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Abstract

Let n > 1 be an odd integer, and let ζ be a primitive nth root of unity in the
complex field. Via the Eigenvector-eigenvalue Identity, we show that

∑
τ∈D(n−1)

sign(τ)
n−1∏
j=1

1 + ζj−τ(j)

1− ζj−τ(j)
= (−1)

n−1
2

((n− 2)!!)2

n
,

where D(n − 1) is the set of all derangements of 1, . . . , n − 1. This confirms a
previous conjecture of Z.-W. Sun. Moreover, for each δ = 0, 1 we determine the
value of det[x+mjk]16j,k6n−1 completely, where

mjk =

{
(1 + ζj−k)/(1− ζj−k) if j 6= k,

δ if j = k.

Mathematics Subject Classifications: 05A19, 11C20, 15A18, 15B57, 33B10.
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1 Introduction

For n ∈ Z+ = {1, 2, 3, . . .}, let Sn be the symmetric group of all permutations of {1, . . . , n}.
A permutation τ ∈ Sn is called a derangement of 1, . . . , n if τ(j) 6= j for all j = 1, . . . , n.
For convenience, we use D(n) to denote the set of all derangements of 1, . . . , n. The
derangement number Dn = |D(n)| plays important roles in enumerative combinatorics.
It is well known that

Dn = n!
n∑
k=0

(−1)k

k!

(cf. (10.2) of [8, p. 90]).
Let n > 1 be an odd integer. Z.-W. Sun [5, Theorem 1.2] proved that

det

[
tanπ

j − k
n

]
16j,k6n−1

= nn−2.

As

tanπx =
2 sinπx

2 cosπx
= i

1− e2πix

1 + e2πix
,

we see that

det

[
tanπ

j − k
n

]
16j,k6n−1

= in−1 det

[
1− ζj−k

1 + ζj−k

]
16j,k6n−1

= (−1)(n−1)/2
∑

τ∈D(n−1)

sign(τ)
n−1∏
j=1

1− ζj−τ(j)

1 + ζj−τ(j)
,

where ζ = e2πi/n.
Z.-W. Sun ([6] and [7, Conj. 11.24]) conjectured that if n > 1 is odd and ζ is a

primitive nth root of unity in the complex field C then

∑
τ∈D(n−1)

sign(τ)
n−1∏
j=1

1 + ζj−τ(j)

1− ζj−τ(j)
= (−1)

n−1
2

((n− 2)!!)2

n
. (1)

Our first goal is to prove an extension of this conjecture.

Theorem 1. Let n > 1 be an odd integer, and let ζ ∈ C be a primitive nth root of unity.
For j, k = 1, . . . , n define

ajk =

{
(1 + ζj−k)/(1− ζj−k) if j 6= k,

0 if j = k.

Then we have

det[x+ ajk]16j,k6n−1 = (−1)
n−1
2

((n− 2)!!)2

n
. (2)
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Applying Theorem 1 with x = 1, we immediately obtain the following result.

Corollary 2. Let n > 1 be odd. Then, for any primitive nth root ζ ∈ C of unity, we have

det[ãjk]16j,k6n−1 = (−1)
n−1
2

((n− 2)!!)2

n2n−1
,

where

ãjk =

{
1/(1− ζj−k) if j 6= k,

1/2 if j = k.

For any odd integer n > 1, Sun ([6] and [7, Conj. 11.22]) also conjectured that if
ζ ∈ C is a primitive nth root of unity then

∑
τ∈D(n−1)

sign(τ)
n−1∏
j=1

1

1− ζj−τ(j)
=

(−1)
n−1
2

n

(
n− 1

2
!

)2

. (3)

Recently, X. Guo et al. [4] proved (3) via using the following result which dates back to
Jacobi in 1834 (cf. P.B. Denton, S.J. Parke, T. Tao and X. Zhang [2, Theorem 1]).

Theorem 3 (Eigenvector-eigenvalue Identity). Let A be an n × n matrix over C which
is Hermitian (i.e., the transpose AT of A coincides with the conjugate of A), and let
λ1, . . . , λn be its n real eigenvalues. Let vn = (vn,1, . . . , vn,n)T be an eigenvector associated

with the eigenvalue λn of the matrix A such that its norm ‖vn‖ =
√∑n

j=1 |vn,j|2 equals 1.

Let j ∈ {1, . . . , n} and let Aj be the (n−1)× (n−1) Hermitian matrix formed by deleting
the jth row and the jth column from A. Let λj,1, . . . , λj,n−1 be all the real eigenvalues of
Aj. Then we have

|vn,j|2
n−1∏
k=1

(λn − λk) =
n−1∏
k=1

(λn − λj,k).

Motivated by Theorem 1, we also establish the following result.

Theorem 4. Let n > 1 be odd. Then, for any primitive nth root ζ ∈ C of unity, we have

det[x+ bjk]16j,k6n−1 = (−1)
n+1
2 (nx+ 1)

((n− 1)!!)2

n(n− 1)
, (4)

where

bjk =

{
(1 + ζj−k)/(1− ζj−k) if j 6= k,

1 if j = k.

We are going to prove Theorems 1 and 4 in Sections 2 and 3, respectively.
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2 Proof of Theorem 1

We need the following easy lemma.

Lemma 5. Let n ∈ Z+ and s ∈ {0, . . . , n− 1}. For any primitive nth root ζ of unity in
a field F , we have the identity

∑
0<r<n

ζ−rs

1− xζr
=

∑n−1
j=0 x

j − nxs

xn − 1
. (5)

Proof. Clearly,

n−1∑
r=0

ζ−rs

1− xζr
=

n−1∑
r=0

ζ−rs

1− xn
n−1∑
k=0

(xζr)k =
n−1∑
k=0

xk

1− xn
n−1∑
r=0

ζr(k−s) =
nxs

1− xn
.

Thus
n−1∑
r=1

ζ−rs

1− xζr
=

nxs

1− xn
− 1

1− x
=

∑n−1
j=0 x

j − nxs

xn − 1

as desired.

Remark 6. Lemma 5 in the case F = C is essentially equivalent to [3, Theorem 3.1].

Corollary 7. Let n ∈ Z+ and s ∈ {0, . . . , n−1}. Let ζ be any primitive nth root of unity
in the field C.

(i) If n is odd, then ∑
0<r<n

ζ−rs

1 + ζr
=

(−1)sn− 1

2
. (6)

(ii) We have ∑
0<r<n

ζ−rs

1− ζr
=
n− 1

2
− s. (7)

Proof. (i) When n is odd, putting x = −1 in (5) we immediately get (6).
(ii) Letting x→ 1 in (5) we obtain (7) since

lim
x→1

∑n−1
j=0 x

j − nxs

xn − 1
= lim

x→1

(
∑n−1

j=0 x
j − nxs)′

(xn − 1)′
= lim

x→1

∑
0<j<n jx

j−1 − nsxs−1

nxn−1

=

∑n−1
j=0 j − ns

n
=

1

n

n−1∑
j=0

j − s =
n− 1

2
− s

by L’Hospital’s rule.
Combining the above, we have completed the proof of Corollary 7.
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Remark 8. It seems that the identity (7) should be known long time ago. We note that
it essentially appeared as [3, (3.5)] though (n − 1)/2 in [3, (3.5)] should be corrected as
(n+ 1)/2.

Now we give an auxiliary proposition.

Proposition 9. Let n ∈ Z+, k ∈ {1, . . . , n} and s ∈ {0, . . . , n − 1}. For any primitive
nth root ζ of unity in a field F , we have

n∑
j=1
j 6=k

1 + xζj−k

1− xζj−k
ζs(k−j) = 1 + 2

∑n−1
j=0 x

j − nxs

xn − 1
− nδs0, (8)

where the Kronecker symbol δst is 1 or 0 according as s = t or not. Consequently, if ζ is
a primitive nth root of unity in C, then

n∑
j=1
j 6=k

1 + ζj−k

1− ζj−k
ζs(k−j) =

{
n− 2s if 0 < s < n,

0 if s = 0.
(9)

Proof. In view of Lemma 5, we have

n∑
j=1
j 6=k

1 + xζj−k

1− xζj−k
ζs(k−j) =

n−1∑
r=1

1 + xζr

1− xζr
ζ−sr = 2

n−1∑
r=1

ζ−rs

1− xζr
−

n−1∑
r=1

ζ−rs

= 2

∑n−1
j=0 x

j − nxs

xn − 1
+ 1−

n−1∑
r=0

ζ−rs = 2

∑n−1
j=0 x

j − nxs

xn − 1
+ 1− nδs0.

This proves (8).
When F = C, letting x→ 1 in (8) or using the identity (7), we get (9).

We also need another lemma.

Lemma 10 (Sun [5]). For any matrix M = [mjk]06j,k6n over C, we have

det[x+mjk]06j,k6n = det(M) + x det(M ′),

where M ′ = |m′jk|16j,k6n with m′jk = mjk −mj0 −m0k +m00.

Proof of Theorem 1. Obviously A = [ajk]16k,j6n is a Hermitian matrix. For each k =
1, . . . , n, by Proposition 9 we have

n∑
j=1

ajkζ
−js =

n∑
j=1
j 6=k

1 + ζj−k

1− ζj−k
ζ−js =

{
(n− 2s)ζ−ks if s ∈ {1, . . . , n− 1},
0 if s = n.

Thus λs = n − 2s (s = 1, . . . , n − 1) and λn = 0 are all the eigenvalues of A; moreover,
for each s = 1, . . . , n, the column vector

v(s) =
1√
n

(ζ−s, ζ−2s, . . . , ζ−ns)T
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is an eigenvector of norm 1 associated with the eigenvalue λs.
Let An be the Hermitian matrix [ajk]16k,j6n−1, and let λn,1, . . . , λn,n−1 be all the eigen-

values of An. Note that v(n) = (1, . . . , 1)T/
√
n. Applying Theorem 3 with j = n, we

obtain that

(−1)n−1 det(An) =
n−1∏
k=1

(0− λn,k) =

∣∣∣∣ 1√
n

∣∣∣∣2 n−1∏
k=1

(0− λk) =
(−1)n−1

n

n−1∏
k=1

(n− 2k)

and hence

det(An) =
1

n

(n−1)/2∏
k=1

(n− 2k)(n− 2(n− k))

=
(−1)(n−1)/2

n

(n−1)/2∏
k=1

(n− 2k)2 =
(−1)(n−1)/2

n
((n− 2)!!)2.

On the other hand,

det(An) = det(ATn ) = det[ajk]16j,k6n−1 =
∑

τ∈D(n−1)

sign(τ)
n−1∏
j=1

1 + ζj−τ(j)

1− ζj−τ(j)
.

Combining the last two equalities, we immediately get (2) for x = 0.
By Lemma 10, we have

det[x+ ajk]16j,k6n−1 = det(ATn ) + x det(A′n),

where A′n = [a′jk]26j,k6n−1 with

a′jk = ajk − aj1 − a1k + a11 = ajk − aj1 − a1k.

It is easy to see that a′kj = −a′jk for all j, k = 2, . . . , n− 1. So we have

det(A′n) = det(−A′n) = (−1)n−2 det(A′n) = − det(A′n)

and hence

det[x+ ajk]16j,k6n−1 = det(An) + x det(A′n) = det(An) =
(−1)(n−1)/2

n
((n− 2)!!)2.

This ends our proof.

3 Proof of Theorem 4

Lemma 11. Let n ∈ {2, 3, 4, . . .}, and let ζ be a primitive nth root of unity. For j, k =
1, . . . , n, define

cjk =

{
1/(1− ζj−k) if j 6= k,

0 if j = k.
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(i) The n eigenvalues of [cjk + δjk]16j,k6n are s− (n− 1)/2 (s = 1, . . . , n).
(ii) If n is odd, then

det[cjk + δjk]16j,k6n−1 = (−1)
n+1
2

(n+ 1)((n− 1)!!)2

n(n− 1)2n−1
. (10)

Proof. (i) For j, k = 1, . . . , n, let

tjk =

{
1 + i cotπ j−k

n
if j 6= k,

0 if j = k.

By F. Calogero and A. M. Perelomov [1, Theorem 1], the n numbers 2s − n − 1 (s =
1, . . . , n) are all the eigenvalues of the matrix [tjk]16j,k6n. Thus

det[xδjk − tjk]16k6n =
n∏
s=1

(x− (2s− n− 1)). (11)

For j, k = 1, . . . , n with j 6= k, clearly

tjk = 1−
2 cosπ j−k

n

2i sin π j−k
n

= 1− e2πi
j−k
n + 1

e2πi
j−k
n − 1

=
2

1− e2πi j−k
n

.

Note that ζ = e2πia/n for some 1 6 a 6 n with gcd(a, n) = 1. Applying the Galois
automorphism σa in the Galois group Gal(Q(e2πi/n)/Q) with σa(e

2πi/n) = e2πia/n, we
obtain from (11) the polynomial identity

det[xδjk − 2cjk]16k6n =
n∏
s=1

(x− (2s− n− 1)). (12)

Thus

det[xδjk − cjk]16j,k6n =
n∏
s=1

(
x− s+

n+ 1

2

)
,

and hence

det[xδjk − cjk − δjk]16j,k6n = det[(x− 1)δjk − cjk]16j,k6n

=
n∏
s=1

(
x− 1− s+

n+ 1

2

)
=

n∏
s=1

(
x−

(
s− n− 1

2

))
.

So the numbers s− (n− 1)/2 (s = 1, . . . , n) are all the eigenvalues of [cjk + δjk]16j,k6n.
(ii) Now assume that n is odd. Let

{λ1, . . . , λn} =

{
3− n

2
,
5− n

2
, . . . ,

n+ 1

2

}
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with λn = 0. Then the column vector

v(n) =
1√
n

(ζ−
n−1
2 , ζ−2

n−1
2 , . . . , ζ−n

n−1
2 )T

is an eigenvector of norm 1 associated with the eigenvalue λn of C = [cjk + δjk]16j,k6n; in
fact, for each j = 1, . . . , n, clearly

ζj
n−1
2

n∑
k=1

(cjk + δjk)ζ
−k n−1

2 =
n∑

k=1
k 6=j

ζ(j−k)
n−1
2

1− ζj−k
+ 1

=
n−1∑
r=1

ζ−r
n+1
2

1− ζr
+ 1 =

n− 1

2
− n+ 1

2
+ 1 = 0

by applying (7) with s = (n+ 1)/2.
Let Cn be the Hermitian matrix [cjk + δjk]16j,k6n−1, and let λn,1, . . . , λn,n−1 be all the

eigenvalues of Cn. Note that v(n) = (ζ−
n−1
2 , . . . , ζ−

n(n−1)
2 )T/

√
n. Applying Theorem 3 with

j = n, we obtain that

(−1)n−1 det(Cn) =
n−1∏
k=1

(0− λn,k) =

∣∣∣∣ζ−n(n−1)
2

√
n

∣∣∣∣2 n−1∏
k=1

(0− λk) =
(−1)n−1

n

n∏
k=1

k 6=n−1
2

(
k − n− 1

2

)

and hence

det(Cn) =
(n− 1)(n+ 1)

2n−1n

(n−3)/2∏
k=1

(n− 1− 2k)(n− 1− 2(n− 1− k))

= (−1)
n+1
2

(n− 1)(n+ 1)

2n−1n

(n−3)/2∏
k=1

(n− 1− 2k)2

= (−1)
n+1
2

(n+ 1)((n− 1)!!)2

2n−1n(n− 1)
.

This concludes the proof.

Proof of Theorem 4. Let B be the n× n matrix [bjk]16k,j6n. With the aid of (9),

1 +
n∑

j=1
j 6=k

1 + ζj−k

1− ζj−k
ζs(k−j) =

{
n+ 1− 2s if 0 < s < n,

1 if s = 0.
(13)

Thus, for each k = 1, . . . , n, we have

n∑
j=1

bjkζ
−js = ζ−ks +

n∑
j=1
j 6=k

1 + ζj−k

1− ζj−k
ζ−js =

{
(n+ 1− 2s)ζ−ks if s ∈ {1, . . . , n− 1},
1 if s = n.
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Recall that n is odd. Let

{µ1, . . . , µn} = {n− 1, n− 3, . . . , 2, 1, 0,−2, . . . ,−(n− 3)}

with µn = 0. By the above, the column vector

u(n) =
1√
n

(ζ−
n+1
2 , ζ−2

n+1
2 , . . . , ζ−n

n+1
2 )T

is an eigenvector of norm 1 associated with the eigenvalue µn of the matrix B.
Let Bn be the Hermitian matrix [bjk]16k,j6n−1, and let µn,1, . . . , µn,n−1 be all the eigen-

values of Bn. Note that u(n) = (ζ−
n+1
2 , . . . , ζ−

n(n+1)
2 )T/

√
n. Applying Theorem 3 with

j = n, we obtain that

(−1)n−1 det(Bn) =
n−1∏
k=1

(0− µn,k) =

∣∣∣∣ζ−n(n+1)
2

√
n

∣∣∣∣2 n−1∏
k=1

(0− µk) =
(−1)n−1

n

n−1∏
k=1

k 6=n+1
2

(n+ 1− 2k)

and hence

det(Bn) =
n− 1

n

(n−1)/2∏
k=2

(n+ 1− 2k)(n+ 1− 2(n+ 1− k))

= (−1)(n+1)/2n− 1

n

(n−1)/2∏
k=1

(n+ 1− 2k)2 = (−1)(n+1)/2 ((n− 1)!!)2

n(n− 1)
.

This proves (4) for x = 0.
By Lemma 10 we have

det[x+ bjk]16j,k6n−1 = det(BT
n ) + x det(B′n)

for certain (n−2)×(n−2) matrix B′n over C not depending on x. As 1+bjk = 2(cjk+δjk)
(with cjk given by Lemma 11) for all j, k = 1, . . . , n− 1, we have

det(Bn) + det(B′n) = det[1 + bjk]16j,k6n = 2n−1 det[cjk + δjk]16j,k6n−1

= (n+ 1)(−1)(n+1)/2 ((n− 1)!!)2

n(n− 1)
= (n+ 1) det(Bn)

with the aid of Lemma 11. Therefore

det[x+ bjk]16j,k6n−1 = det(Bn) + x(n det(Bn)) = (1 + nx) det(Bn)

=(−1)
n+1
2 (1 + nx)

((n− 1)!!)2

n(n− 1)

as desired. This ends our proof of Theorem 4.
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