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Abstract

It was proved by Scott that for every k ! 2, there exists a constant c(k) > 0
such that for every bipartite n-vertex graph G without isolated vertices, there exists
an induced subgraph H of order at least c(k)n such that degH(v) ≡ 1 (mod k) for
each v ∈ H. Scott conjectured that c(k) = Ω(1/k), which would be tight up to the
multiplicative constant. We confirm this conjecture.

Mathematics Subject Classifications: 05C07, 05C35

1 Introduction

Given a graph G and integers q > r ! 0, we define f(G, r, q) to be the maximum order of
an induced subgraph H of G where degH(v) ≡ r (mod q) for all v ∈ H (or if no such H
exists, we set f(G, r, q) = 0).

There are many questions and conjectures concerning the behavior of f(G, r, q) for
various G, r, q. An old unpublished result of Gallai in this area is that1 f(G, 0, 2) ! n/2
for every n-vertex graph (see [7, Excercise 5.17] for a proof). Further questions about the
behavior of f received attention around 20-30 years ago (see e.g., [2, 3, 9, 10]). And more
recently, this topic has had a renaissance (see e.g., [1, 5, 6, 8]).

This note will focus on an old result of Scott. For positive integer k, we define c(k)
to be infG{f(G, 1, k)/|G|} where G ranges over all bipartite graphs with δ(G) ! 1. The
following was proved by Scott:

1Actually what Gallai proved was slightly stronger. He showed that for each graph G, we can partition
V (G) into two parts A,B so that degG[A](v) ≡ 0 (mod 2) (respectively degG[B](v) ≡ 0 (mod 2)) for each
v ∈ A (respectively v ∈ B).
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Theorem 1 ([10, Lemma 8]). Let k ! 2. Then

1/(2k + k + 1) " c(k) " 1/k.

Scott observed that a slightly more careful argument could further show that c(k) =

Ω
!

1
k2 log k

"
.

In this note we give an improved lower bound to c(k) which is optimal up to the
(implied) multiplicative constant.

Theorem 2. Let k ! 2. Then c(k) = Ω(1/k).

This is done by taking the improved argument suggested by Scott, and then applying a
dyadic pigeonhole argument which was previously overlooked.

2 Proof of Theorem 2

We will need the following result on the mixing time of random walks modulo k.

Lemma 3. Let Xi be i.i.d. random variables that sample {0, 1} uniformly at random. If

N ! k3, then2 P
!#N

i=1 Xi ≡ 1 (mod k)
"
! (1− ok(1))/k.

Lemma 3 is a mild corollary of several known results, and we note k3 could be replaced
with k2 log k (or any function which is ω(k2)).

For convenience, a fully elementary proof of Lemma 3 is provided in Appendix A.

In [10], when Scott outlined how to prove c(k) ! Ω
!

1
k2 log k

"
, he noted that Lemma 3

(the key to the improvement) can be derived by slightly modifying the argument in [4,
Theorem 2 of Chapter 3]. These appropriate modifications now appear in [5]. Namely,
the interested reader can confirm that Lemma 3 follows from the proof3 of [5, Lemma 2.3].
Both of these proofs rely on discrete Fourier Analysis.

We now proceed to the main proof.

Proof of Theorem 2. Let G be an n-vertex bipartite graph with δ(G) ! 1, and let V1, V2

bipartition G with |V1| ! |V2|. We shall write c1, c2 to denote small positive quantities
which will be determined later (it would suffice to take c1 = 1/4, c2 = 1/2, but for clarity
and a slightly better constant we will only consider their values at the end of the proof
and shall have them depend slightly on k). Our proof splits into three cases.

We take W1 ⊂ V2 to be a minimal set satisfying |N(v) ∩W1| > 0 for all v ∈ V1 (i.e.,
W1 is a minimal dominating set of V1). By minimality of W1, for each w ∈ W1 there must
exist vw ∈ V1 where N(vw) ∩ W1 = {w}. Let S1 = {vw : w ∈ W1}. We conclude that
W1 ∪ S1 induces a matching in G, proving that f(G, 1, k) ! 2|W1|.

Hence, we will be done if |W1| ! c1|V1|/k (this is “Case 1”). So we continue assuming
|W1| < c1|V1|/k.

2Throughout this paper, we write ok(1) to denote quantities that tend to zero as k → ∞.
3In [5], the statement of their lemma hides some constants which are necessary to verify our statement

of Lemma 3.
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For 2 " i " k−1, we inductively create setsWi, Si. We takeWi ⊂ Wi−1 to be a minimal

dominating set of V1 \
!$i−1

j=1 Sj

"
. And like in the above, we take Si ⊂ V1 \

!$i−1
j=1 Sj

"
so

that Wi ∪ Si induces a matching in G.

Let T = V1 \
!$k−1

i=1 Si

"
. We have

|T | = |V1|−
k−1%

i=1

|Si|

= |V1|−
k−1%

i=1

|Wi|

! |V1|− (k − 1)|W1|
! (1− c1)|V1|.

Next, let T ∗ = {v ∈ T : |N(v) ∩ Wk−1| ! k3}. Supposing that |T ∗| ! c2|V1| (this is
“Case 2”), we will deduce that f(G, 1, k) ! (c2 − ok(1))|V1|/k.

Indeed, let U ⊂ Wk−1 be a random subset where each element is included (inde-
pendently) with probability 1/2. We set TU = {v ∈ T : |N(v) ∩ U | ≡ 1 (mod k)}. By
Lemma 3, we have that P(v ∈ TU) ! (1−ok(1))/k for each v ∈ T ∗. Thus by linearity of ex-
pectation we may fix some U ⊂ Wk−1 where |TU | ! |T ∗|(1−ok(1))/k ! (c2−ok(1))|V1|/k.
Next choosing S ⊂

$k−1
i=1 Si so that |N(u)∩(TU ∪S)| ≡ 1 (mod k) for each u ∈ U , we have

that S ∪U ∪ TU induces a subgraph in G demonstrating that f(G, 1, k) ! |S ∪U ∪ TU | !
|TU | ! (c2 − ok(1))|V1|/k.

Otherwise, we must have that T \ T ∗, the set of v ∈ T where |N(v)∩Wk−1| < k3, has
> (1 − c1 − c2)|V1| elements (this is “Case 3”). By dyadic pigeonhole, there exists some
0 " p " log(k3) = O(log k) so that

|{v ∈ T : 2p " |N(v) ∩Wk−1| < 2p+1}| ! |T \ T ∗|/O(log k)

! (1− c1 − c2)|V1|/O(log k).

Take T ′ = {v ∈ T : 2p " |N(v) ∩Wk−1| < 2p+1} to be this large set.
We let U ⊂ Wk−1 be a random subset so that each element is included (independently)

with probability 1/2p. Defining TU as before, some casework4 shows P(v ∈ TU) ! e−2 for
each v ∈ T ′. Hence, by linearity of expectation, we may fix U so that |TU | ! e−2|T ′|.
As above we may find S ⊂

$k−1
i=1 Si so that S ∪ U ∪ TU demonstrates that f(G, 1, k) !

|S ∪ U ∪ TU | ! e−2(1− c1 − c2)|V1|/O(log k).
Now fix any sufficiently small ε > 0. Letting c1 = 1/3− ε/2, c2 = 2/3− ε, we get that

each of the first two cases imply that f(G, 1, k) ! (2/3 − ε − ok(1))|V1|/k ! (1/3 − ε −
ok(1))n/k (since |V1| ! |V2|). Meanwhile with ε fixed, the third case implies f(G, 1, k) =
Ω!(n/ log k). Taking ε ↓ 0 as k → ∞ we have that f(G, 1, k) ! (1/3− ok(1))n/k.

4If p = 0, then U = Wk−1 and this probability is one. Otherwise this probability is at least!|N(v)∩Wk−1|
1

"
(1− 2−p)|N(v)∩Wk−1|2−p ! (1− 2−p)2

p+1−1 ! e−2.
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As a closing remark, we note it is still open whether c(k) = 1/k for all k (as noted
in [10], considering Kk,k demonstrates that c(k) " 1/k). Even for k = 2, the best known
bounds are 1/4 " c(2) " 1/2, with the lower bound coming from [9, Theorem 2].

A An elementary proof of our lemma

Throughout, we let Bin(N, 1/2) denote the sum of N i.i.d. random variables that uni-
formly sample {0, 1}. For integers N, i, k, r, we let

pN,i := P(Bin(N, 1/2) = i) =

&
N

i

'
2−N ,

PN,k,r := P(Bin(N, 1/2) ≡ r (mod k)).

Also, for integer N we let mN := maxi{pN,i} =
(

N
⌊N/2⌋

)
2−N . A standard application of

Stirling’s formula gives mN " 1/
√
N for sufficiently large N (in fact mN

√
N →

*
2/π).

We will first show the following.

Proposition 4. For all N, k, r, r′, |PN,k,r − PN,k,r′ | " 2mN .

Proof. First, we note that |i − N/2| < |i′ − N/2| implies pN,i > pN,i′ (since
(
N
x

)
is a

concave function of x on the domain [0, N ], which is symmetric and achieves it maximum
at x = N/2). Hence, writing I(E) to denote the indicator of an event E, we get

|PN,k,r − PN,k,r′ | "

++++++

N/2%

i=1

pN,i(I(i ≡ r (mod k))− I(i ≡ r′ (mod k)))

++++++

+

++++++

N/2%

i=1

pN,N−i(I(N − i ≡ r (mod k))− I(N − i ≡ r′ (mod k)))

++++++

" 2mN

(here the last step follows from the fact that the non-zero summands of each sum alternate
in sign, are increasing in absolute value, and are bounded in absolute value by mN).

We can now establish the desired lemma.

Proof of Lemma 3. For integers N, k, let MN,k = minr{PN,k,r}.
Obviously, we always have PN,k,1 ! MN,k. So it suffices to show that for N ! k3, that

MN,k ! (1− ok(1))/k.
By Proposition 4, we see that

1 =
k%

r=1

PN,k,r " k(MN,k + 2mN),
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hence
MN,k " (1− 2kmN)/k.

Assuming N ! k3 with k sufficiently large, we have

MN,k " (1− 2/
√
k)/k = (1− ok(1))/k

as desired.
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