for flagged
skew Schur polynomials (see §2.5 for the definitions and a version with weaker conditions
on the parameters).

Theorem 1.4. Let n, A and B be as in the statement of Theorem 1.3. Set:

µi = Al+1−i + i− l, λi = Bl+1−i + i− l,
fi = αAl+1−i+1 + 1, gi = βBl+1−i

,

f ∗i = αAc
i
+ 1, g∗i = βBc

i+1.

Then
sλ/µ(f, g) = s∗λ′/µ′(f

∗, g∗).

Our proof of our identity, which comprises §2, is by counting paths on lattices using
the Lindström–Gessel–Viennot lemma and constructing a bijection between sets of such
paths. This is the approach used by Gessel and Viennot to prove Theorem 1.1. However,
we obtain a more general identity by applying the lemma to lattices of more general
shape and with weighted edges. Weighted edges allow us to replace binomial coefficients
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with symmetric polynomials; the more general shape of our lattices allows us to vary the
number of variables in each symmetric polynomial.

We explain how Theorem 1.1 and Theorem 1.2 can be deduced from Theorem 1.3
in §3. Gessel and Viennot’s binomial duality theorem corresponds to a staircase-shaped
lattice, while Aitken’s symmetric function duality theorem corresponds to a rectangular
lattice. This paper thus provides a unifying framework for these two results, and since our
theorem also permits lattices of shapes intermediate between staircases and rectangles, it
generalises them significantly.

We also obtain lifts of the binomial duality theorem to q-binomial coefficients and to
symmetric polynomials, which we state here and prove in §3.

Corollary 1.5. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Then

det

((
b

a

)
q

)
a∈A,b∈B

= det

(
q(

a′−b′
2 )
(
a′

b′

)
q

)
a′∈Ac,b′∈Bc

.

Corollary 1.6. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Then

det
(
hb−a(x1, x2, . . . , xa+1)

)
a∈A,b∈B

= det
(
ea′−b′(x1, x2, . . . , xa′)

)
a′∈Ac,b′∈Bc

.

Aitken’s proof of Theorem 1.2 [Ait31] is of an entirely different flavour to the methods
in this paper: it is an application of an elementary result in linear algebra due to Jacobi,
which we refer to as Jacobi’s complementary minor formula. This formula also corresponds
to duality between certain combinatorial models of orthogonal polynomials [Vie85, I§5].
However, we show in §4 that Jacobi’s formula is insufficient to prove our main theorem.

Example 1.7. Suppose n = 4, A = {0, 1, 2}, B = {1, 3, 4}, α = (1, 1, 0, 0) and β =
(4, 3, 3, 2). Then the two determinants that Theorem 1.3 states are equal are

b=1 b=3 b=4

βb=4 βb=3 βb=2

a=0 αa+1+1=2 h1(x2, x3, x4) h3(x2, x3) h4(x2)
a=1 αa+1+1=2 1 h2(x2, x3) h3(x2)
a=2 αa+1+1=1 0 h1(x1, x2, x3) h2(x1, x2)

and
b′=0 b′=2

βb′+1=4 βb′+1=3

a′=3 αa′+1=1 e3(x1, x2, x3, x4) e1(x1, x2, x3)
a′=4 αa′+1=1 e4(x1, x2, x3, x4) e2(x1, x2, x3) .
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Restating in terms of flagged Schur polynomials, the first determinant above is equal
to s(2,2,1)((1, 2, 2), (2, 3, 4)) and the second is s∗(3,2)((1, 1), (4, 3)) (in the notation of The-

orem 1.4, we have λ = (2, 2, 1), µ = (03), f = (1, 2, 2), g = (2, 3, 4), f ∗ = (1, 1) and
g∗ = (4, 3)). Theorem 1.4 states that these flagged Schur polynomials are equal. Equiv-
alently (since the necessary conditions of [Wac85, Theorems 3.5 and 3.5*] are met), the
sets of flagged tableaux of the form

1 2

2 3

2 4

and

1 1

4 3

have equal generating functions.

2 Proof of the main theorem

The steps in our proof are:

1) define two lattices and paths upon them;

2) show that the weighted counts of tuples of paths on the lattices equal the determi-
nants in the main theorem;

3) construct a weight-preserving bijection from tuples of paths on one lattice to the
other.

We adopt the notation of Theorem 1.3 throughout: let n be a nonnegative integer, let
A and B be subsets of [n]0 of equal size with complements in [n]0 denoted Ac and Bc,
and let α and β be partitions with n parts (with parts equal to zero permitted) such that
αi 6 βi for all i ∈ [n] (though we do not assume that each part is at most 1 less than the
preceding part). Additionally, let l = |A| = |B|, and let r = |Ac| = |Bc| = n+ 1− l.

2.1 Definition of lattices

We picture Young diagrams as lying in a plane with the x-direction being downward
and the y-direction being rightward, and the 1 × 1 square whose bottom-right corner
is the point (i, j) is referred to as the box i(i,j). (Though it is common to refer to
a box simply by its coordinates, we denote boxes in this manner since we have need
to distinguish between boxes and points.) The skew Young diagram of β/α is then
Y(β/α) = {i(i,j) | 1 6 i 6 n, αi + 1 6 j 6 βi }.

We use Y(β/α) to construct two lattices, ΛL(β/α) and ΛR(β/α). In both lattices, the
set of nodes is the set of points in the plane which occur as some corner of some box
in Y(β/α). The edges in each lattice are described below. We give some edges a weight
which will be a formal variable. The weight of a path is then given by the product of the

the electronic journal of combinatorics 30(1) (2023), #P1.5 4



weights of the steps, and the weight of a tuple of paths is the product of the weights of
each path.

In ΛL(β/α), we have horizontal edges and vertical edges:

• the horizontal edges are the horizontal sides of the boxes in Y(β/α), and are directed
rightward;

• the vertical edges are the right-hand sides of the boxes in Y(β/α), are directed
downward, and have weight xj where j is the column of the corresponding box.

In ΛR(β/α), we have horizontal edges and diagonal edges:

• the horizontal edges are the horizontal sides of the boxes in Y(β/α), and are directed
leftward;

• the diagonal edges are the top-right to bottom-left diagonals of the boxes in Y(β/α),
are directed left-and-downward, and have weight xj where j is the column of the
corresponding box.

An example of each of these lattices is depicted in Figure 1.

(0, 0) y

x

(a) ΛL(β/α)

(0, 0) y

x

(b) ΛR(β/α)

Figure 1: The relevant lattices when n = 6, α = (2, 1, 1, 0, 0, 0) and β =
(6, 6, 5, 4, 4, 3).

We now define sources and sinks for paths on these lattices.
In ΛL(β/α), take as sources the left-most node in each horizontal line indexed by A,

and take as sinks the right-most node in each horizontal line indexed by B. Explicitly,
the sources are the points { (a, αa+1) | a ∈ A } (where we interpret αn+1 = αn if n ∈ A)
and the sinks are the points { (b, βb) | b ∈ B } (where we interpret β0 = β1 if 0 ∈ B).

In ΛR(β/α), take as sources the right-most node in each horizontal line indexed by
Bc, and take as sinks the left-most node in each horizontal line indexed by Ac. Explicitly,
the sources are the points { (b′, βb′) | b′ ∈ Bc } (where we interpret β0 = β1 if 0 ∈ Bc) and
the sinks are the points { (a′, αa′+1) | a′ ∈ Ac } (where we interpret αn+1 = αn if n ∈ Ac).

We are interested in tuples of paths in ΛL(β/α) and ΛR(β/α) that join the sources to
the sinks in a matching; we call such tuples in ΛL(β/α) blue connectors and such tuples
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in ΛR(β/α) red connectors. We furthermore describe sources, sinks and paths in ΛL(β/α)
as blue and in ΛR(β/α) as red. A blue connector and a red connector are depicted in
Figure 2.

(0, α1)

(1, α2)

(3, α4)

(4, α5)

(1, β1)

(3, β3)

(5, β5)

(6, β6)

(a) A blue connector.

(2, α3)

(5, α6)

(6, α7)

(0, β0)

(2, β2)

(4, β4)

(b) A red connector.

Figure 2: Examples of a blue connector and a red connector, when n = 6,
α = (2, 1, 1, 0, 0, 0), β = (6, 6, 5, 4, 4, 3), A = {0, 1, 3, 4} and B = {1, 3, 5, 6}.
Sources are indicated by circles, sinks by crosses. From the top of the diagrams
to the bottom, the blue paths have weights x4, x2x5, x2x3 and x2

1 respectively,
and the red paths have weights x2x4, x1x2x5 and x1x3 respectively. The weight
of this blue connector, being the product of the weights of the blue paths, is
x2

1x
2
2x3x4x5, which is also the weight of this red connector.

2.2 Enumeration of connectors

We count the non-intersecting blue connectors and red connectors. They key result we
use for this is the Lindström–Gessel–Viennot Lemma, stated below. The lemma was first
articulated in the context of Markov chains in [KM59], and later in the context of matroid
theory in [Lin73]. It was subsequently used to deduce various combinatorial identities in
[GV85] and has had applications to the theory of orthogonal polynomials [Vie85]. A
weighted combinatorial statement is given in [Ste90]; for an illuminating illustration of
the argument behind the lemma, see [BC05].

Theorem 2.1 (Lindström–Gessel–Viennot Lemma). Let G be a directed acyclic graph
with m designated sources and sinks, where m is a nonnegative integer. Let M be the
m × m matrix whose (i, j)th entry is the number of paths, counted with weight, from
the ith source to the jth sink. Suppose G is nonpermutable. Then the number of non-
intersecting m-tuples of paths from sources to sinks, counted with weight, is equal to the
determinant of M .

Here, nonpermutable means that a non-intersecting m-tuple of paths must connect
the ith source to the ith sink. The lattices ΛL(β/α) and ΛR(β/α) are clearly acyclic and
nonpermutable, so Theorem 2.1 applies. We thus want to count paths from the ith source
to the jth sink in each lattice.
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Proposition 2.2. The weighted count of non-intersecting blue connectors in ΛL(β/α) is

det
(
hb−a(xαa+1+1, xαa+1+2, . . . , xβb)

)
a∈A,b∈B.

Proof. By Theorem 2.1, it suffices to show that the weighted count of paths from (a, αa+1)
to (b, βb) is hb−a(xαa+1+1, xαa+1+2, . . . , xβb), for all a ∈ A and b ∈ B.

Suppose first that a > b. If the inequality is strict, then (a, αa+1) is below (b, βb),
so there are no paths between them, and hb−a = 0 as required. If equality holds, then
(a, αa+1) and (b, βb) are in the same row so there is a unique horizontal path between
them, and hb−a = 1 as required.

Suppose next a < b and αa+1 > βb. Then (a, αa+1) is further right that (b, βb) (or in
the same column, but without vertical edges joining them), so there are no paths between
them. Meanwhile the corresponding polynomial is a symmetric function over an empty
range of variables and hence is zero, as required.

Now suppose a < b and αa+1 < βb. A path from (a, αa+1) to (b, βb) must make exactly
b − a vertical steps. Observe that the vertical steps in such a path must be made down
(the right-hand sides of) boxes in the rectangular region whose vertices are the boxes
i(a+1,αa+1+1), i(a+1,βb), i(b,βb) and i(b,αa+1+1), as exemplified in Figure 3. Since α and β
are partitions, we have αi 6 αa+1 and βi > βb for all a+ 1 6 i 6 b, so all these boxes are
indeed contained in the Young diagram Y(β/α).

i(a+1,βb)

i(b,βb)
i(b,αa+1+1)

i(a+1,αa+1+1)

(a, αa+1)

(b, βb)

Figure 3: The collection of boxes which must contain the vertical steps of any
path from (a, αa+1) to (b, βb) when a = 1, b = 5, n = 6, α = (2, 1, 1, 0, 0, 0)
and β = (6, 6, 5, 4, 4, 3).

Thus the choice of b− a columns in which vertical steps take place can be made freely
with repetition from αa+1 + 1, αa+1 + 2, . . . , βb (and each such choice uniquely determines
a path). Then since the vertical edges in column j each have weight xj, the weighted
count of possible paths is the required polynomial.
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Proposition 2.3. Suppose that for all a′ ∈ Ac and b′ ∈ Bc, either:

• a′ − b′ 6 0; or

• a′ − b′ > βb′+1 − αa′; or

• for all i such that b′+1 6 i 6 a′, we have αi−αa′ 6 a′− i and βb′+1−βi 6 i−b′−1.

Then the weighted count of non-intersecting red connectors in ΛR(β/α) is

det
(
ea′−b′(xαa′+1, xαa′+2, . . . , xβb′+1

)
)
a′∈Ac,b′∈Bc

.

Proof. By Theorem 2.1, it suffices to show that the weighted count of paths from (b′, βb′)
to (a′, αa′+1) is ea′−b′(xαa′+1, xαa′+2, . . . , xβb′+1

), for all a′ ∈ Ac and all b′ ∈ Bc.
Suppose first that a′ 6 b′. If the inequality is strict, then (b′, βb′) is below (a′, αa′+1),

so there are no paths between them, and ea′−b′ = 0 as required. If equality holds, then
(b′, βb′) and (a′, αa′+1) are in the same row so there is a unique horizontal path between
them, and ea′−b′ = 1 as required.

Suppose next that a′ − b′ > βb′+1 − αa′ . Then any path starting at (b′, βb′) reaches
the left-hand side of the lattice and terminates before it reaches the a′th row, so there
are no paths between (b′, βb′) and (a′, αa′+1). Meanwhile the corresponding polynomial is
an elementary symmetric function in fewer variables than its degree and hence is zero, as
required.

Now suppose a′− b′ 6 βb′ −αa′ . A path from (b′, βb′) to (a′, αa′+1) must make exactly
a′ − b′ diagonal steps. Observe that the diagonal steps in such a path must be made
across boxes in the parallelogram-shaped region whose vertices are the boxes i(b′+1,βb′+1),
i(b′+1,αa′+a

′−b′), i(a′,αa′+1) and i(a′,βb′+1+b′−a′+1), as exemplified in Figure 4. The condition
for this collection of boxes to be contained in the Young diagram is that for all i ∈
{b′ + 1, b′ + 2, . . . , a′} we have αi 6 αa′ + (a′ − i) and βi > βb′+1 − (i − b′ − 1), which is
exactly the assumed condition on α and β.

i(b′+1,βb′+1)

i(a′,βb′+1−(a′−b′−1))
i(a′,αa′+1)

i(b′+1,αa′+1+(a′−b′−1))

(a′, αa′+1)

(b′, βb′)

Figure 4: The collection of boxes which must contain the diagonal steps of any
path from (b′, βb′) to (a′, αa′+1) when a′ = 5, b′ = 2, n = 6, α = (2, 1, 1, 0, 0, 0)
and β = (6, 6, 5, 4, 4, 3).
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Thus the choice of a′ − b′ columns in which diagonal steps take place can be made
freely without repetition from αa′ + 1, αa′ + 2, . . . , βb′+1 (and each such choice uniquely
determines a path). Then since the diagonal edges in column j each have weight xj, the
weighted count of possible paths is the required polynomial.

2.3 Bijection between connectors

We now define a bijection between the non-intersecting blue connectors in ΛL(β/α) and
the non-intersecting red connectors in ΛR(β/α), for any skew-partition β/α. (In fact, the
arguments in this section hold for α and β any compositions such that αi 6 βi for all i.)

It is convenient to overlay the lattices ΛL(β/α) and ΛR(β/α), so we can compare paths
on one with paths on the other.

The bijection is via the following construction. We define the construction of a red
connector from a blue connector; the inverse construction is analogous.

Definition 2.4. Given a non-intersecting blue connector, define the complementary red
connector to be the collection of paths constructed as follows: beginning at each red
source, take a horizontal step from each node unless the blue connector takes a vertical
step from that node, in which case take a diagonal step.

Example 2.5. The red connector in Figure 2(b) is complementary to the blue connector
in Figure 2(a), as illustrated in Figure 5.

Figure 5: The blue connector and red connector from Figure 2 overlayed,
illustrating that the red connector is complementary to the blue connector.

It is not obvious that the complementary red connector is indeed a red connector
(that is, that each path reaches a distinct red sink). We will show that it is, and that it
is non-intersecting. To do so, we use the following lemma.

Lemma 2.6. A non-intersecting blue connector and its complementary red connector
intersect only at nodes from which a vertical blue step is taken.
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Proof. Suppose, towards a contradiction, there exists a node which lies in both a non-
intersecting blue connector and its complementary red connector and from which there is
not a vertical blue step. Consider a right-most such node (i, j).

First observe (i, j) is not a blue sink: in ΛR(β/α), the right-most nodes are not the
endpoints of any edges, so no path in ΛR(β/α) starting at a red source can contain a blue
sink.

Therefore there must be a horizontal blue step from (i, j) to (i, j + 1). In particular,
(i, j) is not right-most in its row, so it is not a red source. Thus there is a red step to
(i, j), either horizontally from (i, j + 1) or diagonally from (i− 1, j + 1). We explain, and
illustrate beneath each explanation, how both of these possibilities lead to a contradiction.

If the red step is horizontal, then by the construction of the complementary red con-
nector there is no vertical blue step from (i, j + 1). This contradicts our choice of (i, j)
as the right-most intersection from which there is not a vertical blue step.

=⇒
(i,j)

(i,j)

If the red step is diagonal, then by the construction of the complementary red connec-
tor, there is a vertical blue step from (i− 1, j + 1) to (i, j + 1). This contradicts that the
blue connector is non-intersecting.

=⇒
(i,j) (i,j)

In either case we have a contradiction, so no such intersection exists.

Proposition 2.7. The complementary red connector to a non-intersecting blue connector
is a non-intersecting red connector.

Proof. First observe that in ΛL(β/α) the only edges directed out of the left-most nodes
are horizontal, and thus the first step in every blue path is horizontal. Therefore, by
Lemma 2.6, the complementary red connector does not contain any blue sources. Since the
blue sources and the red sinks partition the left-most nodes in the lattices, we deduce that
the paths of the complementary red connector reach red sinks (not necessarily distinct).

We next show that the complementary red connector is non-intersecting. This implies
that the red sinks the red paths reach are distinct, and hence that it is indeed a red
connector.

Suppose, towards a contradiction, that the complementary red connector has an inter-
section. Consider a right-most intersection (i, j). Note that (i, j) cannot be a red source
(or a blue sink): if it were, then it would be the right-most node in its row, and so there
would be no edges from (i, j + 1) or (i− 1, j + 1) for a red path to arrive from (and so it
could not be an intersection of two red paths).

Since we assumed (i, j) to be a right-most intersection, the incoming red paths must
come from distinct vertices: there is both a horizontal and a diagonal red step to (i, j).
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Then, by the construction of the complementary red connector and as illustrated below,
there must be a vertical blue step to (i, j + 1) and there cannot be a vertical blue step
out of (i, j + 1).

=⇒(i,j) (i,j)

Then (i, j + 1) lies in both the blue connector and its complementary red connector, but
there is no vertical blue step out of it, contradicting Lemma 2.6.

Proposition 2.8. The map from the set of non-intersecting blue connectors to the set of
non-intersecting red connectors defined by taking the complementary red connector is a
weight-preserving bijection.

Proof. Write ΣC for the sum of the elements of a set C. Observe that ΣAc − ΣBc =
ΣB−ΣA, and hence that the number of vertical steps made by a blue connector equals the
number of diagonal steps made by a red connector. Thus every vertical blue step in a non-
intersecting blue connector must give rise to a diagonal red step in its complementary red
connector. That is, the nodes from which a non-intersecting blue connector takes vertical
steps are precisely the nodes from which its complementary red connector takes diagonal
steps (and these are precisely the intersections of the connectors).

It is then clear that a non-intersecting blue connector has the same weight as its com-
plementary red connector, and that taking the analogous construction of a complementary
blue connector provides an inverse.

2.4 Conclusion

Combining the enumerations given by Propositions 2.2 and 2.3 with the bijection described
in §2.3, we obtain our main theorem, stated in full below.

Theorem 2.9. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Let α and β be partitions with n
parts (with parts equal to 0 permitted) such that αi 6 βi for all i ∈ [n]0. Suppose that for
all a′ ∈ Ac and b′ ∈ Bc, either:

• a′ − b′ 6 0; or

• a′ − b′ > βb′+1 − αa′; or

• for all i such that b′+1 6 i 6 a′, we have αi−αa′ 6 a′− i and βb′+1−βi 6 i−b′−1.

Then the determinants

det
(
hb−a(xαa+1+1, xαa+1+2, . . . , xβb)

)
a∈A,b∈B

and
det
(
ea′−b′(xαa′+1, xαa′+2, . . . , xβb′+1

)
)
a′∈Ac,b′∈Bc

are equal.
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Remark 2.10. The hypothesis in Theorem 2.9 is precisely the hypothesis in Proposition 2.3
which ensures that each entry of the second matrix counts the number of red paths
correctly (by requiring that all minimal parallelograms between appropriate sinks and
sources lie inside the Young diagram). This hypothesis is necessary and sufficient for each
individual entry to give a correct count. However, this hypothesis is not necessary for
the determinant to correctly count the total number of non-intersecting red connectors.
For example, suppose there exists m ∈ [n]0 such that |A ∩ [m]0| = |B ∩ [m]0|. Then no
non-intersecting connector crosses the (m+1)th row, and so the count of non-intersecting
connectors is the product of the counts of non-intersecting connectors on each half of
the lattice. Meanwhile the matrices whose entries count paths are block triangular, and
the entries of the off-diagonal block are irrelevant to the determinant, and so it is not
necessary for the hypothesis to hold for pairs with indices on both sides of m+ 1.

Partitions whose parts are at most 1 less than the preceding part clearly satisfy the
hypothesis of Theorem 2.9, and so we recover Theorem 1.3 given in the introduction.

2.5 Flagged Schur polynomial identity

We here state our main result in terms of flagged skew Schur polynomials. Flagged
Schur polynomials were introduced in the study of Schubert polynomials by Lascoux and
Schützenberger in [LS82, Annexe II] as determinants in symmetric polynomials. These
polynomials are sometimes also defined as generating functions for semistandard Young
tableaux. These definitions, however, are not always equivalent; both definitions, as well
as sufficient conditions for their equivalence, are given in [Wac85, §3].

We first recall the determinantal definition.

Definition 2.11. Let λ and µ be partitions with l parts such that µi 6 λi. Let f and g
be sequences of positive integers. The determinantal row-flagged skew Schur polynomial
of shape λ/µ with flags f and g is

sλ/µ(f, g) = det
(
hλi−µj−i+j(xfj , . . . , xgi)

)
16i,j6l

,

and the determinantal column-flagged skew Schur polynomial of shape λ/µ with flags f
and g is

s∗λ/µ(f, g) = det
(
eλi−µj−i+j(xfj , . . . , xgi)

)
16i,j6l

.

We can rewrite our identity Theorem 2.9 as follows, yielding a duality theorem for
determinantal flagged skew Schur functions. Recall that we index sets from smallest
elements to largest (so, for example, A1 < . . . < Al). The conjugate of a partition λ is
denoted λ′, obtained by reflecting the Young diagram in the main diagonal; conjugation
is related to set complementation by [Mac98, (1.7), p. 3].
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Theorem 2.12. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size l, and let Ac and Bc be their complements in [n]0. Let α and β be partitions with n
parts (with parts equal to 0 permitted) such that αi 6 βi for all i ∈ [n]. Suppose that for
all a′ ∈ Ac and b′ ∈ Bc, either:

• a′ − b′ 6 0; or

• a′ − b′ > βb′+1 − αa′; or

• for all i such that b′+1 6 i 6 a′, we have αi−αa′ 6 a′− i and βb′+1−βi 6 i−b′−1.

Set:

µi = Al+1−i + i− l, λi = Bl+1−i + i− l,
fi = αAl+1−i+1 + 1, gi = βBl+1−i

,

f ∗i = αAc
i
+ 1, g∗i = βBc

i+1.

Then
sλ/µ(f, g) = s∗λ′/µ′(f

∗, g∗).

We now consider the definition of flagged Schur polynomials as generating functions
for tableaux. We recall the definition from [Wac85, §3], denoting the polynomials thus
defined as s̄ to distinguish them clearly from the determinantal s.

Definition 2.13. Let λ and µ be partitions such that µi 6 λi. Let f and g be sequences
of positive integers. Let T (λ/µ, f, g) be the set of semistandard Young tableaux of shape
λ/µ such that for each i the entries in the ith row are bounded below by fi and above by
gi, and let T ∗(λ/µ, f, g) be the set of semistandard Young tableaux of shape λ/µ such that
for each i the entries in the ith column are bounded below by fi and above by gi. Given
a tableaux t, let xt denote the monomial whose power of xi is the number of occurences
of i in t. The tableaux-generated row-flagged skew Schur polynomial of shape λ/µ with
flags f and g is

s̄λ/µ(f, g) =
∑

t∈T (λ/µ,f,g)

xt,

and the tableaux-generated column-flagged skew Schur polynomial of shape λ/µ with
flags f and g is

s̄∗λ/µ(f, g) =
∑

t∈T ∗(λ′/µ′,f,g)

xt.

In [Wac85, Theorems 3.5 and 3.5*], sufficient conditions are given for when the de-
terminantal and tableaux-generated flagged Schur polynomials are equal. Using these
conditions, it can be shown that under the hypotheses of Theorem 2.12 the determinantal
and tableaux-generated flagged Schur polynomials are equal. We thus obtain a duality
theorem for tableaux-generated flagged Schur polynomials by replacing “s” with “s̄” in
Theorem 2.12.

The conditions from [Wac85, Theorems 3.5 and 3.5*] are not to be overlooked: they
can fail frequently. Consequently, tableaux-generated duality can hold even when the
determinantal duality does not. This is illustrated in the following example.
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Example 2.14. Suppose l = 1, r = 2, A = {0}, B = {2}, α = (0, 0) and β = (m, 1)
for some m > 1. Then µ = (0), λ = (2), f = (1), g = (1), f ∗ = (1, 1) and g∗ = (m, 1).
Observe that the sets T (λ/µ, f, g) and T ∗(λ/µ, f ∗, g∗) are equal (containing only the
tableau 1 1 ) regardless of the value of m, and so we have

s̄λ/µ(f, g) = x2
1 = s̄∗λ′/µ′(f

∗, g∗).

However, the hypotheses of Theorem 2.12 are met if and only if m ∈ {1, 2}. We have,
for all m, that

sλ/µ(f, g) = det( h2(x1) ) = x2
1,

but when m > 3 we have

s∗λ′/µ′(f
∗, g∗) = det

(
e1(x1,...,xm) e2(x1,...,xm)

1 x1

)
= x2

1 − e2(x2, . . . , xm).

Thus determinantal duality fails despite the tableaux-generated duality holding.

3 Specialisations of the main theorem

In this section we indicate how to recover Gessel and Viennot’s binomial duality theorem
(Theorem 1.1) and Aitken’s symmetric function duality theorem (Theorem 1.2) from
our main thereom. We also deduce lifts of Gessel and Viennot’s theorem to q-binomial
coefficients (Corollary 1.5) and to symmetric polynomials (Corollary 1.6).

To deduce Theorem 1.1, Corollary 1.5 and Corollary 1.6, we use staircase-shaped
lattices.

Corollary 1.6. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Then

det
(
hb−a(x1, x2, . . . , xa+1)

)
a∈A,b∈B

= det
(
ea′−b′(x1, x2, . . . , xa′)

)
a′∈Ac,b′∈Bc

.

Proof. In Theorem 2.9, take β = (nn) and take α to be the staircase given by αi = n− i
for i ∈ [n]. Then the left-hand matrix is (hb−a(xn−a, . . . , xn))a∈A,b∈B and the right-hand
matrix is (ea′−b′(xn−a′+1, . . . , xn))a′∈Ac,b∈Bc . Relabelling the variables (via xi 7→ xn+1−i)
gives the result.

The q-binomial coefficients (also known as Gaussian coefficients) are polynomials in q,
and are a generalisation of the usual binomial coefficients in the sense that setting q = 1
yields the corresponding binomial coefficients. They are defined (see for example [Kon00,
§3]) by (

n

k

)
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− q)(1− q2) · · · (1− qk)
.

Corollary 1.5. Let n be a nonnegative integer, let A and B be subsets of [n]0 of equal
size, and let Ac and Bc be their complements in [n]0. Then

det

((
b

a

)
q

)
a∈A,b∈B

= det

(
q(

a′−b′
2 )
(
a′

b′

)
q

)
a′∈Ac,b′∈Bc

.
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Proof. Recall that the q-binomial coefficients are related to the symmetric polynomials in
the following way [Kon00, §3, equations 17 and 18]:

hk(1, q, . . . , q
n−1) =

(
n+ k − 1

k

)
q

,

ek(1, q, . . . , q
n−1) = q(

k
2)
(
n

k

)
q

.

Thus, set xi = qi−1 in Corollary 1.6 and the matrix entries become, respectively,

hb−a(1, q, . . . , q
a) =

(
b

b− a

)
q

=

(
b

a

)
q

and

ea′−b′(1, q, . . . , q
a′−1) = q(

a′−b′
2 )
(

a′

a′ − b′

)
q

= q(
a′−b′

2 )
(
a′

b′

)
q

,

as required.

Setting q = 1 in Corollary 1.5 recovers Gessel and Viennot’s binomial duality theorem
(Theorem 1.1).

To recover Aitken’s symmetric function duality theorem (Theorem 1.2), we use rect-
angular lattices. In Theorem 2.9, take α = (0n) and β = (mn), for a positive integer m,
to obtain

det
(
hb−a(x1, x2, . . . , xm)

)
a∈A,b∈B

= det
(
ea′−b′(x1, x2, . . . , xm)

)
a′∈Ac,b′∈Bc

.

Since this holds for arbitrary positive integers m, Theorem 1.2 follows.

4 Insufficiency of Jacobi’s complementary minor formula

Theorem 1.2 was proved in [Ait31] using Jacobi’s complementary minor formula and a
form of Newton’s identity. These two results are stated below. We here outline Aitken’s
proof, and show that this method is not sufficient to deduce our main theorem.

For our purposes it is convenient to index matrix rows and columns from 0. Given a
(d+ 1)× (d+ 1) matrix M and subsets A,B ⊆ [d]0, let MA,B denote the matrix obtained
by retaining only those rows indexed by elements of A and those columns indexed by
elements of B. Write ΣA for the sum of the elements of A.

Proposition 4.1 (Jacobi’s complementary minor formula [CSS13, Lemma A.1(e), p. 96]).
Let M be an invertible (d+ 1)× (d+ 1) matrix and let A,B ⊆ [d]0 be subsets of equal size.
Then

det(MA,B) = (−1)ΣA+ΣB det(M) det
((

(M−1)>
)
Ac,Bc

)
.
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Proposition 4.2 (Newton’s identity [Mac98, Equation (2.6′), p. 21]). Let d > 0. Then

d∑
i=0

(−1)ieihd−i = 0.

In [Ait31], Aitken obtains his identity (Theorem 1.2) by applying Proposition 4.1
to the matrix (hj−i)06i,j6n. Its inverse is ((−1)i+jej−i)06i,j6n, as can be verified using
Proposition 4.2.

If we attempt to use this method to prove Theorem 2.9, we would be required to show,
given partitions α and β satisfying the hypotheses, that the matrices

H(β/α) =
(
hj−i(xαi+1+1, . . . , xβj)

)
06i,j6n

and

E(β/α) =
(

(−1)i+jej−i(xαj+1, . . . , xβi+1
)
)

06i,j6n

are inverse. However, Theorem 2.9 can provide a determinant identity when this is not
the case.

For example, let n = 3 and let α = (2, 0, 0) and β = (3, 3, 1). We have

(E(β/α)H(β/α))0,2 = h2(x3)− e1(x3)h1(x1, x2, x3) + e2(x1, x2, x3)

= x1x2

6= 0,

so the matrices H(β/α) and E(β/α) are not inverse. Nevertheless, choosing A = {0, 1, 2}
and B = {1, 2, 3} meets the hypotheses of Theorem 2.9, and so we find that the determi-
nants

b=1 b=2 b=3

βb=3 βb=3 βb=1

a=0 αa+1+1=3 h1(x3) h2(x3) 0
a=1 αa+1+1=1 1 h1(x1, x2, x3) h2(x1)
a=2 αa+1+1=1 0 1 h1(x1)

and
b′=0

βb′+1=3

a′=3 αa′+1=1 e3(x1, x2, x3)

are equal.
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