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Abstract

In this paper, we study two different subposets of the ν-Tamari lattice: one
in which all elements have maximal in-degree and one in which all elements have
maximal out-degree. The maximal in-degree and maximal out-degree of a ν-Dyck
path turns out to be the size of the maximal staircase shape path that fits weakly
above ν. For m-Dyck paths of height n, we further show that the maximal out-
degree poset is poset isomorphic to the ν-Tamari lattice of (m − 1)-Dyck paths of
height n, and the maximal in-degree poset is poset isomorphic to the (m− 1)-Dyck
paths of height n together with a greedy order. We show these two isomorphisms
and give some properties on ν-Tamari lattices along the way.

Mathematics Subject Classifications: 06A07, 05A19, 06B99

1 Introduction

Given a lattice path ν a ν-Dyck path is a lattice path which is weakly above ν using only
north (N) and east (E) steps. The ν-Tamari lattice is a partial order on the set of all
ν-Dyck paths which was first introduced in [1] by Préville-Ratelle and Viennot as a further
generalisation to m-Tamari lattices from Tamari lattices. Tamari lattices were introduced
by Tamari in [10] and are precisely the ν-Tamari lattices where ν = (NE)n for some n.
The m-Tamari lattices were then introduced by Bergeron and Préville-Ratelle in [5] as
a way to study diagonal harmonics. These m-Tamari lattices have been heavily studied
in recent years due to their connections with combinatorics, algebra and geometry, see
[12, 2, 3, 7]. In recent years, the ν-Tamari lattices themselves have been receiving more
attention, see [13], [14], [3], [4], [8] and [9]. The ν-Tamari lattices and their related
definitions are given in section 2.
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In this article we concurrently study two particular subposets of the ν-Tamari lattices:
the subposets whose elements have maximal in-degree or out-degree. In some sense, the
easier of the two subposets is the subposet whose elements are those with maximal out-
degree. In the case where ν = (NEm)n the subposet whose elements have maximal out-
degree turns out to be a poset isomorphic to the ν ′-Tamari lattice where ν ′ = (NEm−1)n.
On the other hand, the subposet whose elements are those with maximal in-degree turns
out to be a poset isomorphic to the ν ′-Dyck paths together with a greedy order. This
greedy order is similar to the Tamari order except we take “as much as possible” when
going up. In other words, we use hit points rather than touch points when ascending in
order. We first define these subposets and give some properties in section 3. Then in
section 4, we restrict to m-Dyck paths of height n to show the poset isomorphisms. In
the arbitrary ν case, things break down and there is unfortunately no “nice” results as
we explain at the end of the article. We finish the article with a “nice” conjecture for the
arbitrary case: for a given ν, the number of elements with maximal in-degree is equal to
the number of elements with maximal out-degree.

2 Tamari orders

We start by defining the ν-Tamari order and give some basic definitions which we use for
the latter half of the paper.

2.1 ν-Dyck paths

Let ν be a path from (0, 0) to (sE, sN) consisting exclusively of north and east steps.
The path ν can be expressed as a word over the alphabet {N,E} with sE number of E
(east) steps and sN number of N (north) steps. A ν-Dyck path is a path from (0, 0) to
(sE, sN) consisting exclusively of north and east steps which is weakly above ν. The set
of all ν-Dyck paths is denoted by Dν . A standard Dyck path of height n, denoted Dn, is a
ν-Dyck path where ν is the path (NE)n from (0, 0) to (n, n). An m-Dyck path of height
n, denoted Dn,m, is a ν-Dyck path where ν is the path (NEm)n from (0, 0) to (mn, n).

Example 1. Let ν be the path from (0, 0) to (8, 3) which is represented by the word
EEEENEENENE. It is then represented by the path with 8 east steps and 3 north
steps in red in the figure below. Let D be the ν-Dyck path represented by the word
EENEENNEEEE which is weakly above ν. It is depicted in the figure below by the
black path.
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2.2 ν-Tamari order

Let D be an arbitrary ν-Dyck path from (0, 0) to (sE, sN). Given two points p and p′ on
the path D, let D[p,p′] denote the subword of D from p to p′. For i ∈ [sN ] = {1, 2, . . . , sN}
we denote by rDi the point on the path D before we take the i-th north step. The rDi is
referred to as the i-th right hand point of D since on the i-th row, it is the point on the
Dyck path which is the furthest to the right. If D is obvious, we will use ri as a shorthand
for rDi .

Example 2. Let D = EENEENNEEEE as before. Then

r1 = (2, 0) r2 = (4, 1) r3 = (4, 2)

D[(0,0),r1] = EE D[(0,0),r2] = EENEE D[r2,r3] = N.

r1

r2

r3

Let horizν : D → N be the map which sends each point p on the ν-Dyck path D to the
maximum number of east steps we can take from p before going past ν. If the ν is clear,
we will use horiz instead of horizν . For a point p on D, we call horizν (p) the horizontal
distance of p.

Let tDi denote the first point on the ν-Dyck path D which comes after rDi such that
horiz


tDi

= horiz


rDi


. Let hD

i denote the first point on D which comes after rDi such
that horiz


hD
i


= horiz


rDi


and where hD

i is either followed by an east step in D or
is the final point in D. We call tDi the i-th touch point of D and hD

i the i-th hit point
of D. As before, if the D is unambiguous, we use ti and hi to represent tDi and hD

i

respectively. Since horiz

rDi


is always positive and the final point always has horizontal

distance horiz ((sE, sN)) = 0, both tDi and hD
i always exist. Notice that hi is followed by

an east step if and only if horiz (hi) ∕= 0.
Knowing that D can be viewed as an ordered set of points (p1, · · · , psN+sE+1), it will

be useful to view horizν as a vector where

horizν = (horizν (p1) , . . . , horizν (psN+sE+1)) .

This vector is called the horizontal distance vector of D.

Example 3. Given the ν-Dyck path D from Theorem 2, we label each point p on D with
the value of horizν (p).

4 3 2

4 3 2

3

4 3 2 1 0

r1

r2

r3
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This gives us the horizontal distance vector:

horiz = (4, 3, 2, 4, 3, 2, 3, 4, 3, 2, 1, 0).

For touch and hit points we analyze each of the three rows in D. When i = 1 then
r1 = (2, 0) and horiz (r1) = 2. The first point after r1 whose horizontal value is 2 is the
point (4, 1). Therefore t1 = (4, 1) is the 1st touch point of D. Since for the path D there
is not an east step after (4, 1) it is not the 1st hit point of D. The next time a point on
D has horizontal distance of 2 is at (6, 3). As (6, 3) is followed by an east step in D then
h1 = (6, 3). We end up with the following:

t1 = (4, 1) t2 = (6, 3) t3 = (5, 3)

h1 = (6, 3) h2 = (6, 3) h3 = (5, 3)

Let D be a ν-Dyck path from (0, 0) to (sE, sN). If the i-th right hand point rDi is
preceded by an east step, we define the ν-Dyck path τi (D) in the following way. Let d
denote the subword of D[(0,0),rDi ] where the final E has been removed. Let t = D[rDi ,tDi ] and
f = D[tDi ,(sE ,sN )], i.e., D = dEtf . Then we let τi (D) be the word dtEf . In other words,

we move the east step before rDi to just after the i-th touch point tDi keeping the rest of
the path the same.

Example 4. Continuing our example from before:

r1

r2

r3

Recall that

D[(0,0),r1] = EE D[(0,0),r2] = EENEE D[(0,0),r3] = EENEEN.

Since r1 and r2 are each preceded by an east step, we can find τ1 (D) and τ2 (D), but since
r3 is not preceded by an east step, τ3 (D) is not defined.

We first calculate τ1 (D). Recall that r1 = (2, 0) and t1 = (4, 1). Then

d = E

t = D[r1,t1] = D[(2,0),(4,1)] = NEE

f = D[t1,(sE ,sN )] = D[(4,1),(8,3)] = NNEEEE

where d is the subword of D[(0,0),r1] = EE with the final E removed. Therefore, we have
that τ1 (D) = dtEf = ENEEENNEEEE. Drawing D (dashed) and τ1 (D) (solid) in
the figure below, we have that τ1 (D) is weakly above D and therefore weakly above ν.
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Let us also calculate τ2 (D). We have d = EENE, t = NNEE, f = EE. Therefore
τ2 (D) = EENENNEEEEE and, as before, we have τ2 (D) (solid) weakly above D
(dashed) as can be seen in the figure below.

The ν-Tamari order is then the order on ν-Dyck paths where D is covered by τi (D)
whenever τi (D) is defined. We denote this poset by Tν = (Dν ,T ) and let D ⋖T τi (D)
denote that D is covered by τi (D) (whenever it is defined). This order on ν-Dyck paths
was originally defined in [1]. We similarly define Tn,m = (Dn,m,T ) and Tn = (Dn,T )
to be the Tamari posets on the m-Dyck paths of height n and the standard Dyck paths
of height n respectively. The poset Tn was first described in [10] and the poset Tn,m was
first defined in [5].

Example 5. As an example, let ν = NEENEENEE be a path which gives us the
2-Dyck paths of height 3. Then Tν is given by the following Hasse diagram:
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Remark 6. It is worthwhile to remark that going up in the ν-Tamari order turns a touch
point into a hit point. Indeed, given D a ν-Dyck path, then τi (D) exists if rDi has a
preceding E step. Recalling that horiz


rDi


= horiz


tDi

then we have that D = dEtf

and τi (D) = dtEf imply that horiz

r
τi(D)
i


= horiz


t
τi(D)
i


= horiz


rDi


+1 since we put

an east step after both rDi and tDi . But now, since t
τi(D)
i has an east step following it and

since it is the first point after r
τi(D)
i with the same horizontal distance, then t

τi(D)
i = h

τi(D)
i .

2.3 Reversing the ν-Tamari order

Although we know how to go up in the ν-Tamari order, it will be useful for us to know
how to go down as well. Recall that given a ν-Dyck path D then τi (D) exists if the i-th
right hand point rDi is preceded by an east step. Then D = dEtf and τi (D) = dtEf
and by Theorem 6 we know that in τi (D) the i-th touch and hit points coincide, in other

words t
τi(D)
i = h

τi(D)
i . Therefore, to go down in the ν-Tamari order, it suffices to find when

hit points and touch points coincide.
Let D be a ν-Dyck path and let rDi be its i-th right hand point. If tDi = hD

i and hD
i is

followed by an east step, then let d be the subpath of D from 0 to rDi , let t be the subpath
from rDi to hD

i , and let f be the subpath from hD
i to the end with the first E removed.

In other words D = dtEf . Let δi (D) denote the ν-Dyck path where δi (D) = dEtf if it
exists. Notice that τi (δi (D)) = D.

Lemma 7. Let D be a ν-Dyck path and δi (D) be defined as above. Let rDi , t
D
i , and hD

i be
the i-th right hand point, touch point and hit point of D respectively. Then δi (D) exists
and δi (D)⋖T D if and only if tDi = hD

i and horiz

rDi


∕= 0.

Proof. If δi (D) exists and δi (D)⋖T D, then by definition δi (D) = dEtf and D = dtEf
where d = D[(0,0),rDi ], t = D[rDi ,tDi ] and f = D[tDi ,(sE ,sN )] with the first E removed. Since d is

a prefix for bothD and δi (D) we know that r
δi(D)
i is exactly one step to the east of rDi (since

d is followed by an east step in δi (D) but not in D), i.e., horiz

r
δi(D)
i


= horiz


rDi


− 1.

This is only true if horiz

rDi


∕= 0. By Theorem 6, we know that tDi = hD

i as desired.
In the other direction, suppose that tDi = hD

i and horiz

rDi


∕= 0. Since horiz


rDi


∕= 0

we know that hD
i is followed by an east step. Therefore, we can break D down into the

components d, t and f as defined above. Then there exists δi (D) such that δi (D) = dEtf .
It suffices to show that τi (δi (D)) = D to show that δi (D)⋖T D, in other words, it suffices

to show that t
δi(D)
i and tDi are in the same row. Since tDi is the first point in D such that

horiz

rDi


= horiz


tDi

, then shifting all the points between rDi and tDi over to the east

by one decreases all horizontal distances between the two by 1. In other words, t
δi(D)
i

is the point one step to the east of tDi and is also the first point in δi (D) such that

horiz

r
δi(D)
i


= horiz


t
δi(D)
i


. Therefore, we can go up in the ν-Tamari order covering

relation and we get δi (D)⋖T D as desired.
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2.4 Subposets of the Tamari poset

Let Dν be the set of ν-Dyck paths and let Tν = (Dν ,T ) denote the ν-Tamari poset. For
D ∈ Dν , let in(D) denote the number of elements covered by D in Tν . In other words,

in(D) = |{i | τi (D) exists}| out(D) = |{i | δi (D) exists}|
Similarly, let out(D) denote the number of elements which cover D in Tν . We call in(D)
the in-degree of D and similarly we call out(D) the out-degree of D. We set the following
notation

maxout (Tν) = max {out(D) | D ∈ Dν} ,
maxin (Tν) = max {in(D) | D ∈ Dν} ,

Dνmaxout
= {D ∈ Dν | out(D) = maxout(Tν)} , and

Dνmaxin
= {D ∈ Dν | in(D) = maxin(Tν)} .

where the first two describe the maximum out-degree (in-degree) of a ν-Dyck path and
the latter two are the sets of ν-Dyck paths who have this maximal out-degree (in-degree).
Let Tνout be the subposet of Tν restricted to Dνmaxout

and similarly let Tνin be the subposet
of Tν restricted to Dνmaxin

.

Example 8. Let ν = NEENEENEE be a path which gives us the 2-Dyck paths of
height 3 as in Theorem 5. By observing the Hasse diagram, we note that the maximal in
and out degrees are the same: maxin (Tν) = maxout (Tν) = 2. We then have the following
subposets with Tνin on the left and Tνout on the right.

The subposet on the left is a new poset which will turn out to be poset isomorphic to
Dyck paths of height 3 together with a greedy order. The subposet on the right will turn
out to be poset isomorphic to the standard Tamari lattice of height 3.

We discuss these subposets in further detail in section 3.
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2.5 Area functions

Before going in depth into the subposets Tνout and Tνin , we describe two combinatorial
maps which will be useful in our later studies. Given a path ν from (0, 0) to (sE, sN)
and a ν-Dyck path D, then the left area function of D with respect to ν is the function
LAν

D : [sN ] → N where LA(i) is equal to the first component in the coordinates of
rDi . On the other hand, the right area function of D with respect to ν is the function
RAν

D : [sN ] → N where RA(i) is equal to the horizontal distance of rDi . Notice that
LAν

D(i) + RAν
D(i) = LAν

ν(i) for all i ∈ [sN ].
It will be useful to view the functions LAν

D and RAν
D as vectors instead of func-

tions. Therefore, by abuse of notation, we let LAν
D = (LAν

D(1), . . . ,LA
ν
D(sN)) and we let

RAν
D = (RAν

D(1), . . . ,RA
ν
D(sN)). We will respectively call these the left area vector of D

with respect to ν and right area vector of D with respect to ν when viewing these functions
as vectors. Similarly, if ν is evident, we will use LAD to denote LAν

D.

Example 9. Recall the ν-Dyck path D from before:

Then LAD = (2, 4, 4), RAD = (2, 2, 3) and LAν = (4, 6, 7).

2.6 Staircase shape ν-Dyck paths

A particular type of ν-Dyck path which is useful for this study is a staircase shaped path
and it is best described using its left area function. We say that a ν-Dyck path D is a
staircase shape of size n if D is the path Na(EN)nEb for some a  0 and b  0. The left
area function for a staircase shape ν-Dyck path of size n is given by (0, . . . , 0, 1, 2, . . . , n).
For a given ν, the maximal staircase shape ν-Dyck path is the ν-Dyck path that is staircase
shape of size n where n is maximal. Let ξν denote the maximal staircase shape ν-Dyck
path and let σν denote the size of ξν .

Example 10. Suppose ν = NNEENEEN , then the maximal staircase shape ν-Dyck
path is ξν = N2(EN)2E2:

The left area vector for this ν-Dyck path is given by (0, 0, 1, 2) and therefore the maximal
staircase shape ν-Dyck path has size σν = 2.
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We next provide a handy algorithm to determine the maximal staircase shape ν-Dyck
path using the partition of ν. Staircase algorithm: Let Λ = LAν be the left area vector
of ν and start with i = 1, proceeding inductively.

1. Find the first integer j in Λ where i  j.

2. If no such integer exists, we’re done. Else, we assume j is in the d-th component
and replace the d-th component with i.

3. For every additional component which is equal to i, we replace the component with
0 and pull it to the front of the left area vector.

4. Let Λ be this new left area vector and proceed inductively on i.

It is clear that this algorithm maximises the size of our staircase shape.

Example 11. As an example, suppose LAν = (0, 2, 2, 2, 4). Then we have the following:

i = 1: The first integer in the left area vector which is greater than or equal to 1 is the
2 in the 2nd component. We replace the 2 with a 1 to get the left area vector
Λ = (0, 1, 2, 2, 4). Since there are no additional components equal to 1, we proceed
inductively.

i = 2: The first integer in the partition (0, 1, 2, 2, 4) which is greater than or equal to 2
is the 2 in the 3rd component. We replace the 2 with a 2 to get the partition
(0, 1, 2, 2, 4) (in other words, nothing changes). Since there is also a 2 in the fourth
component, we replace the fourth component with a 0 and pull it to the front,
giving us the left area vector Λ = (0, 0, 1, 2, 4).

i = 3: The first integer in the left area vector which is greater than or equal to 3 is the 4
in the fifth component. We replace the 4 with a 3 to get the partition (0, 0, 1, 2, 3).
Since there are no additional components equal to 3, we continue.

i = 4: No integers are greater than or equal to 4 and so we stop.

Therefore the maximal staircase shape ν-Dyck path has size 3 and is the ν-Dyck path
D = N2(EN)3E.

3 Two subposets of ν-Tamari lattices

In this section we investigate more deeply the construction of the subposets Tνout and Tνin .
In particular, we study how to calculate the maximal out-degree (in-degree) and whether
a particular element of Dν has maximal out-degree (in-degree).
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3.1 Out-degree

We begin by studying the subposet of Tν whose elements have maximal out-degree. Let
D be a ν-Dyck path from (0, 0) to (sE, sN) and recall that σν is the size of the maximal
staircase shape ν-Dyck path. We characterise the elements in Dνmaxout

by whether or not
there are σν number of ri which are proceeded by an east step.

Lemma 12. Let ν be a path and let σν be the size of the maximal staircase shape ν-Dyck
path. Then σν = maxout (Tν).

Proof. Suppose there exists a ν-Dyck path D which has out-degree larger than σν . We
produce a staircase shape from D in the following way. For every two adjacent east edges,
we move one of them to the end of D until only one east edge remains in each row.
Similarly, for every two adjacent north edges, we move one of them to the beginning of D
until only one north edge remains in each column. These operations don’t change out(D)
since we keep the same number of ri which are proceeded by an east step and followed by
a north step. This gives us a staircase shape with out-degree out(D) > σν which means
there is a staircase shape of higher size contradicting the fact that σν is the size of the
maximal staircase shape ν-Dyck path.

Proposition 13. Let D be a ν-Dyck path from (0, 0) to (sE, sN) and let σν be the size of
the maximal staircase shape ν-Dyck path. Then out(D) = σν if and only if LAD has σν

number of ri which are proceeded by an east step.

Proof. This is a direct consequence of the definition of the ν-Tamari order.

For m-Dyck paths of height n, we have the following corollary.

Corollary 14. Let D be a m-Dyck path of height n. Then out(D) = n− 1 if and only if
LAD is a left area vector of n distinct numbers.

Proof. It suffices to show that there is a size n − 1 staircase shape in the top left corner
of ν = (NEm)n (the minimal m-Dyck path of height n). Since the partition λν is given
by (0,m, 2m, . . . ,m(n− 2),m(n− 1)), the staircase algorithm will end in (0, 1, 2, . . . , n−
2, n− 1). Therefore, n− 1 is the maximal staircase size.

In subsection 4.1 we will show that Tn,mout
is poset isomorphic to Tn,m−1

3.2 In-degree

In this section we aim to have a similar characterisation for Dνmaxin
. For this it will be

practical to study whether or not a particular ν-Dyck path has a maximal number of
in-edges. In particular, we must first figure out what is the maximal number of in-edges,
i.e., what is the value of maxin (Tν) for an arbitrary ν.

Recall that a ν-Dyck path D is a path weakly above ν from (0, 0) to (sE, sN). By
Theorem 7, the only time we can go down in the ν-Tamari order is for an index i such
that ti = hi and horiz (ri) ∕= 0.
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Suppose that ν is a path from (0, 0) to (sE, sN) and D is the maximal element in the
ν-Tamari order, i.e., D = N sNEsE . We start with the simple case in which ν is a path
such that its left area vector LAν has no repeating entries. Since LAν has no repeating
entries, the horizontal distance vector from (0, 0) to (0, sN) is strictly increasing and from
(0, sN) to (sE, sN) is strictly decreasing. Therefore, no number exists more than twice
implying that ti = hi for every i. In other words, maxin (Tν) is equal to either sN − 1
or sN depending on if the first entry of LAν is equal to 0 or not. It is clear that this is
maximal.

The case where LAν has repeating entries is a bit more complicated, but still describ-
able. We first go through an example to get some intuition.

Example 15. Let ν = EENN and D be the maximal ν-Dyck path, i.e., D = NNEE.
This is given in the following diagram whose points on D are labelled by their horizontal
distances and where we have labelled the right hand points.

D =

2

2

2 1 0

r1

r2

First, let us find the touch points and hit points of D. We have

tD1 = (0, 1) hD
1 = tD2 = hD

2 = (0, 2).

Since tD1 ∕= hD
1 then δ1 (D) doesn’t exist, but since tD2 = hD

2 and hD
2 is followed by an east

step, δ2 (D) does exist. Therefore we only have one path going down, which is not the
maximal in-degree in the Hasse diagram. To get around this, we need to get rid of that
final 2, which we do by creating a staircase shape. In our example, what this means is we
push the top row (and everything above it) over to the right by one.

δ2 (D) = D′ =

2

2 1

1 0

r1

r2

Now we have tD
′

1 = hD′
1 = (0, 1) and tD

′
2 = hD′

2 = (1, 2) giving us two ways to go down in
the ν-Tamari order. This turns out to be maximal.

It is worthwhile to describe exactly why we can’t go down in the first row. Suppose
that we tried to go down in the first row. We would shift the E after hD

1 to before rD1
giving us the following ν-Dyck path:
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D′′ =

2 1

1

1 0

r1

r2

But now, we only have one way to go up: at the first right hand point. Trying to go up
at rD

′′
1 gives us the following ν-Dyck path:

D′ =

which is not our original ν-Dyck path, implying we don’t have a downward covering
relation here, i.e., D′′ ∕⋖TD.

In order to find a ν-Dyck path with maximal in-degree, we follow a similar approach as
above. We increase the number of times touch points and hit points coincide by creating
staircase-like shapes whenever λν has repeated components. This pushing of rows to make
staircases will maximise the number of times hit and touch points coincide. We encode
this in the following algorithm.

Dyck path algorithm: Start with the maximal ν-Dyck path D = N sNEsE .

1. Let i ∈ [sN ] be maximal such that tDi ∕= hD
i and horiz


rDi


∕= 0. If no such i exists,

we are done. Since tDi is not followed by an east step, it must be followed by a north
step meaning that tDi = rDj for some j > i. As i is maximal, this implies tDj = hD

j

and horiz

rDj


= horiz


rDi


∕= 0.

2. Then we go down in the ν-Tamari order at j since hD
i must be followed by an east

step (as horiz

hD
i


∕= 0).

3. Let D be the ν-Dyck path δj (D) obtained from going down and repeat previous
steps.

We can describe the Dyck path algorithm using right area vectors as well.
Area algorithm: Start with the maximal ν-Dyck path D = N sNEsE .

1. Let i ∈ [sN ] be maximal such that there exists j where (RAD)j = (RAD)i ∕= 0 and
for all t such that j > t > i, then (RAD)t > (RAD)i. If no such i exists, we are
done. Let h > j then be the minimal index such that (RAD)h < (RAD)i. If no such
h exists let h = sN + 1.

2. Then let RA = RAD−(0, . . . , 0, 1, . . . , 1, 0, . . . 0) where there is a 1 in all components
between h− 1 and j inclusively.
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3. Let D be the ν-Dyck path whose area vector is equal to RA and repeat previous
steps.

We say that an i satisfies the conditions of the area algorithm if i is maximal such
that there exists j where (RAD)j = (RAD)i ∕= 0 and for all t such that j > t > i,
then (RAD)t > (RAD)i. We define satisfying the conditions of the Dyck path algorithm
similarly.

These two algorithms produce the same ν-Dyck path. The main difference is that the
area algorithm forgets about the paths themselves and operates on vectors directly. We
first prove this before giving an example of the algorithm(s).

Lemma 16. Given a path ν, both the Dyck path algorithm and the area algorithm produce
the same ν-Dyck path.

Proof. In both algorithms we start with D = N sNEsE .
Recall that horiz (ri) is the value of the i-th component of RAD. This means that

for the Dyck path algorithm, finding an i that is maximal in D such that ti ∕= hi and
horiz (ri) ∕= 0 is equivalent to saying that there exists a j > i such that horiz (rj) =
horiz (ti) with the horizontal distances of all rt between rj and ri being greater. This is
equivalent to saying i is maximal in [sN ] such that there exists a j > i where (RAD)j =
(RAD)i ∕= 0 and for all t where j > t > i, then (RAD)t > (RAD)i. The point hi = hj in the
Dyck path algorithm, and the fact that it must be followed by an east step is equivalent
to finding a minimal h > j (the row on which hi lies) such that (RAD)h < (RAD)i. The
minimality condition comes from the fact that this hi is a hit point for ri.

Finally, going down in the ν-Tamari order takes the E after hj(= hi) and moves it
before rj. This pushes the path between hj and rj over to the east by one step. In other
words, the area vector decreases by one for the j-th row and every row up until the h-th
row. In other words, we decrease RAD in all components between j and h− 1 inclusively
as stated in the area algorithm as desired.

Note that we are not going down arbitrary paths in the ν-Tamari order. We are only
going down for particular right hand points which have touch points that do not coincide
with hit points. Let us do an example with a couple of repeated components to understand
the two algorithms better.

Example 17. Suppose ν = EENNENN . We start with the maximal ν-Dyck path
NNNNEEE.

D =

2

2

3

3

3 2 1 0

r1

r2

r3

r4
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We have labelled D by the horizontal distance vector horiz. Here we have

LAD = (0, 0, 0, 0) and RAD = (2, 2, 3, 3)

Note that there are only two ν-Dyck paths weakly below D as we can only go down in
the 2nd and 4th rows. To increase this, we use the algorithms.

In terms of the Dyck path algorithm, we first let i = 3 as i is the maximal i in which
tDi ∕= hD

i and horiz

rDi


∕= 0. So we find a j > i with the same horizontal distance such

that tDj = hD
j per the algorithm and push it over one. Here j = 4 and so we push the top

row over by one giving us the ν-Dyck path D′ as shown next.

δ4 (D) = D′ =

2

2

3

3 2

2 1 0

r1

r2

r3

r4

In terms of the area algorithm, we have that the last two components match, so we have
i = 3, j = 4 and h = 5 (= sN + 1). Therefore RA = (2, 2, 3, 3) − (0, 0, 0, 1) = (2, 2, 3, 2)
which is precisely RAD′ . We now have

LAD′ = (1, 0, 0, 0) and RAD′ = (2, 2, 3, 2)

The ν-Dyck path D′ again only has two ν-Dyck paths weakly below it as we can only
go down in the 3rd and 4th rows. From here, notice we have another i for which tD

′
i ∕= hD′

i

and horiz

rD

′
i


∕= 0 at i = 2. Therefore, j = 4 and so we push the fourth row over giving

us the following ν-Dyck path.

δ4 (D
′) = D′′ =

2

2

3

3 2 1

1 0

r1

r2

r3

r4

In terms of the area algorithm, we have i = 2, j = 4 and h = 5. Therefore we have
RA = (2, 2, 3, 2)− (0, 0, 0, 1) = (2, 2, 3, 1) and we have

LAD′′ = (2, 0, 0, 0) and RAD′′ = (2, 2, 3, 1)

Again, we’re not done as hD′′
1 ∕= tD

′′
1 and horiz


rD

′′
1


∕= 0. Letting j = 2 we push the

second row over to get the following ν-Dyck path.
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δ2 (D
′′) = D′′′ =

2

2 1

2

2 1

1 0

r1

r2

r3

r4

In terms of the area algorithm we have i = 1, j = 2 and h = 4. Therefore we have
RA = (2, 2, 3, 1)− (0, 1, 1, 0) = (2, 1, 2, 1) and we have

LAD′′′ = (2, 1, 1, 0) and RAD′′′ = (2, 1, 2, 1)

Again, we’re not done as hD′′′
2 ∕= tD

′′′
2 and horiz


rD

′′′
2


∕= 0. Letting j = 4 we push the

second row over to get the following ν-Dyck path.

δ4 (D
′′′) = Div =

2

2 1

2

2 1 0

0

r1

r2

r3

r4

In terms of the area algorithm we have i = 2, j = 4 and h = 5. Therefore we have
RA = (2, 1, 2, 1)− (0, 0, 0, 1) = (2, 1, 2, 0) and we have

LADiv = (3, 1, 1, 0) and RADiv = (2, 1, 2, 0)

At this point, notice that in both algorithms we can no longer continue and therefore
we are done.

This ν-Dyck path has exactly three ν-Dyck paths weakly below it which we claim
gives the maximal number for the in-degree. Notice that the previous two paths also have
three ν-Dyck paths weakly below it. The difference between the previous paths and the

final one is that in the final path for every i we have tD
iv

i = hDiv

i or horiz

rD

iv

i


= 0 which

is not true in the previous ones.

We must show that this procedure does produce a ν-Dyck path with maximal in-
degree. Before proving this, we show that the components of LAν which are equal are
special in our algorithm.
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Lemma 18. Let ν be some path from (0, 0) to (sE, sN). In terms of either algorithm, if
a value j exists then (LAν)j = (LAν)j−1.

Proof. Let D0, D1, D2, · · · , Dn be the chain of Dyck paths we produce using either algo-
rithm. We proceed by (strong/complete) induction on the indices.

For D0 = N sNEsE , then since D0 goes strictly north and then strictly east, the only
time a value appears more than twice on the horizontal distance vector is if it appears
at least two times in the strictly north portion of D0. This only happens when there are
two adjacent points with the same horizontal distance. Therefore i = j − 1 in the area
algorithm. Since RAD0 = LAν −LAD0 = LAν and (RAD0)j−1 = (RAD0)i = (RAD0)j then
(LAν)j = (LAν)j−1.

Suppose Dm is our current ν-Dyck path and that there exists an i and a j > i such
that tDm

i ∕= hDm
i , horiz


rDm
i


= horiz


rDm
j


∕= 0, and tDm

j = hDm
j as required in the Dyck

path algorithm. If rDm
j is preceded by a north step, then rDm

i must be the adjacent point

below rDm
j and, by a similar argument as the m = 1 case, we are done. Otherwise, rDm

j

is preceded by an east step. In particular, rDm
j is preceded by an east step if at some

Dr with r < m the point rDr
j had an east step placed before it to go to Dr+1. By our

induction, this only occurs if (LAν)j = (LAν)j−1 as desired.

Corollary 19. Let ν be some path from (0, 0) to (sE, sN) and let D be the ν-Dyck path ob-
tained from the Dyck path algorithm. If a row j has an east step then (LAν)j = (LAν)j−1.

Proof. Direct result of the previous lemma as we only add east steps on a row j when
(LAν)j = (LAν)j−1.

We say that a left area vector LAD is shifted down to LA′
D if we duplicate the last

component of LAD and remove the first component of LAD to get LA′
D. For example,

the left area vector (0, 2, 3, 4) is shifted down to (2, 3, 4, 4). We say that a ν-Dyck path
D is shifted down to D′ if its left area vector LAD is shifted down to the left area vector
LAD′ of D′. Intuitively, shifting down refers to decreasing the y coordinate of every point
by 1 and adding a north step after the final north step. If our ν-Dyck path begins with a
north step, then this is the same thing as moving a north step from the beginning of the
path to after the final north step.

Lemma 20. Let ν be the path EaN b whose maximal staircase shape ν-Dyck path has size
σν. Then the area algorithm (or the Dyck path algorithm) terminates at the staircase
shape ν-Dyck path D of size σν − 1 (shifted down b− a times if a < b). In particular,

RAD =


(a, . . . , a− b+ 1) if a  b,

(a, . . . , 2, 1, 0, . . . , 0) if a < b,

and

LAD =


(0, 1, 2, . . . , b− 2, b− 1) if a  b,

(0, 1, 2, . . . , a− 1, a, . . . , a) if a < b.
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Proof. Let ν = EaN b and D0 = N bEa be our initial ν-Dyck path. Then RAD0 is given
by (a, . . . , a) with b entries. Let Di be the i-th ν-Dyck path obtained through the area
algorithm. Going through the area algorithm, we get the following chain for RADi

:

RAD0 = (a, . . . , a, a) → (a, . . . , a, a− 1) (= RAD1)

→ (a, . . . , a, a− 1, a− 1) (= RAD2)

→ (a, . . . , a, a− 1, a− 2) (= RAD3)

→ (a, . . . , a, a− 1, a− 1, a− 2) (= RAD4)

→ (a, . . . , a, a− 1, a− 2, a− 2) (= RAD5)

→ (a, . . . , a, a− 1, a− 2, a− 3) (= RAD6)

→ · · ·

Notice that this is just creating a staircase shape and that this terminates when we
have run out of duplicate (nonzero) numbers. Let D be the final ν-Dyck path obtained
through the area algorithm. If a  b then RAD = (a, . . . , a − b + 1) giving us b unique
entries. If a < b then RAD = (a, a− 1, . . . , 2, 1, 0, . . . , 0). To find LAD it suffices to recall
that RAD = LAν − LAD.

It remains to show that this staircase shape has size σν − 1. Let x and y be the
following

x =


b− a if a  b

0 otherwise
y =


a− b if a  b

0 otherwise

The maximal staircase shape ν-Dyck path for ν = (EaN b) is Nx(EN)min(a,b)Ey implying
σν = min(a, b). Since RAD always begins with a, D is a staircase shape ν-Dyck path
beginning with a north step. As each component of RAD is one less than the previous
one and as all the components of LAν are equal then we have D = (NE)min(a,b)NxEy.

If a  b then D = (NE)bEa−b implying that the size of the staircase is b− 1 = σν − 1
as (NE)bEa−b = N(EN)b−1Ea−b+1. If a < b then D = (NE)aN b−a. This D is identical
to D′ = N b−a(NE)a = N b−a+1(EN)a−1E shifted down b − a times. Therefore, D is the
staircase shape ν-Dyck path D′ (of size a − 1 = σν − 1) shifted down b − a times as
desired.

We now ask ourselves, what happens when we have multiple chains of duplicate entries
in LAν . For this, we start with an example with two chains to help gather some intuition.

Example 21. Let ν = EEENNENNN and we proceed using the area algorithm. As
always, we start with D0 = NNNNNEEEE and proceed by going down in the ν-Tamari
order. We have labelled each ν-Dyck path with the horizontal distance for each right hand
point.

By Theorem 20, we know that since the last three steps in ν are N , we will start by
constructing a staircase shape near the top.
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3

3

4

4

4

RAD0 = (3, 3, 4, 4, 4)

i=4−−→

3

3

4

4

3

RAD1 = (3, 3, 4, 4, 3)

i=3−−→

3

3

4

3

3

RAD2 = (3, 3, 4, 3, 3)

i=4−−→

3

3

4

3

2

RAD3 = (3, 3, 4, 3, 2)

In other words, the algorithm converted 4, 4, 4 to 4, 3, 2 to have a staircase shape for the
first chain. Continuing the algorithm, we have

i=2−−→

3

3

4

2

2

RAD4 = (3, 3, 4, 2, 2)

i=4−−→

3

3

4

2

1

RAD5 = (3, 3, 4, 2, 1)

Since the second set of N steps in ν is such that the top most right hand point has a hit
point inside the first staircase, we must grab an east step from this staircase, which then
propagates this east step so that it is as if it was pulled from the top row.

Finishing up the algorithm, we have the final three steps

i=1−−→

3

2

3

2

1

RAD6 = (3, 2, 3, 2, 1)

i=2−−→

3

2

3

1

1

RAD7 = (3, 2, 3, 1, 1)

i=4−−→

3

2

3

1

0

RAD8 = (3, 2, 3, 1, 0)

For ease of notation, for the rest of this section we let D(k) denote the first ν-Dyck
path obtained from the area (or Dyck path) algorithm such that for all j > k then either
(RAD(k))j ∕= (RAD(k))k or (RAD(k))j = 0 or there exists t such that j > t > k for which
(RAD(k))t < (RAD(k))k. In other words, D(k) is the first ν-Dyck path obtained in the
algorithm in which every component (weakly) greater than the k-th row doesn’t satisfy
the conditions of the area algorithm. If k = sN then D(sN ) is our starting ν-Dyck path
and by D(1) we mean the ν-Dyck path obtained at the end of the area algorithm in which
no component satisfies the conditions. In our example above, we can read the D(k) from
the diagram where D(k) is the ν-Dyck path right before the first arrow labelled with i = a
where a < k:

D(5) = D0, D
(4) = D1, D

(3) = D3, D
(2) = D5, and D(1) = D8.
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We next describe a formula on the chain of D(k) depending on our choice of ν. Before
giving the formula, we give a technical lemma which will help in future proofs.

Lemma 22. Let ν be a path and let D(k+1) be the first ν-Dyck path obtained from the
area (or Dyck path) algorithm where the conditions of the algorithm are not satisfied for

all indices weakly greater than k + 1. If (LAν)k > 0 and tD
(k+1)

k = hD(k+1)

k then hD(k+1)

k

must be on the top row.

Proof. We show by contradiction that hD(k+1)

k must be on the top row. Recall that hD(k+1)

k

must have an east step after it by definition since the horizontal distance is non-zero,
i.e., (LAν)k > 0. If hD(k+1)

k is not on the top row, then at some point earlier in the

algorithm an east step was added after hD(k+1)

k . Therefore, at some iteration (say going
from D to D′) in the Dyck path algorithm there was i and j such that tDi ∕= hD

i = hD
j = tDj

with the row of rDj being the same row as hD(k+1)

k and where horiz

tDi

= (LAν)k. Since

horiz

tDi

= (LAν)k, therefore hD(k+1)

k = tDi . Furthermore, by construction of D(k+1)

and since this iteration must have happened before acquiring D(k+1) then i > k + 1.
But then rDi is a point on the ν-path D(k+1) and, in particular, rDi = rD

(k+1)

i such that

horiz

rD

(k+1)

i


= horiz


rD

(k+1)

k


. Moreover, i > k + 1 implies that tD

(k+1)

k ∕= hD(k+1)

k as

rD
(k+1)

i is a point with the same horizontal distance strictly between rD
(k+1)

k and hD(k+1)

k , a

contradiction. Therefore hD(k+1)

k is on the top row.

For ease of notation let (01)i denote the vector (0, . . . , 0, 1, . . . , 1) where the first 1
occurs in the i-th entry. The length of (01)i is given by the formula it is contained in, and
if i is greater than the length then (01)i is the all zero vector. For example:

(3, 2, 1) + (01)2 = (3, 2, 1) + (0, 1, 1) = (3, 3, 2)

(2, 4, 8, 1, 1, 3) + (01)4 = (2, 4, 8, 1, 1, 3) + (0, 0, 0, 1, 1, 1) = (2, 4, 8, 2, 2, 4)

(7, 2, 3, 8, 1) + (01)9 = (7, 2, 3, 8, 1) + (0, 0, 0, 0, 0) = (7, 2, 3, 8, 1)

Lemma 23. Let ν be a path and let D(k+1) be the first ν-Dyck path obtained from the area
(or Dyck path) algorithm where the conditions of the algorithm are not satisfied for all

indices weakly greater than k+ 1. Let t be the row containing tD
(k+1)

k and let z be the first
row (weakly) after the t-th row whose right hand point has horizontal distance 0. Then

LAD(k) = LAD(k+1) + (01)t − (01)z (1)

Proof. This is easily verified for k = sN . Start with D(k+1).
If (LAν)k = 0, then the area algorithm conditions aren’t satisfied at k. Therefore

D(k) = D(k+1). To show that this coincides with our equation, it suffices to show that

z = t. But this is true since (LAν)k = 0 implies horiz

tD

(k+1)

k


= 0 and therefore z = t.

We now assume that (LAν)k > 0. If tD
(k+1)

k = hD(k+1)

k then by Theorem 22 hD(k+1)

k is on

the top row and thus h = t = sN + 1. Thus there is only one other point between rD
(k+1)

k

and (sE, sN) with the same value implying that D(k) = D(k+1). We must therefore show
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(again) that z = t. Since hD(k+1)

k = tD
(k+1)

k is on the top row then z must also be sN + 1
as desired.

If on the other hand tD
(k+1)

k ∕= hD(k+1)

k , by the Dyck path algorithm, we move the east

step after hD(k+1)

k to before tD
(k+1)

k to get the ν-Dyck path D(k+1)′ whose left area vector
is equal to

LAD(n+1)′ = LAD(n+1) + (01)t − (01)h.

If h ∕= sN + 1 then we are pulling an east step from a row strictly between t and sN + 1.
Since (LAν)h = (LAν)h−1 (by Theorem 19), then by pushing the t-th row over to the east
by one step, we have a new set of three points which are strictly above k that satisfy
the conditions of the algorithm and we can bring an east step down from even further
above. Notice also that this operation decreases the horizontal distance by 1 each time.
Therefore continuing in this way, we keep pulling east steps from higher rows until either
we end up pulling a final east step from the top row, or our horizontal distance is reduced
to 0 to get D(k). We check each of these two cases separately.

1. If we end up pulling an east step down from the top row then every rD
(k+1)

j where
j  t gets shifted to the east by one step. Furthermore, the horizontal distance
of every rD

(k+1)

j is strictly greater than 0 implying z = sN + 1. Then we get that
LAD(k) = LAD(k+1) + (01)t as desired.

2. If we end up pulling (LAν)k east steps and thus get to a point where the horizontal
distance is zero then we know this happens only if we pull an east step from a row
whose right hand point has horizontal distance 0. Let z be this row. In this case,
we cannot alter the path further above the row z. In other words, we are pushing
east every right hand point between the t-th row and the (z−1)-th row east by one.
Therefore,

LAD(k) = LAD(k+1) + (01)t − (01)z

as desired.

We next extend the results of Theorem 20 to when we have different entries in LAν in
order to have an in-degree version of Theorem 13.

Proposition 24. Let ν be a path from (0, 0) to (sE, sN) and let D be the path produced
by the area algorithm. Then in(D) is equal to the size σν of the maximal staircase shape
ν-Dyck path ξν.

Proof. We show that in(D) is equal to σν by constructing ξν one step at a time while
going down in the ν-Tamari order. We do this using the D(k) from Theorem 23:

LAD(k) = LAD(k+1) + (01)t − (01)z

where t is the row containing tD
(k+1)

k and z is the first row weakly after the t-th row whose
right hand point has horizontal distance 0. We inductively proceed from sN + 1 to 1
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using Theorem 23 where for each D(k) we associate a ν-Dyck path ξk based on ξk+1. This
induction is given by the formula:

LAξk =


LAξk+1

+ (01)k − (01)z′ if (LAν)k ∕= 0

LAξk+1
otherwise

where z′ is the first row above the k-th row whose right hand point has horizontal distance
0 (in other words, we never get negative numbers). We let ξsN+1 be the ν-Dyck path
N sNEsE . Note that this implies that ξsN+1 = D(sN ) = N sNEsE and that ξsN will be the
staircase shape ν-Dyck path of size 1 since the first row will always contribute to the
in-degree for D(sN ). Furthermore, this implies (LAξk)i  (LAD(k))i for all i  k, where
the inequality is strict when i = k.

To keep track of the in-degree, we let ck be the number of components (LAD(k))i where

i  k such that tD
(k)

i = hD(k)

i and whose horizontal distance is non-zero. In other words,
ck is the number of components i  k which contribute to the in-degree. Note that
csN+1 = 0, csN = 1 and c1 = in(D). Therefore, it suffices to show that c1 = σν .

First, note that if (LAν)k = 0 then D(k) = D(k+1), ξk = ξk+1 and ck = ck+1. Next,
notice that the formula for the left area vector of ξk is almost identical to that of D(k)

except that we push east everything starting from the k-th row up until the first 0 (whose
row we denoted by z′). In particular, if we take ξ1 and for each Na with a > 1 we take
all N except one and move them to the beginning of the path, we get ξν .

Therefore, to prove that c1 = σν it suffices to show that we increase ck by one whenever
we increase the number of steps in ξk. We show that the following are equivalent

1. ck = ck+1 + 1,

2. LAD(k) does not have a new 0 in a component as compared to LAD(k+1)

3. z′ = sN + 1,

4. ξk has one more step than ξk+1.

(1) ⇐⇒ (2): If (LAν)k = (LAν)k+1 then we know that t = k + 1 since for each
i  k + 1 its associated t is greater than i, meaning that we only ever added east steps
in rows strictly higher than k + 1. Therefore the row k + 1 hasn’t changed keeping the
same horizontal distance. By construction, the k-th component now contributes to the
in-degree. If LAD(k) does not have a new 0 in a component as compared to LAD(k+1) , we
know z = sN +1 and therefore the area vector is just decreased by 1 at every component
after the k-th component. In other words, i  k+1 contributes to the in-degree of D(k+1)

if and only if it does for D(k), i.e., ck = ck+1 + 1. If on the other hand LA
(k)
D does have a

new 0 in a component as compared to LAD(k+1) , this component is no longer contributing
to the in-degree, but all other components are. Therefore ck = ck+1.

If (LAν)k ∕= (LAν)k+1, then t > k + 1. Since all the points between tD
(k+1)

k and rD
(k+1)

k

must have horizontal distance greater than one, and by a similar argument as in the
(LAν)k = (LAν)k+1 case for all points after tD

(k+1)

k , we have a similar result. In other
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words, if LAD(k) does not have a new 0 in a component as compared to LAD(k+1) , then
ck = ck+1 + 1, otherwise ck = ck+1.

(2) ⇐⇒ (3) First note that z′ = sN + 1 implies z = sN + 1. Furthermore, since
(LAξk)i  (LAD(k))i for all i  k, we know that all components after the k-th component
in LAD(k+1) are greater than 1 (or have a 0 between themselves and the k-th component).
In other words, LAD(k) does not have a new 0 in a component as compared to LAD(k+1) .
Using the same fact (that (LAξk)i  (LAD(k))i for all i  k), the converse is true as well.

(3) ⇐⇒ (4) To finish the proof it suffices to show that z′ = sN +1 if and only if ξk
has one more step than ξk+1. If z

′ = sN +1 then we are pulling an east step from the top
row to the k-th row in ξk therefore increasing the number of steps by one. Conversely,
if we increased the number of steps by one, then we must have pulled from a row with
multiple east steps. Since we only ever add one east step to any row, this means this east
step must have come from the top row and therefore z′ = sN + 1.

Corollary 25. Let D be an m-Dyck path of height n. Then in(D) = n− 1 if and only if
ti = hi and horiz (ri) ∕= 0 for all 1 < i  n.

Corollary 26. Let ν be a path. Then maxin (Tν) = maxout (Tν).

Proof. This is a direct consequence of Theorem 12 and Theorem 24

4 Isomorphisms

We now analyse the subposets Tνout and Tνin using “smaller” ν-Dyck paths. We begin by
studying m-Dyck paths of height n and discuss arbitrary ν later. Recall that the m-Dyck
paths of height n are the ν-Dyck paths where ν = (NEm)n for some m  1 and n  1.

4.1 The out-degree poset for m-Dyck paths of height n

In this section we study the subposet Tνout which contains only ν-Dyck paths with maximal
out-degree. By Theorem 14 for m-Dyck paths of height n, this happens when there are
exactly n− 1 covering relations.

Let ν be a path and recall that ξν is the associated maximal staircase shape ν-Dyck
path. Recall further that addition of two partitions is defined to be component-wise
addition. Given a ν-Dyck path D, we define a new ν-Dyck path using ξν . Let D

− be the
ν-Dyck path whose partition is given by LAD− = LAD − LAξν .

Example 27. As an example, let ν be the path in red and ξν to be the maximal staircase
shape ν-Dyck path in black.
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Then LAν = (4, 6, 7) and LAξν = (1, 2, 3). Therefore,

LAν − LAξν = (4, 6, 7)− (1, 2, 3) = (3, 4, 4) = LAν−

Before proving our main theorem, we show that going up in the ν-Tamari order weakly
decreases the out-degree.

Lemma 28. Suppose ν is a path such that LAν has no repeating entries. Let D and D′

be ν-Dyck paths such that D T D′. Then out(D)  out(D′).

Proof. Recall that we can go up in the ν-Tamari order if and only if ri is proceeded
by an east step. Therefore, it suffices to show that once rDi no longer has east steps
proceeding it, another east step cannot be put in front of it. Suppose rDi has no east step
proceeding it. If i = 1 then there is no way to put an east step before it. Otherwise,
i > 1 and rDi is proceeded by a north step. Since LAν has no repeated entries, this implies
horiz


rDi


> horiz (p) where p is the point directly before rDi (on the other side of the

north step). But this implies that it is impossible for rDi to be the touch point for any
j < i. Therefore no east step can be placed before rDi . As each cover relation weakly
decreases the out-degree, we have our lemma.

Theorem 29. The following is a (ν-Tamari) order preserving bijection:

ϕ : Dn,mmaxout
→ Dn,m−1

where LAϕ(D) = LAD−.

Proof. Let ξ be the maximal staircase shape m-Dyck path of height n. We start by
showing we have a bijection between sets. By Theorem 13 and Theorem 14 we know that
D ∈ Dn,mmaxout

if and only if for every i > 1 then ri is proceeded by an east step. In other
words, if and only if LAD−LAξ has all non-negative entries and is a partition. But this is
true if and only if LAD−LAξ is a partition for a m− 1-Dyck path of height n. Therefore,
LAϕ(D) = LAD− and ϕ(D) is the (m − 1)-Dyck path of height n obtained from D− by
removing the final n east steps.

We next show that this bijection is order preserving of the ν-Tamari order. Note
that in the m = 1 case, this is trivially true as there is only one element. Let D and
D′ be elements in Dn,mmaxout

such that D T D′ and suppose m  2. By Theorem 28,
we can further assume that D ⋖T D′. In particular we can assume that D′ = τi (D)
for some i such that D = dEtf and τi (D) = dtEf where d = D[(0,0),rDi ] (with final E
removed), t = D[rDi ,tDi ] and f = D[tDi ,(nm,n)]. Note that applying ϕ to D and D′ pushes
the j-th row east by j − 1. Then the horizontal distance doesn’t change under the ϕ

map, i.e., horizn,m

rDj


= horizn,m−1


r
ϕ(D)
j


. Therefore tDi and t

ϕ(D)
i are on the same

row as every rDj keeps its horizontal distance. Furthermore, noting that since τi (D) = D′

is in Dn,mmaxout
, this implies the i-th row of τi (D) has i− 1 east steps that come before it

implying D has i east steps which come before the i-th row. Therefore ϕ(D) has an east
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step before r
ϕ(D)
i . Thus we can also go up in the ν-Tamari order in the exact same way in

ϕ(D). Putting all this together, we haveD⋖T τi (D) implies ϕ(D)⋖T τi (ϕ(D)) = ϕ(τi (D))
as desired.

Conversely, we do the same procedure backwards. In other words, we view D ⋖T D′

in Dn,m−1. Then the reverse map ϕ−1 where we add an east step in each row keeps
horizontal distances of all right hand points and touch points. Therefore ϕ−1(D) ⋖T

ϕ−1(D′). Furthermore, since we added an east step in each row, both of these elements
live in Dn,mmaxout

as desired.

4.2 The in-degree poset for m-Dyck paths of height n

In this section we study the subposet Tνin which contains only ν-Dyck paths with maximal
in-degree. For m-Dyck paths of height n, by Theorem 25 this happens exclusively when
there are exactly n − 1 covers. As in the previous section, we begin by defining a new
ν-Dyck path out of the old one.

We say that a point (x, y) comes before (after) a point (a, b) if x < a (x > a). Given

a ν-Dyck path D, we define a new ν-Dyck path D by its partition LA D component-wise:

(LA D)i = (LAD)i − |

j ∈ [y] | hD

j comes before rDi

|

Note that since we are decreasing the partition, the path D is also a ν-Dyck path.

Example 30. As an example, suppose we have the following ν-Dyck path D:

For this example, the associated left area vector is given by LAD = (1, 4, 6, 7). To calculate
LA D, we need to find the hit points and the right hand points.

h1

h2

h3 = h4

r1

r2

r3

r4

4 3

5 4 3 2

3 2 1

2 1

1 0

the electronic journal of combinatorics 30(2) (2023), #P2.43 24



Then we have


LA D


1
= (LAD)1 − |


j ∈ [4] | hD

j comes before rD1

| = 1− 0 = 1


LA D


2
= (LAD)2 − |


j ∈ [4] | hD

j comes before rD2

| = 4− 1 = 3


LA D


3
= (LAD)3 − |


j ∈ [4] | hD

j comes before rD3

| = 6− 2 = 4


LA D


4
= (LAD)4 − |


j ∈ [4] | hD

j comes before rD4

| = 7− 2 = 5

In other words, LA D = (1, 3, 4, 5) giving us the following ν-Dyck path.

Restricting our attention to m-Dyck paths of height n, it turns out the number of
elements in the subposet Tn,min

is equal to the (m − 1)-Dyck paths of height n. Before
discussing the order, we show this bijection.

Lemma 31. The following is a (set) bijection

φ : Dn,mmaxin
→ Dn,m−1

where LAφ(D) = LA D.

Proof. Let ν = (NEm)n and recall maxin(Tν) = n− 1 by Theorem 25.
Suppose that D ∈ Dn,mmaxin

is a ν-Dyck path which covers exactly n − 1 m-Dyck
paths of height n in the ν-Tamari order. By Theorem 25 for every 1 < i  n then
hD
i = tDi and horizν


rDi


∕= 0. Let D1 = D and let Di be the path obtained from

Di−1 by removing the east step directly after hDi−1

i and placing it at the end of the

path. By construction, Dn = D. An example of this can be seen on the right hand
side of Figure 3. Note that this operation keeps all hDi−1

j static when hDi−1

j comes before

hDi−1

i and moves hDi−1

j one step to the west otherwise. Notice that D is weakly above

(NEm−1)nEn if and only if horizν


r
D
i


 (i − 1) for every i. But then we have that

horizν


r
D
i


= horizν


rDi


+#


hD
j | hD

j comes before rDi

. For the hit points of D for

j < i, we remove one east step for every hD
j that comes before rDi and for each hD

j that

doesn’t come before rDi then horizν

rDi


> horizν


rDj


. Therefore every j < i contributes

at least one to the horizontal distance and horizν

rDi


+#


hD
j | hD

j comes before rDi



i− 1 as desired. Therefore D is weakly above (NEm−1)nEm. Letting φ(D) be D with the
final m east steps removed implies that φ(D) lives in Dn,m−1 and LAφ(D) = LA D.
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In the other direction, let νi−1 be the path obtained from νi with an east step added
in the i-th row where νn+1 is the path (NEm−1)n. Then ν1 is the path (NEm)n = ν. Let
Dn+1 ∈ Dn,m−1 = Dνn+1 and inductively, let Di−1 be obtained from Di by adding an east

step after hDi
i−1 in Di. Notice that Di−1 ∈ Dνi−1

since we are adding at most j − i − 1
east steps before the j-th row where j > i. It remains to show that D1 ∈ Dn,mmaxin

,
i.e., D1 covers exactly n − 1 m-Dyck paths of height n. By construction, for i = 1 we
have horizν1


rD1
1


= 0 implying we can’t go down for i = 1. Therefore we must show for

all i > 1 that hD1
i = tD1

i and horizν1

rD1
i


∕= 0.

Therefore, we suppose i > 1. Let h be the row containing the point hDi
i−1. Recall that

going from Di to Di−1 pushes every point after hDi
i−1 to the east (as we add an east step in

the h-th row) and also adds an east step to the i-th row of νi to obtain the νi−1-Dyck path
Di−1. In other words, the horizontal distance of every point stays the same unless the
point lies strictly between rDi

i−1 and hDi
i−1, in which case the horizontal distance increases

by exactly one.
We will show that if tDi

j = hDi
j and horizνi


rDi
j


∕= 0 both hold then t

Di−1

j = h
Di−1

j and

horizνi−1


r
Di−1

j


∕= 0 for all j. We break this down into four cases.

• If j < i− 1 then there are two cases to consider. If hDi
i−1 comes before hDi

j then hDi
j

gets shifted over to the east by one step to become h
Di−1

j (and similarly with tDi
i ).

But since νi−1 adds an east step in the i-th row of νi, the horizontal distance doesn’t
change. If hDi

j comes before hDi
i−1 then, in particular, it comes before rDi

i−1. Therefore
the horizontal distances, hit and touch points aren’t altered.

• If i − 1 = j then t
Di−1

i−1 = h
Di−1

i−1 and horizνi−1


r
Di−1

i−1


> horizνi


rDi
i−1


> 0 since the

east step is placed after hDi
i−1 and a new east step is added on the i-th row of νi, as

desired.

• If i− 1 < j < h, then every point stays where they are, but the horizontal distance
increases by 1 since we are adding an east step in the i-th row when going to νi−1.

Therefore, t
Di−1

j = h
Di−1

j and horizνi−1


r
Di−1

j


> horizνi


rDi
j


> 0 as desired.

• If h  j, then every point moves to the east by one step and also the horizontal
distances stay the same (since we added an east step in the i-th row). Therefore,

t
Di−1

j = h
Di−1

j and horizνi−1


r
Di−1

j


= horizνi


rDi
j


> 0 as desired.

Therefore, in all cases we have exactly that if tDi
j = hDi

j and horizνi

rDi
j


∕= 0 then

t
Di−1

j = h
Di−1

j and horizνi−1


r
Di−1

j


∕= 0 for all j.

It remains to show that going from Di to Di−1 makes it so that if tDi
i−1 ∕= hDi

i−1 then

t
Di−1

i−1 = h
Di−1

i−1 and horizνi−1


r
Di−1

i−1


> 0. Indeed, for every point between rDi

i−1 and hDi
i−1

the horizontal distance increases by one as we are adding an east step on the i-th row
of νi. Furthermore, since we are adding an east step after hDi

i−1, then h
Di−1

i−1 becomes
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the point directly to the east of hDi
i−1. As all other points had their horizontal distance

increased by one, there are no points between r
Di−1

i−1 and h
Di−1

i−1 which has the same hor-

izontal distance. Therefore, t
Di−1

i−1 = h
Di−1

i−1 and the horizontal distance is greater than 0

since horizνi−1


r
Di−1

i−1


= horizνi


rDi
i−1


> 0.

Combining these facts means that in D1 for every i > 1 we have that hD1
i = tD1

i and
horiz


rD1
i


∕= 0 since going from n+1 to 1 forces touch and hit points to coincide one row

at a time while keeping touch and hit points of all other rows not changed if they already
coincide. Therefore every touch point and hit point coincide and we can go down in the
ν-Tamari order for every i > 1 and D1 ∈ Dn,mmaxin

, giving us the reverse bijection.

As a nice corollary, this bijection implies that the number of elements with maximal
in-degree is equal to the number of elements with maximal out-degree.

Corollary 32. The number of maximal in-degree m-Dyck paths of height n is equal to
the number of out-degree m-Dyck paths of height n, i.e., |Dn,mmaxin

| = |Dn,mmaxout
|.

The bijection above is exclusively on sets and, in particular, it does not preserve the
ν-Tamari order. Therefore, we denote by D the order on Dn,mmaxin

which gives us Tn,min
,

i.e., Tn,min
=


Dn,mmaxin

,D


. This order extends naturally to arbitrary ν giving us

Tνin =

Dνmaxin

,D


. It turns out that this poset is poset isomorphic to another partial

order on Dn,m−1 which we describe next.
Let D be a ν-Dyck path from (0, 0) to (sE, sN). If the i-th right hand point ri is

preceded by an east step and followed by a north step, we define the ν-Dyck path γi (D)
in the following way. Let d denote the subword of D[(0,0),ri] where the final E has been
removed. Let h = D[ri,hi] and f = D[hi,(sE ,sN )]. In other words D = dEhf . Then γi (D) is
the word dhEf . In other words, we move the east step before ri to just after the i-th hit
point hi. The ν-Greedy order is then the order on ν-Dyck paths where D is covered by
γi (D) whenever γi (D) is defined. We denote this poset by Gν = (Dν ,G). This poset
was first defined in [6, Section 7.2] as it pertains to Dyck paths.

Remark 33. Notice that the ν-Greedy order is almost identical to the ν-Tamari order
except that we use hit points instead of touch points.

It turns out that Tn,min
=


Dn,mmaxin

,D


is (poset) isomorphic to Gn,m−1; the ν-

Greedy order for m− 1-Dyck paths of height n.

Theorem 34. The following is a poset isomorphism:

φ :

Dn,mmaxin

,D


→ (Dn,m−1,G)

where LAφ(D) = LA D.

We break this theorem up into the two directions to make it more simple.
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E

E

d

rDi

tDi

hD
i

f

h

Figure 1: The path on the bottom is D and the path on top is γi (D) where D⋖G γi (D).
The dashed lines indicate points with the same horizontal distance. The path ν is not
shown in this figure.

4.2.1 Gn,m−1 to Tn,min

We start by showing that if two elements are comparable in the ν-Greedy order, then
they are comparable in the same way in


Dνmaxin

,D


after applying the reverse of the φ

function from Theorem 31.

Proposition 35. Let φ be the map from Theorem 31. For D,D′ ∈ Dn,m−1 such that
D G D′ then φ−1(D) D φ−1(D′).

Proof. Let ν = (NEm−1)n and ν ′ = (NEm)n. Suppose that D,D′ ∈ Dn,m−1 such that
D ⋖G D′ in the ν-Greedy order. Then for D, there exists an i such that D′ = γi (D). In
other words, we go up in the ν-Greedy order such that D = dEhf and D′ = dhEf where

d = D[(0,0),ri] with the final E removed ,

h = D[ri,hi], and

f = D[hi,(sE ,sN )].

We now apply φ−1 to both D and D′ and aim to show φ−1(D) D φ−1(D′). Since D is
a restriction of T , it suffices to show φ−1(D) T φ−1(D′).

Let j > i be the row in which hD
i lies. We first analyse what happens to the points

d, h, and f under the map φ−1 in both D and D′. Recall that applying φ−1 to a ν-Dyck
path adds an east step before each hk inductively from k = n to k = 1. See Figure 1 for
a graphical view of the difference between the hit points of D and D′.
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f: In both D and D′, f contains the same points. Since when applying φ−1 we proceed
inductively from highest to lowest, for each rDk with k  j, then hD

k = hD′
k and each

k-th right hand point in D and D′ contribute an east step to the same row under
φ−1.

h: In both D and D′, h is associated to the rows between i and j. Let i  k < j.
Then hD

k is between rDi and hD
i and therefore we know that rDk contributes an east

step only to a row strictly above i and weakly below j. Going from D to D′ only
shifts these points one point to the east and therefore doesn’t alter which rows each
rD

′
k contributes an east step to under the map φ−1. Therefore, each k-th right hand
point in D and D′ contribute an east step to the same row under φ−1.

d: Finally, d is the same initial path in D and D′ and thus contains the same points.
Let k < i and there are four cases to consider. In all cases we have that rDk = rD

′
k

since k < i and D and D′ coincide on the subpath d. These cases can be viewed as
the four dashed lines in Figure 1.

– If hD
k is on the path d (the bottom left dashed line in Figure 1) and since d

coincides in D and D′, then hD
k = hD′

k . Therefore, under the map φ−1, rDk = rD
′

k

will contribute an east step to the same row.

– If hD
k is on the path f (the bottom right dashed line in Figure 1) and since f

coincides in D and D′, then hD
k = hD′

k . Therefore, under the map φ−1, rDk = rD
′

k

will contribute an east step to the same row.

– If hD
k = hD

i (the middle dashed line in Figure 1) then hD
k = hD′

k as an east step
was placed after hD

i , the point hD
k still exists on D′ and no point between rDk

and hD
k has a smaller horizontal distance by construction. Therefore, under

the map φ−1, rDk = rD
′

k will contribute an east step to the same row.

– Finally, if hD
k = rD

′
i (the top dashed line in Figure 1) is the point directly to the

west of rDi then the point hD
k becomes a touch point (but not necessarily tD

′
k )

in D′ and the hit point then coincides with the hit point of rD
′

i , i.e., hD′
k = hD′

i .

In other words, under the φ−1 map, if hD
k = rD

′
i , then the k-th row contributes an

east step in the i-th row for D and in the j-th row for D′. In all other cases the
k-th right hand point contributes an east step to the same row in both D and D′

under φ−1.

Putting everything together, then φ−1 adds an east step to the same rows for both D and
D′ except for if k < i such that hD

k = rD
′

i (which then contributes to the i-th row in D
and j-th row in D′).

Next, using left area vectors, we have that LAD and LAD′ are identical in every
component except for in the i through j components (in which they are off by one).
Combining this fact with the above, then


LAφ−1(D)


k
=


LAφ−1(D′)


k

if k < i or k  j
LAφ−1(D′)


k
− 1−#


p < i | hD

p = rD
′

i


if i  k < j
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It remains to show that φ−1(D) T φ−1(D′) in the ν-Tamari order. Note that since j
is the row containing hD

i and since φ doesn’t alter the rows where touch and hit points

exist, there is a point p on the j-th row of φ−1(D) such that horizν′

r
φ−1(D)
i


= horizν′ (p).

Start with φ−1(D) and do the following algorithm (which runs 1+#

p < i | hD

p = rD
′

i



times):

1. Let p be the point on the j-th row such that horizν′ (ri) = horizν (p).

2. While ti ∕= p, let k > i be such that tk = p and go up in the ν-Tamari order at k.

3. Once no such k exists, go up in the ν-Tamari order at i.

4. Continue the algorithm until p = h
φ−1(D′)
i .

In this manner we obtain φ−1(D′) as desired.

4.2.2 Tn,min
to Gn,m−1

We next show that the reverse bijection is true. For this, we need some machinery which
we lay out next.

First, we consider our m-Dyck paths of height n as Dyck paths of height mn. To do
this, we change our ν to be the staircase shape (NE)mn and we convert a m-Dyck path
of height n by making each north step into m north steps.

Example 36. Suppose we have the following 2-Dyck path of height 3.

Then we can convert this into a Dyck path of height 6 (= 2 · 3) by making each north
step become length 2.

The fact that this is possible comes from the following proposition.

Proposition 37. [2, Proposition 4] The poset Tn,m is poset isomorphic to an upper ideal
in Tmn where the elements in Dn,m are mapped to their respective elements in Dmn under
the conversion given above.
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In the same paper, Bousquet-Mélou, Fusy and Préville-Ratelle [2] define a distance
function on Dyck paths which keeps track of the Tamari order. We define this distance
function next.

Given a Dyck path D of size mn, let ℓD(ri, ti) denote the length of the path from ri to
ti divided by two (so each pair of north and east steps count as 1). The touch distance func-
tion of D is the function dtD : [mn] → [mn] such that dtD(i) = ℓD(ri, ti). As with horizontal
distance, we commonly denote dtD as a vector dtD = (ℓD(r1, t1), ℓD(r2, t2), . . . , ℓD(rmn, tmn)).
Two distance functions are comparable by comparing each component. In other words,
dtD  dtD′ if and only if dtD(i)  dtD′(i) for all i. It was shown in [2] that the touch distance
function preserves the Tamari order.

Proposition 38 ([2, Proposition 5]). Let D and D′ be two Dyck paths of height mn.
Then D T D′ if and only if dtD  dtD′.

Since the greedy order uses hit points and not touch points, we define a new dis-
tance function on Dyck paths and show how it is related to the greedy order. The hit
distance function of D is the function dhD : [mn] → [mn] such that dhD(i) = ℓD(ri, hi).
As with the touch distance function, we will usually denote dhD as the vector dhD =
(ℓD(r1, h1), . . . , ℓD(rmn, hmn)).

Example 39. As an example, suppose we have the following Dyck path D from before.

Then dtD = (6, 5, 2, 1, 2, 1) and dhD = (6, 5, 4, 1, 2, 1).

Although we would like to say that the hit distance function preserves the greedy
order, it turns out to be slightly more complex than that.

Proposition 40. Let D and D′ be Dyck paths of height mn. Then D G D′ if and only
if dtD  dtD′ and dhD  dhD′

We prove Theorem 40 by showing each direction independently. For the forward
direction, we study what happens in cover relations which then extends naturally to the
order itself.

Lemma 41. Let D be a Dyck path of height mn and let γi (D) be the Dyck path of height
mn obtained from D by moving the east step before rDi to after hD

i , i.e., D ⋖G γi (D).
Then

dtγi(D)(j) =


dtD(j) if tDj ∕= rDi ,

dtD(j) + ℓD(r
D
i , h

D
i ) if tDj = rDi ,

dhγi(D)(j) =


dhD(j) if hD

j ∕= xD
i ,

dhD(j) + ℓD(r
D
i , h

D
i ) if hD

j = xD
i ,
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where xD
i is the point before rDi .

This lemma is proved using the following diagram showing the cover relation.

E

ℓD(r
D
i , h

D
i )

E

xD
i rDi

tDi

hD
i

Figure 2: In this figure there are two paths, D (below) and γi (D) (above) where D ⋖G

γi (D). The two paths coincide on every point before xD
i and after hD

i .

Since our cover relations always increase both distances, it is clear that this extends
naturally to show the forward direction of our proposition. We next show the reverse
direction.

Lemma 42. Let D and D′ be Dyck paths of height mn. If dtD  dtD′ and dhD  dhD′ then
D G D′.

Proof. We first note that, since dtD  dtD′ , then by Theorem 38 D T D′ and D is
weakly below D′ in terms of paths, i.e., the path of D is weakly between (NE)mn and
D′. We proceed by strong induction on dtD′ − dtD+ dhD′ − dhD where (a1, . . . , ak) =
|a1| + · · · + |ak|. First note that if dtD′ − dtD = 0 then D′ = D by Theorem 38 and
therefore the base case is handled.

Let i be the first row in which D′ and D no longer coincide. In other words, rDi−1 = rD
′

i−1

and rDi ∕= rD
′

i . Let γi (D) be the Dyck path of height mn obtained from D by moving
the east step before rDi to after the hit point hD

i , i.e., we go up in the greedy order.
By induction, it suffices to show dtγi(D)  dtD′ and dhγi(D)  dhD′ ; which then implies

D G γi (D) G D′ as desired.
By Theorem 41 we have

dtγi(D)(j) =


dtD(j) if tDj ∕= rDi ,

dtD(j) + ℓD(r
D
i , h

D
i ) if tDj = rDi ,

dhγi(D)(j) =


dhD(j) if hD

j ∕= xD
i ,

dhD(j) + ℓD(r
D
i , h

D
i ) if hD

j = xD
i ,
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where xD
i is the point before rDi . Since dtD  dtD′ and dhD  dhD′ it suffices to show

dtγi(D)(j)  dtD′(j) and dhγi(D)(j)  dhD′(j) for j ∈ [mn] where the component changes. We
handle each of the cases separately where in both cases we have j < i.

tDj = rDi : In this case we have dtγi(D)(j) = dtD(j)+ℓD(r
D
i , h

D
i ). Let us suppose contrar-

ily that dtD′(j) < dtγi(D)(j). Therefore tD
′

j comes strictly (diagonally) before t
γi(D)
j = hD

i

as rDj = rD
′

j = r
γi(D)
j . Furthermore, rDi ∕= rD

′
i and D T D′ together imply that

horizν

rDi


< horizν


rD

′
i


and thus tD

′
j comes strictly (diagonally) after rDi . Since

horizν

rD

′
j


= horizν


rDi


< horizν


rD

′
i


and since tD

′
j is strictly between rDi and hD

i ,

then hD′
i must be strictly (diagonally) between rDi and hD

i (shifted over to the west). In
other words, the number of north steps between rD

′
i and hD′

i is strictly less than the num-
ber of north steps between rDi and hD

i . But since length is always equal to the number of
north steps, this implies dhD′(i) < dhD(i) contradicting our initial assumptions.

hD
j = xD

i : In this case we have dhDi
(j) = dhD(j)+ ℓD(r

D
i , h

D
i ). We proceed by a similar

argument as in the last case. Let us suppose contrarily that dhD′(j) < dhγi(D)(j). Therefore

hD′
j comes strictly (diagonally) before h

γi(D)
j = h

γi(D)
i as rDj = rD

′
j = r

γi(D)
j . Since rD

′
i ∕= rDi

then horizν

rD

′
i


 horizν () + 1 = horizν () = horizν


rD

′
j


. In particular, these two facts

imply that hD′
i is strictly (diagonally) before h

γi(D)
i . Furthermore, since dhD(i) = dhγi(D)(i),

then the number of north steps between rD
′

i and hD′
i is strictly less than the number of

north steps between rDi and hD
i . Therefore dhD′(i) < dhD(i) which is a contradiction.

Therefore we have that dtγi(D)  dtD′ and dhγi(D)  dhD′ . Since at least one of

dtD′ − dtγi(D) and dhD′ − dhγi(D) is strictly less than their counterparts, inductively, we

know that γi (D) G D′. Furthermore, since D⋖Gγi (D) we have D G D′ as desired.

Proof of Theorem 40. This is a direct result of Theorem 41 and Theorem 42.

Finally, before proving the reverse biject (from Tn,min
to Gn,m−1), we define a way to

describe φ in Dmn. Let π be the poset isomorphism between Tn,m and the associated poset
ideal in Tmn given at the beginning of the section. Note that π preserves touch and hit
points. Recall that φ is a (set) bijection between Dn,mmaxin

and Dn,m−1.

For D a Dyck path of height mn (in π(Dn,mmaxin
)), we let φ̄ = π◦φ◦π−1. In particular,

π−1 removes m − 1 north steps for every string of m north steps. Then φ removes the
east step after hi for all i > 1. Finally, π adds m − 2 north steps for every north step.
Combining this together (and using the algorithm for obtaining φ), we let D0 = D and
let Di+1 be the Dyck of height mn obtained from Di by taking the east step after hDi

im+1

(or the final east step) and placing them at the end of Di (north before east). Removing
the final En at the end of Dn and one N step from each m N steps gives us φ̄(D).

Example 43. Let D ∈ π(Dn,mmaxin
) be the following Dyck path of height 3 · 4 where

m = 3, n = 4.
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D =

r1

r4

r7

r10

In the image, the dashed lines represent points with equal horizontal distance for i ∈ [n]
at the points (i− 1)m+ 1.

We next describe where D is sent by π ◦ φ ◦ π−1.

D
π−1

−−→

r1

r2

r3

r4

↓ φ

r1

r2

r3

r4

π←−

r1

r3

r5

r7

Let’s describe how this works with our algorithms directly. On the left we are doing
the algorithm we just described and on the right hand side we are doing the algorithm
found in the proof of Theorem 31.
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Figure 3: An example of the algorithm for φ̄ on the left and for φ on the right.

D = D0 =

r1

r4

r7

r10

D1 =

r1

r4

r7

r10

D2 =

r1

r4

r7

r10

D3 =

r1

r4

r7

r10

D4 =

r1

r4

r7

r10

φ̄(D) =

r1

r3

r5

r7

π−1(D) =

r1
r2
r3

r4

π−1(D)1 =

r1
r2
r3

r4

π−1(D)2 =

r1
r2
r3

r4

π−1(D)3 =

r1
r2
r3

r4

π−1(D)4 =

r1
r2
r3

r4

φ(π−1(D)) =

r1
r2
r3

r4
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Removing the final n = 4 E steps and removing one north step for every 3 north steps
(in other words, above each rim+1) gives us the same Dyck path as previously.

Notice that in the algorithm for φ̄ we can move the north step after the right hand
point at the same time as the east step after the hit point and place the NE at the end
of Dyck path. This would mean we would need to remove (NE)n at the end of the Dyck
path to get φ̄(D) and, in addition, since we are removing north steps, we would have to
change our indices from im + 1 to im − i + 1. We will use this alternative approach in
the following lemmas. We start by proving a technical lemma.

Lemma 44. For D ∈ Dn,mmaxin
let Di be the i-th iteration of the (alternative) algorithm

for φ̄(π(D)). Then for j ∈ [mn] we have the following distance functions,

dtDi+1(j) =






1 if j  mn− i

dtDi(j + 1) if mn− i > j  im− i+ 1

dtDi(j)− 1 if j < im− i+ 1 and tD
i

j comes weakly after tD
i

im−i+1

dtDi(j) otherwise

dhDi+1(j) =






mn− j + 1 if j  mn− i

dhDi(j + 1) if mn− i > j  im− i+ 1 and j ∕= 1

mn if j = 1

dhDi(j)− 1 if j < im− i+ 1 and hDi

j comes weakly after hDi

im−i+1

dhDi(j) otherwise

Proof. We show this case by case.
If j  mn − i, then we have a chain of NE steps by construction, giving us those

entries.
If mn − i > j  im − i + 1 (and j ∕= 1 for the hit distance), then the subpath from

the row im − i + 1 to the final point is pushed south by one step. If a point is between
im − i + 1 and the row containing tim−i+1 = him−i+1, then the distance to the touch
and hit points do not change. In particular, note that there must be an east step before
tim−i+1 else we would have a contradiction for tim−i+1 = him−i+1. Furthermore, if a point
is between the row containing tim−i+1 and the row mn− i, then the distances between all
points don’t change. Therefore, for every row we can just grab the entry of dtDi(j + 1)
and dhDi(j + 1) respectively.

If j = 1, then the hit distance never changes since the horizontal distance is always 0,
giving us mn ofr the hit distance.

If j < im− i+ 1 then we have three subcases to consider. If the hit point of j comes
strictly before tD

i

im−i+1, then the horizontal distance of rD
i

j is greater than rD
i

im−i+1 and

therefore the distances don’t change. If the touch point of j comes (weakly) after tD
i

im−i+1,
then the touch and hit points both move south and to the west by one point and thus
the ditsances are decreased by one. Finally, if hDi

j = hDi

im−i+1 and tD
i

j = rD
i

im−i+1 then the
distance to the hit point decreases by one, but the distance to the touch point does not
change.
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Proposition 45. Let φ be the map from Theorem 31. For D,D′ ∈ Dn,mmaxin
such that

D T D′ then φ(D) G φ(D′).

Proof. Let π, φ, φ̄ be as defined above and Di as defined in Theorem 44. We restrict our
attention to dt

φ̄(π(D))
and dh

φ̄(π(D))
. In the rest of this proof, by “comes after”, we mean

comes weakly after instead of comes strictly after unless otherwise specified.
It suffices to show dtDi+1  dtD′i+1 and dhDi+1  dhD′i+1 for all i ∈ {0, . . . , n− 1} where

D′i is defined identically to Di. By the distance equations in Theorem 44, the only time
that dtD′i+1 < dtDi+1 could happen is if there exists a j < im− i+ 1 such that

• dtDi(j) = dt
D′i(j),

• tD
i

j does not come after tD
i

im−i+1, and

• tD
′i

j comes after tD
′i

im−i+1.

Similarly, the only time that dhD′i+1 < dhDi+1 is if there exists a j < im− i+ 1 such that

• dhDi(j) = dh
D′i(j),

• hDi

j does not come after hDi

im−i+1, and

• hD′i

j comes after hD′i

im−i+1.

We first show the first case is not possible through contradiction. Therefore, suppose
that there exists (a minimal) i and (a minimal) j < im− i+1 such that dtDi(j) = dt

D′i(j),

tD
i

j does not come after tD
i

im−i+1, and tD
′i

j comes after tD
′i

im−i+1. Then dtDi(j) = dt
D′i(j) implies

that tD
i

j and tD
′i

j lie on the same row. Since D T D′ implies dtD  d′tD by Theorem 38 and

by the minimality of i and j, then tD
i

j comes after tD
′i

j . Then the facts that tD
i

j does not

come after tD
i

im−i+1 and tD
′i

j comes after tD
′i

im−i+1 together with tD
i

j comes after tD
′i

j imply

that tD
i−1

im−i+1 comes strictly after tD
′i−1

im−i+1. This implies dtDi(im− i+ 1) > dtD′i(im− i+ 1)
contradicting the fact that dtD(im− i+ 1)  dtD′(im− i+ 1) as D T D′.

We next show the second case is not possible (again) through contradiction. Suppose
that there exists (a minimal) i and (a minimal) j < im− i+1 such that dhDi(j) = dh

D′i(j),

hDi

j does not come after hDi

im−i+1, and hD′i

j comes after hD′i

im−i+1. Then dhDi(j) = dh
D′i(j)

implies that hDi

j and hD′i

j lie on the same row. Since D T D′ implies dtD  d′tD by

Theorem 38 and by the minimality of i and j, then hDi

j comes after hD′i
j . Then the

facts that hDi

j does not come after hDi

im−i+1 and hD′i

j comes after hD′i

im−i+1 together with

hDi

j comes after hD′i
j imply hDi−1

im−i+1 comes strictly after hD′i−1

im−i+1. As, D and D′ live in

π(Dn,mmaxin
), then hDi

im−i+1 = tD
i

im−i+1 and hD′i
im−i+1 = tD

′i
im−i+1. Therefore, tD

i

im−i+1 comes

strictly after tD
′i

im−i+1. This implies dtDi(im − i + 1) > dtD′i(im − i + 1) contradicting the
fact that dtD(im− i+ 1)  dtD′(im− i+ 1) as D T D′.

Therefore, none of these two cases happen. In particular, removing the final (NE)n

steps of Dn and D′n gives us φ̄(π(D)) and φ̄(π(D′)) and thus dt
φ̄(π(D))

 dt
φ̄(π(D′))

and
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dh
φ̄(π(D))

 dh
φ̄(π(D′))

. By Theorem 40, we have φ̄(π(D)) G φ̄(π(D′)). Using the fact that

φ̄ = π◦φ◦π−1 and the fact that π is a bijection (on the restriction) gives us φ(D) G φ(D′)
as desired.

Putting this all together, we can prove our final main theorem.

Proof of Theorem 34. This is a direct result of Theorem 35 and Theorem 45.

4.3 Arbitrary ν

It might be tempting to look for ways to extend these result to arbitrary ν. It turns
out that there are ν for which Dνmaxin

is not in (set) bijection with any Dν′ where ν ′ is a
path weakly above ν. For paths from (0, 0) to (n, n) it can be shown that if n  3 that
there is always a set bijection, but when n = 4 there are two paths in which this fails. In
particular when ν is equal to either

ENNNEENE or NENNEEEN

then no such bijection exists.
In the following table we give the number of ν for which no such (set) bijection exists.

The symmetric nature of the table comes from the following fact.

Theorem 46. [1, Theorem 2] Given a path ν, the ν-Tamari lattice Tν is poset isomorphic
to T←−ν where ←−ν is the path obtained by reading ν backwards and replacing every north
step by an east step and every east step by a north step.

Therefore, the top row can either be read as the number of north steps in ν and the
left column as the number of east steps without loss of generality. These results were

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 2 2 3 4 4 5 6
4 0 0 1 2 4 6 9 10 15 19 26
5 0 0 2 4 16 21 28 35 46 54 67
6 0 0 2 6 21 38 51 71 97 150 189
7 0 0 3 9 28 51 77 121 187 - -
8 0 0 4 10 35 71 121 210 - - -
9 0 0 4 15 46 97 187 - - - -
10 0 0 5 19 54 150 - - - - -
11 0 0 6 26 67 189 - - - - -

obtained using sagemath [15]. The OEIS does not seem to have any sequences which
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match the above set of numbers. Spots with no numbers are places where our computer
was not able to compute the value.

Continuing with our sagemath computations, we noticed that the number of elements
with maximal in-degree is equal to the number of elements with maximal out-degree. We
conjecture this to be the case for arbitrary ν.

Conjecture 47. Let ν be an arbitrary path. Then |Dνmaxin
| = |Dνmaxout

|.

This was verified for all ν with east and north steps as described in the table above
and was verified for all ν = (NEm)n in Theorem 32.

Some future directions in this area would be to study why there is a set bijection for
some ν, but not for others. Is there some way to classify for which ν there is a ν ′ weakly
above ν for which Dνmaxin

has a set bijection? Is there some (other) combinatorial object
that gives us the numbers in the table? Is there some nice formula in two variables which
would give us the table above?
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