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Abstract

In this paper, we deal with two classes of Diophantine equations, x2 + y2 + z2 +
k3xy+k1yz+k2zx = (3+k1 +k2 +k3)xyz and x2 +y4 +z4 +2xy2 +ky2z2 +2xz2 =
(7+k)xy2z2, where k1, k2, k3, k are nonnegative integers. The former is known as the
Markov Diophantine equation if k1 = k2 = k3 = 0, and the latter is a Diophantine
equation recently studied by Lampe if k = 0. We give algorithms to enumerate
all positive integer solutions to these equations, and discuss the structures of the
generalized cluster algebras behind them.

Mathematics Subject Classifications: 11D25,13F60.

1 Introduction

In this paper, we deal with some Diophantine equations. One of equations with which we
deal has the following form:

x2 + y2 + z2 + k3xy + k1yz + k2zx = (3 + k1 + k2 + k3)xyz, (1.1)

where k1, k2, k3 ∈ Z>0. We describe all positive integer solutions to (1.1) in a combinatorial
way. We give a tree Tk1,k2,k3 with triplets of positive integers as its vertices in the following
steps.

(1) The root vertex is (1, 1, 1),

(2) the triplet (1, 1, 1) has three children, (k1 + 2, 1, 1), (1, k2 + 2, 1), (1, 1, k3 + 2),

(3) the generation rule below (k1 + 2, 1, 1), (1, k2 + 2, 1), (1, 1, k3 + 2) is as follows:
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(i) if a is a maximal number in (a, b, c), then (a, b, c) has two children(
a,
a2 + k2ac+ c2

b
, c

)
and

(
a, b,

a2 + k3ab+ b2

c

)
,

(ii) if b is a maximal number in (a, b, c), then (a, b, c) has two children(
b2 + k1bc+ c2

a
, b, c

)
and

(
a, b,

a2 + k3ab+ b2

c

)
,

(iii) if c is a maximal number in (a, b, c), then (a, b, c) has two children(
b2 + k1bc+ c2

a
, b, c

)
and

(
a,
a2 + k2ac+ c2

b
, c

)
.

When k1 = 1, k2 = 2, k3 = 0, the first few terms of T1,2,0 are as follows:

(1, 1, 1)

(3, 1, 1)

(1, 4, 1)

(1, 1, 2)

(3, 16, 1)

(3, 1, 10)

(21, 4, 1)

(1, 4, 17)

(7, 1, 2)

(1, 9, 2)

(91, 16, 1) · · ·

(3, 16, 265) · · ·

(37, 1, 10) · · ·

(3, 169, 10) · · ·

(21, 121, 1) · · ·

(21, 4, 457) · · ·

(373, 4, 17) · · ·

(1, 81, 17) · · ·

(7, 81, 2) · · ·

(7, 1, 25) · · ·

(103, 9, 2) · · ·

(1, 9, 41) · · ·

. (1.2)

The first main result is the following theorem:

Theorem 1. Every positive integer solution to (1.1) appears exactly once in Tk1,k2,k3.
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When k1 = k2 = k3 = 0, the equation (1.1) is the Markov Diophantine equation

x2 + y2 + z2 = 3xyz. (1.3)

This is an equation that has received much attention since the work on the Markov
spectrum, and is now being studied in relation to combinatorial objects such as Christoffel
words, perfect matchings of graphs, and continuous fractions (for detail, see Aigner’s book
[1]). The proof of Theorem 1 for the case of k1 = k2 = k3 = 0 is known, for example, by
[1]*Section 3.1.

Moreover, when k1 = k2 = k3 = 1, the equation (1.1) is a Diophantine equation

(x+ y)2 + (y + z)2 + (z + x)2 = 12xyz. (1.4)

studied in [8]. The positive integer solutions to this equation, as well as the Markov equa-
tion, have been shown to be closely related to perfect matchings of graphs and continuous
fractions. The specialized version of Theorem 1 for the case of k1 = k2 = k3 = 1 is proved
by [8]*Theorem 1.1.

Furthermore, Lampe proved specialized version of Theorem 1 for the case of k1 =
0, k2 = k3 = 2 in [9]*Lemma 2.7, that is, the description of all positive integer solutions
to

x2 + y2 + z2 + 2xy + 2zx = 7xyz. (1.5)

In [9], this theorem is used to describe all positive integer solutions to

x2 + y4 + z4 + 2xy2 + 2zx2 = 7xy2z2. (1.6)

In this paper, we also deal with the generalized version of the equation (1.6),

x2 + y4 + z4 + ky2z2 + 2xy2 + 2xz2 = (7 + k)xy2z2, (1.7)

where k ∈ Z>0.
As in (1.1), we describe all positive integer solutions to (1.7) in a combinatorial way.

We give a tree Tk with triplets of positive integers as its vertices in the following steps.

(1) The root vertex is (1, 1, 1),

(2) the triplet (1, 1, 1) has three children, (k + 2, 1, 1), (1, 2, 1), (1, 1, 2),

(3) the generation rule below (k + 2, 1, 1), (1, 2, 1), (1, 1, 2) is as follows:

(i) if a is a maximal number in (a, b2, c2), then (a, b, c) has two children(
a,
a+ c2

b
, c

)
and

(
a, b,

a+ b2

c

)
,
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(ii) if b2 is a maximal number in (a, b2, c2), then (a, b, c) has two children(
b4 + kb2c2 + c4

a
, b, c

)
and

(
a, b,

a+ b2

c

)
,

(iii) if c2 is a maximal number in (a, b2, c2), then (a, b, c) has two children(
b4 + kb2c2 + c4

a
, b, c

)
and

(
a,
a+ c2

b
, c

)
.

When k = 1, the first few terms of T1 are as follows:

(1, 1, 1)

(3, 1, 1)

(1, 2, 1)

(1, 1, 2)

(3, 4, 1)

(3, 1, 4)

(21, 2, 1)

(1, 2, 5)

(21, 1, 2)

(1, 5, 2)

(91, 4, 1) · · ·

(3, 4, 19) · · ·

(91, 1, 4) · · ·

(3, 19, 4) · · ·

(21, 11, 1) · · ·

(21, 2, 25) · · ·

(741, 2, 5) · · ·

(1, 13, 5) · · ·

(21, 1, 11) · · ·

(21, 25, 2) · · ·

(741, 5, 2) · · ·

(1, 5, 13) · · ·

. (1.8)

The second main result is the following theorem:

Theorem 2. Every positive integer solution to (1.7) appears exactly once in Tk.

This is a generalization of Lampe’s result [9]*Theorem 2.6. In Lampe’s paper, it is
showed the case of k = 0 as mentioned above. To prove it, the k1 = 0, k2 = k3 = 2 case of
Theorem 1 is used in his paper. In the proof of Theorem 2, we use the k1 = k, k2 = k3 = 2
case of Theorem 1, which is its generalization.

The methods of enumerating the positive integer solutions to the equations mentioned
above have one thing in common: it has a structure that can generate three another
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positive integer solutions from one positive integer solution. This operation is called the
Vieta jumping and is the key operation of the two main theorems given in this paper.
This paper also explains that these Vieta jumpings and positive integer solutions have
a structure derived from cluster algebra theory. Cluster algebra is a class of commuta-
tive algebra generated by cluster variables, introduced by [4] in early 2000. The cluster
variables refer to the all variables obtained sequentially by an oparation called mutation,
and it is known that the combinatorial structure of the cluster variable and the mutation
appears in various fields such as Teichmüller theory, Poisson geometry, representation
theory of quiver, gauge theory, knot theory, etc. Cluster algebra theory is also closely
related to number theory. Immediately after the birth of cluster algebra, it is shown that
the integer sequences called Somos-4 and Somos-5 can be seen as cluster variables, and
the recurrence formula that gives it can be seen as a specialization of mutation (see [5]).
In the context of the Diophantine problem, it was first known that Vieta jumpings and
positive integer solutions of the Markov Diophantine equation (1.3) are a specialization
of a class of mutations and cluster variables (for example, there is a description of it in
[7]), and then it was found by [9] that those of equation (1.6) are given by a specialization
of another class of mutation and cluster variables. Recently, it was found by [8] that
those of the equation (1.4) can be given as a specialization of the mutation and cluster
variable associated with the generalized cluster algebra. In this paper, we will discuss
the generalized cluster algebra structure of equations (1.1) and (1.7), including all of the
above mentioned.

At the end of this paper, we will consider whether there are any other Diophantine
equations with the structure of a generalized cluster algebra like these equations.

2 Proof of Theorem 1 and its corollaries

We will prove the first main theorem, Theorem 1. We begin with the following proposition:

Proposition 3. If (x, y, z) = (a, b, c) is a positive integer solution to (1.1), then so are(
b2 + k1bc+ c2

a
, b, c

)
,

(
a,
a2 + k2ac+ c2

b
, c

)
, and

(
a, b,

a2 + k3ab+ b2

c

)
.

Proof. We prove only that

(
b2 + k1bc+ c2

a
, b, c

)
is a positive solution. The positivity

is clear. We will show that

(
b2 + k1bc+ c2

a
, b, c

)
is an integer solution to (1.1). Since

(a, b, c) is a solution to (1.1), we have

b2 + k1bc+ c2

a
= (3 + k1 + k2 + k3)bc− a− k3b− k2c.

Therefore,

(
b2 + k1bc+ c2

a
, b, c

)
is an integer triplet. For the sake of visibility, we set

A := (3 + k1 + k2 + k3)bc− a− k3b− k2c.
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We will show (A, b, c) is a solution to (1.1). The sum and the product of a and A are

a+ A = (3 + k1 + k2 + k3)bc− k3b− k2c,
a · A = b2 + k1bc+ c2,

respectively. By Vieta’s formula, a and A are the solutions of the quadratic equation

X2 − {(3 + k1 + k2 + k3)bc− k3b− k2c}X + b2 + k1bc+ c2 = 0.

Substituting X = A and transferring some terms to the other side, we have

A2 + b2 + c2 + k3Ab+ k1bc+ k2cA = (3 + k3 + k1 + k2)Abc.

This is an equality substituting x = A =
b2 + k1bc+ c2

a
, y = b, z = c in (1.1).

We call the operation (a, b, c) 7→
(
b2 + k1bc+ c2

a
, b, c

)
the first Vieta jumping,

(a, b, c) 7→
(
a,
a2 + k2ac+ c2

b
, c

)
the second Vieta jumping, and

(a, b, c) 7→
(
a, b,

a2 + k3ab+ b2

c

)
the third Vieta jumping. We note that the Vieta jump-

ing are involutions. The next step is to determine the solutions that contain two or more
of the same number.

Lemma 4. In the positive integer solutions to (1.1), the only solutions that contain re-
peated numbers are (1, 1, 1), (k1 + 2, 1, 1), (1, k2 + 2, 1) and (1, 1, k3 + 2).

Proof. Let (a, b, c) be a positive integer solution to (1.1) that contains repeated numbers.
We prove the case of a = b. Then, by substituting (a, a, c) for (x, y, z) in (1.1), we have

(2 + k3)a
2 + c2 + (k1 + k2)ac = (3 + k1 + k2 + k3)a

2c.

Therefore, we have

c =
a2k3 + a2k1 + a2k2 + 3a2 − ak1 − ak2 ± a

√
(ak3 + (a− 1)k1 + (a− 1)k2 + 3a)2 − 4(k3 + 2)

2
.

We set k = ak3 + (a − 1)k1 + (a − 1)k2 + 3a > 0. In order for c to be an integer, the
inside of the square root must be a square number. Therefore, there exists an positive
integer l such that l2 = k2 − 4(k3 + 2). Since a > 1, we have k > k3 + 3. Therefore,
k + l > k3 + 2 holds. Since (k + l)(k − l) = 4(k3 + 2), we have 1 6 k − l 6 3, and

(k − l, k + l) must be one of (1, 4(k3 + 2)), (2, 2(k3 + 2)),

(
3,

4(k3 + 2)

3

)
. Of the three, it

cannot be (1, 4(k3 + 2)) and

(
3,

4(k3 + 2)

3

)
because k =

(k + l) + (k − l)
2

is an integer.

When (k − l, k + l) = (2, 2(k3 + 2)), we have k = k3 + 3 and l = k3 + 1. Thus we have
(a, a, c) = (1, 1, 1) or (1, 1, k3 + 2). The cases that a = c and b = c can be proved in the
same way.
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The triples (1, 1, 1), (k1 + 2, 1, 1), (1, k2 + 2, 1) and (1, 1, k3 + 2) are said to be singular,
and other positive integer solutions to (1.1) are said to be nonsingular.

Proposition 5. Let (x, y, z) = (a, b, c) be a nonsingular positive integer solution to (1.1),
and we assume a > b > c. Then we have

(1)
a2 + k2ac+ c2

b
> a(> c),

(2)
a2 + k3ab+ b2

c
> a(> b),

(3) b >
b2 + k1bc+ c2

a
.

Proof. We prove (1). We have

a2 + k2ac+ c2

b
− a =

a2 + k2ac+ c2 − ab
b

>
a2 + k2ac+ c2 − a2

b
=
c2 + k2ac

b
> 0.

We can show (2) in the same way as (1). We will show (3). We set

f(x) := (x− a)

(
x− b2 + k1bc+ c2

a

)
= x2 − ((3 + k1 + k2 + k3)bc− k3b− k2c)x+ (b2 + c2 + k1bc)

It suffices to show that

f(b) = (2 + k3)b
2 − (3 + k1 + k2 + k3)b

2c+ (k1 + k2)bc+ c2 < 0.

We consider a function from R2 to R

g(y, z) = (2 + k3)y
2 − (3 + k1 + k2 + k3)y

2z + (k1 + k2)yz + z2.

We remark that g(b, c) = f(b). By considering the partial derivative of g in the y direction,
we have

∂g

∂y
= 2(2 + k3)y − 2(3 + k1 + k2 + k3)yz + (k1 + k2)z.

When y > z > 1, we have

∂g

∂y
(y, z) < 2(2 + k3)y − 2(3 + k1 + k2 + k3)yz + (k1 + k2)y

= −y((6z − 4) + k3(2z − 2) + k1(2z − 1) + k2(2z − 1))

< −((6z − 4) + k3(2z − 2) + k1(2z − 1) + k2(2z − 1)) < 0.
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Moreover, by considering the partial derivative of g in the z direction, we have

∂g

∂z
= −(3 + k1 + k2 + k3)y

2 + (k1 + k2)y + 2z.

When y > z > 1, we have

∂g

∂z
(y, z) < −(3 + k1 + k2 + k3)y

2 + (k1 + k2)y + 2y

< −(3 + k1 + k2 + k3)y
2 + (k1 + k2)y

2 + 2y2 < −y2(1 + k3) < 0.

Therefore, g(y, z) is strictly monotonically decreasing in the y and z directions in the
range y > z > 1. Since g(1, 1) = 0, we have g(b, c) = f(b) < 0.

In Proposition 5, we assume that a > b > c, but this assumption is not essential:

Corollary 6. Let (x, y, z) = (a, b, c) be a nonsingular positive integer solution to (1.1).
We set (a′, b, c) (resp. (a, b′, c), (a, b, c′)) as the first (resp. second, third) Vieta jumping.

(1) If a is the maximal in (a, b, c), then a′ is not maximal in (a′, b, c), b′ is maximal in
(a, b′, c), and c′ is maximal in (a, b, c′),

(2) if b is the maximal in (a, b, c), then a′ is maximal in (a′, b, c), b′ is not maximal in
(a, b′, c), and c′ is maximal in (a, b, c′),

(3) if c is the maximal in (a, b, c), then a′ is maximal in (a′, b, c), b′ is maximal in
(a, b′, c), and c′ is not maximal in (a, b, c′).

Proof. When a > b > c, it is proved by Proposition 5. The other cases are proved in the
same way as the proof of Proposition 5.

Remark 7. By Corollary 6, for a nonsingular triplet (a, b, c) in Tk1,k2,k3 ,

(i) if a is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
b2 + k1bc + c2

a
, b, c

)
,

(ii) if b is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
a,

a2 + k2ac + c2

b
, c

)
,

(iii) if c is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
a, b,

a2 + k3ab + b2

c

)
.

Moreover, each non-singular triplet in Tk1,k2,k3 have a smaller maximum than its chil-
dren. Therefore, singular triplets cannot be children of non-singular triplets in Tk1,k2,k3 .
Hence, each singular triplet appears in Tk1,k2,k3 once, and the above facts (i),(ii),(iii) are
also true for singular triplets other than (1, 1, 1). Thus, in Tk1,k2,k3 , the three vertices
adjacent to each vertex (a, b, c) are respectively the one where a in (a, b, c) is replaced by
another number, the one where b in (a, b, c) is replaced by another number, and the one
where c in (a, b, c) is replaced by another number.
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Now, we will show Theorem 1.

Proof of Theorem 1. By Proposition 3 and the fact that (x, y, z) = (1, 1, 1) is a positive
integer solution to (1.1), all vertices in Tk1,k2,k3 are positive integer solutions to (1.1).
Suppose that (x, y, z) = (a, b, c) is a nonsingular positive integer solution to (1.1). Then,
by Corollary 6, there is one of the Vieta jumpings of (a, b, c) whose maximal number is
smaller than that of (a, b, c). This process can be continued as long as the solution is
nonsingular. Since the solutions that appear in this operation are always positive integer
solutions, a singular solution will appear in a finite number of the operations. By Lemma
4, when a nonsingular solution changes to a singular solution, the singular solution is
(k1 + 2, 1, 1), (1, k2 + 2, 1) or (1, 1, k3 + 2). Since any Vieta jumping of a triplet in Tk1,k2,k3

is again in Tk1,k2,k3 by Remark 7, we see that (a, b, c) is contained in the vertices of the tree
Tk1,k2,k3 by following above operations in reverse. We prove the uniqueness. If not, we see
that (1, 1, 1) is not unique by repeating above operations. This is a contradiction.

As in the Markov Diophantine equation (1.3) or the Gyoda’s equation (1.4), there are
several corollaries that can be established.

Corollary 8. For any positive integer solution (x, y, z) = (a, b, c) to (1.1), all pairs in
a, b, c are relatively prime.

Proof. The claim is true for (a, b, c) = (1, 1, 1). We prove only that a and b are relatively
prime. By transforming (1.1) as

z2 = (3 + k1 + k2 + k3)xyz − x2 − y2 − k3xy − k1yz − k2zx,

and substituting (x, y, z) = (a, b, c), if a, b have a common divisor d 6= 1, then we see that c
can be divided by a prime divisor d′ of d. Thus, d′ is a common divisor of a, b, c. Therefore,
by Proposition 3, the neighbor (a′, b′, c′) of (a, b, c) on the tree T whose maximal number
is smaller than max{a, b, c} has the common divisor d′. By repeating this operation, we
see that d′ is a common divisor of (1, 1, 1). Thus, we must d′ = 1. This is a contradiction.
Therefore, we have d = 1.

Corollary 9. Every number appearing in the tree Tk1,k2,k3 appears as the maximal number
of some positive integer solution to (1.1).

Proof. Let n be a number appearing in Tk1,k2,k3 . When n = 1, k1 + 2, k2 + 2, k3 + 2,
they are the maximal numbers of (1, 1, 1), (k1 + 2, 1, 1), (1, k2 + 2, 1) and (1, 1, k3 + 2),
respectively. We assume n 6= 1, k1 + 2, k2 + 2, k3 + 2. We take a positive integer solution
(x, y, z) = (a, b, c) containing n. We assume that a > b > c. If n = a, then we are done.
If n = b, then n is the maximal number in the neighbor of (a, b, c) in the tree Tk1,k2,k3

obtained by swapping a by Proposition 3. If n = c, as we traverse the neighbors with
smaller maximal number, n becomes the second largest. Therefore, this case is attributed
to the n = b case. Even if the magnitude correlation of a, b, and c are different, it is
proved in the same way.

the electronic journal of combinatorics 30(4) (2023), #P4.10 9



Remark 10. In the Markov case, that is, k1 = k2 = k3 = 0, there is a conjecture that
triplets with a common maximum will coincide if the order of the components is reordered
(the Markov Conjecture). However, in the general case, there can be essentially different
triplets with a common maximum (i.e., they will not coincide if the order of the compo-
nents is reordered). Actually, when k1 = 1, k2 = 2, k3 = 0, (1, 81, 17) and (7, 81, 2) are
both solutions to (1.1), as seen in (1.2). The Markov Conjecture is proved to be true when
the largest number in a triplet can be written as pn using the prime number p ([11, 2]),
but this counterexample shows that even that does not hold in the general case.

Let us consider the case of k1 = k2 = k3 = 2, that is, the equation

x2 + y2 + z2 + 2xy + 2yz + 2zx = 9xyz. (2.1)

In this situation, we have the following theorem:

Theorem 11. If positive integer triplet (a, b, c) is one of solutions to the Markov equation
(1.3), then we have (a2, b2, c2) is one of solutions to (2.1). Conversely, if positive integer
triplet (A,B,C) is one of solutions to (2.1), then (

√
A,
√
B,
√
C) is one of positive integer

solutions to (1.3).

Proof. We prove the former statement. When (a, b, c) = (1, 1, 1), it is clear. We assume
that (a2, b2, c2) is an integer solution to (2.1). It suffices to show that the Vieta jumpings
of (a2, b2, c2) in (2.1) are given by((

b2 + c2

a

)2

, b2, c2

)
,

(
a2,

(
a2 + c2

b

)2

, c2

)
,

(
a2, b2,

(
a2 + b2

c

)2
)
.

We only prove the case of the first Vieta jumping. The first Vieta jumping of (a2, b2, c2)
in (2.1) is (

(b2)2 + 2b2c2 + (c2)2

a2
, b2, c2

)
=

((
b2 + c2

a

)2

, b2, c2

)
,

as desired. We will show the latter statement. By Theorem 1, each positive solution
to (2.1) has the form (a2, b2, c2), where (a, b, c) is a solution to (1.3). This finishes the
proof.

3 Proof of Theorem 2 and its corollaries

To prove Theorem 2, we consider the following equation:

X2 + Y 2 + Z2 + 2XY + kY Z + 2ZX = (7 + k)XY Z. (3.1)

This is the equation substituted (1.7) with X = x, Y = y2, Z = z2 and a specialization of
(1.1) with k3 = 2, k1 = k, k2 = 2. Then, the Vieta jumpings of (A,B,C) are(

B2 + kBC + C2

A
,B,C

)
,

(
A,

(A+ C)2

B
,C

)
,

(
A,B,

(A+B)2

C

)
.
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Lemma 12. Every positive integer solution to (3.1) appears exactly once in T2,k,2. More-
over, for any positive integer solution (A,B,C) to (3.1), there exist positive integers b
and c such that b2 = B and c2 = C.

Proof. The former statement follows from Theorem 1. We prove the latter statement.
When (X, Y, Z) = (1, 1, 1), it is clear. We assume that (A, b2, c2) is a solution to (3.1).

The second Vieta jumping of (A, b2, c2) in (3.1) is

(
A,

(
A+ c2

b

)2

, c2

)
. Since

(
A+ c2

b

)2

is an integer, so is
A+ c2

b
. In the same way, we obtain

(
A, b2,

(
A+ b2

c

)2
)

from (A, b2, c2)

by the third Vieta jumping. These facts finish the proof.

Proposition 13. If a positive integer triplet (a, b, c) is one of solutions to (3.1), then
(a, b2, c2) is one of solutions to (1.7). Conversely, if a positive integer triplet (A,B,C) is
one of solutions to (1.7), then (A,

√
B,
√
C) is one of positive integer solutions to (3.1).

Proof. The former statement is clear. The latter follows from Lemma 12.

Now, we prove Theorem 2.

Proof of Theorem 2. By Lemma 12 and Proposition 13, all positive integer solutions to
(1.7) are obtained from (1, 1, 1) by repeating the Vieta jumpings

(a, b, c) 7→
(
b4 + kb2c2 + c4

a
, b, c

)
, (a, b, c) 7→

(
a,
a+ c2

b
, c

)
, (a, b, c) 7→

(
a, b,

a+ b2

c

)
.

Since the three vertices adjacent to (a, b, c) in Tk are triplets replacing different compo-
nents of (a, b, c), respectively, as in T2,k,2, any Vieta jumping of a triplet in Tk is again in
Tk. Therefore, all positive integer solutions to (1.7) appear in Tk. The uniqueness follows
from the uniqueness of any triplet in T2,k,2. Thus we obtain Theorem 2.

Next, we prove an analogue of Corollary 8.

Corollary 14. For any positive integer solution (x, y, z) = (a, b, c) to (1.7), all pairs in
a, b, c are relatively prime.

Proof. By Corollary 8, (a, b2, c2) is relatively prime. Thus (a, b, c) is relatively prime.

Remark 15. An analogue of Corollary 9 does not hold in (1.7). Actually, when k = 1, 11
appears in positive integer solutions in (1.7) (for example, (21, 11, 1) is one of solutions).
However, 11 is not maximal number in any solutions containing it. See (1.8).
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4 Generalized cluster pattern of positive integer solutions

In this section, we introduce a generalized cluster pattern and verify that the trees Tk1,k2,k3

and Tk in Section 1 are realized as special cases of generalized cluster patterns. We start
with recalling definitions of seed mutations and generalized cluster patterns according to
[3, 10]1. Let n ∈ Z>1 and F be a rational function field of n indeterminates. A labeled
seed is a triplet (x, B,Z), where

• x = (x1, . . . , xn) is an n-tuple of elements of F forming a free generating set of F ,

• B = (bij) is an n × n integer matrix which is skew-symmetrizable, that is, there
exists a positive integer diagonal matrix S such that SB is skew-symmetric. We
call S a skew-symmetrizer of B,

• Z = (Z1, . . . , Zn) is an n-tuple of polynomials with the coefficient in R>0

Zi(u) = zi,0 + zi,1u+ · · ·+ zi,diu
di

satisfying zi,0 = zi,di = 1.

We say that x is a cluster, and we refer to xi, B and Zi as the cluster variable,
the exchange matrix and the exchange polynomial, respectively. Furthermore, we set
D = diag(d1, . . . , dn), that is a positive integer diagonal matrix of rank n.

For an integer b, we use the notation [b]+ = max(b, 0). Let (x, B,Z) be a labeled seed,
and let k ∈ {1, . . . , n}. The seed mutation µk in direction k transforms (x, B,Z) into
another labeled seed µk(x, B,Z) = (x′, B′,Z′) defined as follows:

• The entries of B′ = (b′ij) are given by

b′ij =

{
−bij if i = k or j = k,

bij + dk
(
[bik]+ bkj + bik [−bkj]+

)
otherwise.

(4.1)

• The cluster variables x′ = (x′1, . . . , x
′
n) are given by

x′j =


(

n∏
i=1

x
[−bik]+
i

)dk

Zk

(
n∏

i=1

xbiki

)
xk

if j = k,

xj otherwise.

(4.2)

• The exchange polynomials Z′ = (Z ′1, . . . , Z
′
n) are given by

Z ′j(u) =

{
udkZk(u−1) if j = k,

Zj(u) otherwise.
(4.3)

1In [3, 10], seeds and their mutations are defined in a version with y-variables (coefficients), but in this
paper, these are not necessary and have been omitted
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Let Tn be the n-regular tree whose edges are labeled by the numbers 1, . . . , n such

that the n edges emanating from each vertex have different labels. We write t t′
k to

indicate that vertices t, t′ ∈ Tn are joined by an edge labeled by k. We fix an arbitrary
vertex t0 ∈ Tn, which is called the rooted vertex. A generalized cluster pattern is an
assignment of a labeled seed Σt = (xt, Bt,Zt) to every vertex t ∈ Tn such that the labeled

seeds Σt and Σt′ assigned to the endpoints of any edge t t′
k are obtained from each

other by the seed mutation in direction k. When the initial seed is Σt0 = (x, B,Z), we
denote by CP(x,B,Z) : t 7→ Σt this assigment. The degree n of the regular tree Tn is called
the rank of a generalized cluster pattern CP(x,B,Z).

Remark 16. When D = In (the identity matrix), a generalized cluster pattern coincides
with a cluster pattern defined in [6].

We will now see examples that give positive integer solutions to (1.1). The cor-
responding cluster pattern varies depending on whether k1, k2, and k3 are 0 or not.

First, we consider the case of k1 = k2 = k3 = 0. we set B =

 0 2 −2
−2 0 2
2 −2 0

 and

Z1(u) = Z2(u) = Z3(u) = 1 + u. For any k ∈ {1, 2, 3}, we have

µk(±B) = ∓B, µk(Z) = Z.

Therefore, the mutation of cluster variables are

x′j =


x2`(1 + x−2` x2m)

xk
=
x2` + x2m
xk

if j = k,

xj otherwise,

where {k, `,m} = {1, 2, 3}. This oparation coincides with the Vieta jumping of in the
Markov Diophantine equation.

Next, we consider the case of k3 6= 0 and k1 = k2 = 0. we set B =

 0 2 −1
−2 0 1
2 −2 0


and Z1(u) = Z2(u) = 1 + u, Z3(u) = 1 + k3u+ u2. Then, for any k ∈ {1, 2, 3}, we have

µk(±B) = ∓B, µk(Z) = Z.

Therefore, when k = 1, 2, the mutations of cluster variables are

x′j =


x2`(1 + x−2` x2m)

xk
=
x2` + x2m
xk

if j = k,

xj otherwise,

where {k, `,m} = {1, 2, 3}. When k = 3, we have

x′j =


x21(1 + k3x

−1
1 x2 + x−21 x22)

x3
=
x21 + k3x1x2 + x22

x3
if j = k = 3,

xj otherwise.
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This oparation coincides with the Vieta jumping in the equation

x2 + y2 + z2 + k3xy = (3 + k3)xyz.

The Vieta jumping in each equations treated in this paper is described by the mutation
of a generalized cluster pattern. See the following theorem:

Theorem 17. For each equation given in (1.1) and (1.7), B and Z (and D) are set as
in Table 1.

Equation B Z D

x2 + y2 + z2 = 3xyz

 0 2 −2
−2 0 2
2 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + u

1 0 0
0 1 0
0 0 1



x2 + y2 + z2 + k3xy = (3 + k3)xyz

 0 2 −1
−2 0 1
2 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + k3u + u2

1 0 0
0 1 0
0 0 2


x2 + y2 + z2 + k3xy + k1yz

= (3 + k3 + k1)xyz

 0 2 −1
−1 0 1
1 −2 0



Z1(u) = 1 + k1u + u2

Z2(u) = 1 + u

Z3(u) = 1 + k3u + u2

2 0 0
0 1 0
0 0 2


x2 + y2 + z2 + k3xy + k1yz + k2zx

= (3 + k1 + k2 + k3)xyz

 0 1 −1
−1 0 1
1 −1 0



Z1(u) = 1 + k1u + u2

Z2(u) = 1 + k2u + u2

Z3(u) = 1 + k3u + u2

2 0 0
0 2 0
0 0 2



x2 + y4 + z4 + 2xy2 + 2z2x = 7xy2z2

 0 1 −1
−4 0 2
4 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + u

1 0 0
0 1 0
0 0 1


x2 + y4 + z4 + 2xy2 + ky2z2 + 2z2x

= (7 + k)xy2z2

 0 1 −1
−2 0 2
2 −2 0



Z1(u) = 1 + ku + u2

Z2(u) = 1 + u

Z3(u) = 1 + u

2 0 0
0 1 0
0 0 1



Table 1: Equations and corresponding triplets (B,Z, D).

Then, the generalized cluster pattern CP(x,B,Z) with a substitution x1 = x2 = x3 = 1
gives the tree Tk1,k2,k3 or Tk giving positive integer solutions to the corresponding equation
(where we ignore exchange matrices in cluster pattern and consider only clusters).

This theorem allows us to say that the Vieta jumpings and positive integer solutions
of equations (1.1) and (1.7) have the structures of a generalized cluster patterns.

5 Questions and consideration of class of rank 2

The cluster patterns corresponding to the equations listed in Table 1 satisfy the following
two conditions:
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Condition 18.

(1) The exchange matrix is multiplied by −1 for a mutation in any direction,

(2) the exchange polynomials are mutation invariant.

Moreover, these six triplets (B,Z, D) in the table in Theorem 17 can be divided into

two types: for the top four in the Table 1, BD =

 0 2 −2
−2 0 2
2 −2 0

 is satisfied, and for

the remaining two, BD =

 0 1 −1
−4 0 2
4 −2 0

 is satisfied. At present, we know a cluster

pattern that satisfies these two conditions and BD =

 0 1 −1
−4 0 2
4 −2 0

 but for which no

corresponding equation has been found. It is the cluster pattern determined by

B =

 0 1 −1
−1 0 2
1 −2 0

 ,


Z1(u) = 1 + k3u+ k1u

2 + k3u
3 + u4,

Z2(u) = 1 + u,

Z3(u) = 1 + u,

D =

4 0 0
0 1 0
0 0 1

 . (5.1)

Therefore, the following question can be considered.

Question 19. Is there a Diophantine equation corresponding to (5.1)?

As a more general question, the following problems are considered.

Question 20.

(1) What kind of a triplet (B,Z, D) satisfying the two condition in Condition 18 such

that BD is neither

 0 2 −2
−2 0 2
2 −2 0

 nor

 0 1 −1
−4 0 2
4 −2 0

?

(2) Is there a general way to construct a Diophantine equation from information in
(B,Z, D)?

We will now consider Question 20. All of cluster patterns of rank 2 satisfy Condition
18 (1). Therefore, there are infinitely many cluster patterns of rank 2 which is the answer
to Question 20 (1). In this class, there are cluster patterns whose corresponding equations
are derived from Theorem 17. Since all cluster patterns treated in Theorem 4.2 are of rank
3, each seed can be mutated in three directions. We consider prohibiting mutaions in one
of these directions. By substituting 1 to the cluster variable corresponding to the direction
in which the mutation was prohibited, the cluster pattern that was originally rank 3 can
be viewed as that of rank 2. In this case, the exchange matrix corresponding to the cluster
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pattern is a submatrix of the original one that removes the row and column corresponding
to the direction in which mutation is prohibited. The equation corresponding to this
cluster pattern is the equation that substitute 1 to the variable corresponding to the
direction in which mutation is prohibited. Therefore, the following theorem holds.

Theorem 21. We set equations, B and Z (and D) as in Table 2. Then, the generalized

Equation B Z D

x2 + y2 + 1 = 3xy

[
0 2
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + k3x + 1 = (3 + k3)xy

[
0 1
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + k3u + u2

[
1 0
0 2

]

x2 + y2 + k3x + k1y + 1 = (3 + k3 + k1)xy

[
0 1
−1 0

] {
Z1(u) = 1 + k1u + u2

Z2(u) = 1 + k3u + u2

[
2 0
0 2

]

x2 + y4 + 2x + 1 = 5xy2
[

0 1
−4 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y4 + ky2 + 2x + 1 = (5 + k)xy2
[

0 1
−2 0

] {
Z1(u) = 1 + ku + u2

Z2(u) = 1 + u

[
2 0
0 1

]

Table 2: Equations and corresponding triplets (B,Z, D).

cluster pattern CP(x,B,Z) with a substitution x1 = x2 = 1 gives the tree giving all positive
integer solutions to the corresponding equation (where we ignore exchange matrices in
cluster pattern and consider only clusters).

Apart from the cluster pattern induced by Theorem 17, we give the equation induced
by the cluster pattern of type A2, i.e. the cluster pattern determined by

B =

[
0 1
−1 0

]
,

{
Z1(u) = 1 + u,

Z2(u) = 1 + u,
D =

[
1 0
0 1

]
. (5.2)

This cluster pattern differs from the ones we have considered above in that it has finitely
many cluster variables. By computing the cluster variable according to the mutation rule

µ1(x1, x2) =

(
x2 + 1

x1
, x2

)
and µ2(x1, x2) =

(
x1,

x1 + 1

x2

)
,
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we see that clusters in the cluster pattern of type A2 are

(x1, x2),

(
x1,

x1 + 1

x2

)
,

(
x1 + x2 + 1

x1x2
,
x1 + 1

x2

)
,

(
x1 + x2 + 1

x1x2
,
x2 + 1

x1

)
,

(
x2,

x2 + 1

x1

)
,

(5.3)

(x2, x1),

(
x1 + 1

x2
, x1

)
,

(
x1 + 1

x2
,
x1 + x2 + 1

x1x2

)
,

(
x2 + 1

x1
,
x1 + x2 + 1

x1x2

)
,

(
x2 + 1

x1
, x2

)
in total. Therefore, we want to find an equation such that the five pairs

(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)

where 1 is substituted for x1 and x2 of (5.3), are all positive integer solutions.
The set consisting of cluster variables{

x1, x2,
x2 + 1

x1
,
x1 + x2 + 1

x1x2
,
x1 + 1

x2

}
appearing in (5.3) (it is called the Lyness 5-cycle) is invariant by the substitutions

(x1, x2) 7→
(
x2 + 1

x1
, x2

)
and (x1, x2) 7→

(
x1,

x1 + 1

x2

)
.

Therefore, we have the following proposition.

Proposition 22. Let f(a1, a2, a3, a4, a5) be a symmetric polynomial of five variables.
Then, the equation

f

(
x, y,

y + 1

x
,
x+ y + 1

xy
,
x+ 1

y

)
= f

(
x, y,

y + 1

x
,
x+ y + 1

xy
,
x+ 1

y

) ∣∣∣∣∣
x=y=1

(5.4)

has positive integer solutions

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

Furthermore, the following proposition also holds:

Proposition 23. If f(a1, a2, a3, a4, a5) = a1 + a2 + a3 + a4 + a5 in Proposition 22, then
all positive integer solutions to

x2 + y2 + 2x+ 2y + x2y + xy2 + 1 = 9xy, (5.5)

which is corresponding equation to (5.4), are

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).
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Proof. We set
g(x, y) = x2 + y2 + 2x+ 2y + x2y + xy2 + 1− 9xy.

It suffice to show that positive integer pairs (x, y) satisfying g(x, y) = 0 are given by

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

First, we will consider the case of x > y. If x = y, then we can see that the positive
solution to g(x, y) = 0 is only (x, y) = (1.1) immediately. We assume that x > y. By
considering the partial derivative of g in x direction, we have

∂g

∂x
= y2 + 2xy + 2x+ 2− 9y.

By using x > y, we have
∂g

∂x
(x, y) > 3y2 − 7y + 2.

Therefore, if x > y > 3, then we have
∂g

∂x
(x, y) > 0. On the other hand, by considering

the partial derivative of g in x direction, we have

∂g

∂y
= x2 + 2xy + 2y + 2− 9x =

(
x− 9

2

)2

+ 2xy + 2x− 73

4
.

Therefore, if x > y > 3, then we have
∂g

∂y
(x, y) > 0. Now, since g(4, 3) = 16 > 0, we have

g(x, y) > 0 when x and y are integer and x > y > 3. Second, we will consider the case of
y > x. By symmetry of g(x, y) for x and y, we have g(x, y) > 0 if x and y are integer and
y > x > 3. Therefore, the only possible pairs of integers that satisfy g(x, y) = 0 are

(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2).

Of these, g(3, 1) = g(1, 3) = 4, thus (x, y) = (1, 3), (3, 1) are not solutions. The other five
are all solutions according to Proposition 22.

Remark 24. In Proposition 23, even though f(a1, a2, a3, a4, a5) = a1a2a3a4a5, the equation
corresponding to (5.4) is the same as (5.5).

From the above, the cluster pattern of rank 2 for which the corresponding equation
is known is given in Table 3. In order to find the answer to Question 20 (2) about the
cluster patterns of rank 2, the first thing to do is to consider the following question:

Question 25. Are there any laws between the triplets (B,Z, D) and the equations given
in Table 3?
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Equation B Z D

x2 + y2 + 2x + 2y + x2y + xy2 + 1 = 9xy

[
0 1
−1 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + k3x + k1y + 1 = (3 + k3 + k1)xy

[
0 1
−1 0

] {
Z1(u) = 1 + k1u + u2

Z2(u) = 1 + k3u + u2

[
2 0
0 2

]

x2 + y2 + k3x + 1 = (3 + k3)xy

[
0 1
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + k3u + u2

[
1 0
0 2

]

x2 + y4 + ky2 + 2x + 1 = (5 + k)xy2
[

0 1
−2 0

] {
Z1(u) = 1 + ku + u2

Z2(u) = 1 + u

[
2 0
0 1

]

x2 + y4 + 2x + 1 = 5xy2
[

0 1
−4 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + 1 = 3xy

[
0 2
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

Table 3: Equations and corresponding triplets (B,Z, D).
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