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Abstract

Given a simple graph G, the irregularity strength of G, denoted s(G), is the
least positive integer k such that there is a weight assignment on edges f : E(G)→
{1, 2, . . . , k} for which each vertex weight fV (v) :=

∑
u:{u,v}∈E(G) f({u, v}) is unique

amongst all v ∈ V (G). In 1987, Faudree and Lehel conjectured that there is a
constant c such that s(G) 6 n/d + c for all d-regular graphs G on n vertices with
d > 1, whereas it is trivial that s(G) > n/d. In this short note we prove that the
Faudree-Lehel Conjecture holds when d > n0.8+ε for any fixed ε > 0, with a small
additive constant c = 28 for n large enough. Furthermore, we confirm the conjecture
asymptotically by proving that for any fixed β ∈ (0, 1/4) there is a constant C such
that for all d-regular graphs G, s(G) 6 n

d (1 + C
dβ

) + 28, extending and improving a

recent result of Przyby lo that s(G) 6 n
d (1 + 1

lnε/19 n
) whenever d ∈ [ln1+ε n, n/ lnε n]

and n is large enough.

Mathematics Subject Classifications: 05C15, 05C78

1 Introduction

Let G be a simple graph with n vertices. For a positive integer k, an edge-weighting
function f : E(G) → {1, 2, . . . , k} is called k-irregular if the weighted degrees, denoted
by fV (v) =

∑
u∈N(v) f({v, u}) are distinct for v ∈ V (G); we will call f({u, v}) and fV (v)

simply the weights of {u, v} and v. The irregularity strength of G, denoted s(G), is the
least k, if exists, for which there is such a k-irregular edge-weighting function f ; we set
s(G) = ∞ otherwise. It is easy to see that s(G) < ∞ if and only if G has no isolated
edges and at most one isolated vertex [7].

The irregularity strength was first introduced by Chartrand, Jacobson, Lehel, Oeller-
mann, Ruiz, and Saba [3]. Later an optimal general bound s(G) 6 n − 1 was proved
in [1, 12] for all graphs with finite irregularity strength except for K3. It turned out
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that this bound was far from optimum for graphs with larger minimum degree. Special
concern was in this context devoted to d-regular graphs. In [6] Faudree and Lehel showed
s(G) 6 dn/2e+ 9 for these. By a simple counting argument, it is easy to see that on the
other hand,

s(G) > d(n+ d+ 1)/de.
This lower bound motivated Faudree and Lehel to conjecture that n/d is close to optimal,
as proposed in [6] in 1987. In fact this conjecture was first posed by Jacobson, as mentioned
in [10].

Conjecture 1 ([6]). There is a constant C > 0 such that for all d-regular graphs G on n
vertices and with d > 1, s(G) 6 n

d
+ C.

It is this conjecture that “energized the study of the irregularity strength”, as stated
in [4], and many related subjects throughout the following decades. It remains open
after more than thirty years since its formulation. A significant step forward towards
solving it was achieved in 2002 by Frieze, Gould, Karoński, and Pfender, who used the
probabilistic method to prove the first linear bound s(G) 6 48(n/d) + 1 for d 6

√
n,

and a super-linear one s(G) 6 240(log n)(n/d) + 1 in the remaining cases. The linear
bound in n/d was further extended to the case when d > 104/3n2/3 log1/3 n by Cuckler
and Lazebnik [4]. The first general and unified linear bound in n/d for the full spectrum
of (n, d) was delivered by Przyby lo [13, 14], who used a constructive rather than random
approach to prove the bound s(G) 6 16(n/d) + 6. Since then several works based on
inventive new algorithms have been conducted to improve the multiplicative constant in
front of n/d, see e.g. [8, 9, 11]. The best result among these for any value of d is due
to Kalkowski, Karoński, and Pfender [9], who showed that in general s(G) 6 6dn/δe for
graphs with minimum degree δ > 1 and without isolated edges. Only just recently it was
proved by Przyby lo [15] that the Faudree-Lehel Conjecture holds asymptotically almost
surely for random graphs G(n, p) (which are typically “close to” regular graphs), for any
constant p, and holds asymptotically (in terms of d and n) for d not in extreme values.

Theorem 2 (Przyby lo [15]). Given any ε > 0, for every d-regular graph G with n vertices
and d ∈ [ln1+ε n, n/ lnε n], if n is sufficiently large,

s(G) 6
n

d

(
1 +

1

lnε/19 n

)
.

In [15], Przyby lo moreover mentioned that “a poly-logarithmic in n lower bound on d
is unfortunately unavoidable” within his approach. In this paper we present an argument
which is firstly quite short, secondly bypasses the mentioned poly-logarithmic in n lower
bound and extends the asymptotic bound to all possible cases 1 6 d 6 n− 1 and thirdly,
the upper bound we present is stronger than the one in Theorem 2 (where in particular
lnε/19 n� ln(1+ε)/19 n 6 d1/19).

Theorem 3. Given any 0 < β < 1/4, for every d-regular graph G with n vertices, if d is
sufficiently large in terms of β,

s(G) <
n

d

(
1 +

14

dβ

)
+ 28.
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Corollary 4. Given any 0 < β < 1/4, there is a constant C such that for every d-regular
graph G with n vertices, s(G) < n

d

(
1 + C

dβ

)
+ 28.

The second contribution of this paper is a confirmation that the Faudree-Lehel Con-
jecture, i.e. Conjecture 1, holds literally (not only asymptotically) for “dense” graphs,
i.e., whenever d > n0.8+ε for any fixed ε > 0.

Theorem 5. Given any 0 < β < 1/4, for every d-regular graph G on n vertices with
d1+β > n, if d is sufficiently large in terms of β, then

s(G) < n/d+ 28.

Corollary 6. Given any 0 < β < 1/4, there is a constant C such that for every d-regular
graph G on n vertices with d1+β > n, s(G) < n/d+ C.

We remark that similar conclusions as the ones above can also be derived from [16],
which describes in more than 30 pages a very long, multistage and technically complex
random construction yielding general results for all graphs (not only regular graphs).
Taking into account that Conjecture 1 remains a central open question of the related field,
cf. [16] for more comprehensive exposition of the history and relevance of this problem, we
decided to present separately this very concise argument concerning the conjecture itself,
which is also dramatically easier to follow. Moreover, the present proof is a local lemma
based argument, and thus is different from the one in [16], which might also be beneficial
for further research. Lastly, unlike in [16], we also provide a specific additive constant in
the obtained bounds for regular graphs, in particular in Theorem 5, which is relatively
small.

2 Proof of main results

2.1 Preliminaries

For a set U ⊂ V (G) and a vertex v ∈ V (G), we use degU(v) to denote the number of
neighbors of v in U . For a positive constant x, let {x} stand for x− bxc. We will use the
following tools.

Lemma 7 (Chernoff Bound). Let X1, . . . , Xn be i.i.d. random variables such that Pr(Xi =
1) = p and Pr(Xi = 0) = 1− p for each i. Then for any t > 0,

Pr

(∣∣∣∣∣
n∑
i=1

Xi − np

∣∣∣∣∣ > t

)
6 2e−t

2/(3np), for 0 6 t 6 np,

Pr

(∣∣∣∣∣
n∑
i=1

Xi − np

∣∣∣∣∣ > t

)
6 2e−t/3, for t > np.

Lemma 8 (Lovász Local Lemma). [5, 2] Let E1, . . . , En be n events in any given probability
space. Let H be a simple graph with vertex set [n] such that for each i ∈ [n], the event Ei

the electronic journal of combinatorics 30(4) (2023), #P4.27 3



is mutually independent from the remaining events corresponding to non-neighbors of the
vertex i, i.e., {Ej : j 6= i, {i, j} /∈ E(H)}. Suppose there exist values x1, . . . , xn ∈ (0, 1)
such that for each i ∈ [n],

Pr(Ei) 6 xi
∏

{i,j}∈E(H)

(1− xj).

Then the probability that none of the events Ei happens is positive, i.e., Pr(
⋂n
i=1 Ēi) > 0.

2.2 Random vertex partition through local lemma

Some part of our construction builds on ideas from [15]. In order to bypass the log n
barrier for d and be able to analyze the algorithm for all 1 6 d 6 n, we however need
to phrase our construction differently, using quantization and the Lovász Local Lemma
(Lemma 8).

The idea is to partition V (G) into a big set B = {v1, . . . , v|B|} and a small set S,
where |S| = (n/d) · o(d). At the end, we will assure that fV (vi+1) = fV (vi) + 1 in B, and
that vertices in S have larger weights than those in B. Our argument divides into three
steps. Step 1 includes a random construction positioning weights in B close to expected
values, which are relatively sparsely distributed. In Step 2 we modify the weights of edges
between B and S to make vertices in B have the desired weights. This is also the main
purpose of singling out the set S. One benefit of S being small compared to B is that if
we assign heavy weights between S and B, then weights of vertices in S are expected to
increase more significantly than those in B. Step 3 is to modify weights in S in order to
make them all pairwise distinct.

Fix parameters ε, γ such that ε ∈ (0, 1/4) and 0 < 2γ < ε. Let G be an n-vertex
d-regular graph. Set

s∗ = 13dd1/2+ε/13e,
note that s∗ ∈ [d1/2+ε, d1/2+ε + 13) and 13|s∗. Unless specified, we always assume d is
sufficiently large in terms of γ.

We first describe the main random ingredient of the construction. Let Xv for v ∈ V (G)
be i.i.d. uniform random variables, Xv ∼ U [0, 1]. We use the values of Xv’s to separate
the vertices into d bins Bi where

Bi = {v ∈ V (G) : (i− 1)/d 6 Xv < i/d}

for 1 6 i < d and Bd = {v ∈ V (G) : 1 − 1/d 6 Xv 6 1}; note that in expectation,
each Bi includes n/d vertices. Let the big set, consisting of most of the bins be defined
as B =

⋃
16i6d−s∗ Bi. The remaining bins form a small set S, which we partition into 13

subsets Si = {
⋃
Bj : d − (14 − i)s∗/13 < j 6 d − (13 − i)s∗/13} for 1 6 i 6 13, hence

S = V (G) \B =
⋃

16i613 Si.
Finally, we label some edges as “corrected” to satisfy a subtle technical issue (and

guarantee later that the average weight of edges weighted bn/dc + 1 and bn/dc + 2 is
exactly (n/d)+1). More precisely, we randomly label an edge with both end vertices in B
“corrected” independently with probability max({n/d}, 1−{n/d}) (where {n/d} denotes
the fractional part of n/d), which is at least 1/2.
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B S1 S13not corrected

corrected

B1 B2 Bd≠sú Bd≠sú+1 Bd≠ 12
13 sú Bd≠ sú

13 +1 Bd

1 / 1

Figure 1: Key random vertex partition. Grey edges in B are corrected.

Lemma 9. With positive probability, the following statements hold simultaneously if d is
large enough.

(I) (CvSi) For each v ∈ V (G) and 1 6 i 6 13, degSi(v) ∈ [s∗/13−d1/2+γ, s∗/13+d1/2+γ].

(II) (CvS) For each v ∈ V (G), degS(v) ∈ [s∗ − 13d1/2+γ, s∗ + 13d1/2+γ], or equivalently,
degB(v) ∈ [d− s∗ − 13d1/2+γ, d− s∗ + 13d1/2+γ].

(III) (CvB) For each v ∈ V (G), if v ∈ Bi∩B for some i, then the number of edges between
v and {

⋃
Bj, d− s∗ − i+ 1 < j 6 d− s∗} is in the interval [(i − 1) − d1/2+γ, (i −

1) + d1/2+γ].

(IV) (C ′vB) For each v ∈ V (G), if v ∈ Bi ∩ B for some i, then the number of edges
between v and {

⋃
Bj, d− s∗ − i+ 1 < j 6 d− s∗} that are labeled “corrected” is in

the interval [(i−1)α−αd1/2+γ, (i−1)α+αd1/2+γ] where α = max({n/d}, 1−{n/d}).

(V) (Ci) For each 1 6 i 6 d, |
⋃
j6iBj| ∈ [in/d− ndγ/

√
d, in/d+ ndγ/

√
d].

(VI) (CSi) For each 1 6 i 6 13, |Si| ∈ [s∗n/(13d)− 2ndγ/
√
d, s∗n/(13d) + 2ndγ/

√
d].

Proof. Let EvSi be the bad event that CvSi does not hold for given v ∈ V (G), 1 6 i 6 13.
We analogously denote by EvS, EvB, E ′vB, Ei, ESi the remaining bad events. We first bound
the probability of each of these, and then use Lovász Local Lemma to show that with
positive probability none of these bad events happen.

Fix v ∈ V (G) and let us consider EvSi for any given 1 6 i 6 13. Since each of d
neighbors of v is independently included in Si with probability exactly s∗/(13d), where
d1/2+γ < s∗/13 < d for d large enough, by the Chernoff Bound,

Pr(EvSi) < 2e−d
1+2γ/(3d) < 2e−d

2γ/6.

As the events CvSi imply CvS, we proceed to compute the conditional probabilities
Pr(EvB|v ∈ Bi) and Pr(E ′vB|v ∈ Bi). These are trivially 0 for i = 1. Thus we next
assume 2 6 i 6 d − s∗. As each of d neighbors u of v has probability (i − 1)/d to
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be in
⋃
d−s∗−i+1<j6d−s∗ Bj and probability α(i − 1)/d to be in

⋃
d−s∗−i+1<j6d−s∗ Bj and

simultaneously form a corrected edge uv, by the two Chernoff Bounds, since α > 1/2,

Pr(EvB|v ∈ Bi) 62 exp

(
− d1+2γ

3 max (i− 1, d1/2+γ)

)
< 2e−d

1+2γ/(3d) < 2e−d
2γ/6,

Pr(E ′vB|v ∈ Bi) 62 exp

(
− α2d1+2γ

3 max (α(i− 1), αd1/2+γ)

)
< 2e−αd

1+2γ/(3d) 6 2e−d
2γ/6.

Since by definition Pr(EvB|v ∈ S) = 0 and Pr(E ′vB|v ∈ S) = 0, thus by the law of total
probability, Pr(EvB) < 2e−d

2γ/6 and Pr(E ′vB) < 2e−d
2γ/6.

To finally estimate Pr(Ei), we note that for any i each of n vertices is independently
included in

⋃
j6iBi with probability i/d. Thus by the Chernoff Bound,

Pr(Ei) 62 exp

− n2d2γ/d

3 max
(
in/d, ndγ/

√
d
)
 6 2e−

n2d2γ−1

3n = 2e−n/(3d
1−2γ).

Since conditions (I) and (V) of the lemma imply conditions (II) and (VI), respectively,
we just need to show that with positive probability none of EvSi , EvB, E ′vB, Ei holds. We
will apply the Lovász Local Lemma (Lemma 8). There are 13n events of type EvSi (for
each v ∈ V (G) and 1 6 i 6 13), n events of type EvB, n events of type E ′vB and d events
of type Ei. Note that for any given v and i, each of the events EvSi , EvB, E ′vB is mutually
independent of all other events EuSj , EuB, E ′uB with u at distance at least 3 from v in G,
i.e. all but most 13(d2 + 1) + (d2 + 1) + (d2 + 1) < 16d2 such events (while each Ei may
depend on any other event). We assign value x = d−2/1600 to each EvSi , EvB, E ′vB, and
assign value y = d−1/100 to all Ei. Therefore, in order to apply Lemma 8 we just need to
check that {

2e−d
2γ/6 6 x(1− x)16d

2
(1− y)d

2e−n/(3d
1−2γ) 6 y(1− y)d(1− x)15n

.

Note that 1− a > e−10a for 0 6 a 6 0.5. Thus it is sufficient to show that:{
2e−d

2γ/6 6 eln(d
−2/1600)e−160d

2·(d−2/1600)e−10d·d
−1/100

2e−n/(3d
1−2γ) 6 eln(d

−1/100)e−10·d·d
−1/100e−150n·d

−2/1600,

which is equivalent to:{
d2γ/6 > ln 2 + ln(1600d2) + 1/10 + 1/10

n/(3d1−2γ) > ln 2 + ln(100d) + 1/10 + 15n/(160d2)
.

As n > d+ 1, these two inequalities above hold when d is sufficiently large in terms of γ.
The conclusion thus follows by Lemma 8.

2.3 Assigning weights

Suppose all statements in Lemma 9 hold. We will assign and modify edge weights in G
in three steps. Whenever needed we assume d is large enough in terms of γ.
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Step 1. The purpose of this step is to construct an initial weighting function f1 :
E(G)→ N so that all v ∈ Bi have weights very close to (n/d)i for each i. Let us set

ω := max(dn/d1+ε−2γe, 2).

We define f1({u, v}) for all {u, v} ∈ E(G) as follows:

f1({u, v}) :=



bn/dc+ 1, if v ∈ Bi ∩B, u ∈ Bj ∩B, d− s∗ − i+ 1 < j 6 d− s∗
and (({n/d} > 1/2 and {u, v} is not a corrected edge)

or ({n/d} < 1/2 and {u, v} is a corrected edge)),
bn/dc+ 2, if v ∈ Bi ∩B, u ∈ Bj ∩B, d− s∗ − i+ 1 < j 6 d− s∗

and (({n/d} < 1/2 and {u, v} is not a corrected edge)
or ({n/d} > 1/2 and {u, v} is a corrected edge)),

iω + dn/de, if v ∈ B, u ∈ Si, for 1 6 i 6 13,
1, otherwise.

Consider any v ∈ Bi ∩ B. We assume {n/d} > 1/2, as the analysis and result in the
opposite case is essentially the same. By the definition of f1 and Lemma 9, since 1 < n/d
and ω 6 dn/de < 2n/d,

fV1 (v) =
∑

u:{u,v}∈E(G),u∈S

f1({u, v}) +
∑

u:{u,v}∈E(G),u∈B

f1({u, v})

>

(
13∑
j=1

(jω + dn/de)(s∗/13− d1/2+γ)

)
+
(
bn/dc((i− 1)− d1/2+γ) + {n/d}((i− 1)− d1/2+γ) +

(
d− s∗ − 13d1/2+γ

))
>
(
(7ω + dn/de) s∗ − d1/2+γ(91ω + 13dn/de)

)
+
(
(n/d)(i− 1) + d− s∗ − 16n/d1/2−γ

)
> ((n/d)(i− 1) + d+ (7ω + dn/de − 1) s∗)− 224n/d1/2−γ.

By almost the same reasoning we may obtain an analogous upper bound for fV1 (v), im-
plying that∣∣fV1 (v)− ((n/d)(i− 1) + d+ (7ω + dn/de − 1) s∗)

∣∣ 6 224n/d1/2−γ. (1)

Moreover, the following claim holds.

Claim 10. For any edge e ∈ E(B), f1(e) ∈ [1, bn/dc+ 2]. For any edge e between B and
S, f1(e) ∈ [dn/de, dn/de+ 13ω]. For any edge e ∈ E(S), f1(e) = 1.

Step 2. Consider a linear ordering v1, v2, . . . of the vertices in B such that Xvj > Xvi if
j > i (where Xv’s refer to values of the random variables used within the proof of Lemma 9
for which all conditions of the lemma hold; we may assume these are all distinct, as this is
true with probability 1). To adjust edge and vertex weights we will provide f2 : E(G)→ N
supported on edges between B and S (i.e. equal to 0 for the remaining edges) so that as
a result, for f12 := f1 + f2, the following conditions hold:
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• each vk ∈ B has weight k + d+ (7ω + dn/de − 1) s∗ + d250n/d1/2−γe;

• for any u ∈ S, v ∈ B, fV12(u)− fV12(v) > 0; and finally:

• for u ∈ Si+1, v ∈ Si with 1 6 i 6 12, fV12(u) − fV12(v) is large enough to provide a
buffer for weight adjustments in Step 3.

Suppose vk ∈ Bi ∩B. Then

|
⋃
j6i−1

Bj| 6 k 6 |
⋃
j6i

Bj|,

and thus, by Lemma 9 (V), (i− 1)n/d− n/d1/2−γ 6 k 6 in/d+ n/d1/2−γ. Therefore,

|k − (i− 1)n/d| 6 2n/d1/2−γ. (2)

By (1), (2) and the triangle inequality,

|fV1 (vk)− (k + d+ (7ω + dn/de − 1) s∗) | 6226n/d1/2−γ. (3)

Claim 11. There exists f2 : E(G) → N supported on edges between B and S such that
‖f2‖∞ 6 d103n/d1+ε−γe and for each vk ∈ B, fV12(vk) = k + d + (7ω + dn/de − 1) s∗ +
d250n/d1/2−γe, provided d is sufficiently large in terms of ε, γ.

Proof. Note that by (3), the weight of every vk ∈ B is smaller than the target value
k+d+(7ω + dn/de − 1) s∗+d250n/d1/2−γe, while we need to add no more than 500n/d1/2−γ

to achieve it. This discrepancy can be leveled up by adding appropriate quantities to
weights of edges between vk and S, thereby defining f2. As by Lemma 9 (II), dS(vk) >
s∗−13d1/2+γ > s∗/2, it is sufficient to add to every edge weight between vk and S at most
d(500n/d1/2−γ)/(s∗/2)e 6 d103n/d1+ε−γe.

Claim 12. For every u ∈ S and v ∈ B, fV12(u) > fV12(v). For each 2 6 i 6 13 and every
u ∈ Si, u′ ∈ Si−1, we have fV12(u)− fV12(u′) > 0.4ωd.

Proof. Consider u ∈ Si for any fixed 1 6 i 6 13. By the definition of f12, we have
f12(e) > f1(e) for every edge e. Hence, as due to Lemma 9 (II), degB(u) > d − s∗ −
13d1/2+γ > d− 2s∗, by the definition of f1 and the fact that ω 6 dn/de,

fV12(u) > (iω + dn/de) (d− 2s∗) > iωd+ dn/ded− 2s∗(i+ 1)dn/de. (4)

By Claim 11, for every v ∈ B,

fV12(v) 6 fV12(v|B|) = |B|+ d+ (7ω + dn/de − 1) s∗ + d250n/d1/2−γe < n+ d+ 9dn/des∗.

Thus for u ∈ Si and v ∈ B, as 1 6 i 6 13 and d 6 0.5ωd, together with (4),

fV12(u)− fV12(v) >iωd− 2s∗(i+ 1)dn/de − d− 9dn/des∗ > 0.5ωd− 37dn/des∗ > 0,
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where the last inequality holds, as ωd � (n/d)s∗ when d → ∞. The first claim is thus
proved.

Consider now any u′ ∈ Si−1 for a given 2 6 i 6 13. By Claim 11 and the definition of
f1, f12(e) 6 (i− 1)ω + dn/de+ 103n/d1+ε−γ + 1 for every edge e incident with u′. Thus

fV12(u
′) 6

(
(i− 1)ω + dn/de+ 103n/d1+ε−γ + 1

)
d = iωd+ dn/ded+ d− ωd+ 103n/dε−γ.

(5)

Thus combining (4) and (5), for u′ ∈ Si−1 and u ∈ Si, as ωd� ns∗/d, ωd� n/dε−γ when
d→∞,

fV12(u)− fV12(u′) > ωd− d− 103n/dε−γ − 2s∗(i+ 1)dn/de
> 0.5ωd− 103n/dε−γ − 28dn/des∗ > 0.4ωd.

By Claims 10 and 11, as a summary, the following holds after Step 2.

Claim 13. For any edge e ∈ E(B), f12(e) ∈ [1, bn/dc+2]. For any edge e between B and
S, f12(e) ∈ [dn/de, dn/de+ 13ω + d103n/d1+ε−γe]. For any edge e ∈ E(S), f12(e) = 1.

Step 3. In this step, we introduce f3 : E(G)→ N that is only supported on E(S) such
that all vertices in S have distinct weights with respect to f = f1 + f2 + f3. We will
moreover show that Claim 12 implies that f attributes distinct weights to all vertices in
G. For this aim we will adapt the algorithm from [15], which was modeled on the idea of
Kalkowski, Karoński, and Pfender [9].

Let AP be the family of sets of the following form AP = {(2λ)dn/(3d)e + a, (2λ +
1)dn/(3d)e+a} where λ, a are integers with λ > 0, a ∈ [0, dn/(3d)e−1]. Note the sets in AP
with all possible values of λ, a partition the non-negative integers, where different values of
a correspond to dn/(3d)e different congruence classes, denoted by Ca = {a+kdn/(3d)e, k ∈
N}. Our primary goal is to attribute the weight of every vertex v ∈ S to appropriately
chosen APv ∈ AP so that for each 1 6 ` 6 13, vertices in S` have associated pairwise
distinct APv’s, which are thus disjoint.

We initialize f3 by setting f3(e) = dn/(3d)e for all e ∈ E(S). Given an ordering
v1, . . . , v|S| of vertices in S (specified later), each edge {vi, vj} with i < j is called a
forward edge of vi and a backward edge of vj. The algorithm will sequentially process vi’s
modifying f3 on edges in S incident to currently analyzed vi. For v1 no modifications
are needed – we simply let APv1 be the set in AP that contains the current value of
fV (v1) and move on (to v2). Then for every consecutive i > 2, we will choose a special
set APvi ∈ AP and guarantee that fV (vi) belongs in APvi from the end of step i until
the end of the algorithm. We admit two options to modify f3 on backward edges of the
given vi: either by adding 0 or one of the values in {±dn/(3d)e}. Specifically, say {vi, u}
is a backward edge of vi. If the current value of fV (u) is the smaller value in APu, we
admit adding 0 or dn/(3d)e to f3({vi, u}); if fV (u) is the larger value in APu, we in turn
admit subtracting 0 or dn/(3d)e from f3({vi, u}). Thereby the updated fV (u) will always
remain in APu, as desired. We finally admit adding any value in {0, 1, . . . , dn/(3d)e} to
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the weights f3(e) of all forward edges of vi, which will in particular allow us to determine
the congruence class fV (vi) will eventually land in.

We now specify the ordering v1, v2, . . . of the vertices in S. At the beginning we
arrange the vertices in

⋃
16i612 Si according to the values of Xvi , from the smallest to the

largest, and thus consistently with the order of S1, . . . , S12. The last in the ordering are
vertices from S13, which are ordered differently due to some technical subtlety concerning
vertices without forward edges. Suppose C1, . . . , CK are the connected components in
S13, ordered arbitrarily. Each component has at least two vertices by Lemma 9(I). For
each Ci, we use reversed BFS to order its vertices and denote ri, ti the last two vertices
in Ci. (Thus ti is the root of the tree in BFS; {ri, ti} ∈ E(S).) Let R = {r1, . . . , rK} and
T = {t1, . . . , tK}. We finally define the ordering in S13 by concatenating the orderings of
C1, . . . , CK . Note that by Lemma 9(I), the set of terminal vertices, i.e., vertices with no
forward edges in the obtained ordering in S, is T .

We now show specific procedures which will allows us to achieve the desired goal.
Suppose we are in step i, i.e. we are analyzing vi ∈ St, where 1 6 t 6 13, and that
vi /∈ R ∪ T , hence vi has at least one forward edge, say ei. The existing sets APu for u
prior to vi in St correspond to at most |St| congruence classes with possible duplicates.
Therefore, there must be a congruence class Ca that includes at most |St|/dn/(3d)e prior
sets APu with u ∈ St. Thus we may include the weight of fV (vi) in Ca by adding one of
admissible values in {0, 1, . . . , dn/(3d)e} to the weight f3(ei). We then modify the rest of
the forward edges of vi by adding 0 or dn/(3d)e and change the weights of some backward
edges of vi by dn/(3d)e according to the specified rules, if necessary. Note that this way
we may obtain degS(vi) consecutive terms in Ca as potential weights of vi (in entire G).
Since each prior set APu blocks at most two consecutive terms in Ca, we can find this
way an attainable fV (vi) ∈ Ca which is not blocked if degS(vi) > 2|St|/dn/(3d)e. This is
however implied by an even stronger inequality, which holds by Lemma 9 (VI)(II):

4|St|/dn/(3d)e+ 2 64(s∗n/(13d) + 2n/d1/2−γ)/(n/(3d)) + 2 = 12s∗/13 + 24d1/2+γ + 2

<s∗ − 13d1/2+γ 6 degS(vi). (6)

We finally set APvi as the only set in AP containing the attained weight of vi.
We are left to show how to handle rj, tj ∈ R ∪ T , where {rj, tj} is the only for-

ward edge of rj. We analyze both vertices simultaneously in a similar manner as above.
Recall rj, tj ∈ S13. First, by an averaging argument, we can choose an admissible addi-
tion from {0, 1, . . . , dn/(3d)e} to f3({rj, tj}) such that the two new congruence classes of
fV (rj), f

V (tj) each includes at most 2|S13|/dn/(3d)e prior sets APu with u ∈ S13, dis-
regarding temporarily APrj from the point of view of tj. Next, analogously as above,
by (6), we can change the weights of backward edges of rj by ±dn/(3d)e so that the
resulting fV (rj) belongs to APrj ∈ AP disjoint from those of the prior vertices in S13.
Finally, we analogously adjust the weights of all backward edges of tj except {rj, tj} so
that the resulting fV (tj) belongs to AP tj ∈ AP disjoint from those of the prior vertices in
S13 including APrj , which is again feasible by (6) (where “+2” was incorporated in this
inequality to facilitate distinguishing AP tj from APrj).
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Claim 14. For every edge e of G, 1 6 f(e) 6 dn/de+ 13ω + d103n/d1+ε−γe.

Proof. By Claim 13 all edge weights were in the interval [1, dn/de+ 13ω+ d103n/d1+ε−γe]
prior to Step 3, while edges in E(S) were assigned 1. Within Step 3 we first added dn/(3d)e
to the weights of the edges in E(S) and only these edges could have been further modified,
each at most twice (once as a forward edge, when its weight could be increased by a non-
negative integer not exceeding dn/(3d)e, and once as a backward edge, whose weight
could be modified by at most dn/(3d)e). Thus f3(e) ∈ [0, 3dn/(3d)e], and hence the result
follows.

2.4 Proof of Theorems 3 and 5

Note that by the algorithm applied above, fV (v)’s are pairwise distinct for vertices in the
same Si for 1 6 i 6 13. We first show that if u ∈ Si and u′ ∈ Si−1, where 2 6 i 6 13, then
fV (u) > fV (u′). By Claim 12, fV12(u) − fV12(u′) > 0.4ωd. Moreover, by the algorithm in
Step 3, fV12(u

′′) 6 fV (u′′) 6 fV12(u
′′) + 3dn/(3d)e degS(u′′) for every u′′ ∈ S, as 0 6 f3(e) 6

3dn/(3d)e for each e ∈ E(S). Hence, by Lemma 9 (II), since ωd� ns∗/d as d→∞,

fV (u)− fV (u′) >0.4ωd− 3dn/(3d)e degS(u′) > 0.4ωd− 4(n/d)2s∗ > 0.

Thus all vertices in S have pairwise distinct weights. For any vertices u ∈ S and v ∈ B,
since fV3 (v) = 0 and fV3 (u) > 0, by Claim 12, fV (u)−fV (v) > 0. Finally, as by Claim 11,
the weights of the vertices in B formed a |B|-element segment of integers after Step 2 and
have not changed ever since, all vertices in G have distinct weights.

Suppose d1+ε−2γ > n. Then ω = 2 and d103n/d1+ε−γe = 1 for d large enough. Thus
by Claim 14, there is d0 such that ‖f‖∞ 6 dn/de+27 < n/d+28 for d > d0. As there are
only finitely many graphs with d < d0 and d1+ε−2γ > n (while e.g. by [9], s(G) 6 6dn/de),
Theorem 5 and Corollary 6 follow due to taking β = ε − 2γ, as ε ∈ (0, 1/4) while γ can
be chosen arbitrarily small.

On the other hand, by Claim 14, regardless of the proportion of n to d, f is upper
bounded by

dn/de+ 13ω + d103n/d1+ε−γe < (n/d+ 1) + 13(n/d1+ε−2γ + 2) + (n/d1+ε−2γ + 1)

= n/d(1 + 14/dε−2γ) + 28 (7)

when d is sufficiently large, say d > d0 (where d0 is a constant dependent on ε, γ). Hence
Theorem 3 follows by taking β = ε− 2γ analogously as above. For d < d0, we may finally
again use the result in [9] implying that s(G) < (n/d)(1 + 5) + 6, where 5 6 C/dβ for
large enough (in terms of d0) constant C. Thus Corollary 4 is proved as well due to (7).

3 Conclusion and remarks

In this note, we proved a uniform upper bound s(G) 6 n
d
(1 +C/dβ) + 28, which confirms

the Faudree-Lehel Conjecture for d > nα for any fixed α > 0.8. Our primary goal was
to present a relatively short proof, hence we did not strive to optimize all constants and
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auxiliary functions within our argument. In particular, using a slightly more detailed
analysis concerning ri, ti in the algorithm in Step 3 (applied already e.g. in [9, 11]) and a
few other minor alterations, one may easily reduce the constant 28 to 16 in all our main
results (and the constant 14 to 8).
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[9] M. Kalkowski, M. Karoński and F. Pfender. A new upper bound for the irregularity
strength of graphs. SIAM J. Discrete Math., 25(3):1319–1321, 2011.

[10] J. Lehel. Facts and quests on degree irregular assignments. In Graph theory, com-
binatorics, and applications. Vol. 2 (Kalamazoo, MI, 1988), Wiley-Intersci. Publ.,
pages 765–781. Wiley, New York, 1991.

[11] P. Majerski and J. Przyby lo. On the irregularity strength of dense graphs. SIAM J.
Discrete Math., 28(1):197–205, 2014.

the electronic journal of combinatorics 30(4) (2023), #P4.27 12



[12] T. Nierhoff. A tight bound on the irregularity strength of graphs. SIAM J. Discrete
Math., 13(3):313–323, 2000.

[13] J. Przyby lo. Irregularity strength of regular graphs. Electron. J. Combin.,
15(1):#P82, 10, 2008.

[14] J. Przyby lo. Linear bound on the irregularity strength and the total vertex irregu-
larity strength of graphs. SIAM J. Discrete Math., 23(1):511–516, 2008/09.

[15] J. Przyby lo. Asymptotic confirmation of the Faudree-Lehel conjecture on irregularity
strength for all but extreme degrees. J. Graph Theory, 100:189–204, 2022.

[16] J. Przyby lo and F. Wei. On the asymptotic confirmation of the Faudree-Lehel con-
jecture for general graphs. Combinatorica, 43:791–826, 2023.

the electronic journal of combinatorics 30(4) (2023), #P4.27 13


	Introduction
	Proof of main results
	Preliminaries
	Random vertex partition through local lemma
	Assigning weights
	Proof of Theorems 3 and 5

	Conclusion and remarks

