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Abstract

In this paper, cylindric partitions into profiles c = (1, 1) and c = (2, 0) are con-
sidered. The generating functions into unrestricted cylindric partitions and cylindric
partitions into distinct parts with these profiles are constructed. The constructions
are combinatorial and they connect the cylindric partitions with ordinary partitions.

Mathematics Subject Classifications: 05A17, 05A15, 11P84

1 Introduction

Cylindric partitions were introduced by Gessel and Krattenthaler [8].

Definition 1. Let k and ` be positive integers. Let c = (c1, c2, . . . , ck) be a composition,
where c1 + c2 + · · · + ck = `. A cylindric partition with profile c is a vector partition
Λ = (λ(1), λ(2), . . . , λ(k)), where each λ(i) = λ

(i)
1 + λ

(i)
2 + · · ·+ λ

(i)
si is a partition, such that

for all i and j,
λ

(i)
j > λ

(i+1)
j+ci+1

and λ
(k)
j > λ

(1)
j+c1

.

For example, the sequence Λ = ((6, 5, 4, 4), (8, 8, 5, 3), (7, 6, 4, 2)) is a cylindric partition

with profile (1, 2, 0). One can check that for all j, λ
(1)
j > λ

(2)
j+2, λ

(2)
j > λ

(3)
j and λ

(3)
j > λ

(1)
j+1.
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We can visualize the required inequalities by writing the partitions in subsequent rows
repeating the first row below the last one, and shifting the rows below as much as necessary
to the left. Thus, the inequalities become the weakly decreasing of the parts to the right
in each row, and downward in each column.

6 5 4 4
8 8 5 3
7 6 4 2

6 5 4 4

The repeated first row is shown in gray.
The size |Λ| of a cylindric partition Λ = (λ(1), λ(2), . . . , λ(k)) is defined to be the sum of

all the parts in the partitions λ(1), λ(2), . . . , λ(k). The largest part of a cylindric partition
Λ is defined to be the maximum part among all the partitions in Λ, and it is denoted by
max(Λ). The following generating function

Fc(z, q) :=
∑
Λ∈Pc

zmax (Λ)q|Λ|

is the generating function for cylindric partitions, where Pc denotes the set of all cylindric
partitions with profile c.

In 2007, Borodin [3] showed that when one sets z = 1 to this generating function, it
turns out to be a very nice infinite product.

Theorem 2 (Borodin, 2007). Let k and ` be positive integers, and let c = (c1, c2, . . . , ck)
be a composition of `. Define t := k + ` and s(i, j) := ci + ci+1 + · · ·+ cj. Then,

Fc(1, q) =
1

(qt; qt)∞

k∏
i=1

k∏
j=i

ci∏
m=1

1

(qm+j−i+s(i+1,j); qt)∞

k∏
i=2

i∏
j=2

ci∏
m=1

1

(qt−m+j−i−s(j,i−1); qt)∞
.

(1)

The identity (1) is a very strong tool to find product representation of generating
functions of cylindric partitions with a given profile explicitly.

Cylindric partitions have been studied intensively since their introduction [8]. Promi-
nent examples are constructing Andrews-Gordon [1] type evidently positive multiple series
companions to some cases in Borodin’s theorem [5, 6, 7], or even connections with theo-
retical physics [9].

The purpose of this paper is to construct generating functions of cylindric partitions
with small profiles into unrestricted or distinct parts. In Section 2, we combinatorially
reprove generating functions for cylindric partitions with profiles c = (1, 1) and c = (2, 0).
The construction is based on the fact that if we have a cylindric partition with profile
c = (1, 1) or c = (2, 0), then it can be decomposed into a pair of partitions (µ, β) by
a series of combinatorial moves. The results in Section 2 are limiting cases, therefore
corollaries, of [10, eq. (7.25)]. The proof techniques are different, though. The approach
in Section 2 seems to apply in [10, eq. (7.25)] for k = 1 and s = 1 or 2. In Section
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3, we consider cylindric partitions with small profiles into distinct parts. We construct
generating functions for such partitions with profiles c = (1, 1) or c = (2, 0), which turn
out to be combinations of infinite products. We refer the reader to [4], where cylindric
partitions into distinct parts are also studied. We conclude by constructing an evidently
positive series generating function for cylindric partitions with small profiles into odd
parts.

2 Generating Functions of Cylindric Partitions With Profiles
c = (1, 1) and c = (2, 0)

By using (1), one can easily show that

Fc(1, q) =
(−q; q2)∞

(q; q)∞
, (2)

where c = (1, 1).
In the following theorem, we will give a combinatorial proof of identity (2).

Theorem 3. Let c = (1, 1). Then the generating function of cylindric partitions with
profile c is given by

Fc(1, q) =
(−q; q2)∞

(q; q)∞
.

Proof. We will show that each cylindric partition λ with profile c = (1, 1) corresponds to
a unique pair of partitions (µ, β), where µ is an ordinary partition and β is a partition
with distinct odd parts. Conversely, we will show that each pair of partitions (µ, β) will
correspond to a unique cylindric partition with profile c = (1, 1), where µ is an ordinary
partition and β is a partition into distinct odd parts. In this way, we will get the desired
generating function for cylindric partitions with profile c = (1, 1).

Fc(1, q) =
∑
λ

q|λ| =
∑
(µ,β)

q|µ|+|β| =

(∑
µ

q|µ|

) (∑
β

q|β|

)
=

1

(q; q)∞
(−q; q2)∞,

where λ, µ, and β are as described above. The first identity is the definition of Fc(1, q).
The second identity will be proven below. The third follows from the fact that µ and
β are independent, and the last one because unrestricted partitions and partitions into
distinct odd parts have the displayed infinite product generating functions [2].

Let λ be a cylindric partition with profile c = (1, 1). Then λ has the following form:

a1 a2 a3 . . . ar−1 ar
b1 b2 b3 . . . bs

a1 a2 a3 . . . ar

,
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where r − 1 6 s 6 r + 1. The last line is a repetition of the first one, and the parts are
weakly decreasing from left to right and downward.

If we allow zeros at the end of partitions, we can take s = r. Namely, if s = r−1, then
we append br = 0; and if s = r + 1, then we both append ar+1 = 0 and update r + 1 as
r. So, without loss of generality, our cylindric partition with profile c = (1, 1) looks like

λ =
a1 a2 a3 . . . ar−1 ar

b1 b2 b3 . . . br−1 br
a1 a2 a3 . . . ar−1 ar

.

At this point, only ar or br may be zero, but not both. Therefore either all parts or all
parts but one in λ are positive. During the process of obtaining µ and β, some or all parts
of λ may become zero. It is possible that µ is a partition consisting entirely of zeros, i.e.,
the empty partition. But that does not create a problem because r is determined at the
beginning, and it is fixed.

Our goal is to transform λ into another cylindric partition λ̃ of the same profile

λ̃ =

ã1 ã2 ã3 . . . ãr−1 ãr
b̃1 b̃2 b̃3 . . . b̃r−1 b̃r

ã1 ã2 ã3 . . . ãr−1 ãr

(3)

with the additional property that b̃j > ãj for all j = 1, 2, . . . , r, allowing zeros at the end.

Then, parts of λ̃ can be listed as

µ = (̃b1, ã1, b̃2, ã2, . . . , b̃r, ãr)

to obtain the promised unrestricted partition µ. The remaining inequalities ãj > b̃j+1 for

j = 1, 2, . . . , (r − 1) are ensured by the fact that λ̃ is a cylindric partition with profile
c = (1, 1).

We will do this by a series of transformations on λ which will be recorded as a partition
β into distinct odd parts. We will then argue that |λ| = |µ|+ |β|.

We read the parts of the cylindric partition

λ =
a1 a2 a3 . . . ar−1 ar

b1 b2 b3 . . . br−1 br
a1 a2 a3 . . . ar−1 ar

as the pairs: [b1, a1], [b2, a2], [b3, a3], . . . , [br, ar]. We start with the rightmost pair [br, ar].

If br > ar, there’s nothing to do. We simply set b̃r = br, ãr = ar, and do not add any
parts to β yet.

If br < ar, then we

• switch places of ar and br,

• subtract 1 from each of the parts a1, a2, . . . , ar, b1, b2, . . . br−1,
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• set b̃r = ar − 1 and ãr = br,

• add the part (2r − 1) to β.

We need to perform several checks here. First, we will show that at each of the steps
listed above, the intermediate cylindric partition satisfies the weakly decreasing condition
across rows and down columns. The affected parts are highlighted.

a1 a2 a3 . . . ar−1 ar

b1 b2 b3 . . . br−1 br
a1 a2 a3 . . . ar−1 ar

y after switching places of ar and br

a1 a2 a3 . . . ar−1 br

b1 b2 b3 . . . br−1 ar

a1 a2 a3 . . . ar−1 br

The inequalities ar−1 > br and ar−1 > ar carry over from the original cylindric partition.
The inequalities br−1 > ar and br−1 > br are also two of the inequalities implied by the
original cylindric partition. All other inequalities are untouched. At this point, we have
not altered the weight of the cylindric partition yet.y after subtracting 1 from the listed parts

(a1 − 1) (a2 − 1) (a3 − 1) . . . (ar−1 − 1) br

(b1 − 1) (b2 − 1) (b3 − 1) . . . (br−1 − 1) (ar − 1)

(a1 − 1) (a2 − 1) (a3 − 1) . . . (ar−1 − 1) br

We argue that this is still a valid cylindric partition. The only inequalities that need to
be verified are ar−1− 1 > br and br−1− 1 > br. Because of the original cylindric partition,
we have ar−1 > ar and br−1 > ar. Because of the case we are examining ar > br, so that
ar − 1 > br, both being integers. Combining ar−1 − 1 > ar − 1, br−1 − 1 > ar − 1 and
ar − 1 > br yield the desired inequalities.y after relabeling
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(a1 − 1) (a2 − 1) (a3 − 1) . . . (ar−1 − 1) ãr
(b1 − 1) (b2 − 1) (b3 − 1) . . . (br−1 − 1) b̃r

(a1 − 1) (a2 − 1) (a3 − 1) . . . (ar−1 − 1) ãr

Now we have b̃r > ãr since ar − 1 > br. Also, we subtracted 1 from exactly 2r − 1 parts.
We add this (2r− 1) as a part in β. At the beginning, β was the empty partition, so it is
a partition into distinct odd parts both before and after this transformation. The sum of
the weight of β and the weight of the cylindric partition remains constant. It is possible
that either or both ãr and b̃r may be zero, along with some other parts. For example, in
the extreme case that a1 = a2 = · · · = ar = 1, b1 = b2 = · · · = br−1 = 1 and br = 0, the
cylindric partition becomes the empty partition after the transformation we illustrated.

We should mention that after this point there is no harm in renaming (ai − 1)’s ai’s
and (bi− 1)’s bi’s, where applicable. This will lead to the cleaner exposition down below.
There is no loss of information, since the subtracted 1’s are recorded as a part in β already.

Then, we repeat the following process for j = (r − 1), (r − 2), . . . , 2, 1 in the given
order. At the beginning of the jth step, we have the intermediate cylindric partition

a1 a2 · · · aj−1 aj ãj+1 · · · ãr
b1 b2 · · · bj−1 bj b̃j+1 · · · b̃r

a1 a2 · · · aj−1 aj ãj+1 · · · ãr

.

The parts weakly decrease from left to right and downward, and the third line is a rep-
etition of the first one. This intermediate cylindric partition satisfies the additional in-
equalities

b̃j+1 > ãj+1, b̃j+2 > ãj+2, · · · b̃r > ãr.

Some or all parts in this intermediate partition may be zero.
We focus on the jth pair [bj, aj]. If bj > aj already, then we do not alter either the

intermediate cylindric partition or the partition β into distinct odd parts. We just relabel
bj as b̃j, aj as ãj, and move on to the (j − 1)th pair.

In the other case aj > bj, we

• switch places of aj and bj,

• subtract 1 from each of the parts a1, a2, . . . , aj, b1, b2, . . . bj−1,

• set b̃j = aj − 1 and ãj = bj,

• add the part (2j − 1) to β.

We again perform several checks as in the rth case, but this time there are inequalities
that involve parts that lie to the right of aj and bj. We first show that the listed operations
do not violate the weakly decreasing condition on the cylindric partition across rows and
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down columns. The affected parts are highlighted. We switch the places of aj and bj to
obtain

a1 a2 · · · aj−1 bj ãj+1 · · · ãr

b1 b2 · · · bj−1 aj b̃j+1 · · · b̃r

a1 a2 · · · aj−1 bj ãj+1 · · · ãr

.

Each of the required inequalities

aj−1 > bj > ãj+1, bj−1 > aj > b̃j+1, bj−1 > bj, aj−1 > aj > ãj+1, and bj > b̃j+1

are already implied in the cylindric partition before the change. The inequalities between
the non-highlighted parts carry over. We then subtract one from each of the listed parts.
The inequalities we need to verify are

aj−1 − 1 > bj, aj − 1 > b̃j+1, bj−1 − 1 > bj, and aj − 1 > ãj+1.

By the cylindric partition two steps ago, we have

aj−1 > aj, bj > b̃j+1, bj−1 > aj, and bj > ãj+1.

By the hypothesis, aj > bj, so aj − 1 > bj. This last inequality, combined with the last
four displayed inequalities yield the inequalities we wanted. Then we relabel bj as ãj and

aj as b̃j in their respective new places. We have b̃j > ãj, since aj − 1 > bj.
On the other hand, we subtracted a total of (2j − 1) 1’s from the parts of the inter-

mediate cylindric partition, and now we add (2j − 1) to β. β still has distinct odd parts,
because the smallest part we had added to β must be > (2j + 1) in the previous step. It
is also possible that β was empty before adding (2j − 1). We should note that (2j − 1) is
the smallest part in β at the moment. In any case, we have

|λ| = |β|+ the weight of the intermediate cylindric partition.

λ is the original cylindric partition, before any changes.
Like after the rth step, there is no danger in renaming (ai−1)’s ai’s and (bi−1)’s bi’s,

where necessary.
Once this process is finished, we have the cylindric partition λ̃ as given in (3), The

nonzero parts of λ̃ is listed as parts of the unrestricted partition µ, the alterations in
obtaining λ̃ are recorded as parts of the partition β into distinct odd parts, and one
direction of the proof is over.

Next; given (µ, β), where µ is an unrestricted partition, and β is a partition into
distinct odd parts, we will produce a unique cylindric partition λ with profile c = (1, 1)
such that

|λ| = |µ|+ |β|.
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The parts of µ in their respective order are relabeled as:

µ =µ1 + µ2 + · · ·+ µl

=b̃1 + ã1 + · · ·+ b̃s + ãs. (4)

The relabeling requires an even number of parts, which can be solved by appending a zero
at the end of µ if necessary. Then, the b̃’s and ã’s are arranged as the cylindric partition

λ̃ =

ã1 ã2 · · · ãs
b̃1 b̃2 · · · b̃s

ã1 ã2 · · · ãs

.

All of the required inequalities ãj > ãj+1, b̃j > b̃j+1, ãj > b̃j+1, and b̃j > ãj+1 for

j = 1, 2, . . . , s− 1 are implied by the inequalities between parts of µ. λ̃ has the additional
property that b̃j > ãj for j = 1, 2, . . . , s. This is the λ̃ we obtained in the first half of the
proof, except for the possibly different number of zeros at the end(s). The positive parts
and their positions are the same.

For the smallest part (2j − 1) in β, we do the following.

• delete the part from β,

• add 1 to all parts a1, . . . , ãj−1, b1, . . . , b̃j,

• switch places of ãj and (̃bj + 1),

• rename (a1+1), . . . , (ãj−1+1), (̃bj+1), (b1+1), . . . , (̃bj−1+1), ãj, in their respective
order as a1, . . . , aj−1, aj, b1, . . . , bj−1, bj.

We repeat this procedure until β becomes the empty partition, at which time λ̃ has evolved
into λ, the cylindric partition with profile c = (1, 1) we have been aiming at.

There are a few details to clarify, including the notation. We start by verifying that the
inequalities required by the cylindric partition are satisfied at each step. The affected parts
are highlighted. We start with the cylindric partition just before the transformations. We
add one to each of the listed parts. The required inequalities are naturally satisfied here,
because the parts which are supposed to be weakly greater are increased. Then, we switch
places of ãj and b̃j + 1.

(a1 + 1) · · · (ãj−1 + 1) (̃bj + 1) ãj+1 . . . ãs

(b1 + 1) · · · (̃bj−1 + 1) ãj b̃j+1 . . . b̃s

(a1 + 1) · · · (ãj−1 + 1) (̃bj + 1) ãj+1 . . . ãs

Again, the required inequalities are implied by the cylindric partition in the previous step.
At the beginning of the first run, we do not have a1 or b1 in the cylindric partition, but
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rather ã1 or b̃1, respectively. However, at the end of each run, the leftmost so many parts
in the first and the second rows of the cylindric partition are labeled a1, b1, etc.

Because we deleted (2j − 1) from β, and we added 1 to exactly (2j − 1) of the parts
in the intermediate cylindric partition, the sum of weights of β and of the intermediate
cylindric partition remains constant. It equals the sum of weights of µ and the original β.

The relabeling of (a1 + 1) as a1 etc. does not interfere with any of the operations
before it, and certainly not any of the possible operations that some after it; therefore, it
should not cause any confusion.

We tacitly assumed that j < s in the displayed cylindric partition above. This does
not have to be the case, as β may have a part greater than the length of µ. The remedy
is to append zeros, and increase s as much as necessary. This takes care of the extreme
case of λ̃ being the empty partition. All of the arguments above apply for non-negative
parts as well as strictly positive parts. We also implicitly assumed that β is nonempty to
start with. If β is the empty partition, we do not need the perform any operations λ̃ at
all. We simply call ãj’s aj’s, and b̃j’s bj’s.

Once all parts of β are exhausted, we clear the trailing pairs of zeros in the cylindric
partition at hand, and we declare the obtained cylindric partition λ.

Because the sum of the weights of β and of the intermediate cylindric partition re-
mained constant at each step of the transformation and β is the empty partition at the
end, we have

|λ| = |µ|+ |(the original)β|.

Except for the relabelings, the adding or subtracting 1’s, and adding or deleting parts of
β are done in exact reverse order, and they are clearly inverse operations of each other,
the process is reversible, and the collection of profile c = (1, 1) cylindric partitions λ’s
are in one-to-one correspondence with the pairs (µ, β) of an unrestricted partition and
a partition into distinct odd parts. The relabelings in the two phases of the proof are
consistent at the beginning and at the end of the transformation, and between the rounds
of operations. This concludes the proof.

The following example demonstrates how we construct the pair of partitions (µ, β) if
we are given a cylindric partition λ with profile c = (1, 1).

Example 4. Let λ be the following cylindric partition with profile c = (1, 1):

7 4 4 3
6 5 4

We read the parts of λ as pairs: [6, 7], [5, 4], [4, 4] and [0, 3].

7 4 4 3
6 5 4 0

We now start to perform the moves defined in the proof of Theorem 3. We first change
the places of 0 and 3 in the rightmost pair and we get the following intermediate partition:
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7 4 4 0

6 5 4 3ysubtract 1 from circled 3 and the parts
take place above and on the left of it

6 3 3 0
5 4 3 2

We changed the total weight by 7, so we have β1 = 7. We do not touch to the pairs
[3, 3] and [4, 3] since 3 > 3 and 4 > 3. We now correct the places of 6 and 5, then we
perform the last possible move:

5 3 3 0

6 4 3 2ysubtract 1 from circled 6

5 3 3 0
5 4 3 2

We changed the total weight by 1, so we have β2 = 1. Therefore, we decomposed λ
into the pair of partitions (µ, β), where β = 7 + 1 and µ = 5 + 5 + 4 + 3 + 3 + 3 + 2.

The following example demonstrates how we construct a unique cylindric partition λ
with profile c = (1, 1), if we are given a pair of partitions (µ, β) which is described as in
the proof of Theorem 3.

Example 5. Let µ = 6 + 5 + 5 + 3 + 1 and β = 9 + 7 + 3. We read the parts of µ as
follows:

5 3 0 0 0
6 5 1 0 0

The first part of β is 9. Since we want to increase the weight by 9, we add 0’s as many as
we need when we construct the pairs.

5 3 0 0 0

6 5 1 0 0yincrease by 1 circled 0 and all corre-
sponding parts

6 4 1 1 0
7 6 2 1 1ycorrect the places of parts in the last

pair

6 4 1 1 1

7 6 2 1 0
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yincrease by 1 circled 0 and all corre-
sponding parts

7 5 2 1 1
8 7 3 2 0ycorrect the places of parts in the second

pair from the right

7 5 2 2 1

8 7 3 1 0yincrease by 1 circled 7 and all corre-
sponding parts

8 5 2 2 1
9 8 3 1 0ycorrect the places of parts in the fourth

pair from the right

λ = 8 8 2 2 1
9 5 3 1 0

λ is the unique cylindric partition with profile c = (1, 1) corresponding to the pair of
partitions (µ, β).

Theorem 6. Let c = (1, 1). Then the generating function of cylindric partitions with
profile c is given by

Fc(z, q) =
(−zq; q2)∞

(zq; q)∞
.

where the exponent of variable z keeps track of the largest part of the cylindric partitions.

Proof. In the proof of Theorem 3, we show that there is a one-to-one correspondence
between the cylindric partitions with profile c = (1, 1) and the pairs of partitions (µ, β)
such that µ is an ordinary partition and β is a partition into distinct odd parts. For the
proof, we will use this correspondence. If we take a pair of partitions (µ, β), then during
the construction of λ, each part of β increases the largest part of µ by 1. Hence, when
the whole procedure is done, the largest part of µ is increased by the number of parts in
β. Because of that fact, we write the generating function of β by keeping track of the
number of parts, which gives (−zq; q2)∞.

The partition µ is an ordinary partition and the generating function of ordinary par-
titions such that the largest part is M is given by

qM

(1− q) . . . (1− qM)
.
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If we take sum over all M by keeping track of the largest parts with the exponent of z,
we get ∑

M>0

zMqM

(1− q) . . . (1− qM)
=
∑
M>0

(zq)M

(q; q)M
=

1

(zq; q)∞
.

The second identity follows from Euler’s identity [2]. There is a one-to-one correspondence
between the partitions with exactly k parts and the partitions with largest part equals
to k via conjugation [2]. Thus, the latter generating function can also be considered as
the generating function of ordinary partitions, where the exponent of z keeps track of the
number of parts. Finally, since µ and β are two independent partitions, we get the desired
generating function.

Theorem 7. Let c = (2, 0). Then the generating function of cylindric partitions with
profile c is given by

Fc(1, q) =
(−q2; q2)∞

(q; q)∞
.

Proof. The proof is very similar to the proof of Theorem 3. We read the parts of the
cylindric partition

λ =
a0 a1 a2 . . . ar−1 ar
b1 b2 . . . br−1 br

a0 a1 a2 a3 . . . ar

.

as the pairs: [b1, a1], [b2, a2], [b3, a3], . . . , [br, ar]. We note that the largest part of the
cylindric partition λ, namely, a0 is not contained in any pairs. We consider it as a single
part.

a0 is not switched with any part, but it is increased or decreased accordingly when we
construct or incorporate β as in the proof of Theorem 3. Thus, β consists of distinct even
parts, as opposed to distinct odd parts.

If we construct the generating function of cylindric partitions with profile c = (2, 0)
by using (1), we get

Fc(1, q) =
1

(q; q)∞(q2; q4)∞
.

If we compare that generating function with the generating function in Theorem 7,
we see that they are equal. Both generating functions have the factor (q; q)∞ in the
denominators. If we cancel that factor, we should check whether

1

(q2; q4)∞
= (−q2; q2)∞ (5)
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or not. This identity holds due to the beautiful identity of Euler which states that the
number of partitions of a non-negative integer n into odd parts is equal to the number
of partitions of n into distinct parts. To obtain (5), we make the substitution q2 → q in
Euler’s identity.

3 Cylindric partitions into distinct parts

If all parts in a cylindric partition with profile c = (1, 1) are distinct, then the inequalities
between parts are strict. Given such a partition, if we label the parts in the top row as
a1, a2, . . ., and the parts in the bottom row as b1, b2, . . .,

a1 a2 · · · ar−1 ar · · · an
b1 b2 · · · br−1 br · · · bn

a1 a2 · · · ar−1 ar · · · an

, (6)

we have the inequalities

ar > ar+1, br > br+1, ar > br+1, and br > ar+1

for r = 1, 2, . . . , n− 1. In particular,

min{ar, br} > max{ar+1, br+1} (7)

for r = 1, 2, . . . , n − 1. As in the proof of Theorem 3, we lose no generality by assuming
that the top row and the bottom row have equal number of parts. We achieve this by
allowing one of an or bn to be zero. The inequality (7) ensures that we can switch the
places of ar and br without violating the condition for cylindric partition with profile
c = (1, 1) for r = 1, 2, . . . , n. There are 2n ways to do this.

Therefore, given a cylindric partition into 2n distinct parts with profile c = (1, 1), we
can switch places of ar and br to make br > ar for r = 1, 2, . . . , n so that

b1 > a1 > b2 > a2 > · · · > bn > an, (8)

where an is possibly zero. In other words, we obtain a partition into 2n distinct parts in
which the smallest part is allowed to be zero.

Conversely, if we start with a partition into 2n distinct parts in which the smallest
part can be zero, we can label the parts as in (8), then place them as in (6), and allow
switching places of ar and br for r = 1, 2, . . . , n; then we will have generated a cylindric
partition into 2n distinct parts with profile c = (1, 1), where one of the parts is allowed
to be zero.

It is clear that any such cylindric partition corresponds to a unique partition into an
even number of distinct parts, and any partition into 2n distinct parts gives rise to 2n

cylindric partitions. We have almost proved the following lemma.
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Lemma 8. Let d(1,1)(m,n) denote the number of cylindric partitions of n into distinct
parts with profile c = (1, 1) and the largest part equal to m. Then,

D(1,1)(t, q) =
∑
n,m>0

d(1,1)(m,n)tmqn =
∑
n>0

q(
2n
2 )t2n−12n

(tq; q)2n

.

Proof. We build the proof on the discussion preceding the statement of the lemma. A
partition into 2n distinct parts is generated by

q(
2n
2 )

(q; q)2n

,

where the smallest part is allowed to be zero. When we want to keep track of the largest
part, we start by the minimal partition into 2n distinct parts

(2n− 1), (2n− 2), . . . , 1, 0,

hence the t2n−1 in the numerator in the rightmost sum in the Lemma. Then, for j =
1, 2, . . . , 2n, the factor (1 − tqj) in the denominator contributes to the j largest parts in
the partition into distinct parts.

A similar discussion ensues for cylindric partitions into distinct parts with profile
c = (2, 0). The generic cylindric partition is

a0 a1 a2 · · · ar−1 ar · · · an
b1 b2 · · · br−1 br · · · bn

a0 a1 a2 · · · ar−1 ar · · · an

, (9)

where the top row contains n+1 parts, the bottom row contains n parts, and one of an or
bn is allowed to be zero. We still have the inequalities (7). In addition, a0 is the absolute
largest part. Needless to say that a0 is zero if and only if we have the empty cylindric
partition. ar and br can switch places for r = 1, 2, . . . , n to obtain the augmented chain
of inequalities

a0 > b1 > a1 > b2 > a2 > · · · > bn > an,

to get a partition into (2n + 1) distinct parts, where the smallest part is allowed to be
zero. Conversely, any partition into (2n + 1) distinct parts in which the smallest part
is allowed to be zero gives rise to exactly 2n cylindric partitions into distinct parts with
profile c = (2, 0). We have again almost proved the following lemma.

Lemma 9. Let d(2,0)(m,n) denote the number of cylindric partitions of n into distinct
parts with profile c = (2, 0) and the largest part equal to m. Then,

D(2,0)(t, q) =
∑
n,m>0

d(2,0)(m,n)tmqn =
∑
n>0

q(
2n+1

2 )t2n2n

(tq; q)2n+1

.
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The proof is almost the same as that of Lemma 8, and is skipped.
Next, we dissect one of Euler’s q-series identities [2]

∑
n>0

q(
n
2)an

(q; q)n
= (−a; q)∞

to separate odd and even powers of a.

∑
n>0

q(
2n
2 )(a2)n

(q; q)2n

=
(−a; q)∞ + (a; q)∞

2
, a

∑
n>0

q(
2n+1

2 )(a2)n

(q; q)2n+1

=
(−a; q)∞ − (a; q)∞

2
.

If we plug in t = 1 in Lemmas 8 and 9, and a =
√

2 in the above formulas, we obtain
the following theorem. We repeat the descriptions of the partition enumerants for ease of
reference.

Theorem 10. Let d(1,1)(m,n) and d(2,0)(m,n) be the number of cylindric partitions of
n into distinct parts where the largest part is m with profiles c = (1, 1) and c = (2, 0),
respectively. Let

D(1,1)(t, q) =
∑
m,n>0

d(1,1)(m,n)tmqn, and D(2,0)(t, q) =
∑
m,n>0

d(2,0)(m,n)tmqn

be the respective generating functions. Then,

D(1,1)(1, q) =
(−
√

2; q)∞ + (
√

2; q)∞
2

,

D(2,0)(1, q) =
(−
√

2; q)∞ − (
√

2; q)∞

2
√

2
,

D(1,1)(1, q) +
√

2 D(2,0)(1, q) = (−
√

2; q)∞.

4 Discussion

In Theorem 3, to construct the desired generating function for cylindric partitions with
profile c = (1, 1), we decompose each cylindric partition λ with profile c = (1, 1) into
a pair of partitions (µ, β), where µ is an ordinary partition and β is a partition with
distinct odd parts. Conversely, if a pair (µ, β) is given, then we find a unique cylindric
partition λ with profile c = (1, 1). In that way, we find a one-to-one correspondence
between λ’s and (µ, β)’s. Here, the partitions µ and β are two independent partitions.
In the following theorem, we consider the pair of partitions (µ, β) such that µ and β
are dependent partitions and we construct a family of cylindric partitions with profile
c = (1, 1) corresponding to the pairs (µ, β).
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Theorem 11. Let Oc(1, q) be the generating function of cylindric partitions with profile
c = (1, 1) such that all parts are odd. Then,

Oc(1, q) =
∑
k>0

q2k

(q2; q2)2k

.(−q2; q4)k +
∑
k>0

q2k+1

(q2; q2)2k+1

.(−q2; q4)k+1 (10)

=
∑
k>0

q2k(−q2; q4)k(1 + q − q4k+2 + q4k+3)

(q2; q2)2k+1

.

Proof. We will construct a one-to-one correspondence between the cylindric partitions
with profile c = (1, 1) such that all parts are odd and the pairs of partitions (µ, β), where
µ is a partition into odd parts, β is a partition into distinct odd parts such that each part
is counted twice. Moreover, µ and β are dependent on each other with respect to the
number of parts in µ and the largest odd part in β as follows:

(a) if µ has 2k parts, the largest odd part in β is 2k − 1,

(b) if µ has 2k + 1 parts, the largest odd part in β is 2k + 1.

By using exactly the same construction in the proof of Theorem 3, whenever a pair
of partitions (µ, β) as in case (a) or (b), we may construct a unique cylindric partition λ
with profile c = (1, 1) such that all parts are odd. The only change in the construction is
that we increase/decrease the weight of each part in the intermediate cylindric partition
by 2 instead of 1. It is clear that the parts of the cylindric partition have to be odd, since
all parts of the partition µ are odd and the parts of β are counted twice, i.e., we do not
change the parity of the parts during the transformations. Conversely, if we are given a
cylindric partition λ with profile c = (1, 1) such that all parts are odd, then we may find
a unique pair of partitions (µ, β) just described as above. The first term in the sum in
(10) is the generating function of pairs (µ, β) having the property (a) and the latter term
in the summation is the generating function of pairs (µ, β) having the property (b).

A natural question is to ask if similar constructions to the proof of Theorems 3 and 7
could be done for cylindric partitions with larger profiles. Another natural question is to
ask if similar infinite product generating functions to Theorem 10 could be discovered for
cylindric partitions with larger profiles into distinct parts.
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