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Abstract

In this paper, we disprove the claimed characterisation of graphs with equal
independence and annihilation number as proposed by Larson and Pepper [Electron.
J. Comb. 2011]. The annihilation number of a graph is defined as the largest integer
p such that the sum of its smallest p degrees is greater than or equal to its size, i.e.,
its number of edges. Larson and Pepper claimed that for a given graph G = (V,E),
its independence number α(G) equals its annihilation number a(G) if and only if

(1) a(G) > n
2 : α′(G) = a(G)

(2) a(G) = n−1
2 : α′(G− v) = a(G) for some v ∈ V.

This paper provides series of counterexamples with an arbitrarily large number of
vertices, an arbitrarily large number of components, an arbitrarily large indepen-
dence number, and an arbitrarily large difference between the critical and the regular
independence number. Furthermore, we identify the error in the proof of Larson and
Pepper’s theorem. Yet, we show that the theorem still holds for bipartite graphs
and connected claw-free graphs.
Mathematics Subject Classifications: 05C69

1 Introduction

Let G = (V,E) be a finite and simple graph with vertex set V and edge set E. The
order of G is defined as |V | and denoted by n. The degree sequence of a given graph G
is defined as the decreasingly ordered sequence of the degrees in G, denoted by π(G) =
π = (d1 > · · · > dn).

For a vertex v ∈ V , we denote its neighbourhood in G by NG(v) and define its degree
in G by degG(v) := |NG(v)|. If a neighbourhood set clearly refers to a graph G, we omit
the subscript G. Additionally, for V ′ ⊆ V , we denote N (V ′) =

⋃
v∈V ′
N (v).
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A subset I ⊆ V of pairwise non-adjacent vertices is called an independent set. We call
an independent set of maximum size I in G a maximum independent set and define the
independence number of G as α(G) := |I|. Further, a critical independent set is defined
as an independent set Ic ⊆ V that maximises |Ic| − |N (Ic)| among all independent sets
in G. If a critical independent set |Ic| is of maximum cardinality, we call it a maximum
critical independent set and the critical independence number of G is then defined as
α′(G) := |Ic|. Consequently, it follows that α′(G) 6 α(G).

In 2004, Pepper introduced the annihilation number of a graph as an upper bound
on its independence number [6, 7]. Given a degree sequence π = (d1 > · · · > dn), its
annihilation number a(π) is defined as

a(π) := max
p∈N

{
n−p∑
i=1

di >
n∑

i=n−p+1

di

}
.

For any realisation G of π, the annihilation number of G is a(G) := a(π). Therefore,

a(G) can equivalently be defined as the largest integer p such that
n∑

i=n−p+1

di 6 |E|.

Again, if the independence, critical independence, or annihilation number clearly refers
to a certain graph, we simplify the notation by omitting the graph and using only α, α′,
and a, respectively.

In [3], Larson and Pepper present the following characterisation of graphs with equal
independence number α and annihilation number a using the critical independence num-
ber α′.

Theorem 1. [3] Let G = (V,E) be a graph on n vertices. Then

α(G) = a(G) if and only if
(1) a(G) > n

2
: α′(G) = a(G)

(2) a(G) = n−1
2

: α′(G− v) = a(G) for some v ∈ V.

Since the critical independence number and the annihilation number can both be calcu-
lated in polynomial time, this characterisation would yield a polynomial-time algorithm
to verify whether a graph meets the upper bound on the independence number.

We disprove Theorem 1 by creating various series of counterexamples in Section 2, and
identify the error in the proof in Section 3. However, in Section 4, we show that the
theorem holds true for restricted graph classes.
Before that, we note that the “if”-direction is still true.

Lemma 2. Let G = (V,E) be a graph on n vertices. Then

α(G) = a(G) if
(1) a(G) > n

2
: α′(G) = a(G)

(2) a(G) = n−1
2

: α′(G− v) = a(G) for some v ∈ V.

Proof. Since α′(G) 6 α(G) 6 a(G) for all graphs G, in case (1), we directly obtain
α(G) = a(G). In case (2), we have a(G) = α′(G− v) 6 α(G− v) 6 α(G) 6 a(G). Thus,
all inequalities hold with equality and it follows that α(G) = a(G).
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2 Counterexamples

In the following, we provide various series of counterexamples with an arbitrarily large
number of vertices, an arbitrarily large number of components, an arbitrarily large inde-
pendence number, and an arbitrarily large difference between the critical and the regular
independence number. The smallest counterexample consists of a cycle of length three
accompanied by a singleton, i.e., an isolated vertex, as shown in Figure 1. Filled vertices
indicate a maximum independence set.

(2, 2, 2, 0)

Figure 1: C3 and a singleton with α = a = 2 > n
2
while α′ = 1.

Expanding on this construction, we can now generate counterexamples with an arbitrary
number of components by adding further singletons: For graphs consisting of a cycle of
length three and t singletons, we obtain n = t + 3 and α = a = t + 1 > n

2
since each

singleton yields an additional vertex in every maximum independent and increases the
annihilation number by one. However, we have α′ = t.

A further counterexample is the graph consisting of a cycle of length five with two
chords and a singleton, as in Figure 2.

(3, 3, 3, 3, 2, 0)

Figure 2: For a C5 with two chords and a singleton, we obtain α = a = 3 > n
2
but α′ = 1.

Counterexamples do not have to contain singletons: Consider the degree sequence of an
odd cycle C2k+1, where k ∈ N, combined with a path of odd length P2l+1, where l ∈ N, is(
22(k+l−1), 12

)
. Consequently, the independence number equals the annihilation number

α = a = k + l + 1 = n
2
, whereas the critical independence number α′ = l + 1 can be

arbitrarily smaller.
Furthermore, we can also provide connected counterexamples, e.g., the graph shown

in Figure 3.
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(3, 3, 3, 3, 3, 3, 1, 1)

Figure 3: This graph with n = 8 fulfils α = a = 4 > n
2
, while α′ = 2.

To obtain counterexamples in which the difference between the critical independence
number and the annihilation number becomes arbitrarily large, we can generalise the
example above as follows: Starting with C2k+1 = {v1, . . . , v2k+1} for k > 2, we add chords
{vi, vi+k} for i ∈ {1, . . . , k} and a P3 whose central vertex is connected to v2k+1. For
k = 2, the constructed graph corresponds to the one displayed in Figure 3; for k = 3 and
k = 4, the graphs are shown in Figure 4 and Figure 5, respectively. By design, all vertices
have degree three except the two end vertices of the P3, which we denote by x1 and x2.
Thus, the degree sequence of this connected graph with n = 2k+4 is (32k+2, 1, 1), yielding
a = k + 2.
Clearly, any maximum independent set contains x1, x2 and at most k vertices on the
cycle, i.e., α 6 k + 2. To prove α > k + 2, we consider the cases k ≡2 0 and k ≡2 1.
In the first case, we construct the independent set

I := {x1, x2, v2k+1, v2, v4, . . . , vk︸ ︷︷ ︸
k
2

, vk+3, vk+5, . . . , v2k−1︸ ︷︷ ︸
k−2
2

}.

And in the second case, we construct the independent set

I := {x1, x2, v2k+1, v2, v4, . . . , vk−1︸ ︷︷ ︸
k−1
2

, vk+1, vk+3, . . . , v2k−2︸ ︷︷ ︸
k−1
2

}.

In both cases, |I| = k + 2 6 α; hence, we have α = k + 2 = a, whereas α′ = 2. Now,
α− α′ = k can become arbitrarily large.

(3, 3, 3, 3, 3, 3, 3, 3, 1, 1)

Figure 4: For k = 3, we get n = 10 and α = a = 5 > n
2
, while α′ = 2.
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(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1)

Figure 5: For k = 4, we get n = 12 and α = a = 6 > n
2
, while α′ = 2.

3 Error in the proof

The error in the proof in [3] occurs in the specific case, whereG is not empty, a(G) > n
2
, the

neighbourhood of the maximum critical independent set J is empty and a(G−J) < n(G−J)
2

.
Larson and Pepper use the inductive assumption on G−J+u for a vertex u ∈ J . However,
for J = {u}, meaning |J | = 1, we obtain G − J + u = G and the inductive assumption
cannot be applied. Since the theorem is proven through induction, it remains unclear
whether the given proof is salvageable even for restricted graph classes. As a consequence,
the proof of the following corollary (Theorem 3.3 in [3]) is invalid as well: Larson and
Pepper use the equality of independence and annihilation number to characterise Kőnig-
Egerváry graphs, i.e., graphs fulfilling α(G)+µ(G) = n, where µ(G) denotes the maximum
matching number of G.

Corollary 3. [3] For a graph G with a(G) > n
2
, α(G) = a(G) if and only if G is a Kőnig-

Egerváry graph and every maximum independent set of G is a maximum annihilating
set.

Consider for example the graphs constructed in Section 2 (see Figure 3, 4, 5) with n =
2k+4 and α = a = k+2 > n

2
. The matching number of such a graph is µ = k+1. Thus,

α + µ < n and the graph is not Kőnig-Egerváry. This also implies that the “only if”-part
of Conjecture 3.4 in [3] does not hold true.

Conjecture 4. [3] For a graph G with a > n
2
, α = a if and only if G is a Kőnig-Egerváry

graph and every maximum independent set of G is a maximal annihilating set.

In [4] and [5], the authors provide counterexamples for the “if”-direction, but show the
“only if”-direction using the just disproved results by Larson and Pepper.

It remains to retrace in which papers the theorems are used beyond the above men-
tioned and to review whether the subsequent results still hold.
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4 Theorem for bipartite graphs and connected claw-free graphs

It is striking that all counterexamples mentioned above are either non-connected or con-
tain a claw, i.e., an induced K1,3, and an odd cycle. In fact, it turns out that the theorem
still holds for bipartite graphs and connected claw-free graphs.

Note that for bipartite graphs the case a = n−1
2

cannot occur. Thus, for this graph class
the following theorem is equivalent to Theorem 1.

Theorem 5. Let G be a bipartite graph. Then,

α(G) = a(G) if and only if α′(G) = a(G).

Proof. As seen in Lemma 2, the “if”-direction holds true. Hence, it remains to prove that
if G is bipartite, the equality α = a implies α′ = a. For bipartite graphs, the critical
independence number equals the independence number [2], and therefore, the implication
is true.

To prove the theorem for claw-free graphs, we need the following lemma.

Lemma 6. Let G = (V,E) be connected with a(G) = n−1
2

. Then there exists a vertex
v ∈ V that does not occur in every maximum independent sets while G−v is still connected.

Proof. Let I ⊆ V be a maximum independent set in G. Then V = I ·∪ N (I). Consider
a path P = {v0, . . . , vk} of maximum length in G. If v0 6∈ I, the removal of v0 preserves
the connectedness of G since all neighbours of v0 have to be in P ; otherwise, P was
not a path of maximum length. If v0 ∈ I, then v1 6∈ I. Note that a = n−1

2
implies∑

v∈X deg(v) <
∑

v∈Y deg(v) for all X, Y ⊆ V , X ∩Y = ∅ with |X| < |Y |. Therefore, the
minimum degree is at least two and thus v0 has at least one additional neighbour (apart
from v1), which has to be in P , as seen above. Now assume that G− v1 is not connected.
Then there exists a neighbour w of v1 that is not adjacent to any other vertex of P . Since
the minimum degree is at least two, it follows that w has another neighbour z 6∈ P . But
this contradicts the assumption that P is a path of maximum length since we obtain a
longer path by replacing v0 with w and z.

Theorem 7. Let G be a connected claw-free graph. Then

α(G) = a(G) if and only if
(1) a(G) > n

2
: α′(G) = a(G)

(2) a(G) = n−1
2

: α′(G− v) = a(G) for some v ∈ V.

Proof. By Lemma 2, it suffices to consider the “only if”-direction for claw-free graphs
G = (V,E).
First, let α(G) = a(G) > n

2
and suppose α′(G) < a(G). Then there exists a maximum

critical independent set Ic ⊆ V with |Ic| − |N (Ic)| > 0 as well as |Ic| < |I| and |Ic| −
|N (Ic)| > |I| − |N (I)| for all maximum independent sets I ⊆ V . This implies |Ic| > 2,
|N (Ic)| > 1 and for R := V \ (Ic ∪N (Ic)), we get |R| > 3. By assumption, G is claw-free
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and Ic is an independent set. Thus, each vertex in N (Ic) can have at most two neighbours
in Ic.
We consider the bipartite graph G̃ := (Ic∪N (Ic), Ẽ) with Ẽ := {uv ∈ E | u ∈ N (Ic), v ∈
Ic}. Any connected component K of G̃ falls naturally into one of two types; that is
|K ∩ Ic| 6 |K ∩N (Ic)| or |K ∩ Ic| > |K ∩N (Ic)|. We call the former Type I components
and the latter Type II components.
Note that there exists at least one component of each type: Since |Ic| − |N (Ic)| > 0,
there exists a vertex in N (Ic) that is adjacent to exactly two vertices in Ic. And as G is
claw-free, this vertex cannot have a neighbour in R. Additionally, since G is connected,
there is a vertex in N (Ic) that is adjacent to exactly one vertex in Ic and at least one
vertex in R.
In a Type II component K, we have at least |K ∩ Ic|+ |K ∩ N (Ic)| − 1 > 2|K ∩ N (Ic)|
edges. Therefore, all vertices of K in N (Ic) have degree two in G̃; otherwise, there would
exist a vertex in N (Ic) of degree three, contradicting the claw-freeness. Furthermore,
Type II components cannot contain vertices adjacent to R in G; otherwise, G would not
be claw-free. Therefore, at least one Type II component K2 has to be connected to a
Type I component K1 by an edge between two vertices in N (Ic). Let w1 ∈ K1 ∩ N (Ic)
and w2 ∈ K2 ∩ N (Ic) be these vertices with w1w2 ∈ E. However, since w2 has already
two non-connected neighbours within K2, this contradicts the claw-freeness of G. Hence,
the claim is proven to be true for a(G) > n

2
.

Now, let α(G) = a(G) = n−1
2
. By Lemma 6, there exists a vertex v ∈ V that does not

occur in every maximum independent set, while G− v is still connected. Hence, we have
α(G − v) = α(G) = a(G) = n−1

2
. As α(G − v) 6 a(G − v) 6 a(G), it follows that

α(G−v) = a(G−v) = n−1
2
. Since G is assumed to be claw-free, G−v is claw-free as well.

Further, a(G− v) > n(G−v)
2

and therefore, we can apply the first case to G− v and obtain
α′(G− v) = a(G− v) = n−1

2
= a(G). This completes the proof for claw-free graphs.

Note that Sbihi [8] has already shown in 1980 that maximum independent sets can be
found in claw-free graphs in polynomial time. The proof uses the blossom algorithm by
Edmonds [1] from 1965, which yields maximum matchings in polynomial time for any
graph: Any maximum matching in a graph translates to a maximum independent set in
the corresponding line graph and all claw-free graphs can be considered as a line graph.

It remains open whether the theorem holds for other restricted graph classes or for
arbitrary graphs with a = n−1

2
. Of particular interest in this regard are graph classes

for which maximum independent sets cannot be found in polynomial time. Rauch and
Rautenbach have recently shown in [9] that for a given graph G it can be determined in
polynomial time whether α(G) = a(G).
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