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Abstract

Buryak, Feigin and Nakajima computed a generating function for a family of
partition statistics by using the geometry of the Z/cZ fixed point sets in the Hilbert
scheme of points on C2. Loehr and Warrington had already shown how a similar ob-
servation by Haiman using the geometry of the Hilbert scheme of points on C2 could
be made purely combinatorial. We extend Loehr and Warrington’s techniques to
also account for cores and quotients. In particular, we construct a multigraph Mr,s,c

that is a direct refinement of Loehr and Warrington’s multigraphs Mr,s, retains the
relevant partition data, and is preserved by an involution Ir,s,c which we use to prove
the equidistribution of a family of partition statistics. As a consequence, we obtain
a purely combinatorial proof of Buryak, Feigin, and Nakajima’s result.

More precisely, we define a family of partition statistics
{
h+
x,c, x ∈ (0,∞]

}
and

give a combinatorial proof that for all x and all positive integers c,∑
q|λ|th

+
x,c(λ) = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct
,

where the sum ranges over all partitions λ with c-core µ.

Mathematics Subject Classifications: 05A17, 05E14.

1 Introduction

A partition λ of a positive integer n is a non-increasing sequence of positive integers
λ1 > λ2 > . . . > λl such that λ1 + · · ·+ λl = n. We write |λ| = n. We represent partitions
as Young diagrams, informally by drawing λi unit squares in a row, left to right, starting
with a square with bottom left corner (0, i− 1).

For a square � in a Young diagram, a(�) is the number of squares to the right of �
in the same row, and l(�) is the number of squares above � in the same column. For
example, the square with bottom left corner (1, 0) in Figure 1 has a(�) = 2, l(�) = 1.
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Figure 1: The Young diagram for the partition (4, 2, 1) of 7.

We also define h(�) = a(�) + l(�) + 1 and let hr,s(λ) count the number of squares in the
Young diagram of λ such that (r + s) | h(�) and rl(�) = s(a(�) + 1).

Buryak, Feigin, and Nakajima gave a geometric proof of the following [3, Corollary
1.3] ∑

λ∈Par

qhr,s(λ)t|λ| =
∏
i>1
r+s-i

1

1− qi
∏
i>1

1

1− qi(r+s)t
(1)

where Par denotes the set of all partitions. One result of this paper is a purely combina-
torial proof of the same result.

We now explain the geometric significance of generating function (1). The Hilbert
Scheme of n points on C2, Hilbn(C2), parametrises the ideals I ⊂ C[x, y] such that
dimC (C[x, y]/I) = n. Hilbn(C2) admits a torus action by lifting the (C∗)2 action on C2

given by
(t1, t2) · (x, y) = (t1x, t2y) (2)

to the action on ideals I ⊂ C[x, y] given by

(t1, t2) · I = {p(t−1
1 x, t−1

2 y) : p(x, y) ∈ I}. (3)

Let
Γm =

〈(
e

2πi
m , e

−2πi
m

)〉
(4)

be a finite subgroup of C2 of order m and let Tr,s be the one-parameter subtorus of C2

given by
Tr,s = {(tr, ts) : t ∈ C∗}. (5)

Let HBM
∗ (X;Q) denote the Borel-Moore homology of X with rational coefficients and

let
PBM
q (X) =

∑
i>0

dimHBM
i (X;Q)q

i
2 . (6)

Buryak, Feigin and Nakajima [3, Theorem 1.2] proved that, if r, s are non-negative
integers with r + s > 1,∑

n>0

PBM
q

(
Hilbn(C2)Γr+s×Tr,s

)
tn =

∏
i>1
r+s-i

1

1− qi
∏
i>1

1

1− qi(r+s)t
, (7)

where Hilbn(C2)Tr,s×Γr+s is the fixed point locus of Hilbn(C2) under the action of
Tr,s × Γr+s. The proof is split into two results. One [3, Lemma 3.1] shows that the left
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hand side of (7) is dependent only on r + s. The other [3, Lemma 3.2] computes the
left hand side of (7) in the case s = 0. Broadly speaking, Buryak, Feigin, and Nakajima
compute the dimension of the Bia lynicki-Birula cells when the “slope” of the acting one
parameter torus is very steep, and prove that the slope itself does not affect the eigenspace.

Finally, using the methods of [2], a cell decomposition of Hilbn(C2)Tr,s×Γr+s shows that
the left hand side of (7) in the Grothendieck ring of varieties is given by∑

λ∈Par

qhr,s(λ)t|λ|. (8)

In [7], Loehr and Warrington gave a bijective proof that a partition statistic h+
x is

independent of the parameter x. In a similar vein to the above, Haiman observed that
h+
x accounts for the distribution of the dimension of the Bia lynicki-Birula cells associated

to the action of (C∗)2 on Hilbn(C2), i.e. the case when Γm is the trivial group.
We are interested in

Question 1. Is there a bijection proving (1)?

To answer this question, we also ask the following.

Question 2. Can we use Loehr and Warrington’s methods to produce a related bijection
that preserves the core of a partition?

We provide an affirmative answer to Question 2, and use the bijection we produce to
provide a partial answer to Question 1. In particular, we define a partition statistic h+

x,c

where x ∈ [0,∞) and c is a positive integer, and h+
x,c(λ) counts the number of squares

� ∈ λ such that both

• the hook length h(�) is divisible by c, and

• if a(�) and l(�) denote the size of the arm and leg of � respectively,

a(�)

l(�) + 1
6 x <

a(�) + 1

l(�)
. (9)

In the case c = 1, we recover Loehr and Warrington’s statistic h+
x . We then exhibit a

bijection proving a refinement (Theorem 46) of [3, Lemma 3.1]. The key ingredient is a
bijection at rational slope showing that h+

x,c is equidistributed over partitions with a fixed
c-core with the statistic h−x,c, counting boxes � in the Young diagram such that both

• the hook length h(�) is divisible by c, and

• if a(�) and l(�) denote the size of the arm and leg of � respectively,

a(�)

l(�) + 1
< x 6

a(�) + 1

l(�)
. (10)
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Theorem 47. For all positive rational numbers x and all integers n > 0,∑
th

+
x,c(λ) =

∑
th
−
x,c(λ)

where both sums range over partitions λ of n with a fixed c-core µ.

To do so, we adapt Loehr and Warrington’s construction of a bijection Ir,s [7] to give a
new bijection Ir,s,c which preserves the c-core of a partition and “picks out” whether or not
c divides the hook length of a cell contributing to a partition statistic. In the case c = 1,
Ir,s,c specialises to Ir,s. To construct Ir,s,c, we refine Loehr and Warrington’s multigraph
Mr,s to a multigraph Mr,s,c which also sees the c-core of a partition. In order to do so,
we recast the c-abacus construction first introduced in [4] in terms of complete circuits of
multigraphs and define an appropriate notion of homomorphism, taking Mr,s,c to be the
product of the c-abacus and Mr,s with respect to these homomorphisms.

We then give a combinatorial proof of a result (Theorem 44), computing the dis-
tribution of h+

0,c. This result in particular implies [3, Lemma 3.2]. Whilst our proof is
combinatorial, it is not bijective, as we use a multi-counting argument. The map we
define was previously defined by Walsh and Waarnar [9, §6].

Theorem 44. For all x in [0,∞),∑
q|λ|th

+
0,c(λ) = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct

where the sum ranges over all partitions λ with c-core µ, henceforth denoted Parcµ .

Finally, our main theorem (Theorem 46) uses both Theorem 44 and the bijection Ir,s,c
to compute the following distribution, and we explain how (1) follows.

Theorem 46. For all x in [0,∞),∑
q|λ|th

+
x,c(λ) = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct

where the sum is taken over all partitions λ ∈ Parcµ.

1.1 Organisation of the paper

Section 2 recalls some definitions from partition combinatorics. In particular, we recall
the abacus construction (the standard reference for this is [5, §2.7]) and recall some basic
generating functions. The section builds up to proving Theorem 44, which uses a bijection
introduced in [9] to compute the distribution of h+

0,c over Parcµ, the set of partitions with
c-core µ.

Section 3 defines the main partition statistics of interest, midx,c, crit−x,c, crit+
x,c, h

+
x,c and

h−x,c where h±x,c = midx,c + crit±x,c. Then, we introduce our main theorem, Theorem 46. In
view of Theorem 44, it remains to prove that the left hand side is independent of x. An

the electronic journal of combinatorics 30(3) (2023), #P3.28 4



argument analogous to that in [7] is then used to show that the independence of the left
hand side from x is implied by a symmetry property when x is rational,∑

λ∈Parcµ

q|λ|wh
+
x,c(λ)yh

−
x,c(λ) =

∑
λ∈Parcµ

q|λ|wh
−
x,c(λ)yh

+
x,c(λ). (11)

We use this to give a set of criteria that constitute a sufficient condition for a bijection to
prove Theorem 46 in Proposition 50. Finally, the section concludes with a proof that the
main result of [3] is a consequence of Theorem 46.

Section 4 defines the multigraph Mr,s,c(λ) corresponding to a rational x = r
s

and
positive integer c, defines an ordering <r,s,c on partitions and multigraphs, and a special
set of partitions λr,s,k. It then goes on to outline the structure of our proofs that Mr,s,c

remembers partition data. Our proof is structured somewhat differently to Loehr and
Warrington’s proofs that Mr,s remembers partition data in [7]. In particular, we do not
prove formulae in terms of Mr,s,c for any partition statistics except for crit+

x,c + crit−x,c.
Instead, the section works towards providing an inductive framework to prove that Mr,s,c

remembers partition data by studying how taking successor at the level of partitions
and multigraphs are related, culminating in Proposition 75. One result of this section
(Proposition 65) is that the map λ 7→ Mr,s,c(λ) is injective at the λr,s,k, so the map does
not lose any data at all at these points, allowing the λr,s,k form a family of base cases.
Having outlined the key principles behind the proofs, we then defer the technical checks
to Section 6.

Section 5 defines involutions Ir,s,c : Parcµ → Parcµ that preserve multigraphs Mr,s,c(λ).
Section 6 studies how each statistic of interest in Proposition 50 changes when taking

successor with respect to the ordering <r,s,c, in particular using Proposition 75 to prove
that the map λ 7→Mr,s,c(λ) remembers the statistics midx,c(λ) and crit+

x,c + crit−x,c. It also
proves that Ir,s,c exchanges the statistics crit+

x,c and crit−x,c. Together with the results of
Section 4, this completes a combinatorial proof of Theorem 46.

2 Background: partitions, cores, quotients

In this section, we recall first definitions in partition combinatorics, including the abacus
construction, cores and quotients. The standard reference for the abacus construction
is [5, §2.7], the abacus was first introduced in [4], cores in [8] and quotients in [6]. We
take a nonstandard view of the c-core, and describe it as an equivalence class of complete
circuits of a directed multigraph Mc. The language we use to describe the abacus is
also nonstandard, but the construction is equivalent. We take this approach so that
we have descriptions of Loehr and Warrington’s construction in [7] and the c-core in
terms of directed multigraphs, which allows us to formulate a simultaneous refinement of
the two in Section 4. Once we have recalled this theory, we will recall a few standard
generating functions and define the map Gc previously defined in [9] and use these to give
a combinatorial proof of Theorem 44, which forms our base case.

Definition 3 (Partition,Young diagram). A partition of an integer n > 0 is a sequence
of non-increasing positive integers λ1 > λ2 > . . . > λt with sum n. The size of λ, denoted
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|λ|, is n and the length of λ is the number of summands, written l(λ) = t. The Young
diagram of λ consists of t rows of 1 × 1 boxes � in R2, with λi boxes in the ith row for
each 1 6 i 6 t. The bottom left corner of the diagram sits at (0, 0).

Example 4. The partition µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) of 56 has the diagram given in
Figure 2.

Informally, the boundary of a partition λ is the bi-infinite path traversing the y-axis
from +∞ until it hits a box of the partition, then follows the edge of the Young diagram
until it hits the x-axis, before traversing the x-axis to +∞. We split the boundary up
into unit steps between lattice points, and view it as a directed multigraph where edges
are additionally assigned a label indicating if they are south or east.

Definition 5 (SE directed multigraph). A SE directed multigraph M = (V,E, s, t, d)
consists of a vertex set V , an edge set E, and three maps s : E → V, t : E → V and
d : E → {South,East}, called source, target, and direction respectively. We say the edge
e departs from the vertex v if s(e) = v and we say that e arrives at the vertex w if
t(e) = w. We call e a south edge if d(e) = South and an east edge if d(e) = East. We
sometimes abbreviate South to S and East to E in contexts where there is no danger of
confusion with the edge set.

Definition 6 (Boundary graph). The boundary graph b(λ) of a partition λ is an SE
directed multigraph. The edge set is defined as follows. For natural numbers x, y there is
a south edge e with s(e) = (x, y + 1), t(e) = (x, y) if either

• x = 0 and y > l(λ), or

• x > 0 and λy+1 = x.

There is an east edge e with s(e) = (x, y) and t(e) = (x+ 1, y) if either

• y = 0 and x > λ1, or

• y > 0 and λy+1 6 x < λy.

The vertex set V (b(λ)) is the union of sources and targets of the edges.

Example 7. Let µ = (12, 12, 10, 8, 7, 4, 1, 1, 1). The boundary graph of µ is given in Fig-
ure 2, the south edges being the downward arrows and the east edges being the rightward
arrows.

Note that for any edge e in the boundary graph, the value of x− y at the target of e
is one greater than at the source, because taking a unit step south or east increases the
value of x− y by 1.

So, the value of x− y at the target of an edge indexes an Eulerian tour, or complete
circuit, of b(λ). For clarity, we recall the definition of a complete circuit.
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Figure 2: The Young diagram and boundary graph of (12, 12, 10, 8, 7, 4, 1, 1, 1).

Definition 8 (Complete circuit). Given a directed multigraph M , a complete circuit of
M is an ordering of E(M) such that if ei and ei+1 are consecutive with respect to the
ordering, then there is a vertex v ∈ V (M) such that t(ei) = s(ei+1).

Definition 9 (Boundary tour, boundary sequence, index). If an edge e ∈ E(b(λ)) has
target (x, y), we say the index of e is i(e) = x − y. The boundary tour is the complete
circuit of b(λ) where the edges are ordered by index. We write the edges in this ordering
as (. . . , e−2, e−1, e0, e1, e2, . . .). We say an edge ej occurs before the edge ek if j < k. The
boundary sequence is the bi-infinite sequence (di)i∈Z where di = d(ei). We write S and E
in place of South and East respectively in the boundary sequence.

Example 10. The partition µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) has boundary sequence

. . . SSSSSSESSSE0EESEEESESEESEESSEEE . . .

where d0 is indicated with a 0 suffix.

2.1 Anatomy of a Young Diagram

Next, we recall some standard partition statistics and how they relate to the boundary
sequence, define rimhooks, and connect to cores. We also introduce the notion of an SE
directed multigraph homomorphism.

Definition 11 (Hand, foot, arm, leg, inversion, hook length). A box � ∈ λ can be
specified by giving the row and column of the Young diagram that the box sits in. In
particular, each box in the Young diagram corresponds to a pair of edges: one south, at
extreme right of the row � lies in, called the hand of �, and another east, at the top of the
column � lies in, called the foot of �, where the foot necessarily occurs before the hand.
Conversely, given an east edge s1 departing from (x1, y1) and arriving at (x1 +1, y1) and a
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south edge s2 departing from (x2, y2) and arriving at (x2, y2−1) such that x1−y1 < x2−y2,
there is a unique box � in the Young diagram with bottom left corner (x1, y2 − 1) such
that s1 and s2 are respectively the foot and hand of �. We call such a pair of south and
east edges an inversion. Hence, we may identify a box in the Young diagram with its
hand and foot in the boundary sequence.

The arm of � consists of the boxes that lie strictly to the right of � in the same row,
and the leg of � consists of the boxes that lie strictly above � in the same column. We
denote the number of boxes in the arm of � by a(�) and the number of boxes in the leg
of � by l(�). The hook length of � is defined to be h(�) = a(�) + l(�) + 1.

Example 12. The boxes in the arm and leg of the shaded box � in Figure 3 are labelled
with the corresponding body part. The hand of � is the red arrow, and the foot is the
blue arrow, and a(�) = 5 and l(�) = 1, so h(�) = 7.

Figure 3: the arm and leg of �.

Proposition 13. Let λ be a partition. A box in the Young diagram of λ with hook length
c corresponds to an inversion (di, dj) in the boundary sequence of λ where j = i+ c.

Proof. Let h and f be the hand and foot of � in the boundary respectively. Consider the
map from the arm of � to the boundary sending each box to its foot. The foot of any
box in the arm of � is an east edge that occurs after f and occurs before h. Conversely,
each east edge that occurs after f and occurs before h is the foot of a box in the arm of
�. So, a(�) counts east edges that occur after f and before h.

Analogously, l(�) counts south edges that occur after f and before h. Thus, a(�) +
l(�) counts the total number of edges that occur after f and before h. There are h(�)−1
such edges.

We now turn our attention to cores and rimhooks, first introduced by Nakayama [8].

Definition 14 (Rimhook). A rimhook R of length c is a connected set of c boxes in λ
such that removing R gives the Young diagram of a partition, and R does not contain a
2× 2 box.

Corollary 15. Rimhooks of length c are in bijection with boxes of hook length c.
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Proof. Let R be a rimhook of length c in the diagram of a partition λ. Then, by the
definition of a rimhook, for every box � ∈ R there is an edge in the boundary graph of
λ arriving at the top right corner of �. Let ei, ei+1, . . . , ei+c−1 be the the set of all such
edges (since R is connected these edges are consecutive in the boundary tour), and let
ei+c be the next edge in the boundary tour.

Since R is removable, d(ei) = E.
We now check that d(ei+c) = S. Since ei+c−1 arrives at the top right corner of the

south-eastern-most square � in R, ei+c departs from the top right corner of �. If ei+c were
an east edge, there would be another box to the right of � in the same row, contradicting
that R is removable. Therefore, by Proposition 13, ei and ei+c are the foot and hand
respectively of a box of hook length c.

Conversely, if � is a box of hook length c, with foot ei and hand ei+c then taking the
boxes with top right corners the targets of ei, ei+1, . . . , ei+c−1 gives a rimhook of length
c.

Definition 16. A c-core of a partition λ is a partition obtained by iteratively removing
rimhooks of length c from λ until a partition with no rimhooks of length c is obtained. A
partition µ is called a c-core if µ has no rimhooks of length c.

Applying Corollary 15 to c-cores gives the following.

Corollary 17. A partition λ is a c-core if and only if λ has no boxes of hook length c.

Our aim for now will be to redefine the c-core in the language we wish to use later,
and then use it to see that the result of iteratively removing rimhooks of length c is
independent of the order in which rimhooks are removed. In order to do so, we need
the notion of an SE directed multigraph homomorphism. Informally, these consist of two
maps, one between edges, and another between vertices. We require that these maps
preserve the direction (S or E) of the edges, and that they be compatible with the source
and target maps.

Definition 18 (SE directed multigraph homomorphism). Let M1 = (V1, E1, s1, t1, d1),
M2 = (V2, E2, s2, t2, d2) be SE directed multigraphs. A homomorphism of SE directed
multigraphs ϕ : M1 → M2 is a pair of maps ϕV : V1 → V2 and ϕE : E1 → E2 such that
for all edges e ∈ E1,

s2(ϕE(e)) = ϕV (s1(e)) (12)

t2(ϕE(e)) = ϕV (t1(e)) (13)

d2(ϕE(e)) = d1(e). (14)

In other words, ϕ is a quiver homomorphism that preserves direction (S or E).

Example 19. Let M1 be the boundary graph of µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) and let ϕV
be the map taking each vertex (x, y) to [x − y], the class of x − y modulo 2. This map
induces the homomorphism q2 illustrated in Figure 4, with east edges coloured red and
south edges coloured blue.

For ease of reading, we draw edges in the image of q2 from left to right in order of
index as . . . , q2(e−2), q2(e−1), q2(e0), q2(e1), q2(e2), . . ..
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[0]

[1]

Figure 4: A portion of M1 and the corresponding edges in q2(M1).

We will always work with SE directed multigraph homomorphisms where the edge map
ϕE is bijective, so from now on we assume ϕE is bijective for any homomorphism ϕ. In
particular, this assumption allows us to push complete circuits through homomorphisms.

Proposition 20. Let ϕ : M1 → M2 be an SE directed multigraph homomorphism. Let
(ei)i∈I be a complete circuit of M1. Then (ϕE(ei))i∈I is a complete circuit of M2.

Proof. Since ϕE is bijective, we need only check that s2(ϕE(ei+1) = t2(ϕE(ei) for each
i ∈ I. By definition,

s2(ϕE(ei+1) = ϕV (s1(ei+1)) (15)

= ϕV (t1(ei)) (16)

= t2(ϕE(ei). (17)

We have seen already that rimhooks of length c correspond to boxes of hook length c
which in turn correspond to inversions in the boundary sequence where, if the first term
has index i, the second has index i+c. Intuitively enough, then, the useful homomorphism
that captures all of this information is the following.

Definition 21 (c-abacus tour). Let (z, w) ∼c (x, y) if z − w ≡ x − y (mod c). Then,
qc : b(λ) → Mc is the SE directed multigraph homomorphism induced by imposing the
relation ∼c on the vertices of b(λ). The complete circuit (qc(ei))i∈Z of Mc is called the
c-abacus tour associated to λ.

Proposition 13 tells us that the number of boxes with hook length divisible by c can
be read off from the c-abacus tour by looking at edges that correspond to a hand and
foot arriving at the same vertex (v, [i]). So, it is sometimes useful to group the edges in a
complete circuit by target. This leads us to arrival words.

Definition 22 (Arrival words, departure words). Let M = (V,E, s, t, d) be a directed SE
multigraph and let (ei)i∈I be a complete circuit of M . For v ∈ V Iv ⊂ I be the subset of
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indices such that t(ei) = v. The arrival word at v, written va, is the sequence of directions
d(ei)i∈Iv . The departure word at v is defined analogously, replacing the target map with
the source map.

Notation 23. Given a sequence (di)i∈I of Ss and Es, we write inv(di) for the number of
inversions.

Proposition 24. Let λ be a partition with boundary tour (ei)i∈Z and let Mc have vertex
set. Then, taking arrival words with respect to the complete circuit (qc(ei))i∈Z

|{� ∈ λ : c | h(�)}| =
c−1∑
i=0

inv([i]a). (18)

Proof. Apply Proposition 13.

2.2 Alignment and charge

So far, we have associated to every partition a boundary sequence, a bi-infinite sequence
of Ss and Es such that if we travel far enough to the left in the sequence every entry is
an S, and if we travel far enough to the right, every entry is an E. We will now study
these sequences in general, and identify which of them arise as boundary sequences of a
partition. Then, we will define an equivalence relation on partitions, which we shall show
is equivalent to having the same c-core. We will use this to show that partitions have a
unique c-core, to define the c-quotients originally studied by [6], and to give a bijection
between partitions of fixed c-core and c-tuples of partitions.

Definition 25 (Charge). Let D = (di)i∈Z be a bi-infinite sequence with di ∈ {S,E}, for
each i such that for some M ∈ N, ∀m >M, d−m = S and dm = E. Fix an integer k. Let
ek be the number of Es in (di)i∈Z with index at most k,

ek = |{dj : dj = E and j 6 k}| . (19)

Similarly, let sk be the number of Ss with index greater than k,

sk = |{dj : dj = S and j > k}| . (20)

Then, the k-charge of D, written chk (D) is ek − sk − k.

Proposition 26. If k and l are integers, and D is as in Definition 25, then chk(D) =
chl(D).

Proof. We check that chk+1(D) = chk(D). The proposition then follows by repeated
application of the equality. Suppose dk+1 = E. Then, ek+1 = ek + 1 and sk+1 = sk. So,

chk+1(D) = ek+1 − sk+1 − (k + 1) (21)

= ek + 1− sk − (k + 1) (22)

= ek − sk − k (23)

= chk(D). (24)
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Similarly, if dk+1 = S, then ek+1 = ek and sk+1 = sk−1, so chk+1(D) = chk(D). Therefore,
chk(D) is independent of k.

So, in place of chk(D), we may simply write ch(D).

Proposition 27. A sequence D as in Definition 25 is the boundary sequence of a partition
if and only if ch(D) = 0.

Proof. Suppose D is the boundary sequence of a partition. Let (x1, y1) be the point on
the line x− y = k on the boundary of a partition λ. Since x1 counts the number of south
edges with index greater than k, and y1 counts the number of east edges with index at
most k, ch(D) = x1 − y1 − k = 0.

If ch(D) = 0, then we may reconstruct λ from D by placing a point at (ek, sk), and
drawing the partition boundary in two halves: one as an infinite path departing from
(ek, sk) taking unit steps with orientations given by (di)i>k and the other as an infinite
path arriving at (ek, sk) taking unit steps with orientations given by (di)i6k.

Definition 28 (The relation ∼c). Let λ and µ be partitions and let the arrival words
taken from the c-abacus tours of λ and µ be [0]λa, . . . , [c − 1]λa, and [0]µa , . . . , [c − 1]µa ,
respectively. Define the relation λ ∼c µ if, for all i with 0 6 i 6 c− 1,

ch([i]λa) = ch([i]µa). (25)

Example 29. Let µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) and refer to Figure 4. When c = 2, [0]µa
is given by

· · · S S S E S E E E | E E E S E S E E · · · .

where the bar separates terms corresponding to edges of negative or zero index from
those of positive index.

So, ch([0]µa) = 4− 2 = 2. Analogously, [1]µa is

· · · S S S S S S E S | E S S E E S E E · · · .

So, ch([1]µa) = 1− 3 = −2.

Proposition 30. If λ is a partition containing a rimhook R of length c and λ′ is the
partition obtained from λ by removing R, then λ ∼c λ′.

Proof. Let the boundary tours of λ and λ′ be (ei)i∈Z and (e′i)i∈Z. First, we analyse how
the boundary sequences (d(ei)) and (d(e′i)) differ. Let R have south-eastern most box �2

and north-western most box �1. Let ej be the east edge traversing the top edge of �1,
so that ej+c is the south edge traversing the right of �2.
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ej+c

e′j+c

ej
e′j

Since we remove �1 and �2, d(ej) = E, d(e′j) = S, and d(ej+c) = S and d(e′j+c) = E.
Let j = qc + r for 0 6 r 6 c − 1. Since the rimhook does not contain a 2 × 2 box
and is connected, the portion of the boundary of λ′ between the lines x − y = j + 1
and x − y = c + j − 1 is a translate of the original partition boundary by (−1,−1), so
d(ei) = d(e′i) for all i 6∈ {j, j + c}. So, for all 0 6 s 6 c − 1 with s 6= r, [s]λa = [s]λ

′
a , and

the arrival word

([r]λ
′

a )i =


([r]λa)q i = q + 1

([r]λa)q+1 i = q
([r]λa)i otherwise.

(26)

So,

ch([r]λ
′

a ) = chq−1([r]λ
′

a ) (27)

= chq−1([r]λa) (28)

= ch([r]λa). (29)

Corollary 31. The c-core of λ is unique, and λ ∼c µ if and only if λ and µ have the
same c-core.

Proof. If λ has c-core ν, then ν is obtained from λ by iteratively removing rimhooks of
length c from R, so by Proposition 30, λ ∼c ν. Every partition has at least one c-core,
so it remains to check that if µ and ν are both c-cores with µ ∼c ν then µ = ν. By
Propositions 13 and 24, if µ and ν are both c-cores then for each i, the arrival words [i]µa
and [i]νa do not contain any inversions. So, both consist of a string of Ss up to some index,
and a string of Es thereafter. Since µ ∼c ν, the charge of both [i]µa and [i]νa must be the
same, and therefore [i]µa = [i]νa.

The important consequence for us will be the following.

Corollary 32. Let λ and µ be partitions. Then λ and µ have the same c-core if there is
a value of m with c | m such that for each [i], both of the following hold.

• the arrival words in the c-abacus tour of λ and µ agree after the entry with index
m;
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• the portion of [i]λa with index at most m is a permutation of the portion of [i]µa with
index at most m.

Example 33. We will calculate the 2-core λ of µ = (12, 12, 10, 8, 7, 4, 1, 1, 1). By Corol-
lary 32 and the calculation in Example 29, λ is the unique 2-core with ch([0]λa) = 2 and
ch([1]λa) = −2.

So, placing a bar in the bi-infinite string with no inversions to separate edges with
positive index from those with negative or 0 index, the arrival words in M2(λ) at 0 and 1
respectively, are

· · · S S S S S S S S | S S E E E E E E · · ·
· · · S S S S S S E E | E E E E E E E E · · · .

So, the 2-core is (3,2,1).

Proposition 34. There is an bijective map f from c-core partitions to a Z-module of
length c− 1.

Proof. Consider the c-abacus of a c-core partition. The charges (ch([0]), . . . , ch([c − 1]))
specify the c-core. A c-tuple of integers (a0, . . . , ac−1) represents the charges of a partition
if and only if

∑c−1
i=0 ai = 0. So, sending a c-core to the c-tuple of charges gives a bijective

map with the Z-module M = 〈e1, . . . , ec :
∑c−1

i=0 ei = 0〉.

Fix a positive integer c, a c-core µ, and a non-negative integer n. Let Parcµ(n) denote
the set of partitions of E with c-core µ. Let Parcµ denote the set of all partitions with
c-core µ, and let Par denote the set of all partitions.

Definition 35 (Quotient). The c-quotient of λ is the c-tuple of partitions given by
(q1(λ), q2(λ), . . . , qc(λ)), where qi(λ) is the partition with boundary sequence [i]a, with
the index shifted so that the charge is 0.

Definition 36 (Quotient map). The quotient map φ : Parcµ → (Par)c has

φ(λ) = (q1(λ), . . . , qc(λ).

Proposition 37. For λ ∈ Parcµ,

|λ| = |µ|+ c
c∑
i=1

|qi(λ)|. (30)

Proof. By Proposition 24, the number of boxes with hook length divisible by c are given
by
∑c

i=1 inv[i]a. Starting from the c-abacus tour of µ, we can obtain the c-abacus tour of
λ by adding these inversions one at a time. Adding each inversion corresponds to adding
a rimhook of length c to the diagram, so contributes c to |λ|.

the electronic journal of combinatorics 30(3) (2023), #P3.28 14



2.3 The map Gc

Now we set about proving Theorem 44. We first recall three standard generating functions.

Proposition 38. ∑
λ∈Par

q|λ|tl(λ) =
∏
m>1

1

1− qmt
(31)

∑
λ∈Par

q|λ| =
∏
m>1

1

1− qm
(32)

∑
λ∈Parcµ

q|λ| = q|µ|
∏
m>1

1

(1− qmc)c
(33)

Proof. We may rewrite the right hand side of (31) as∏
m>1

1 + qmt+ q2mt2 + q3mt3 + . . . ,

so that picking a term qkmtk for each m corresponds to declaring that λ contains k parts
of size m, contributing |km| to λ and k to l(λ), giving the left hand side. Setting t = 1
in (31) gives (32).

For (33), Proposition 37 tells us that the map φ gives a bijection between λ ∈ Parcµ
and c-tuples of partitions (q1, . . . , qc) where |λ| = |µ|+ c

∑c
i=1 |qi(λ)|. The right hand side

of (33) corresponds to all choices of c-tuples q1, . . . , qc ∈ Par, and the weighting by c
corresponds to each box in qi corresponding to c boxes in λ.

Next, we define a partition statistic λc∗� that arises as a special case of one of the
statistics that we study.

For a positive integer d, let md(λ) denote the number of parts of λ of size d, and for
fixed c let λc∗� denote the weighted sum

λc∗� =
∞∑
d=1

⌊
md(λ)

c

⌋
. (34)

In words, λc∗� counts the number of rectangles, of any width, of positive height divisible
by c in the diagram of λ such that the whole right edge of the rectangle, and at least the
rightmost step of the top edge, lies on the boundary of λ.

Example 39. Let c = 3. The partition λ = (7, 7, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 2, 1) has m7(λ) =
2, m4(λ) = 7, m3(λ) = 1, m2(λ) = 3 and m1(λ) = 1. So, the only nonzero contributions
to λ3∗

� are when d = 2 and d = 4, and

λ3∗
� =

⌊
m2(λ)

3

⌋
+

⌊
m4(λ)

3

⌋
= 1 + 2 = 3.

We now define the map Gc, previously defined in [9].
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[ht]

Figure 5: The partition λ has G3(λ) = ((4, 4, 2), (7, 7, 4, 3, 1)).

Definition 40 (The map Gc). The map Gc : Par → Par×Kc, where Kc = {λ ∈ Par :
λc∗� = 0} is the set of partitions with no parts repeated c or more times, maps a partition
λ to (ξ, ν) where for each d ∈ N,

md(ξ) =

⌊
md(λ)

c

⌋
, (35)

and

md(ν) = md(λ)− c
⌊
md(λ)

c

⌋
. (36)

We write (Gc)
−1 for the inverse map (Gc)

−1 : Kc × Par→ Par where, for each d ∈ N

md

((
Gc)

−1(ξ, ν)
))

= md(ξ)c+md(ν). (37)

Example 41. As shown in Figure 41, the partition λ = (7, 7, 4, 4, 4, 4, 4, 4, 4, 3, 2, 2, 2, 1)
has G3(λ) = ((4, 4, 2), (7, 7, 3, 4, 1)).

The next proposition establishes that the c-core of a partition λ is also the c-core of
the second argument of Gc(λ), so we may restrict Gc to Parcµ in a way that interacts
sensibly with cores.

Proposition 42. If λ ∈ Parcµ and Gc(λ) = (ξ, ν), then ν ∈ Parcµ.

Proof. Suppose the proposition is false for some λ of minimal possible size. Then, we
must have λ 6= ν, so λ must have some part of some size d repeated at least c times. The
rightmost column of the rectangle of width d and height c which has all right edges and
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the rightmost top edge in the boundary of λ is a rimhook of size c. Let λ′ be the partition
formed by deleting this rimhook. Then, λ′ has c-core µ and Gc(λ

′) = (ξ′, ν) for some ξ′.
So, since λ′ is smaller than λ, ν ∈ Parcµ.

Therefore, Gc restricts to a bijection Gc|Parcµ : Parcµ → Par×(Kc ∩ Parcµ). This allows
us to use Gc to prove the following.

Proposition 43. For a positive integer c and a c-core µ, the following product formula
holds. ∑

λ∈Kc∩Parcµ

q|λ| = q|µ|
∏
m>1

1

(1− qmc)c−1
. (38)

Proof. Let λ ∈ Parµc . Then Gc
µ bijectively maps λ to a pair of partitions (ξ, ν) with

|λ| = |ξ|+ c|ν|, because each part of ν corresponds to c parts of λ of the same size. So,∑
λ∈Parcµ

q|λ| =
∑

ξ∈Kc∩Parcµ

q|ξ| ×
∑
ν∈Par

qc|ν|. (39)

Substituting (32) and applying Proposition 37 to (39) gives

q|µ|
∏
m>1

1

(1− qmc)c
=

∑
ξ∈Kc∩Parcµ

q|ξ| ×
∏
m>1

1

(1− qmc)
, (40)

which rearranges to give (38).

We are now in a position to prove the following identity, which forms the base case
for Proposition 48.

Theorem 44. For a fixed positive integer c,∑
λ∈Parcµ

q|λ|tλ
c∗
� = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct
. (41)

Proof. Let λ ∈ Parµc . Then Gc
µ bijectively maps λ to a pair of partitions (ξ, ν) with

|λ| = |ξ| + c|ν|, where each part of ν of size d corresponds to a d × c rectangle in λ
contributing to λc∗� . So,∑

λ∈Parcµ

q|λ|tλ
c∗
� =

∑
ξ∈Kc∩Parcµ

q|ξ| ×
∑
ν∈Par

qc|ν|tl(ν). (42)

Substituting (38) and (31) into (42) gives (41).
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3 Further partition statistics

In this section we define the main partition statistics of interest, h+
x,c and h−x,c, where

x is a real parameter and c is a positive integer. The main aim of this paper is to
compute the distribution of the statistics h+

x,c and h−x,c over Parcµ, given in Theorem 46.
The previous section computed the distribution of λc∗� over Parcµ, giving the right hand
side in Theorem 46. In this section, we connect to λc∗� by observing that λc∗� = h+

0,c, and
then sketch a framework for piecing together a family of involutions Ir,s,c defined on Parcµ
to prove that the distribution h±x,c over Parcµ is independent of both x and the sign. The
rest of the paper will then construct the component bijections Ir,s,c.

In order to reduce the proof of Theorem 46 to the construction of appropriate bijections
Ir,s,c, we first prove that Theorem 46 is implied by Theorem 47, which states that the h+

x,c

and h−x,c have the same distribution over Parcµ. Then, we introduce three other statistics
midx,c, crit−x,c and crit+

x,c and decompose h+
x,c and h−x,c in terms of these other statistics.

Finally, we outline sufficient conditions for the bijections Ir,s,c to prove Theorem 47 in
terms of these three statistics.

We conclude the section by explaining how the main result of [3] follows from Theo-
rem 46.

Definition 45. For a partition λ, x ∈ [0,∞] and a fixed c ∈ N,

h+
x,c(λ) =

∣∣∣∣{� ∈ λ : c | h(�) and
a(�)

l(�) + 1
6 x <

a(�) + 1

l(�)

}∣∣∣∣ , (43)

and

h−x,c(λ) =

∣∣∣∣{� ∈ λ : c | h(�) and
a(�)

l(�) + 1
< x 6

a(�) + 1

l(�)

}∣∣∣∣ . (44)

We interpret a fraction with denominator 0 as +∞.

Note that a box � contributes to h+
0,c if and only if a(�) = 0 and c | (l(�) + 1). That

is, � is the rightmost box in its row, and there is some m such that the row containing
� and exactly mc − 1 rows to the above all have the same height. The number of such
boxes is exactly λc∗� .

Similarly, h−∞,c(λ) = λ̄c∗� , where λ̄ is the partition conjugate to λ.
We are now in a position to state our main result.

Theorem 46. For all x ∈ [0,∞) we have∑
λ∈Parcµ

q|λ|th
+
x,c(λ) = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct
, (45)

and for all x ∈ (0,∞],∑
λ∈Parcµ

q|λ|th
−
x,c(λ) = q|µ|

∏
i>1

1

(1− qic)c−1

∏
j>1

1

1− qjct
. (46)
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Proposition 48 shows that Theorem 46 is a consequence of the following result.

Theorem 47. For all positive rational numbers x and all integers n > 0 we have∑
λ∈Parcµ(n)

th
+
x,c(λ) =

∑
λ∈Parcµ(n)

th
−
x,c(λ). (47)

3.1 Reducing to Theorem 47

Proposition 48. Theorem 47 implies Theorem 46.

Proof. For x ∈ [0,∞), c ∈ N and δ ∈ {+,−} define

Hδ
x,c(n) =

∑
λ∈Parcµ(n)

th
δ
x,c(λ).

Suppose Hδ
x,c(n) is independent of both x and δ. Then

Hδ
x,c(n) = H+

0 (n) =
∑

th
+
0,c(λ) =

∑
tλ
c∗
� .

Theorem 46 then follows immediately by multiplying by qn, adding over all n > 0, and
applying Theorem 44. So, it suffices to prove that Theorem 47 implies that Hδ

x,c(n) is
independent of x and δ.

For an integer n, we call a positive rational number r a critical rational for n if there is
a partition µ ∈ Par(n) and a box � ∈ d(µ) such that h(�) is divisible by c, and a(�)

l(�)+1
= r

or a(�)+1
l(�)

= r. By convention, 0 and +∞ are regarded as critical rationals for all n.

We denote the set of all critical rationals for n by C(n). Since there are finitely many
partitions of n each containing finitely many boxes in their diagrams, C(n) is finite for
all n. For a fixed n, write C(n) = {0 = r0 < r1 < · · · < rk−1 < rk = +∞}. Define open
intervals Ij = (rj−1, rj) for each 1 6 j 6 k. Then [0,∞] decomposes into a disjoint union

[0,∞] = I1 ∪ I2 ∪ · · · ∪ Ik ∪ C(n).

Let x, x′ be two elements of the same interval Ij and let δ, δ′ ∈ {+,−}. Suppose λ
is any partition of n. Since there are no critical rationals between x and x′, � ∈ d(λ)

contributes to hδx,c(λ) if and only if it contributes to hδ
′

x′,c(λ). So, th
δ
x,c(λ) = t

hδ
′
x′,c(λ)

. Adding
over all λ, we see that if x, x′ ∈ Ij,

Hδ
x,c(n) = Hδ′

x′,c(n). (48)

Similarly, for all x ∈ Ij,

H+
rj−1,c

(n) = Hδ
x,c(n) = H−rj ,c(n). (49)

On the other hand, Theorem 47 implies that

H+
rj ,c

(n) = H−rj ,c(n). (50)
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Therefore, for δ, δ′ ∈ {+,−} and y > y′ by applying a chain of these equalities starting
with Hδ

y,c(n), one can reduce y to a critical rational and change δ to a + using (49), or
using (50) if y is already a critical rational. Then one may iteratively apply (50) and (49)
to change δ to a −, and then reduce y to the next lowest critical rational and change δ
back to a +, until an equality Hδ

y,c(n) = H−rj ,c(n) is obtained for rj−1 6 y′ 6 rj. Then,
applying (49) again with x = y′ (and (50) to flip the sign of δ if y = rj−1 and δ′ = −),
one obtains Hδ

y,c(n) = Hδ′

y′,c(n).

3.2 Reducing to a symmetry property

In the case x is rational, where h+
x,c and h−x,c may differ, it is useful to separate the boxes

that contribute to both statistics from those that contribute to just one. In order to do
this, we define the following statistics.

Definition 49. For x = r
s

a rational number, we have

crit+
x,c(λ) =

∣∣∣∣{� ∈ λ : c | h(�) and
a(�)

l(�+ 1)
= x

}∣∣∣∣ , (51)

crit−x,c(λ) =

∣∣∣∣{� ∈ λ : c | h(�) and
a(�) + 1

l(�)
= x

}∣∣∣∣ , (52)

midx,c(λ) = |{� ∈ λ : c | h(�) and − s < sa(�)− rl(�) < r}| . (53)

The next proposition shows that a bijection satisfying some constraints on its be-
haviour with respect to these statistics will give a bijective proof of Theorem 47.

Proposition 50. Let r, s, c be positive integers with (r, s) = 1 and let x = r
s
. Suppose

there exists a bijection Ir,s,c : Parcµ → Parcµ such that

1. |λ| = |Ir,s,c(λ)|,

2. midx,c(λ) = midx,c(Ir,s,c(λ)),

3. crit+
x,c(λ) + crit−x,c(λ) = crit+

x,c(Ir,s,c(λ)) + crit−x,c(Ir,s,c(λ)),

4. crit+
x,c(λ) = crit−x,c(Ir,s,c(λ)).

Then, Theorem 47 is true.

Proof. Assume that Ir,s,c exists. Then, property 3 and 4 together imply that

crit−x,c(λ) = crit+
x,c(Ir,s,c(λ)) (54)

so Ir,s,c exchanges crit+
x,c and crit−x,c whilst preserving |λ| and midx,c .

Note that a box � contributes to midx,c if and only if −s < sa(�) − rl(�) < r and
the c | h(�). Adding s+ rl(�), and dividing by sl(�), the left inequality is equivalent to

a(�) + 1

l(�)
> x. (55)
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Similar manipulation of the right inequality together with (55) shows that � contributes
to midx,c if and only if

a(�)

l(�) + 1
< x <

a(�) + 1

l(�)
. (56)

So, comparing the definitions of crit−x,c, crit+
x,c, h

+
x,c, h

−
x,c and (56),

h+
x,c(λ) = midx,c(λ) + crit+

x,c(λ) (57)

and
h−x,c(λ) = midx,c(λ) + crit−x,c(λ). (58)

So, Ir,s,c exchanges h+
x,c(λ) and h−x,c(λ) whilst preserving |λ|, and hence proves Theo-

rem 47.

3.3 Connecting to Buryak-Feigin-Nakajima

When c is divisible by r + s, Theorem 46 implies the following product formula. In the
case r + s = c, this is the main combinatorial result of [3].

Corollary 51. Let r and s be coprime integers, let x = r
s

and let r + s | c. Then∑
λ∈Par

q|λ|tcrit+x,c(λ) =
∏
i>1
c-i

1

1− qi
∏
i>1

1

1− qict
. (59)

Proof. First we show that under the assumption that r + s | c, then for any partition λ,
midx,c(λ) = 0. Suppose � were to contribute to midx,c(λ), then � would have to satisfy

− s < sa(�)− rl(�) < r. (60)

Adding rl + sl + s,

(r + s)l(�) < s (a(�) + l(�) + 1) < (r + s) (l(�) + 1) (61)

However, the upper and lower bound are consecutive multiples of r + s, and therefore
s(a(�) + l(�) + 1) cannot be a multiple of r + s, so by assumption cannot be a multiple
of c. So, c - h(�) so � cannot contribute to midx,c(λ).

So in this case h+
x,c(λ) = crit+

x,c(λ) and Theorem 46 becomes∑
λ∈Parcµ

q|λ|tcrit+x,c(λ) = q|µ|
∏
i>1

1

(1− qic)c−1

1

1− qict
. (62)
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Summing both sides over all c-cores µ and applying Proposition 37,∑
λ∈Par

q|λ|tcrit+x,c(λ) =
∏
i>1

(1− qic)c

1− qi
1

(1− qic)c−1

1

1− qict
(63)

=
∏
i>1

(1− qic)
1− qi

1

1− qict
(64)

=
∏
i>1
c-i

1

1− qi
∏
i>1

1

1− qict
. (65)

4 The multigraph Mr,s,c

For the rest of the paper, x = r
s

is a rational number with r coprime to s. In this section
we take our first key step in the construction of the involution Ir,s,c. First, Proposition 52
relates the statistics midx,c, crit−x,c and crit+

x,c to the boundary graph. We use this rela-
tionship to define a map from the boundary graph to a multigraph Mr,s,c that picks out
the information relevant to midx,c and crit+

x,c, much as the c-abacus tour does for the
c-core. The rest of the section then outlines the method for proving that Mr,s,c retains
partition data, including the proofs that Mr,s,c retains the c-core and the area. The proof
it retains the area is a particularly easy example using the same methodology as used
in the more technical proofs in Section 6, which check that Mr,s,c retains midx,c(λ) and
crit+

x,c(λ) + crit−x,c(λ).
When we define Ir,s,c as a bijection on partitions, we build into the definition that Ir,s,c

preserves Mr,s,c(λ) for any partition λ. So, together with these results it is immediate that
Ir,s,c does map Parcµ to Parcµ and satisfies hypothesis 1 in Proposition 50.

Proposition 52. Let λ be a partition and let � ∈ λ. Let ei be the foot of �, departing
from (x1 − 1, y1) and arriving at (x1, y1) and let ej be the hand of λ, departing from
(x2, y2 + 1) and arriving at (x2, y2). Let t = r(y1 − y2) + s(x1 − x2). Then

1. � contributes to crit+
x,c if and only if t = 0 and x1 − y1 ≡ x2 − y2 (mod c);

2. � contributes to midx,c if and only if 0 < t < r + s and x1 − y1 ≡ x2 − y2 (mod c);

3. � contributes to crit−x,c if and only if t = r + s and x1 − y1 ≡ x2 − y2 (mod c).

Proof. By the definition of index, x1 − y1 = i and x2 − y2 = j. Let � ∈ λ have bottom
left corner (x�, y�). By Proposition 13, � has hook length divisible by c if and only if
j ≡ i (mod c), i.e. x1 − y1 ≡ x2 − y2 (mod c). So, assume that � does have hook length
divisible by c.

Let k1 = ry1 + sx1 and k2 = ry2 + sx2. Then,

t = k1 − k2, (66)
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x�

y�

x� + a(�) + 1

y� + l(�) + 1

x� + 1

ry + sx = k1

ry + sx = k2

Figure 6: The box � and the lines ry + sx = k1 and ry + sx = k2.

s(x� + 1) + r(y� + l(�) + 1) = k1, (67)

and
s(x� + a(�) + 1) + ry� = k2. (68)

Subtracting (67) from (68), and substituting in (66)

sa(�)− rl(�) = r − t. (69)

By definition, � contributes to crit+
x,c if and only if sa(�)− rl(�) = r, that is, when

t = 0, proving the first claim. Similarly, � contributes to midx,c if and only if −s <
sa(�)− rl(�) < r, or equivalently 0 < t < r + s, proving the second claim.

Finally, note sa(�)− rl(�) = −s if and only if t = r + s.

We define the multigraph Mr,s,c(λ) accordingly.

Definition 53 (Mr,s,c, (r, s, c)-tour). For a partition λ the SE directed multigraph
Mr,s,c(λ) is obtained from b(λ) by imposing the relation ∼r,s,c on the vertices, where
(x1, y1) ∼r,s,c (x2, y2) if ry1 + sx1 = ry2 + sx2 and x2 − y2 ≡ x1 − y1 (mod c). Denote the
equivalence class with ry + sx = v and x − y ≡ i (mod c) by (v, [i]). Let qr,s,c : b(λ) →
Mr,s,c(λ) be the induced homomorphism. The (r, s, c)-tour of Mr,s,c(λ) associated to λ
is (qr,s,c(ei))i∈Z. At each vertex (v, [i]), we count the number of east edges arriving at
(v, [i]) in the (r, s, c)-tour and denote this quantity by Ein(v, [i]). Similarly, we count the
number of east edges departing from (v, [i]) in the (r, s, c)-tour and denote this quantity
by Eout(v, [i]). We define Sin(v, [i]) and Sout(v, [i]) analogously.

Now, we explain give a useful way of drawing Mr,s,c(λ) in the plane. First, we show
Proposition 54, which says that when the plane is cut into strips of width lcm(c, r+ s) by
lines with sx+ ry constant, then there is a unique representative of each possible vertex
of Mr,s,c(λ) contained in the strip.
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Proposition 54. If there is a lattice point (x, y) satisfying both sx+ry = v and x−y ≡ i
(mod c), then for any real number m there is exactly one such lattice point satisfying the
inequality m 6 x− y < m+ lcm(c, r + s).

Proof. First, note that translating a lattice point (x, y) by (r,−s) does not change the
value of sx+ ry. Moreover, there is no lattice point on the line sx+ ry = v between (x, y)
and (x+ r, y − s), since if (x+ l1, y − l2) were such a point, we would have sl1 − rl2 = 0,
so since r and s are coprime, s | l2 and r | l1.

Secondly, note that translating by (r,−s) changes the value of x − y by r + s. So,
the translations that preserve both the value of sx + ry and the residue class of [y − x]
modulo c are the translations by (ar,−as) where a(r+s) is divisible by c, that is, a(r+s)
is divisible by lcm(c, r+ s). Exactly one of these translates lies in the region m 6 x− y <
m+ lcm(c, r + s).

So, for a fixed integer n, we can draw the multigraph by taking the vertices to be lattice
points in the portion of R2 in between the lines x− y = n and x− y = lcm(c, r + s) + n,
with an identification along the boundary lines given by

(x, y) ∼
(
x+

r lcm(c, r + s)

r + s
, y − s lcm(c, r + s)

r + s

)
.

We identify a lattice point (x, y) with the vertex (sx + ry, [x − y]). Then, south edges
in the multigraph from (v, [i]) to (v − r, [i+ 1]) are south edges between lattice points in
the region described. Similarly, east edges from (v, [i]) to (v + s, [i + 1]) are east edges
between lattice points. Moreover, each vertex (v, [i]) corresponds to a unique lattice point
in the region. We can view the (r, s, c)-tour as the cylindrical lattice path tour obtained
by collapsing the boundary of the partition onto this cylinder.

Example 55. When c = 2, r = 3 and s = 2 we may draw the (r, s, c)-multigraph of
µ = (12, 12, 10, 8, 7, 4, 1, 1, 1) as in Figure 7.

Remark 56. As with the boundary graph, but unlike the c-abacus, the direction of an
edge in Mr,s,c can be read off from its source and target. If an edge e has s(e) = (v, [i])
and t(e) = (w, [i+ 1]) then either d(e) = E and w = v + s or d(e) = S and w = v − r.
Remark 57. If we act on C[x, y] by T × Z/cZ where T = {(ts, tr) : t ∈ C∗} and lift to
ideals as in (2) and (3), and colour boxes according to the weight of the corresponding
monomial with respect to this representation, the colouring carries the same information
as the multigraph.

The first property that we check is that Mr,s,c(λ) determines the c-core of λ.

Proposition 58. If λ and µ are partitions with Mr,s,c(λ) = Mr,s,c(µ) then λ and µ have
the same c-core.

Proof. Let v be large enough so that
(⌈

v
s

⌉
, 0
)

is on the boundary of both λ and µ. Fix
m >

⌈
v
s

⌉
such that c | m. Then, in both the boundary tour of µ and the boundary tour
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x− y = −2

x− y = −12

(36, [0])

(33, [1])

(30, [0])

(27, [1]) (29, [0])

(26, [1])

(23, [0])

(20, [1]) (22, [0]) (24, [1]) (26, [0])

(26, [0])

(23, [1]) (25, [0])

(28, [0])

(25, [1]) (27, [0]) (29, [1])

(28, [1])

(24, [0]) (28, [0]) (30, [1]) (32, [0]) (34, [1]) (36, [0])

(39, [1])

(42, [0])

(45, [1])

(48, [0])(46, [1])(44, [0])(42, [1])(40, [0])(38, 1)

...

· · ·

Figure 7: M3,2,2(12, 12, 10, 8, 7, 4, 1, 1, 1).
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of λ, every edge with index at least m is an east edge. These edges account for every E
in an arrival word at a vertex (w, [j]) with w > sm.

For each [i], the number of east edges with index less than m, for both λ and µ, is
given by ∑

w<sm

Ein(w, [i]).

Therefore λ, µ and m satisfy the hypotheses of Corollary 32, and so λ and µ have the
same c-core.

Next, we show how to read crit+
x,c(λ) and crit−x,c(λ) off the (r, s, c)-tour of Mr,s,c(λ).

Rephrasing the first part of Proposition 52 in terms of the (r, s, c)-tour gives

Corollary 59. Let λ be a partition. Then

crit+
x,c(λ) =

∑
(v,[i])∈Mr,s,c(λ)

inv(v, [i])a. (70)

A similar formula with the departure words holds for crit−x,c(λ).

Corollary 60.

crit−x,c(λ) =
∑

(v,[i])∈Mr,s,c(λ)

inv(v, [i])d. (71)

Proof. By the third part of Proposition 52, � contributes to crit−x,c(λ) if and only if the
foot and hand arrive at points (x1, y1) and (x2, y2) respectively with

r + s = r(y1 − y2) + s(x1 − x2) (72)

and
x1 − y1 ≡ x2 − y2 (mod c). (73)

The foot and hand arrive at (x1, y1) and (x2, y2) respectively if and only if they depart
from points (x1 − 1, y1) and (x2, y2 + 1) respectively. The condition (73) is equivalent to

(x1 − 1)− y1 ≡ x2 − (y2 + 1) (mod c). (74)

The condition (72) is equivalent to

r + s = r(y1 − (y2 + 1)) + s((x1 − 1)− x2) + r + s, (75)

so subtracting r + s from both sides,

r(y1 − (y2 + 1)) + s((x1 − 1)− x2) = 0. (76)

We now outline a framework for inductive proofs that the statistics in hypotheses 1-3
of Proposition 50 are determined by the multigraph Mr,s,c, using an ordering <r,s,c on
partitions and multigraphs. The key result in this direction is Proposition 75.

the electronic journal of combinatorics 30(3) (2023), #P3.28 26



4.1 The order <r,s,c

The structure of the proofs that Mr,s,c(λ) determines each property of λ will be proven by
induction on |λ|, adding a box at each step. Since the structure of Mr,s,c(λ) is somewhat
delicate, we have to be somewhat careful when choosing a box to add. The following
ordering on partitions gives us a framework for adding boxes.

If (x1, y1) and (x2, y2) are two points in N2, say (x1, y1) <r,s,c (x2, y2) if either of the
following hold.

• sx1 + ry1 < sx2 + ry2;

• sx1 + ry1 = sx2 + ry2, and x1 − y1 ≡ x2 − y2 (mod c), and x1 − y1 < x2 − y2.

The partial order >r,s,c on points in the plane induces a partial order >r,s,c on partitions
as follows. Say that λ′ >′r,s,c λ if λ′ can be obtained from λ by adding a box with bottom
left corner (x, y) minimal with respect to >r,s,c over all possible bottom left corners of
boxes that can be added to λ to obtain a partition. Then for partitions µ, λ say that
µ >r,s,c λ if there is a sequence of partitions λ = λ0, λ1, λ2, . . . , λm = µ such that for each
i, λi <

′
r,s,c λi+1. If µ >′r,s,c λ, say that µ is a successor for λ with respect to >r,s,c . Every

partition has a successor with respect to >r,s,c, but successors are not necessarily unique.

Example 61. Let r = 3, s = 2, and c = 2. There are three boxes that could be added to
the Young diagram of (3, 1) to give another partition. They have bottom left corners at
(3, 0), (1, 1), and (0, 2), with values of 2x + 3y of 6, 5 and 6 respectively. So (3, 1) has a
unique successor with respect to <3,2,2, which is (3, 2).

For (3, 2), the boxes that could be added to the diagram have bottom left corners (3, 0),
(2, 1) and (0, 2), with values of 2x+ 3y of 6, 7 and 6 respectively. The values of x− y for
(0, 3) and (2, 0) have different parity so (2, 0) 6<3,2,2 (0, 3), and both (4, 2) and (3, 2, 1) are
successors of (3, 2). Note that (4, 1) 6>3,2,2 (3, 1).

Note that if µ >r,s,c λ, then all boxes of the Young diagram of λ are also boxes of the
Young diagram of µ, but as Example 61 shows the converse is not true in general.

Definition 62 (Accumulation point). For a partition µ with the property that whenever
µ strictly contains λ, we also have µ >r,s,c λ, we call µ an accumulation point for >r,s,c.

The next section describes a family of accumulation points and proves some key prop-
erties.
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(18, 0)

(0, 27)

Figure 8: the Young diagram of λ3,2,54.

4.2 The accumulation points λr,s,k

Definition 63 (The partition λr,s,k). For a given natural number k, the partition λr,s,k
is the partition with Young diagram consisting of all boxes with top right corners on or
below the line sx+ ry = k.

Example 64. The Young diagram for λ3,2,54 is given in Figure 8.

Proposition 65. Let r, s, k be positive integers. Let µ be a partition with diagram strictly
contained in the diagram of λr,s,k. Then, any successor µ+ of µ with respect to >r,s,c has
diagram contained in the diagram of λr,s,k. In particular, λr,s,k is an accumulation point
for λr,s,c.

Proof. If (x, y) is the top right corner of a box in µ, then since the diagram for µ is
contained in the diagram of λr,s,k, sx+ry 6 k. So, the bottom left corner of the same box
is at (x− 1, y− 1) with s(x− 1) + r(y− 1) 6 k− r− s. Since the containment of µ in λ is
strict, there is at least one box in the diagram of λ, not contained in the diagram of µ, with
bottom left corner (x−1, y−1) satisfying s(x−1) + r(y−1) 6 k− r− s. Moreover, since
translating a box with top right corner (x, y) left or down decreases s(x− 1) + r(y − 1),
there is a box �1 with bottom left corner (x − 1, y − 1) that can be added to µ to give
a valid partition diagram that satisfies s(x − 1) + r(y − 1) 6 k − r − s. Now, if µ+ is
not contained in λ, then µ+ contains some box �2 with top right corner (z, w) such that
sz+rw > k, so the bottom left corner (z−1, w−1) satisfies s(z−1)+r(w−1) > k−r−s.
This is a contradiction, as (z − 1, w − 1) >r,s,c (x − 1, y − 1), and �1 can be added to
µ.

The accumulation points λr,s,k will be extremely useful for two reasons. Firstly, as
we check in Proposition 69, Mr,s,c(λr,s,k) admits a unique (r, s, c)-tour whenever rsc | k,
so that Mr,s,c must determine any partition statistic in these cases, as it determines the
partition itself. Secondly, as we check in Proposition 67, if we take successor with respect
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to <r,s,c iteratively on a given partition, we will eventually hit an accumulation point. This
allows us to use the λr,s,k as a base case for iterative proofs that statistics are independent
of the choice of (r, s, c)-tour, and reduces the problem of understanding how a statistic
interacts with Mr,s,c to understanding how it behaves when we take successor.

The λr,s,k are not necessarily the only accumulation points. However, they suffice for
our purposes.

Example 66. The partition (1, 1) is an accumulation point when r = s = 1 and c = 2,
but is not a λ1,1,k. Indeed, the only successor of the empty partition is (1), and the only
successor of (1) is (1, 1) since the bottom left corners of the boxes addable to (1) are (1, 0)
and (0, 1) with 1− 0 ≡ 0− 1 (mod 2).

Proposition 67. If the diagram of a partition µ is contained in the diagram of λr,s,k for
some k, then for any sequence

µ = µ0 <
′
r,s,c µ1 <

′
r,s,c · · · <′r,s,c µm

where m = |λr,s,k| − |µ|, we must have µm = λr,s,k.

Proof. Applying Proposition 65 to µ0, µ1, . . . , µm, the diagram of µm must be contained
in the diagram of λr,s,k, and |µm| = |µ0|+m = |λr,s,k|, so µm = λr,s,k.

We now work towards proving that, in the case rsc | k, if Mr,s,c(λ) = Mr,s,c(λr,s,k),
then λ = λr,s,k. First, we collect some restrictions on the arrival words that arise in the
(r, s, c)-tour corresponding to λr,s,k. The condition that rsc | k does not damage the
capacity of the λr,s,k to act as base cases, as to contain the diagram of a partition we just
need k to be large enough.

Proposition 68. Let rsc | k and let k1 = k
rs

. The vertices (v, [i]) in the multigraph of
λr,s,k all satisfy v > k− r− s. Moreover, we have the following constraints on the arrival
words at a vertex (v, [i]).

• If k − r − s < v 6 k − r, then all letters in the arrival word are Ss.

• If k − r < v < k, all letters in the arrival word are Es.

• If v = k there the arrival word at (k, [0]) has first letter S and all other letters E.
For [i] 6= [0], all letters in the arrival word at (k, [i]) are Es.

Proof. If a box � has top right corner (x1, y1) with ry1 + sx1 6 k − r− s, then the 2× 2
box with centre (x1, y1) contains �, along with three other boxes with top right corners
(x1 + 1, y1), (x1, y1 + 1) and (x1 + 1, y1 + 1).

x1 x1 + 1

y1

y1 + 1

sx+ ry = k − r − s

sx+ ry = k
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These points satisfy ry1 + s(x1 + 1) 6 k − r < k, r(y1 + 1) + sx1 6 k − s < k, and
r(y1 +1)+s(x1 +1) 6 k. Since λr,s,k contains all boxes with top right corners on or below
the line sx + ry = k, the entire 2 × 2 box with centre (x, y) is contained in λr,s,k so the
boundary never visits (x, y).

Suppose k− r− s < v 6 k− r. Any east letter in the arrival word at a vertex (v, [i]) is
also an east letter in the departure word of some vertex (v−s, [i−1]), but v−s 6 k−r−s,
so there is no such vertex.

Suppose now that k − r < v 6 k. Any south letter in the arrival word at a vertex
(v, [i]) arriving at a point (x1, y1) with ry1 +sx1 = v is also a south letter in the departure
word of some vertex (v + r, [i − 1]). We have that v + r > k, so the south edge cannot
be the right edge of a box in the Young diagram of λr,s,k and must be along the y axis.
Therefore, x1 = 0 and v = ry1 is divisible by r. However, by assumption k is divisible
by r and therefore k − r and k are consecutive multiples of r. So, this is only possible if
v = k. Since the value of ry decreases as the boundary progresses south down the y-axis,
there is only one such edge, namely, the edge departing from

(
0, k

r
+ 1
)

and arriving at(
0, k

r

)
.

We are now in a position to check our base case. We will show that, if rsc | k and
Mr,s,c(µ) = Mr,s,c(λr,s,k) then µ = λr,s,k. So, the accumulation point λr,s,k act as a base
case for a claim that any statistic is independent of the choice of (r, s, c)-tour.

Proposition 69. For fixed integers r, s, c, k with k = rsk1 and c | k1, there is a unique
(r, s, c)-tour of Mr,s,c(λr,s,k).

Proof. Suppose we pick a different (r, s, c)-tour ofMr,s,c(λr,s,k) corresponding to a partition
µ. First, we will show that the partition boundary of µ must leave the y-axis earlier than
the boundary of λr,s,k. Let (v, [i]) be the vertex with v maximal such that the arrival word
at (v, [i]) changes. Such a vertex certainly exists because any partition boundary differs
in finitely many edges from the boundary of the empty partition. Let (v, [i])λa and (v, [i])µa
be the arrival words at (v, [i]) in the tour corresponding to λr,s,k and µ respectively. Then,
(v, [i])µa must be a permutation of (v, [i])λa, so since (v, [i])λa 6= (v, [i])µa , (v, [i])λa must contain
both Es and Ss. Proposition 68 then tells us that either

• v > k, in which case any letter in the arrival word at (v, [i]) must correspond to an
edge on a co-ordinate axes. Since the value of v decreases as the boundary steps
south along the y axis, and increases as it steps east along the x-axis, we must have

(v, [i])
λr,s,k
a = SE.

• (v, [i]) = (k, [0]), in which case Proposition 68 implies (v, [i])
λr,s,k
a is an S followed

by a string of Es, where the S corresponds to an edge on the y-axis.

In either case, (v, [i])µa must begin with an E. So, the boundary of µ must step east off
the y-axis before it hits the lattice point on the y-axis corresponding to (v, [i]) - otherwise
(v, [i])µa would have first letter S. So, the boundary of µ does step east off the axis earlier
than the boundary of λr,s,k. In particular, the boundary of µ never visits the point (0, k1s).
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Now consider the arrival words (k, [0])
λr,s,k
a and (k, [0])µa . Let Z be the set of points

(x, y) in the plane in the equivalence class (k, [0]) with respect to ∼r,s,c,

Z = {(x, y) : x, y ∈ Z>0, sx+ ry = k and x− y ≡ 0 (mod c)} . (77)

The length of the arrival words (k, [0])
λr,s,k
a and (k, [0])µa count the number of times the

boundaries of λr,s,k and µ respectively visit points in Z. Both arrival words have the same
length (they are permutations of each other) so the boundaries of λr,s,k and µ must visit
the same number of lattice points in Z. By the definition of λr,s,k, the boundary of λr,s,k
visits all of the points in Z, so the boundary of µ must also visit all |Z| of these points.
But the boundary of µ does not visit the point (0, k1s), a contradiction.

Next, we check that there is a sensible pull back of the ordering >r,s,c to (r, s, c)-
multigraphs, so that taking successor can be understood to mean something at both the
level of the partition and at the level of the multigraph. We abuse notation and write
>r,s,c for the ordering on multigraphs and partitions.

Proposition 70. Given an (r, s, c)-multigraph M , let VS be the set of vertices (w, [i]) with
at least one south edge arriving at (w, [i]). Let (v, [i]) ∈ VS such that v is minimal. Then
there is an edge from (v, [i]) to (v + s, [i+ 1]).

Proof. At least one edge arrives at (v, [i]) so at least one edge departs from (v, [i]). Any
south edge departing from (v, [i]) would arrive at (v − r, [i+ 1]), so (v − r, [i+ 1]) would
be in VS, contradicting the minimality of v. Therefore at least one east edge departs from
(v, [i]), and arrives at (v + s, [i+ 1]).

Definition 71 (Multigraph successors). Given an (r, s, c)-multigraph M , let (v, [i]) ∈ VS
as in the previous proposition. Then we say M+ is a successor of M if M+ can be obtained
from M by deleting one south edge from (v + r, [i− 1]) to (v, [i]) and one east edge from
(v, [i]) to (v + s, [i + 1]), and adding one east edge from (v + r, [i − 1]) to (v + r + s, [i])
and one south edge from (v + r + s, [i]) to (v + s, [i + 1]). Sometimes we emphasize the
vertex (v, [i]) and say M+ is a successor of M that changes from (v, [i]).

At the level of multigraphs, we will only need the notion of successors, but for com-
pleteness we also explicitly define <r,s,c at the level of multigraphs.

Definition 72 (Ordering on multigraphs). Given (r, s, c)-multigraphs M = Mr,s,c(λ)
and M ′ = Mr,s,c(λ

′) we say M <r,s,c M
′ if there is a sequence of (r, s, c)-multigraphs

M = M1, . . . ,Mn = M ′ such that Mi+1 is a successor of M+
i for each i.

Corollary 73. If λ is a partition with Mr,s,c(λ) = M and M+ is a successor of M
changing from (v, [i]), then in M , Ein(v, [i]) = Sout(v, [i]) = 0.

Proof. Identical to the proof of Proposition 70.

The next proposition shows that this definition of successors at the level of multigraphs
aligns with our definition at the level of partitions.
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Proposition 74. Let λ be a partition with Mr,s,c(λ) = M. If M+ is a successor of M
that changes at (v, [i]), then there is a unique partition λ+ such that λ+ >′r,s,c λ and
M+ = Mr,s,c(λ

+).

Proof. Let λ′ be any successor of λ. Then, the Young diagram of λ′ consists of all boxes
in the Young diagram of λ and one additional box �. Let the bottom left corner of �
have co-ordinate (x1, y1), where x1−y1 ≡ i (mod c) and ry1 +sx1 = l. Then by definition
of a successor, if we take minima over the points (x, y) in b(λ),

l = min(sx+ ry) (78)

and
x1 − y1 = min

sx+ry=l
[x−y]=[i]

(x− y). (79)

In particular, l and [i] are sufficent to determine x1 − y1. Let s1 and s2 be the edges in
b(λ) arriving at and departing from (x1, y1) respectively, and let s′1 and s′2 be the edges
in b(λ′) arriving at and departing from (x1 + 1, y1 + 1) respectively, as shown in Figure 9.
Then, the multigraph of λ′ differs from the multigraph of λ only in that one edge from

s1

s2

s′1

s′2

sx+ ry = l

sx+ ry = l + r

sx+ ry = l + s

sx+ ry = l + r + s

(x1, y1)

Figure 9: a partition and its successor differ by replacing s1 and s2 with s′1 and s′2.

(l + r, [i − 1]) to (l, [i]), and one edge from (l, [i]) to (l + s, [i + 1]) corresponding to s1
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and s2 respectively, are deleted, and one edge from (l + r, [i − 1]) to (l + r + s, [i]), and
one edge from (l+ r+ s, [i]) to (l+ s, [i+ 1]), corresponding to s′1 and s′2 respectively are
added. That is, Mr,s,c(λ

′) is the successor of M changing from (l, [i]).
For uniqueness, given that M+ changes from M at (l, [i]), any successor of λ with

multigraph M+ must be λ′ by (79) because the value of x − y increases by 1 at every
consecutive point visited in the boundary.

For existence, if M+ changes from M at (v, [j]) then v is minimal such that there is
a south edge into (v, [j]) and an east edge out of (v, [j]). So, v = min(x,y)∈b(λ)(sx + ry)
and there is at least one point (x, y) on the boundary such that [x− y] = [j]. So, letting
(x2, y2) minimise x − y over all such points, and adding a box with bottom left corner
(x2, y2) gives a successor λ+ of λ with multigraph M+.

We are now in a position to prove our key structural proposition.

Proposition 75. Let f : Par → R. Suppose there is a function g : {Mr,s,c(λ) | λ ∈
Par}2 → R such that, if λ is a partition, and λ+ is a successor of λ, where λ and λ+ have
(r, s, c)-multigraphs M and M+ respectively,

f(λ+)− f(λ) = g
(
M+,M

)
. (80)

Then, for any partitions µ1 and µ2 with Mr,s,c(µ1) = Mr,s,c(µ2), f(µ1) = f(µ2).

Proof. Let M = Mr,s,c(µ1) = Mr,s,c(µ2). There is a sequence of multigraphs M =
M0,M1, . . . where Mj is a successor of Mj−1 for each j. Set λ0 = µ1 and ν0 = µ2.
Then, by Proposition 74 there are sequences of partitions λ0, λ1, . . . and ν0, ν1, . . . such
that Mj = Mr,s,c(λj) = Mr,s,c(νj),

λ0 <
′
r,s,c λ1 <

′
r,s,c . . . , (81)

and
ν0 <

′
r,s,c ν1 <

′
r,s,c . . . . (82)

Let k be divisible by rsc and large enough so that all boxes in the Young diagrams of
µ1 or µ2 lie below the line sx + ry = k. By Proposition 67, there is some m such that
Mm = Mr,s,c(λr,s,k). By Proposition 69, λm = νm = λr,s,k. Then,

f(µ1) = f(λr,s,k)−
m∑
i=1

(f(λi)− f(λi−1)) (83)

= f(λr,s,k)−
m∑
i=1

g(Mi,Mi−1) (84)

= f(λr,s,k)−
m∑
i=1

(f(νi)− f(νi−1)) (85)

= f(µ2). (86)
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Armed with Proposition 75, checking that Mr,s,c determines the area of a partition is
particularly straightforward.

Corollary 76. If λ and µ are partitions with Mr,s,c(λ) = Mr,s,c(µ) then |λ| = |µ|.

Proof. Apply Proposition 75 with g(M+,M) = 1.

Having outlined the structure of the proofs that Mr,s,c determines partition statistics,
we defer the checks that Mr,s,c determines midx,c and crit+

x,c + crit−x,c to Section 6. We now
turn our attention to defining Ir,s,c.

5 The involution Ir,s,c

In this section we construct the bijection Ir,s,c and check that it is well defined. In order
to do so, we first need to understand how to recover a partition from a family of arrival
words.

5.1 Recovering a partition from the arrival words

Thus far we have constructed Mr,s,c(λ) and an (r, s, c)-tour from b(λ). We will define Ir,s,c
as an involution that preserves Mr,s,c but changes the (r, s, c)-tour, in fact by changing
the order in which some of the letters appear in the arrival words. In order to check the
result is well defined, we need to understand how to recover a boundary sequence from a
family of arrival words, and indeed have a criterion for when it is possible to do so if the
family of arrival words does not a priori arise from a partition.

If v is minimal such that all boxes in the partition have top right corner on or below
the line sx+ ry = v, then we have that for all w > v, any arrival at a vertex (w, [i]) must
be on a co-ordinate axis. So,

(w, [i])a =


SE if r | w, s | w, w

s
≡ −w

r
≡ i (mod c)

E if s | w, c |
(
w
s
− i
)

and either r - w or c - (−w
r
− i)

S if r | w, c |
(−w

r
− i
)

and either s - w or c - (w
s
− i)

∅ otherwise.

(87)

Moreover, v is uniquely specified as the largest vertex where the arrival word at (v, [i])
does not satisfy (87) for some i ∈ {1, 2, . . . , c}.

So, we can identify v and fill in the co-ordinate axes above or to the right of the line
sx+ ry = v as part of the partition boundary. We may then fill in the remainder working
backwards from the arrival words - we outline the method below by example.

Example 77. Suppose we have r = 3, s = 2, c = 2, and the set of arrival words specified
below
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(20,[1]) S (22,[0]) E (23,[0]) S (23,[1]) S
(24,[0]) S (24,[1]) E (25,[0]) E (25,[1]) S
(26,[0]) SE (26,[1]) SSE (27,[0]) E (27,[1]) SSE
(28,[0]) EE (28,[1]) E (29,[0]) SS (29,[1]) E
(30,[0]) SE (30,[1]) E

Empty for all other vertices (w, [j]) with w < 30. Then for w > 30,

(w, [j])a =


SE if 6 | w, w

2
≡ −w

3
≡ j (mod 2)

E if 2 | w, 2 |
(
w
2
− j
)

and either 3 - w or 2 - (−w
3
− j)

S if 3 | w, 2 |
(−w

3
− j
)

and either 3 - w or 2 - (w
2
− j)

∅ otherwise.

Looking at the vertex (30, [0]), with w = 30 and j = 0 we have w
2
6≡ j (mod 2),

so 30 is maximal such that there is vertex (30, [i]) that does not satisfy (87) for some
i. So, v = 30 and we draw a ray along the positive x-axis beginning at (15, 0), and a
ray along the positive y-axis beginning at (0, 10). It then remains to fill in the boundary
between the points

(⌈
v
s

⌉
, 0
)
, and

(
0,
⌈
v
r

⌉)
. To do this, we look first at the arrival word

at
(
s
⌈
v
s

⌉
,
[⌈

v
s

⌉])
, (30, [1]) in our example, corresponding to the point on the x-axis at

which the ray begins. The last letter of this word tells us what kind of edge we should
add to the boundary to arrive at

(⌈
v
s

⌉
, 0
)
, in this case an E, so we add an edge from

(14, 0) to (15, 0). and delete the last E from (30, [1])a. The same logic allows the rest of
the boundary to be filled out edge by edge, as in Figure 10.

5.2 The first arrival tree

Next we lay out a criterion for a family of arrival words to arise from a partition. We
already know that any family of arrival words arising from a partition must satisfy (87)
for w > v large enough. We now give a criterion on the arrival words at the remaining
vertices with w 6 v to arise from a partition.

Definition 78 (First arrival graph). Let λ be a partition and let Mr,s,c(λ) = M . Let
V and E be the vertex set and edge set of M respectively. Let the (r, s, c)-tour of M
corresponding to λ have arrival word (v, [i])a at each vertex (v, [i]) ∈ V . Suppose there is
another family of arrival words

S = {(v, [i])′a : (v, [i]) ∈ V }, (88)

such that for each (v, [i]), (v, [i])′a is a permutation of (v, [i])a. Denote the first letter of
the arrival word (v, [i])′a by (v, [i])′1, and let the first arrival edge e1(v, [i]) with respect to
S be any edge e with t(e) = (v, [i]) and d(e) = (v, [i])′1. Let TS be the subgraph of M with
vertex set V and directed edge set

E(TS) = {e1(v, [i])′a : (v, [i]) ∈M}. (89)

In this case we call TS the first arrival graph with respect to S.

the electronic journal of combinatorics 30(3) (2023), #P3.28 35



(15, 0)

(2
8,

[0
]) a

=
E
E

(2
6,

[1
]) a

=
SS
E

(2
4,

[0
]) a

=
S

(2
7,

[1
]) a

=
SE
S

(3
0,

[0
]) a

=
SE
S

(2
8,

[1
]) a

=
E

(2
6,

[0
])

: E
S

(2
9,

[1
]) a

=
E

(2
7,

[0
]) a

=
E
E

(2
5,

[1
]) a

=
S

(2
8,

[0
]) a

=
E
E

(2
6,

[1
]) a

=
SS
E

(2
9,

[0
]) a

=
E
E

(2
7,

[1
]) a

=
SS
E

(2
5,

[0
]) a

=
E

(2
3,

[1
]) a

=
S

(2
6,

[0
]) a

=
SE

(2
4,

[1
]) a

=
E

(2
2,

[0
]) a

=
E

(2
0,

[1
]) a

=
S

(2
3,

[0
]) a

=
S

(2
6,

[1
]) a

=
SS
E

(2
9,

[0
]) a

=
E
E

(2
7,

[1
]) a

=
SS
E

(0, 10)

Figure 10: the arrival words in Example 77 give the partition (12, 12, 10, 8, 7, 4, 1, 1, 1).

Definition 79 (The graphs M6k and T 6k). For an integer k, and an (r, s, c)-multigraph
M, let M6k be the induced subgraph of M with vertex set

V (M6k) = {(v, [i]) : (v, [i]) ∈ V (M) and v 6 k}.

For a family of arrival words S, let T6kS be the induced subgraph of TS with vertex set
V (M6k).

We require some preparation before proving Proposition 81, as we make use of [1, Thm
5]. The proof is not hard, but could possibly be disruptive to the flow of this paper, so
the interested reader is referred to [1] for a full proof. The notion we will need is that of
a T -graph.

Definition 80 (T -graph). A T -graph is a finite directed multigraph such that at each
vertex, the number of edges arriving is the same as the number of edges departing.
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Theorem 5a of [1] says that, given a complete circuit of a T -graph, starting and ending
at a vertex v, the set of edges given by the last departures from any given vertex give a
spanning tree of the T -graph rooted at v. Reversing the direction of all edges, equivalantly,
the first arrival graph arising from a complete circuit of a T -graph is a spanning tree.
Conversely, [1, Thm 5b] says that any spanning tree rooted at v gives rise to a complete
circuit with last departures (or equivalently, first arrivals) agreeing with the edges of the
spanning tree.

In order to apply these theorems to our situation, we need to separate M into a
T -graph and a well understood complement, which is how we prove Proposition 81.

Proposition 81. Let λ be a partition and let Mr,s,c(λ) = M . Suppose there is a family of
arrival words S = {(v, [i])′a : (v, [i]) ∈ V } assigned to M . Let TS be the first arrival graph
with respect to S. Then there is a partition µ with an (r, s, c)-tour having arrival words
S if and only if both of the following hold.

1. There exists some v such that for all w > v, and all j, (w, [j])′a satisfies (87).

2. TS is a spanning tree of M .

Proof. The first condition has already been shown to be necessary, so we prove that
assuming the first condition holds, the second condition is equivalent to the existence of
µ. Fix v such that for all w > v, (87) holds for both (w, [j])a and (w, [j])′a. Let k > v be
such that k = rsk1 for some integer k1 with c | k1. Let M6k and M>k be the induced
subgraphs of M with vertex sets given by

V (M6k) = {(v, [i]) ∈ V (M) : v 6 k}, (90)

V (M>k) = {(k, [0])} ∪ {(v, [i]) ∈ V (M) : v > k}, (91)

and let T6kS and T>kS be the induced subgraphs of TS with vertex sets V (M6k) and
V (M>k). Then T>kS is a spanning tree of M>k.

Let x = (k1r, 0) and y = (0, k1s) on the boundary. Then, the edges in M>k correspond
to the rays along the axes starting at x and y. The (r, s, c)-tour corresponding to λ
restricted to M6k is a complete circuit starting and finishing at (k, [0]), and each edge
corresponds to an edge in the boundary of λ that occurs after the south edge arriving at
y and occurs before the east edge departing from x. So, M6k contains |x| south edges
and |y| east edges. Therefore, there is a partition µ with arrival words S if and only if
there is a complete circuit of M6k such that the arrival words agree with S.

Assume that a complete circuit of M6k with arrival words as given in S exists. The
(r, s, c)-tour of M corresponding to λ consists of a circuit of M>k and M6k, so the in-
degree of any vertex v of M6k is equal to the out-degree of v in M6k and M6k is connected.
In particular, M6k is a T -graph. So, [1, Thm 5a] implies that T6kS is a tree rooted at
(k, [0]). Therefore, TS is a spanning tree of M .

Now assume that TS is a spanning tree of M . Then, T6kS is a tree rooted at (k, [0]) and
[1, Thm 5b] implies that there is a complete circuit of M6k with arrival words agreeing
with S.

the electronic journal of combinatorics 30(3) (2023), #P3.28 37



(k, [0]) (k + (cr − 1)s, [0])

(k + (cr + 1)s, [1]) · · · (k + (2cr − 1)s, [−1])

(k + r, [−1])

(k + 2r, [−2])

...

(k + crs, [0])

(k + s, [1]) (k + 2s, [2]) · · ·

...

Figure 11: T>kS in the case (c, r + s) = 1.

From now on, let λ <r,s,c λr,s,k where k = rsk1 and c | k1. Let Mr,s,c(λ) = M , let S be
the family of arrival words corresponding to λ. We will now refer to TS as the first arrival
tree.

When we have a drawing of Mr,s,c(λ) on the cylinder defined in Proposition 54, and
a directed path p from (v, [i]) to (w, [j]), we define the winding number of p to be the
number of times strictly after leaving (v, [i]) and before or on arriving at (w, [j]) that p
arrives at a vertex on the upper boundary strip. We will be particularly interested in
the case where (v, [i]) = (k, [−k1s]) and p is the unique path in the first arrival tree from
(k, [−k1s]) to (w, [j]).

Definition 82 (Switch, eastern vertex, southern vertex). Given a partition λ with λ <r,s,c

λr,s,k, and (r, s, c)-multigraph M , let T denote the first arrival tree of M corresponding
to λ. Let (v, [i]) ∈ V (M) have v 6 k and (v, [i]) 6= (k, [0]). Then (v, [i]) is a switch if
(v + r, [i − 1]) and (v − s, [i − 1])1 are both vertices of M , and the distances in T from
the vertex (k, [0]) to (v + r, [i − 1]), (v − s, [i − 1]) are equal. Now drop the condition
that v 6 k and (v, [i]) 6= (k, [0]). If (v, [i]) is not a switch and the first letter in the arrival
word is E, say (v, [i]) is eastern, and let Ea be the set of all eastern vertices (v, [i]) with
v 6 k. If (v, [i]) is not a switch and the first letter in the arrival word is S, say (v, [i]) is

1these are the two equivalence classes that, if they are vertices of M , could form a tail of an edge to
(v, [i])
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southern, and let So be the set of all southern vertices (v, [i]) with v 6 k.

Example 83. For µ = (12, 12, 10, 8, 7, 4, 1, 1, 1), the first arrival tree of M3,2,2(µ) is as in
Figure 12.

x− y = −2

x− y = −12

(36, [0])

(33, [1])

(30, [0])

(27, [1]) (29, [0])

(26, [1])

(23, [0])

(20, [1]) (22, [0]) (24, [1]) (26, [0])

(26, [0])

(23, [1]) (25, [0])

(28, [0])

(25, [1]) (27, [0]) (29, [1])

(28, [1])

(24, [0]) (28, [0]) (30, [1]) (32, [0]) (34, [1]) (36, [0])

(39, [1])

(42, [0])

(45, [1])

(48, [0])(46, [1])(44, [0])(42, [1])(40, [0])(38, [1])

...

· · ·

Figure 12: The first arrival tree in M3,2,2(12, 12, 10, 8, 7, 4, 1, 1, 1) with the eastern vertices
coloured blue, the southern vertices coloured red, and the switches coloured green.

The paths in the first arrival tree from (36, [0]) to (26, [0]), (23, [1]), (28, [1]) and (25, [0])
have winding number 1, whilst the other vertices (v, [i]) for which there is a path in the
first arrival tree from (36, [0]) to (v, [i]) have winding number 0. The switches are coloured
green, the southern vertices red, and the eastern vertices blue (compare with Figure 7 to
verify the colouring).
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5.3 Definition of Ir,s,c

Given a partition λ with λ 6r,s,c λr,s,k, with multigraph M and first arrival tree T , we
define the partition Ir,s,c(λ) as follows. The multigraph of Ir,s,c(λ) is also given by M .

Now, we obtain the (r, s, c)-tour of Ir,s,c(λ) by, at each switch, reversing the arrival
word, and at each vertex that is not a switch, fixing the first letter of the arrival word
and reversing the rest of the arrival word.

To see that Ir,s,c(λ) is well defined, we need to check that taking the first arrival at
each vertex of M gives a spanning tree. We do this by checking that in T , the move of
deleting an east (respectively south) edge arriving at a switch (v, [i]) and adding a new
south (respectively east) edge arriving at (v, [i]) gives another spanning tree T ′. There
are still edges arriving at every vertex we had edges arriving at before, but now the edge
arriving at (v, [i]) might be departing from a different vertex. So, it suffices to check
that (v, [i]) is still connected to each of (v − s, [i − 1]) and (v + r, [i − 1]), and that we
have not introduced a cycle by adding the new edge. For the former, it suffices to check
(v − s, [i − 1]) and (v + r, [i − 1]) are still connected to each other. In T , (v + r, [i − 1])
and (v − s, [i − 1]) are both connected to (k, [0]) by paths. Moreover, the distance in
T to (k, [0]) strictly decreases with each step along the path we take, so (v, [i]) is not a
vertex on either of these paths. So, both of these paths exist T ′, and (v + r, [i − 1]) and
(v− s, [i− 1]) are connected to one another. To see that the new edge does not introduce
a cycle, observe that if we had introduced a cycle, we would now have two distinct paths
from (k, [0]) to (v, [i]). Since the only edge into (v, [i]) is from its new neighbour, we must
have had two distinct paths from (k, [0]) to the new neighbour in T originally. But then
we had a cycle in T originally, a contradiction.

Hence, we may permute the letters in any arrival word at any vertex and the result
will still correspond to a partition as long as we do not change the first letter in the arrival
word at a vertex that is not a switch. Since we defined Ir,s,c(λ) to fix the first letter in
the arrival word at any vertex that is not a switch, Ir,s,c(λ) is well defined. Moreover,
we can recover λ from Ir,s,c(λ) by doing the same operation again, as each operation is
self-inverse and preserves switches.

Since Ir,s,c does not change Mr,s,c, we can apply Proposition 58 and Corollary 76
respectively to obtain

|Ir,s,c(λ)| = |λ|, (92)

and
corec(Ir,s,c(λ)) = corec(λ). (93)

Moreover, the map sending λ to Ir,s,c(λ) is an involution - it is immediate from the
definition that a vertex is a switch after this reassignment if and only if it were a switch
before the reassignment.

6 Further statistics determined by Mr,s,c

This section checks that Ir,s,c satisfies hypotheses 2–4 in Proposition 50.
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s1

s2

s′1
s′2

Figure 13: the partition λ with (l, [i]) = (4, [0]) and s1, s2, s
′
1 and s′2 labelled

First, we use the method introduced in Section 4 to prove that Mr,s,c determines midx,c
and crit+

x,c + crit−x,c . Then we check that Ir,s,c exchanges crit+
x,c and crit−x,c, concluding the

proof of Theorem 46. In the language of Proposition 75, Propositions 86 and 88 calculate
g(M+,M) for f(λ) = midx,c(λ) and f(λ) = crit+

x,c(λ) + crit−x,c(λ) respectively.

6.1 Mr,s,c determines midx,c

Notation 84. Let λ, M , M+, (x, y), (l, [i]), s1, s2 s′1 and s′2 be as in the proof of
Proposition 74. For any edge e in the boundary of λ, write Ein

→e(w, [j]) for the number of
Es in the arrival word at a vertex (w, [j]) that correspond to east edges in the boundary
of λ that occur before e. Define Sin

→e(w, [j]) analogously for the number of Ss. Write
Ein

e→(w, [j]) for the number of Es in the arrival word at a vertex (w, [j]) that correspond
to east edges in the boundary of λ that occur after e. Define Sin

e→(w, [j]) analogously
for the number of Ss. Analogously define Sout

→e(w, [j]), Eout
→e(w, [j]), Sout

→e(w, [j]), and
Eout

→e(w, [j]) for the departure words. We will use this notation with e = s1 or e = s2.
Finally, write E+

in(w, [j]) for the number of Es in the arrival word at (w, [j]) in M+ and
define analogously S+

in,E
+
out and S+

out.
We work in the ring R of functions V (M) → Z. Practically, the only consequence of

this is that we write fg(v, [i]) for the pointwise product f(v, [i])g(v, [i]) and (f + g)(v, [i])
for f(v, [i]) + g(v, [i]). There should be no confusion between composition and product of
functions as functions from V (M) to Z are not composable.

Example 85. Let λ = (4, 1), r = 3, s = 1 and c = 2. Then min(x,y)∈b(λ)(3y + x) = 4
achieved at (4, 0) and (1, 1). Since 4 − 0 ≡ 1 − 1 (mod 2) and 1 − 1 < 4 − 0, we have
(1, 1) <3,1,2 (4, 0) so (4, 2) is the only (3, 1, 2)-successor of λ. So, (l, [i]) = (4, [0]). As an
example of the use of Notation 84, (Ein

→s1Sout
s1→ + E+

out)(7, [1]) = 1× 1 + 1 = 2.

Proposition 86. Let λ be a partition with Mr,s,c(λ) = M . Let M+ be a successor of M
that changes from (l, [i]). If λ+ >′r,s,c λ and M+ = Mr,s,c(λ

+),

midx,c(λ
+)−midx,c(λ) =

l+s+r−1∑
w=l+1

(Eout − Ein) (w, [i]), (94)

where x = r
s
.

Proof. By Proposition 74, the Young diagram of λ+ is obtained from that of λ by adding
a box with bottom corner (x1, y1) where ry1 + sx1 = l and [x1 − y1] = [i].
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Proposition 52 gives a formula for midx,c(λ): it is the number of pairs of edges e1, e2

in the boundary sequence such that e1 is an east edge arriving at a point (x, y) satisfying
sx+ ry = v and [x− y] = [j] for some j, and e2 is a south edge occurring after e1 arriving
at a point (x′, y′) satisfying ry′ + sx′ = w and [x′ − y′] = [j], where w and v satisfy
−s− r < w − v < 0.

s1

s2

s′1

s′2

sx+ ry = l

sx+ ry = l + r

sx+ ry = l + s

sx+ ry = l + r + s

(x1, y1)

Figure 14: the diagrams of λ and λ+.

We account for the change in the number of such pairs when changing s1 to s′1 and s2

to s′2 below: the only changes to midx,c will be when e1 ∈ {s2, s
′
1} or e2 ∈ {s1, s

′
2}.

By adding s′1 we gain the number of south edges after s1, arriving at points (x, y) on
lines sx+ ry = w, such that −s− r < w − (l + r + s) < 0 and [x− y] = [i]. By deleting
s1 we lose the number of east edges occurring before s1 arriving at points (x, y) on lines
sx + ry = v such that −s − r < l − v < 0 and [x − y] = [i] So, the contribution to
midx,c(λ

+)−midx,c(λ) from switching s1 to s′1 is S1 where

S1 =
l+r+s−1∑
w=l+1

(Sin
s1→ − Ein

→s1) (w, [i]). (95)

By adding s′2 we gain the number of east edges before s2, arriving at points (x, y) on
lines sx + ry = v, such that −s − r < l + s − v < 0, and x − y ≡ i + 1 (mod c). By
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deleting s2 we lose the number of south edges occurring after s2 arriving at points (x, y)
on lines sx + ry = w such that −s − r < w − (l + s) < 0 and [x − y] = [i + 1]. So, the
contribution to midx,c(λ

+)−midx,c(λ) from switching s2 to s′2 is S2 where

S2 =
l+r+2s−1∑
v=l+s+1

Ein
→s2(v, [i+ 1])−

l+s−1∑
v=l−r+1

Sin
s2→(v, [i+ 1]). (96)

So,
midx,c(λ

+)−midx,c(λ) = S1 + S2. (97)

Now, note that an east edge into (v, [i + 1]) is also an east edge out of (v − s, [i]), and a
south edge into (w, [i+ 1]) is also a south edge out of (w+ r, [i]). Applying this reasoning
to (96),

S2 =
l+r+s−1∑
w=l+1

(Eout
→s2 − Sout

s2→) (w, [i]). (98)

Substituting (95) and (98) into (97),

midx,c(λ
+)−midx,c(λ) =

l+s+r−1∑
w=l+1

(Sin
s1→ − Ein

→s1 + Eout
→s2 − Sout

s2→) (w, [i]). (99)

Since s2 is an east edge occuring immediately after s1, Sout
s2→ = Sout

s1→, and since s1 is
a south edge immediately preceding s2, Eout

→s2 = Eout
→s1 . So,

midx,c(λ
+)−midx,c(λ) =

l+s+r−1∑
w=l+1

(Sin
s1→ − Ein

→s1 + Eout
→s1 − Sout

s1→) (w, [i]). (100)

Now, note that at any vertex (v, [j]) except (l, [i]), we have that

(Sin
s1→ + Ein

s1→) (v, [j]) = (Sout
s1→ + Eout

s1→) (v, [j]), (101)

because after s1 we depart every vertex after we arrive at it, the left hand side counting
arrivals at the vertex after s1 and the right side counting departures. Rearranging gives

(Sin
s1→ − Sout

s1→) (v, [j]) = (Eout
s1→ − Ein

s1→) (v, [j]). (102)

Substituting (102) into (100),

midx,c(λ
+)−midx,c(λ) =

l+s+r−1∑
w=l+1

(Eout
s1→ − Ein

s1→ − Ein
→s1 + Eout

→s1) (w, [i]). (103)

Since s1 is a south edge, Ein
s1→ + Ein

→s1 = Ein and Eout
s1→ + Eout

→s1 = Eout, so

midx,c(λ
+)−midx,c(λ) =

l+s+r−1∑
w=l+1

(Eout − Ein) (w, [i]). (104)
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Corollary 87. If λ and µ are partitions with Mr,s,c(λ) = Mr,s,c(µ), then midx,c(λ) =
midx,c(µ).

Proof. Apply Proposition 75 with

g(M+,M) =
l+s+r−1∑
w=l+1

(Eout − Ein) (w, [i]), (105)

where M+ is the successor of M that changes from (l, [i]).

6.2 Mr,s,c determines crit+x,c + crit−x,c

Proposition 88. Let λ be a partition with Mr,s,c(λ) = M and let M+ be a successor of
M that changes from (l, [i]). Then, if λ+ is the successor of λ with multigraph M+,

crit+
x,c(λ

+) + crit−x,c(λ
+)− crit+

x,c(λ)− crit−x,c(λ) (106)

is equal to
Sin(l, [i])− 1 + (Sin − Sout)(l + r + s, [i]), (107)

where x = r
s
.

Proof. First, we compute crit+
x,c(λ

+)− crit+
x,c(λ). Corollary 59 implies that

crit+
x,c(λ

+)− crit+
x,c(λ) =

∑
v∈Mr,s,c(λ+)

inv(va)−
∑

v∈Mr,s,c(λ)

inv(va) (108)

We keep the notation of the previous proposition and reference Figure 14 throughout.
The only nonzero terms in the difference (108) come from v ∈ {(l, [i]), (l+ r+ s, [i]), (l+
s, [i+ 1])}. We work case-by-case through these vertices.

• We delete the first arrival at (l, [i]), corresponding to deleting s1. All arrivals at
(l, [i]) are Ss by Corollary 73, so this does not affect inv(l, [i])a.

• We add an E to the arrival word at (l + r + s, [i]), corresponding to adding s′1.

before s1 after s1

E

before s′1 s′1 after s′1

This E is the first letter in an inversion with second letter any S occuring after s′1,
so (l + r + s, [i]) contributes Sin

s1→(l + r + s, [i]) to (108).

• We replace the first E in the arrival word at (l + s, [i + 1]) (corresponding to s2)
with an S (corresponding to s′2). Therefore, we lose all inversions with the replaced
E edge as their first letter passing from λ to λ+. There are Sin

s2→(l+ s, [i+ 1]) such
inversions.
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ESSSSSSSS . . . SSSS

before s2
s2 after s2

SSSSSSSSS . . . SSSS

before s′2 s′2 after s′2

We gain no inversions from the new S edge, because s2 was the first east departure
from (l, [i]) in the tour corresponding to λ. So, (l+s, [i+1]) contributes −Sin

s2→(l+
s, [i+ 1]) to (108).

So,

crit+
x,c(λ

+)− crit+
x,c(λ) = Sin

s1→(l + r + s, [i])− Sin
s2→(l + s, [i+ 1]). (109)

A south arrival before (respectively after) s2 at (l + s, [i + 1]) is a south departure
before (respectively after) s2 from (l + r + s, [i]). Combining this logic with (109),

crit+
x,c(λ

+)− crit+
x,c(λ) = (Sin

s1→ − Sout
s2→) (l + r + s, [i]). (110)

We now analyse

crit−x,c(λ
+)− crit−x,c(λ) =

∑
v∈Mr,s,c(λ+)

inv(vd)−
∑

v∈Mr,s,c(λ)

inv(vd). (111)

The departure words at every vertex except for (l, [i]), (l+r+s, [i]), and (l+r, [i−1]) are
unchanged so the only nonzero terms in (111) come from v ∈ {(l, [i]), (l + r + s, [i]), (l +
r, [i− 1])}. An analogous argument to the above shows that the contribution of (l+ r, [i−
1]) to (111) is (Sout

s1→ − Eout
→s1) (l + r, [i − 1]), the contribution of (l + r + s, [i]) is

Eout
→s2(l + r + s, [i]), and (l, [i]) does not contribute. So,

crit−x,c(λ
+)− crit−x,c(λ) = (Sout

s1→ − Eout
→s1) (l+ r, [i− 1]) + Eout

→s2(l+ r+ s, [i]). (112)

An east departure from (l + r, [i− 1]) is an east arrival at (l + r + s, [i]), so

crit−x,c(λ
+)− crit−x,c(λ) = Sin

s1→(l, [i])− (Ein
→s1 − Eout

→s2) (l + r + s, [i]). (113)

Now, since s1 is the first edge to arrive at (l, [i]),

Sin
s1→(l, [i]) = Sin(l, [i])− 1. (114)

Since s1 does not arrive at (l+r+s, [i]), we leave (l+r+s, [i]) before s1 the same number
of times as we arrive before s1. So,

(Ein
→s1 + Sin

→s1)(l + r + s, [i]) = (Eout
→s2 + Sout

→s2)(l + r + s, [i])). (115)

Rearranging,

Ein
→s1(l + r + s, [i]) = (Eout

→s2 + Sout
→s2 − Sin

→s1)(l + r + s, [i]). (116)
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Substituting (116) and (114) into (113),

crit−x,c(λ
+)− crit−x,c(λ) = Sin(l, [i])− 1 + (Sin

→s1 − Sout
→s2)(l + r + s, [i]). (117)

Since (l + r + s, [i]) is not an endpoint of s1 or s2,

(Sin
→s1 + Sin

s1→)(l + r + s, [i]) = Sin(l + r + s, [i]) (118)

and
(Sout

→s2 + Sout
s2→)(l + r + s, [i]) = Sout(l + r + s, [i]). (119)

Adding (117) and (110), and then applying (119) and (118) completes the proof.

Corollary 89. If λ and µ are partitions such that Mr,s,c(µ) = Mr,s,c(λ) then

crit+
x,c(λ) + crit−x,c(λ) = crit+

x,c(µ) + crit−x,c(µ). (120)

Proof. Apply Proposition 75 with

g(M+,M) = Sin(l, [i])− 1 + (Sin − Sout)(l + r + s, [i]). (121)

where the calculations Sin and Sout are done with respect to the multigraph M , and M+

is the successor of M changing from (l, [i]).

So, we know that Mr,s,c(λ) determines the c-core of λ, |λ|, midx,c(λ) and crit+
x,c(λ) +

crit−x,c(λ), and that any bijection preserving Mr,s,c therefore satisfies hypotheses 1-3 of
Proposition 50. It will be useful in our final remaining check, that Ir,s,c satisfies the
fourth criterion in Proposition 50, to have a formula for crit+

x,c(λ) + crit−x,c(λ) in terms of
Mr,s,c(λ). This is what Proposition 90 computes.

Proposition 90. Let λ be a partition. If k = rsk1 where c | k1 and λ <r,s,c λr,s,k, then

(crit+
x,c + crit−x,c)(λ) =

∑
(v,[j])
v6k

EinSin(v, [j])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
. (122)

Proof. First, we prove that (122) holds when λ = λr,s,k.
We will show that for all boxes � ∈ λr,s,k, −s < sa(�) − rl(�) < r, and hence that

the left hand side of (122) is zero at λr,s,k. We will then check that the right hand side
of (122) is zero at λr,s,k.

The ith part of λr,s,k corresponds to a row with top right corner (xi, i) where xi is
maximal such that sxi + ri 6 k. So,

xi =

⌊
k − ri
s

⌋
=

⌊
k1rs− ri

s

⌋
= k1r −

⌈
ri

s

⌉
. (123)

Similarly, the number of parts of λr,s,k of size at least j corresponds to a column with top
right corner (j, yj) where yj is maximal such that sj + ryj 6 k, so

yj =

⌊
k − sj
r

⌋
=

⌊
k1rs− sj

r

⌋
= k1s−

⌈
sj

r

⌉
. (124)
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Now, let � ∈ λ be a box with top right corner (i, j). Then, the arm of � is given by
xi − j and the leg of � is given by yj − i. So,

sa(�)− rl(�) = s(xi − j)− r(yj − i) (125)

= k1rs− s
⌈
ri

s

⌉
− sj − k1rs+ r

⌈
sj

r

⌉
+ ri (126)

=

(
r

⌈
sj

r

⌉
− sj

)
−
(
s

⌈
ri

s

⌉
+ ri

)
. (127)

Now, consider the two bracketed quantities separately, setting x =
(
r
⌈
sj
r

⌉
− sj

)
and

y = −
(
s
⌈
ri
s

⌉
+ ri

)
. For the first bracket we have that

r

(
sj

r

)
6 r

⌈
sj

r

⌉
< r

(
sj

r
+ 1

)
, (128)

so

0 6 r

⌈
sj

r

⌉
− sj < r. (129)

Similarly for the second bracket,

− s < ri− s
⌈
ri

s

⌉
6 0. (130)

So, sa(�)− rl(�) can be written as x+ y for x ∈ [0, r) and y ∈ (−s, 0] and therefore
−s < sa(�)− rl(�) < r.

Therefore,
crit+

x,c(λr,s,k) + crit−x,c(λr,s,k) = 0. (131)

Next we evaluate the right hand side of (122) at λr,s,k. Proposition 68 tells us that
for all vertices (v, [i]) such that 0 6 v < k, the arrival word at (v, [i]) in Mr,s,c(λr,s,k) does
not contain both an E and a S. So, for all such (v, [i]) we have EinSin(v, [i]) = 0. So, the
right hand side of (122) simplifies to

c−1∑
i=0

EinSin(k, [i])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
(132)

Proposition 68 also tells us that Sin(k, [i]) = 0 unless [i] = [0], and that Sin(k, [0]) = 1,
so we can rewrite (132) as

Ein(k, [0])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
. (133)

So, it suffices to show that Ein(k, [0]) =
⌊

k1(s+r)
lcm(c,s+r)

⌋
. The east edges in the boundary

of λr,s,k arriving at vertices (k, [i]) for some i correspond to points (x, y) with x > 0 and
y > 0 such that sx + ry = k. These points have coordinates {(r, s(k1 − 1)), (2r, s(k1 −
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2)), . . . , ((k1 − 1)r, s), (k1r, 0)}. Now, Ein(k, [0]) counts the number of these points that
also lie on a line x − y = i for [i] = [0]. The set of values of x − y for this set of points
is {r + s− k1s, 2(r + s)− k1s, . . . , k1(r + s)− k1s}. Letting l(r + s) = lcm(c, r + s), the
values of x − y that give us the same congruence class as 0 when taken modulo c are of
the form ml(r + s) − k1s for some integer m. The number of values of this form in the

given set is indeed
⌊

k1(s+r)
lcm(c,s+r)

⌋
.

Now suppose λ <r,s,c λr,s,k is maximal with respect to >r,s,c such that the proposition
is false. In particular, the proposition holds for any successor λ+ >′r,s,c λ. Let M+ be a
successor of M that changes from (l, [i]), and let λ+ be the successor of λ with multigraph
M+. Then, (crit+

x,c + crit−x,c)(λ
+)− (crit+

x,c + crit−x,c)(λ) can be written as ∆1, where

∆1 = Sin(l, [i])− 1 + (Sin − Sout)(l + r + s, [i]). (134)

By assumption,

(crit+
x,c + crit−x,c)(λ

+) =
∑
(v,[j])
v6k

E+
in S+

in(v, [j])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
(135)

So, combining (134) and (135),

(crit+
x,c + crit−x,c)(λ) =

∑
(v,[j])
v6k

E+
in S+

in(v, [j])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
−∆1. (136)

First, we note that a vertex (v, [j]) contributes the same to the sums∑
(v,[j])
v6k

EinSin(v, [j])

taken over the multigraphs M or M+ unless (v, [j]) ∈ {(l, [i]), (l+ r+ s, [i], (l+ s, [i+ 1])}.
In fact, since there are no east edges into (l, [i]) in M or M+, we only need consider terms
with (v, [j]) ∈ {(l + r + s, [i], (l + s, [i+ 1])}. So,

(crit+
x,c + crit−x,c)(λ) =

∑
(v,[j])
v6k

EinSin(v, [j])−
⌊

k1(s+ r)

lcm(c, s+ r)

⌋
−∆1 + ∆2 (137)

where

∆2 = (E+
in S+

in−EinSin)(l + r + s, [i]) + (E+
in S+

in−EinSin)(l + s, [i+ 1]). (138)

Because M+ changes from M at (l, [i]), E+
in(l + s, [i + 1]) = Ein(l + s, [i + 1]) − 1,

S+
in(l + s, [i + 1]) = Sin(l + s, [i + 1]) + 1, E+

in(l + r + s, [i]) = Ein(l + r + s, [i]) + 1 and
S+

in(l + r + s, [i]) = Sin(l + r + s, [i]) so (138) simplifies to

∆2 = Ein(l + s, [i+ 1])− Sin(l + s, [i+ 1]) + Sin(l + r + s, [i])− 1. (139)

the electronic journal of combinatorics 30(3) (2023), #P3.28 48



A south arrival at (l + s, [i+ 1]) is the same as a south departure from (l + r + s, [i]),
and an east arrival at (l + s, [i+ 1]) is the same as an east departure from (l, [i]), so

∆2 = Eout(l, [i])− (Sout − Sin) (l + r + s, [i])− 1. (140)

By Corollary 73, all edges leaving (l, [i]) are east edges and all edges arriving are south
edges. The same number of edges arrive and leave, so Eout(l, [i]) = Sin(l, [i]). So,

∆2 = (Sin − Sout)(l + r + s, [i]) + Sin(l, [i])− 1 = ∆1. (141)

Substituting (141) into (137) completes the proof.

It remains to check that crit+
x,c(Ir,s,c(λ)) = crit−x,c(λ) and crit−x,c(Ir,s,c(λ)) = crit+

x,c(λ).
First, we make some make some straightforward but important observations about

Mr,s,c(λ) and winding numbers in Proposition 91. Then, we apply these to the first
arrival tree to prove some formulae about distances between consecutive vertices in the
(r, s, c)-tour with respect to the first arrival tree, depending on whether the vertex is
eastern, southern, or a switch in Proposition 92. Finally, we apply these to proving
crit+

x,c(Ir,s,c(λ)) = crit−x,c(λ) and crit−x,c(Ir,s,c(λ)) = crit+
x,c(λ) in Proposition 93.

Proposition 91. Let (v, [i]) and (w, [j]) be two vertices of Mr,s,c(λ), and let p1 and p2 be
directed paths between (v, [i]) and (w, [j]). Suppose p1 is given by the sequence of vertices
(v, [i]) = (v0, [i0]), . . . , (v|p1|,[i0+|p1|]) = (w, [j]). Then,

1. |p1| − |p2| is divisible by lcm(c, r + s).

2. Let (v, [i]) be m lattice steps below the upper boundary of the cylinder, and let |p1| =
q lcm(c, r + s) + u where −m < u 6 lcm(c, r + s) −m. The winding number of p1

is q.

Proof. The first point follows from Proposition 54: p1 and p2 are lattice paths from points
(x1, y1) and (x1+ar, y1−as) respectively to points (x2, y2) and (x2+br, y2−bs) respectively,
where lcm(c, r + s) divides a(r + s) and b(r + s). We have that |p1| = x2 − x1 + y1 − y2

and |p2| = x2 + br − x1 − ar + y1 − as− y2 + bs, so |p1| − |p2| = (r + s)(a− b), which is
divisible by lcm(c, r + s).

The second point follows because as we trace out a directed path, the value of x − y
moves cyclically through the residue classes modulo lcm(c, r+ s), incrementing by 1 with
each step.

Proposition 92. Let (k, [0]) = v0, v1 . . . , v(r+s)k1 = (k, [0]) be the vertices visited, in order,
by the (r, s, c)-tour, corresponding to the section of the boundary of λ between (0, k1s) and
(k1r, 0). Let di denote the distance in the first arrival tree T from (k, [0]) to vi.

1. If vi is a switch, or if there is a copy of the edge (vi−1, vi) in T , then di − di−1 = 1.

2. If vi is an eastern vertex and there is no copy of (vi−1, vi) in E(T ), then di− di−1 =
1 + lcm(c, r + s).
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3. If vi is a southern vertex and there is no copy of (vi−1, vi) in E(T ), then di− di−1 =
1− lcm(c, r + s).

Proof. Write pi for the path in T from (k, [0]) to vi, so that |pi| = di. The first point
follows immediately from the definition of a switch and the definition of T .

In general, the winding number of a vertex v is the same as the winding number
of the last vertex on the upper boundary strip that T before v. So, drawing T on the
cylinder and then forgetting the identification of the two boundary lines, the connected
components form sets of vertices of equal winding number.

Moreover, if wind(pi) = wind(pi−1), then by the second part of Proposition 91, ||pi| −
|pi−1|| < lcm(c, r + s). Since there is a path of length 1 (not necessarily in T ) connecting
vi−1 and vi, then by the first part of Proposition 91, |pi| − |pi−1| ≡ 1 (mod lcm(c, r+ s)).
Therefore, di − di−1 = 1, so vi is a switch or there is a copy of (vi−1, vi) in E(T ).

For 2 and 3, we first prove that as we scan southwest along the upper boundary strip,
the winding numbers of the paths from (k, [0]) to the vertices on the strip weakly increase.
We proceed by induction.

B A
C

B A

A′
B′

Suppose A and B are vertices on the upper boundary strip and B is southwest of A,
and let pA and pB be the paths in T from (k, [0]) to A and B respectively. We will show
wind(pB) > wind(pA). If A = (k, [0]) then we are done, so suppose not. There is a copy of
both A and B on the lower boundary strip, with B still southwest of A. Moreover, pA and
pB run from points A′ and B′ respectively on the upper boundary strip to A and B, where
we possibly have A′ = B′. However, A′ cannot be strictly southwest of B′, as otherwise pA
and pB would have to cross at a vertex C, introducing a cycle from (k, [0]) following pA to
C and then following pB back to (k, [0]). Let p′B and p′A be pB and pA shortened to finish
at B′ and A′ respectively. Then, by strong induction, wind(p′B) > wind(p′A). Adding 1 to
both sides, wind(pB) > wind(pA).

Now, in the case that vi is eastern, and there is no copy of (vi−1, vi) in E(T ), (vi−1, vi)
must be a south edge, and vi−1 and vi lie in different connected components. Since
wind(pi) 6= wind(pi−1), wind(pi) > wind(pi−1). Let D and E be the last vertices on the
upper boundary strip on pi and pi−1 respectively.

D

E

vi−1

vi
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Since all paths in T have vertices at lattice points and do not intersect with each
other, there can be no path that starts at a vertex on the upper boundary strip between
E and D that crosses all the way to the lower boundary strip. Hence, the copy of E on the
lower boundary strip either lies in the same connected component as D or in a component
northeast of D. So, wind(pi) = wind(pi−1) + 1. Let qi be the path obtained by extending
pi−1 by the south edge (vi−1, vi). Then |qi| = di−1 + 1. The second part of Proposition 91
tells us that |pi| and |qi| agree modulo lcm(c, r+s) and therefore di = di−1+1+lcm(c, r+s).

An analogous argument proves the third formula.

Proposition 93. Let λ be a partition. Then

crit+
x,c(Ir,s,c(λ)) = crit−x,c(λ) (142)

and
crit−x,c(Ir,s,c(λ)) = crit+

x,c(λ). (143)

Proof. We will check that crit+
x,c(λ) = (crit+

x,c + crit−x,c)(Mr,s,c(λ))− crit+
x,c(Ir,s,c(λ)).

Recall that crit+
x,c counts the total number of inversions in the arrival word at vertices

in Mr,s,c(λ). Suppose the arrival word at vertex (v, [i]) has a south edges and b east edges.
If v is a switch, then I reverses the arrival word at (v, [i]), so the pairs of S,E edges that
contribute to crit+

x,c(I(λ)) are exactly those that do not contribute to crit+
x,c(λ), so the

contributions over I(λ) and λ at (v, [i]) sum to ab.
Note that if (v, [i]) ∈ Ea then I(λ) has inversions in the arrival word at (v, [i]) using

the first E and any S in the arrival word, and then any other pair of south and east edges
contribute to I(λ) if and only if they do not contribute to λ, so the two contributions sum
to ab+ a. Similarly, if (v, [i]) ∈ So then the contributions sum to ab− b. Hence, we have
that the total crit+

x,c(λ) + crit+
x,c(Ir,s,c(λ)) can be written as S1 + S2 + S3 where

S1 =
∑

(v,[i])is a switch

Ein(v, [i])Sin(v, [i])

S2 =
∑

(v,[i])∈Ea

Ein(v, [i])Sin(v, [i]) + Sin(v, [i])

S3 =
∑

(v,[i])∈So

Ein(v, [i])Sin(v, [i])− Ein(v, [i]).

Now, note first that no vertex (v, [i]) with v > k contributes to any of these sums.
Indeed, no such vertex is a switch, and the arrival word at any such (v, [i]) has length 0, 1 or
2, containing at most one S and at most one E. If the arrival word is empty there is nothing
to prove. If the arrival word is E then the vertex is eastern, and Ein(v, [i])Sin(v, [i]) +
Sin(v, [i]) = 0. If the arrival word is S then the vertex is southern and Ein(v, [i])Sin(v, [i])−
Ein(v, [i]) = 0. The only other possible arrival word is SE, in which case the vertex is
southern and Ein(v, [i])Sin(v, [i])− Ein(v, [i]) = 1− 1 = 0. So, we may restrict our sum to
vertices (v, [i]) with v 6 k.
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Proposition 88 proves (122),

(crit+
x,c + crit−x,c)(Mr,s,c(λ)) =

k∑
v=0

c−1∑
i=0

Ein(v, [i])Sin(v, [i])−
⌊

k1(s+ r)

lcm(c, r + s)

⌋
.

We wish to show that (122) is equal to S1 + S2 + S3, and therefore it suffices to check
that ∑

(v,[i])∈So

Ein(v, [i])−
∑

(v,[i])∈Ea

Sin(v, [i]) =

⌊
k1(s+ r)

lcm(c, s+ r)

⌋
. (144)

Note that the east edges entering southern vertices and the south edges entering eastern
vertices are exactly the edges in Mr,s,c(λ) arriving at non-switch vertices that are not a
copy of an edge in the first arrival tree T . Hence, if we let n0 denote the number of edges
e entering vertices (v, [i]) with v 6 k such that either

• (v, [i]) is a switch, or

• (v, [i]) is not a switch and there is a copy of e in the first arrival tree T ,

then
n0 +

∑
(v,[i])∈So

Ein(v, [i]) +
∑

(v,[i])∈Ea

Sin(v, [i]) = k1(r + s). (145)

Now, let (k, [−k1s]) = v0, v1 . . . , v(r+s)k1 = (k, [k1r]) be the vertices visited, in order,
possibly with repetition, by the (r, s, c)-tour. Let di denote the distance in the first arrival
tree from (k, [−k1s]) to vi. Now c | k1 by assumption, and thus c | (r + s)k1, so we have
that

0 = d(r+s)k1 =

(r+s)k1∑
i=1

di − di−1. (146)

Substituting the formulae for di− di−1 proven in Proposition 92 into (146) and writing l
for lcm(c, r + s),

n0 + (1 + l)
∑

(v,[i])∈Ea

Sin(v, [i]) + (1− l)
∑

(v,[i])∈So

Ein(v, [i]) = 0. (147)

Subtracting (147) from (145) gives

k1(r + s) = lcm(c, r + s)

 ∑
(v,[i])∈So

Ein(v, [i])−
∑

(v,[i])∈Ea

Sin(v, [i])

 . (148)

Now, since k is divisible by rsc, k1 = k
rs

is divisible by c, so lcm(c, r+ s) divides k1(r+ s).
Therefore,⌊

k1(r + s)

lcm(c, r + s)

⌋
=

k1(r + s)

lcm(c, r + s)
=

∑
(v,[i])∈So

Ein(v, [i])−
∑

(v,[i])∈Ea

Sin(v, [i])),

which is (144), which completes the proof.
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6.3 Extended Example

Let c = 2 and n = 7, and µ = (2, 1). Then

Par2
µ(7) = {(6, 1), (4, 3), (4, 1, 1, 1), (2, 2, 2, 1), (2, 1, 1, 1, 1, 1)}. (149)

Figure 15: the partitions in Par2
µ(7) with boxes of even hook length coloured yellow.

For the shaded cells, the set of values of a(�)
l(�)+1

is
{

3, 1, 0, 1
3

}
, and the set of values of

a(�)+1
l(�)

is
{
∞, 3, 1, 1

3

}
. So, the critical rationals are

{
0, 1

3
, 1, 3,∞

}
.

In this example, we will verify that∑
λ∈Par2µ(7)

th
+
4,2(λ) =

∑
Par2µ(7)

tλ
2∗
� .

Recall

h+
4,2(λ) =

∣∣∣∣{� ∈ λ : 2 | h(�) and
a(�)

l(�) + 1
6 4 <

a(�) + 1

l(�)

}∣∣∣∣ . (150)

From our computation of the critical rationals, given that 2 | h(�) for some box in

a partition λ ∈ Par2
µ(7), 4 < a(�)+1

l(�)
if and only if 3 < a(�)+1

l(�)
, and a(�)

l(�)+1
6 4 if and only

if a(�)
l(�)+1

6 3. So, h+
4,2(λ) = h+

3,2(λ). Now we use I3,1,2 : Par2
µ(7) → Par2

µ(7). Because

mid3,2(λ) = mid3,2(I3,1,2(λ)) and crit±3,2(λ) = crit∓3,2(λ), I3,1,2 is a bijection exchanging h+
3,2

and h−3,2, so ∑
λ∈Par2µ(7)

th
+
3,2(λ) =

∑
λ∈Par2µ(7)

th
−
3,2(λ).

We now explicitly compute I3,1,2(λ) for λ = (6, 1).
The diagram of (6, 1) lies below the line 3y + x = 9. So, we choose the smallest value

k > 9 such that 3× 2× 1 | k, k = 12. Then, k1 = 12
3

= 4.
The (r, s, c)-tour of M3,1,2((6, 1)) is defined by the following family of arrival words.

(4,[0]) S (5,[1]) E (6,[0]) SSE
(7,[1]) EEE (8,[0]) E (9,[1]) SEE
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and for w > 9,

(w, [i])a =


SE 3 | w,w ≡ −w

3
≡ i (mod 2)

E 2 | (w − i) and either 3 - w or 2 - (−w
3
− i)

S 3 | w, 2 |
(−w

3
− i
)
, 2 - (w − i)

empty otherwise

. (151)

The multigraph is given in Figure 16 with the edges in the first arrival tree in bold.

...(12,[0])

(9,[1])

(6,[0]) (7,[1])

(4,[0])

(4,[0]) (5,[1]) (8,[0])

(8,[0]) (10,[0]) (11,[1]) (12,[0])

Figure 16: M3,1,2((6, 1)) with the edges of the first arrival tree in bold.

After applying I3,1,2 the arrival words are

(4,[0]) S (5,[1]) E (6,[0]) SSE
(7,[1]) EEE (8,[0]) EE (9,[1]) SEE

with all arrival words at (w, [i]) with w > 9 unchanged. These arrival words correspond
to the partition (4, 3). So, h+

3,2((6, 1)) = h−3,2((4, 3)).
From our computation of the critical rationals, given that 2 | h(�) for some box in a

partition λ ∈ Par2
µ(7), 3 6 a(�)+1

l(�)
if and only if 1 < a(�)+1

l(�)
, and a(�)

l(�)+1
< 3 if and only if

a(�)
l(�)+1

6 1. So, h−3,2(λ) = h+
1,2(λ) for all λ ∈ Par2

µ(7). Now, I1,1,2 exchanges h+
1,2 and h−1,2,

and I1,1,2((4, 3)) = (2, 2, 2, 1), so h+
4,2((6, 1)) = h+

1,2((2, 2, 2, 1)). Using the same logic again
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h+
1,2(λ) = h−1

3
,2

(λ) for each λ ∈ Par2
µ(7). Using I1,3,2, I1,3,2((2, 2, 2, 1)) = (2, 1, 1, 1, 1, 1), so

h+
4,2((6, 1)) = h−1

3
,2

((2, 1, 1, 1, 1, 1)). Finally, for any partition λ ∈ Par2
µ(7), 1

3
6 a(�)+1

l(�)
if

and only if 0 < a(�)+1
l(�)

, and a(�)
l(�)+1

< 1
3

if and only if a(�) = 0, if and only if a(�)
l(�)+1

6 0, so

h−1
3
,2

(λ) = h+
0,2(λ).

Therefore, since

I1,3,2 ◦ I1,1,2 ◦ I3,1,2((6, 1)) = (2, 1, 1, 1, 1, 1),

we have that h+
4,2(6, 1) = h+

0,2(2, 1, 1, 1, 1, 1). For the other partitions in Par2
µ(7),

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(4, 3) = I1,3,2 ◦ I1,1,2((6, 1)) = I1,3,2(2, 1, 1, 1, 1, 1) = (2, 2, 2, 1),

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(4, 1, 1, 1) = I1,3,2 ◦ I1,1,2((4, 1, 1, 1)) = I1,3,2(4, 1, 1, 1) = (4, 1, 1, 1).

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(2, 2, 2, 1) = I1,3,2 ◦ I1,1,2((2, 2, 2, 1)) = I1,3,2(4, 3) = (4, 3).

I1,3,2 ◦ I1,1,2 ◦ I3,1,2(2, 1, 1, 1, 1, 1) = I1,3,2 ◦ I1,1,2((2, 1, 1, 1, 1, 1)) = I1,3,2(6, 1) = (6, 1).

Hence we can verify the equidistribution of h+
x,2 with h−x,2 over Par2

µ(7) for each x ∈ R>0,
thus verifying Theorem 3.3 in this case.

7 Further Work

We note here that Problem 8.9 in [9] may be amenable to similar techniques.
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