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Abstract

A graph H is an induced subgraph of a graph G if a graph isomorphic to H can
be obtained from G by deleting vertices. Recently, there has been significant interest
in understanding the unavoidable induced subgraphs for graphs of large treewidth.
Motivated by this work, we consider the analogous problem for pathwidth: what are
the unavoidable induced subgraphs for graphs of large pathwidth? While resolving
this question in the general setting looks challenging, we prove various results for
sparse graphs. In particular, we show that every graph with bounded maximum
degree and sufficiently large pathwidth contains a subdivision of a large complete
binary tree or the line graph of a subdivision of a large complete binary tree as an
induced subgraph. Similarly, we show that every graph excluding a fixed minor and
with sufficiently large pathwidth contains a subdivision of a large complete binary
tree or the line graph of a subdivision of a large complete binary tree as an induced
subgraph. Finally, we present a characterisation for when a hereditary class defined
by a finite set of forbidden induced subgraphs has bounded pathwidth.
Mathematics Subject Classifications: 05C83, 05C76

1 Introduction

Pathwidth and treewidth are fundamental parameters in structural and algorithmic graph
theory [11, 18, 25]. A paramount theme has been to understand the substructures of
graphs with large pathwidth or large treewidth. Under the graph minor and subgraph re-
lations, these substructures are well understood. For pathwidth, the excluded forest minor
theorem [26] implies that graphs with sufficiently large pathwidth contain a subdivision
of a large complete binary tree as a subgraph. For treewidth, the excluded grid minor
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theorem [27] implies that graphs with sufficiently large treewidth contain a subdivision of
a large wall as a subgraph.

In recent years, there has been substantial interest in understanding the substructures
for graphs with large treewidth with respect to induced subgraphs [1–8, 13, 19, 21–23, 29].
For example, it was recently shown that graphs with bounded degree and sufficiently large
treewidth contain a subdivision of a large wall or the line graph of a subdivision of a large
wall as an induced subgraph [21]. Motivated by this work, we consider the analogous
problem for pathwidth: what are the unavoidable induced subgraphs for graphs with
large pathwidth? Due to the excluded forest minor theorem [26], obvious candidates
are subdivisions of large complete binary trees and line graphs1 of subdivisions of large
complete binary trees. While determining the other candidates in the general setting looks
challenging (see Section 4 for a discussion on this), we show that these graphs suffice in
the bounded degree setting (Section 3.2) as well as for Kn-minor-free graphs (Section 3.3).
Let Tk denote the complete binary tree of height k.

Theorem 1. There is a function f such that every graph G with maximum degree ∆ and
pathwidth at least f(k,∆) contains a subdivision of Tk or the line graph of a subdivision
of Tk as an induced subgraph.

Theorem 2. For every fixed n ∈ N, there is a function f such that every Kn-minor-free
graph G with pathwidth at least f(k) contains a subdivision of Tk or the line graph of a
subdivision of Tk as an induced subgraph.

In addition, we characterise when a hereditary graph class defined by a finite set of
forbidden induced subgraphs has bounded pathwidth. Let GS be the class of graphs
that contain no graph in S as an induced subgraph. We call K1,3 a claw . A fork is
either a subdivision of a claw or a path, and a semi-fork is the line graph of a fork. A
tripod is a forest where each component is a fork and a semi-tripod is a graph where
each component is a semi-fork. We prove the following characterisation for when GS has
bounded pathwidth.

Theorem 3. GS has bounded pathwidth if and only if S includes a complete graph, a
complete bipartite graph, a tripod and a semi-tripod.

See [24] for other results concerning induced subgraphs and path decompositions.

2 Preliminaries

For undefined terms and notations, see the textbook by Diestel [16]. A class of graphs G
is a set of graphs that is closed under isomorphism. G is hereditary if it is closed under
induced subgraphs. For a graph G and vertex v ∈ V (G), let N(v) denote the set of
vertices in V (G) adjacent to v and let N [v] denote N(v) ∪ {v}.

1The line graph L(G) of a graph G has V (L(G)) = E(G) where two vertices in L(G) are adjacent if
they are incident to a common vertex in G.
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Let G and H be graphs and let r > 0 be an integer. H is a minor of G if a graph
isomorphic to H can be obtained from G by vertex deletion, edge deletion, and edge
contraction. If H is isomorphic to a graph obtained from G by vertex deletion and edge
contraction, then H is an induced minor of G. A (minor) model (Xv : v ∈ V (H)) of H in
G is a collection of non-empty subsets of V (G) such that (i) G[Xv] is a connected subgraph
of G; (ii) Xu ∩Xv = ∅ for all distinct u, v ∈ V (H); and (iii) G[Xu ∪Xv] is connected for
every edge uv ∈ E(H). If, in addition, G[Xu ∪Xv] is disconnected whenever uv 6∈ E(H),
then (Xv : v ∈ V (H)) is an induced minor model of H. It is folklore that H is a minor of
G if and only if G contains a model of H and that H is an induced minor of G if and only
if G contains an induced minor model of H. If there exists a model (Xv : v ∈ V (H)) of H
in G such that G[Xv] has radius at most r for all v ∈ V (H), then H is an r-shallow minor
of G. A graph G′ is a subdivision of G if G′ can be obtained from G by replacing each
edge uv of G by a path of length at least one with end-vertices u and v whose internal
vertices are new vertices private to that path. We call the vertices V (G) ⊆ V (G′) the
original vertices in G′.

For a tree T , a T -decomposition of a graph G is a collection
W = (Wx : x ∈ V (T )) of subsets of V (G) indexed by the nodes of T such that (i) for
every edge vw ∈ E(G), there exists a node x ∈ V (T ) with v, w ∈ Wx; and (ii) for every
vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a subtree of T . The width of W
is max{|Wx| : x ∈ V (T )} − 1. A tree-decomposition is a T -decomposition for any tree T .
A path-decomposition is a P -decomposition for any path P . The treewidth tw(G) of a
graph G is the minimum width of a tree-decomposition of G and the pathwidth pw(G) of
a graph G is the minimum width of a path-decomposition of G. Clearly tw(G) 6 pw(G)
for all graphs G. Treewidth and pathwidth are the standard measures of how similar a
graph is to a tree and to a path respectively. A fundamental result for pathwidth is the
excluded forest minor theorem.

Theorem 4 ([10, 26]). For every forest F , every graph with pathwidth at least |V (F )|− 1
contains F as a minor.

Note that Theorem 4 implies that every graph with pathwidth at least |V (Tk)| − 1
contains a subdivision of Tk as a subgraph since Tk has maximum degree 3.

3 Results

3.1 From Induced Minors to Induced Subgraphs

To prove Theorems 1 and 2, we first construct an induced minor of a large complete
binary tree in our graph. We then use the following lemma to find our desired induced
subgraphs.

Lemma 5. Every graph G that contains T8k as an induced minor contains a subdivision
of Tk or the line graph of a subdivision of Tk as an induced subgraph.
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The rest of this subsection is dedicated to proving Lemma 5. A net-graph is a semi-
fork obtained from a triangle by appending disjoint paths of length 1 at each vertex of the
triangle. For a graph G and a vertex v ∈ V (G) with degree 3 and neighbours a, b, c, a net
graph replacement at v is the graph G′, with V (G′) = V (G) \ {v} ∪ {x, y, z} where x, y, z
are new vertices and E(H) = E(G− v) ∪ {xy, yz, zx, xa, yb, zc}. A wattle T̃k is obtained
from a subdivision of Tk by picking a (possibly empty) subset X of the degree 3-vertices
and performing net graph replacements at each vertex in X. The following lemma from
Aboulker et al. [1] will be useful in constructing an induced wattle T̃k from a large induced
minor.

Lemma 6 ([1]). Let G be a connected graph whose vertex set is partitioned into connected
sets A,B,C, {a}, {b}, {c} and S. Suppose that every edge of G has either both ends in one
of the sets, or is from {a} to A, from {b} to B, from {c} to C, or from S to A ∪B ∪ C.
Then a, b, c are the degree one vertices of some induced fork or semi-fork in G.

For a rooted tree (T, r), a vertex u ∈ V (T ) is an ancestor of v ∈ V (T ) (and v is a
descendant of u) if u is a vertex on the (v, r)-path in T . If pv ∈ V (T ) is the neighbour
of v on the (v, r)-path in T , then pv is the parent of v (and v is a child of pv). For a
rooted complete binary tree (Tk, r), every vertex u ∈ V (Tk) with degree at least 2 has a
left child `v and a right child cv. A vertex v ∈ V (Tk) is a left (right) descendant of u if it
is a descendant of the left (right) child of u.

Lemma 7. If a graph G contains T4k as an induced minor, then G contains a wattle T̃k
as an induced subgraph.

Proof. Let (Xv : v ∈ V (T4k)) be an induced minor model of (T4k, r) in G. Let
V0, V1, . . . , V4k be a bfs-layering of T4k where V0 = {r}.2 For a vertex v ∈ V (T4k) with
degree 3, let Pv := (wv,0, wv,1, . . . , wv,mv) be a vertex-minimal path in G[Xv] such that
NG(wv,0) ∩Xpv and NG(wv,mv) ∩X`v are non-empty. By minimality, wv,0 is the only ver-
tex in V (Pv) adjacent to vertices in Xpv and wv,mv is the only vertex in V (Pv) adjacent
to vertices in X`v .

We prove the following claim by induction on k > 0: If a graph G contains T4k as
an induced minor, then G contains a wattle T̃k as an induced subgraph whose leaves are
contained in {wv,0 : v ∈ V4k} and every vertex in V (T̃k) ∩ (

⋃
(Xv : v ∈ V4k)) is a leaf.

For k = 0, the claim holds trivially by letting V (T̃k) be an arbitrary vertex in Xr.
For k = 1, let a, b ∈ V4 respectively be a left and right descendant of r in T4k. By
taking T̃k to be a vertex minimal (wa,0, wb,0)-path whose internal vertices are contained
in
⋃

(Xv : v ∈ V1 ∪ V2 ∪ V3), we are done.
Now suppose the claim holds for k − 1. By induction, T4k−4 contains a wattle T̃k−1

as an induced subgraph whose leaves are contained in {wv,0 : v ∈ V4k−4} and every vertex
in V (T̃k−1) ∩ (

⋃
(Xv : v ∈ V4k−4)) is a leaf. Now consider a leaf wv,0 ∈ V (T̃k−1). First

append the path Pv to T̃k−1. Let s ∈ V4k−2 be a left descendant of v and let b, c ∈ V4k

2V0, V1, . . . , is a bfs-layering of a graph G if V0 = {r} for some r ∈ V (G) and Vi = {v ∈ V (G) :
distG(v, r) = i} for all i > 1.
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Figure 1: Extending the wattle T̃k.

respectively be left and right descendants of s. Let A = Xps , B = Xpb , C = Xpc and
S = Xs. Since (Xv : v ∈ V (T4k)) is an induced minor, we may apply Lemma 6 on
G[{wv,mv , wb,0, wc,0} ∪ A ∪ B ∪ C ∪ S] to obtain an induced fork or semi-fork with end
points wv,mv , wb,0, wc,0. Add this induced fork or semi-fork to T̃k−1 and repeat for all
leaves in T̃k−1 to obtain an induced wattle T̃k that satisfies the induction hypothesis (see
Figure 1).

For a rooted tree (T, r), we say that a rooted subtree (T ′, r′) is vertical if r′ is an
ancestor (with respect to (T, r)) of every vertex in V (T ′). We use the following lemma to
clean up our wattle T̃k.

Lemma 8. For every red-blue colouring of (T2k, r), there exists a subdivision of a vertical
(Tk, r

′) whose original vertices are monochromatic.

Proof. We prove the following by induction on k: for every red-blue colouring of (Tk, r),
there exists a subdivision of a vertical (Th, r

′) whose original vertices are red and a sub-
division of a vertical (Tj, r

′′) whose original vertices are blue such that h+ j > k.
For k = 0, the claim is trivial. Now suppose the claim holds for k − 1. Let (T 1

k−1, r
1)

and (T 2
k−2, r

2) be the components of Tk − r. By induction, for each i ∈ {1, 2} there
exists a subdivision of a vertical (Thi , r

′
i) in (T ik−1, r

i) whose original vertices are red and
a subdivision of a vertical (Tji , r

′′
i ) in (T ik−1, r

i) whose original vertices are blue such that
hi + ji > k − 1. If max{h1, h2}+ max{j1, j2} > k then we are done. Otherwise, h1 = h2,
j1 = j2 and h1 + j1 = k − 1. If r is coloured red, then together with the (r′1, r

′
2)-path in

Tk (which goes through r), we have a vertical red (Th1+1, r). If r is coloured blue, then
together with the (r′′1 , r

′′
2)-path in Tk, we have a vertical blue (Tj1+1, r), as required.

Lemma 9. Every wattle T̃2k contains a subdivision of Tk or the line graph of a subdivision
of Tk as an induced subgraph.

Proof. Let T ′2k be an auxiliary copy of T2k obtained from the wattle T̃2k by first contracting
each triangle into a red vertex then contracting each subdivided path to an edge and
colouring the remaining vertices blue. By Lemma 8, T ′2k contains a subdivision T ′k of Tk
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whose original vertices are monochromatic. If the original vertices of T ′k are red, then the
wattle T̃2k contains the line graph of a subdivision of Tk as an induced subgraph (where
each triangle in the line graph corresponds to an original red vertex in T ′k). Otherwise,
the original vertices of T ′k are blue, and thus the wattle T̃2k contains a subdivision of Tk as
an induced subgraph (where the original vertices correspond to the original blue vertices
in T ′k).

Lemma 5 immediately follows from Lemmas 7 and 9.

3.2 From Bounded Degree to Induced Minors

We now show that graphs with bounded degree and sufficiently large pathwidth contain
a large complete binary tree as an induced minor. Theorem 1 immediately follows from
the next theorem together with Lemma 5.

Theorem 10. There is a function f such that every graph with maximum degree ∆ and
pathwidth at least f(k,∆) contains Tk as an induced minor.

To prove Theorem 10, we use sparsifable graphs which is a new technique introduced
by Korhonen [21]. For a graph G, a vertex v ∈ V (G) is sparsifable if it satisfies one of the
following conditions:

1. v has degree at most 2;
2. v has degree 3 and all of its neighbours have degree at most 2;
3. v has degree 3, one of its neighbours has degree at most 2, and the two other

neighbours form a triangle with v.
We say that G is sparsifable if all of its vertices are sparsifable. Such graphs are useful
since minors and induced minors are roughly equivalent in this setting. More precisely,
Korhonen [21] showed that if a sparsifable graph G contains a graph H with minimum
degree at least 3 as a minor, then G contains H as an induced minor. We prove a slightly
stronger version of this result that relaxes the minimum degree condition for H.

Lemma 11. Let H and H+ be graphs such that H is an induced subgraph of H+ and
each vertex in V (H) has degree at least 3 in H+. If a sparsifable graph G contains H+ as
a minor, then G contains H as an induced minor.

Proof. Since G is sparsifable, it has maximum degree at most 3. For a model (Xv : v ∈
V (H+)) of H+ in G, we say that an edge ab ∈ E(G) is H-violating if there are vertices
u, v ∈ V (H) such that a ∈ Xu, b ∈ Xv and uv 6∈ E(H). Choose (Xv : v ∈ V (H+))
such that the number of H-violating edges is minimised. We claim that there are no
H-violating edges, which implies that (Xv : v ∈ V (H)) is an induced minor of H in G.

For the sake of contradiction, suppose ab ∈ E(G) is an H-violating edge with a ∈ Xu

and b ∈ Xv. Since a has degree at most 3 in G, u has degree at least 3 in H+ and
uv 6∈ E(H+), it follows that a has a neighbour in Xu. Likewise, b has a neighbour in Xv.
Now if a has degree at most 2 in G, then G[Xu \ {a}] is connected, so we may replace Xu

by Xu \ {a} to obtain a model of H+ with strictly less H-violating edges, a contradiction.
Thus a must have degree 3 in G and b likewise must also have degree 3 in G.
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Now since G is sparsifable and a and b are adjacent with degree 3, they have a common
neighbour c in G. If c 6∈

⋃
(Xw : w ∈ NH+ [u]), then G[Xu \ {a}] is connected, and so we

may replace Xu by Xu \ {a} to obtain a model of H+ with strictly less H-violating edges,
a contradiction. By symmetry, a contradiction also occurs if c 6∈

⋃
(Xw : w ∈ NH+ [v]).

Since uv 6∈ E(H+) it remains to consider the case when there exists w ∈ V (H+) \ {u, v}
such that c ∈ Xw and uw, vw ∈ E(H+). Since w 6∈ {u, v}, it follows that G[Xu \ {a}]
is connected and contains a neighbour of a and G[Xv \ {b}] is connected and contains a
neighbour of b. As such, by replacingXu byXu\{a}, Xv byXv\{b} andXw byXw∪{a, b},
we obtain a model of H+ with strictly less H-violating edges, a contradiction.

A distance-5 independent set I ⊆ V (G) in a graph G is a set of vertices such that the
distance between any pair of vertices in I is at least 5. For a distance-5 independent set I
in a graphG, let I(G) be the 2-shallow minor ofG obtained by contracting each of the balls
of radius 2 that are centred at vertices in I with corresponding model (Xv : v ∈ V (I(G)).
Observe that if G has maximum degree ∆, then |Xv| 6 ∆2 + 1 for all v ∈ V (I(G)) and
so pw(I(G)) > (pw(G) + 1)/(∆2 + 1)− 1 (see Theorem 21 in [12] for an implicit proof).
We use the following lemma implicitly proved by Korhonen [21].

Lemma 12 ([21]). Let G be a graph and I ⊆ V (G) be a distance-5 independent set. Then
for any subgraph H ′ of I(G) with maximum degree 3, there exists an induced subgraph
G[S] of G such that G[S] contains H ′ as a minor and every vertex in I ∩ S is sparsifable
in G[S].

Lemma 13. There exists a constant δ such that every graph G with pw(G) > 2k2 logδ(k)
contains a subgraph H with maximum degree 3 and pw(H) > k.

Proof. By a result of Chekuri and Chuzhoy [14], if tw(G) > k logδ k for some constant
δ, then G contains a subgraph H with maximum degree 3 and treewidth at least k.
Since pathwidth is bounded from below by treewidth, we are done. So assume that
tw(G) < k logδ k. In which case, by a result of Groenland, Joret, Nadara, and Walczak
[17], G contains a subdivision of the complete binary tree T2k as a subgraph which has
the desired pathwidth [28].

Let T+
k be the tree obtained from Tk+1 by adding a leaf vertex adjacent to the root.

Observe that Tk is an induced subtree of T+
k where each vertex in V (Tk) has degree at

least 3 in T+
k . We are now ready to prove Theorem 10.

Proof of Theorem 10. Let g(∆4 + 1) := 2k+2 − 1, g(i) :=
(
2(g(i + 1))2 logδ(g(i + 1)) +

1
)
(∆2 + 1) − 1 and f(k,∆) := g(0) where δ is from Lemma 13. Let G be a graph

with maximum degree ∆ and pw(G) > f(k,∆). We first construct a sparsifable induced
subgraph of G with large pathwidth. Using a greedy algorithm, partition V (G) into
∆4 + 1 distance-5 independent sets I0, . . . , I∆4 . Initialise i := 0 and Gi := G. We
construct Gi+1 as an induced subgraph of Gi such that every vertex in Ii ∩ V (Gi+1) is
sparsifable in Gi+1 and pw(Gi+1) > g(i + 1). Since Gi has maximum degree at most ∆,
pw(Ii(Gi)) > (pw(Gi) + 1)/(∆2 + 1) − 1 > 2(g(i + 1))2 logδ(g(i + 1)). By Lemma 13,
Ii(Gi) contains a subgraph Hi with maximum degree 3 where pw(Hi) > g(i + 1). By
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Lemma 12, there exists an induced subgraph Gi[Si] of Gi that contains Hi as a minor
and every vertex in Ii ∩ Si is sparsifable in Gi[Si]. As pathwidth is closed under minors,
pw(Gi[Si]) > pw(Hi) > g(i+ 1). Set Gi+1 := Gi[Si].

Now consider G̃ := Gd4+1. By the above procedure, G̃ is a sparsifable induced subgraph
of G with pathwidth at least g(∆4 + 1) = 2k+2 − 1 = |V (T+

k )| − 1. By Theorem 4, G̃
contains T+

k as a minor. Therefore, by Lemma 11, G̃ contains Tk as an induced minor
and hence G contains Tk as an induced minor.

3.3 From Minor-Free to Induced Minors

Let Tk be the rooted tree of height k in which every non-leaf node has k children and every
path from the root to a leaf has k edges. We prove the following result for Kn-minor-free
graphs.

Theorem 14. There is a function f such that every Kn-minor-free graph G with pathwidth
at least f(k, n) contains Tk as an induced minor.

Since Tk is an induced subgraph of Tk, Lemma 5 and theorem 14 imply Theorem 2.
Theorem 14 quickly follows from the following Ramsey-type result due to Kierstead and
Penrice [20] that was recently re-proven by Atminas and Lozin [9].

Lemma 15 ([9, 20]). There is a function g such that any graph that contains Tg(n) as a
subgraph contains Kn, Kn,n or Tn as an induced subgraph.

Proof of Theorem 14. Let f(k, n) := |V (Tg(max{k,n}))|− 1 where g is from Lemma 15.3 By
Theorem 4, G contains a minor model (Xv : v ∈ V (Tg(max{k,n}))) of Tg(max{k,n}). Let G′
be the induced minor of G obtained from contracting each of the Xv’s. Since G′ contains
Tg(max{k,n}) as a subgraph, it follows by Lemma 15 that G′ contains Kn, Kn,n or Tk as an
induced subgraph. Since G excludes Kn as a minor, G′ does not contain Kn or Kn,n as
subgraphs. Hence G′ contains Tk as an induced subgraph and thus G contains Tk as an
induced minor.

3.4 Finitely Many Forbidden Induced Subgraphs

Recall that GS is the hereditary graph class defined by a finite set S of forbidden induced
subgraphs. We now characterise when GS has bounded pathwidth. Lozin and Razgon
[22] showed that GS has bounded treewidth if and only if S includes a complete graph, a
complete bipartite graph, a tripod and a semi-tripod. We strengthen this result to show
that GS in fact has bounded pathwidth if and only if S includes a complete graph, a
complete bipartite graph, a tripod and a semi-tripod.

Theorem 3. GS has bounded pathwidth if and only if S includes a complete graph, a
complete bipartite graph, a tripod and a semi-tripod.

3Note that |V (Tk)| = (kk+1 − 1)/(k − 1) whenever k > 2.
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Proof. If S does not include a complete graph, a complete bipartite graph, a tripod or
a semi-tripod, then by the observations of Lozin and Razgon [22], GS has unbounded
treewidth and thus has unbounded pathwidth.

Now assume S contains a complete graph, a complete bipartite graph, a tripod and
a semi-tripod. Observe that for every tripod (semi-tripod), there exists k ∈ N such that
every (line graph of a) subdivision of Tk contains the tripod (semi-tripod) as an induced
subgraph. For the sake of contradiction, suppose GS has unbounded pathwidth. By
the results of Lozin and Razgon [22], there exists w ∈ N such that every graph in GS
has treewidth at most w. Thus every graph in GS is Kw+2-minor-free. Since GS has
unbounded pathwidth, Theorem 2 implies that for every k ∈ N, there exists a graph
Gk ∈ GS that contains a subdivision of Tk or the line graph of a subdivision of Tk as
an induced subgraph. Therefore, for k sufficiently large, Gk contains the tripod or the
semi-tripod in S as an induced subgraph, a contradiction.

4 Conclusion

We raise the following open problem: what are the unavoidable induced subgraphs for
graphs with large pathwidth in the general setting? Apart from subdivisions of large
complete binary trees and line graphs of subdivisions of large complete binary trees, the
other obvious candidates are complete graphs and complete bipartite graphs. While it is
tempting to conjecture that this list is exhaustive, Pohoata [24] gave a non-trivial family
of graphs with unbounded pathwidth that avoids these graphs as induced subgraphs (see
also [15]). In particular, this graph family forbids {K3, K2,2}∪S(T5) as induced subgraphs
(see Figure 2).

Y1

Y2

Yn

x1 x2 xnx3 x4

Figure 2: Pohoata’s construction.
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