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Abstract

In the 1970s, Erdős asked how many edges are needed in a graph on n vertices,
to ensure the existence of a cycle of length exactly n− k. In this paper, we consider
the spectral analog of Erdős’ problem. Indeed, the problem of determining tight
spectral radius conditions for a cycle of length ℓ in a graph of order n for each
ℓ ∈ [3, n] seems very difficult. We determine tight spectral radius conditions for
Cℓ where ℓ belongs to an interval of the form [n − Θ(

√
n), n]. As a main tool, we

prove a stability result of a theorem due to Woodall, which states that for a graph
G of order n ! 2k + 3 where k ! 0 is an integer, if e(G) >

!
n−k−1

2

"
+

!
k+2
2

"
then

G contains a Cℓ for each ℓ ∈ [3, n− k]. We prove a tight spectral condition for the
circumference of a 2-connected graph with a given minimum degree, of which the
main tool is a stability version of a 1976 conjecture of Woodall on the circumference
of a 2-connected graph with a given minimum degree proved by Ma and the second
author. We also give a brief survey on this area and point out where we are and
our predicament.

Mathematics Subject Classifications: 05C50, 05C35

1 Introduction

Let A(G) be the adjacency matrix of a graph G and D(G) be the degree matrix of G. The
spectral radius of G, denoted by ρ(G), is the maximum of the moduli of all eigenvalues
of A(G). The signless Laplacian spectral radius of G, denoted by q(G), is the largest
eigenvalue of the signless Laplacian matrix Q(G) := A(G) + D(G). Throughout this
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paper, the spectral radius condition mainly refers to the sufficient condition in terms of
ρ(G) or q(G). We denote by EXspec(n,H) a family of spectral extremal graphs G of order
n containing no H which attain the maximal spectral radius.

For two graphs G and G′, we denote by G ⊆ G′ if G is a subgraph of G′. We denote Ik
to be an isolated set of k vertices. Let G1 and G2 be two graphs. We use G1∪G2 to denote
the (disjoint) union ofG1 andG2, i.e., a new graph such that V (G1∪G2) = V (G1)∪V (G2),
and E(G1 ∪G2) = E(G1)∪E(G2), where V (G1)∩ V (G2) = ∅. We use G1 ∨G2 to denote
the join of G1 and G2, that is, G1 ∪G2 together with all new edges xy where x ∈ V (G1)
and y ∈ V (G2).

1.1 A brief survey on previous related results

In this paper, we make a new contribution to the following open problem whose solution
seems to be difficult and a big project:

Problem 1. Determine tight spectral radius conditions for the existence of a cycle of
length ℓ in a graph of order n for each ℓ ∈ [3, n].

Problem 1 is closely related to a huge of references in spectral graph theory. For
small even values of ℓ, the case ℓ = 4 was originally studied by Babai and Guiduli [1]
and Nikiforov [29]. In particular, Nikiforov [29] proved EXspec(n,C4) = {K1 ∨ Mn−1

2
}1

(when n is odd) and conjectured that EXspec(n,C4) = {K1 ∨ (K1 ∪ Mn−2
2
)} (when n is

even) (see [31]). The even case of C4 was confirmed by Zhai and Wang [43], and the
case ℓ = 6 was solved by Zhai and Lin [41]. In general small even values of ℓ, Nikiforov
[32] conjectured that EXspec(n,C2k+2) = {S+

n,k} where k ! 2 and n is sufficiently large n

(related to k), and S+
n,k is obtained from Kk∨(n−k)K1 by adding a new edge between two

isolated vertices in the independent set In−k. Only very recently, a complete solution to
Nikiforov’s conjecture was announced by Cioabǎ, Desai, and Tait [8]. However, in view of
the techniques used in their proof [8], we cannot even say Problem 1 has been solved for all
even integer ℓ in a range in the form of [3,Θ(

√
n)]. On the other hand, the spectral even

cycle problem is quite different from the original even cycle problem in extremal graph
theory (see lots of references in [17]). For large cycles, if ℓ = n, Fiedler and Nikiforov [13]
proved EXspec(n,Cn) = {K1 ∨ (Kn−2 ∪K1)}; if ℓ = n− 1, the solution is obtained by Ge
and the author [19], who proved that EXspec(n,Cn−1) = {K1 ∨ (Kn−3 ∪K2)}.

In this paper, we contribute to Problem 1 for the range ℓ ∈ [n−Θ(
√
n), n]. The whole

picture and our predicament are depicted in our last section.
It is very natural to compare the above results with the extremal results of large cycles.

In the 1970s, Erdős [11] asked how many edges are needed in a graph on n vertices, to
ensure the existence of a cycle of length exactly n−k. Recall that Woodall [37] proved that
for a graph G of order n ! 2k+3 where k ! 0 is an integer, if e(G) !

!
n−k−1

2

"
+
!
k+2
2

"
+1,

then G contains a Cℓ for each ℓ ∈ [3, n− k]. At almost the same time, some partial result
was also obtained by Bondy [4].

1Here Mk means a matching of k edges.
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For n ! c ! 2k − 1, we set

Ln,k = K1 ∨ (Kn−k−1 ∪Kk) and Wn,k,c = Kk ∨ (Kc−2k+1 ∪ (n− c+ k − 1)K1).

The graph Ln,k+1 shows Woodall’s theorem is sharp, which means that ex(n,Cn−k) =!
n−k−1

2

"
+
!
k+2
2

"
for n ! 2k + 3.

If we introduce minimum degree as a new parament, the situation becomes more
complicated. For non-hamiltonian graphs, Erdős [10] proved the following result in 1962:
For a graph G on n vertices with δ(G) ! k where 1 " k " ⌊n−1

2
⌋, if G is non-hamiltonian

then

e(G) " max

#$
n− k

2

%
+ k2,

$
n− ⌊n−1

2
⌋

2

%
+

&
n− 1

2

'2
(
.

Note that the families of graphs Wn,k,n−1 and Wn,⌊n−1
2

⌋,n−1 show that the upper bound in

Erdős’ theorem is sharp.
In 1977, Kopylov [25] determined a sharp edge condition for the circumference of

a 2-connected graph, which generalized Erdős’ theorem. Indeed, Kopylov [25] proved
that: Let G be a 2-connected graph on n vertices. If 2 " c " n − 1 and e(G) !
max{e(Wn,2,c), e(Wn,⌊ c

2
⌋,c)}, then c(G) ! c+1, unless G = Wn,2,c or G = Wn,⌊ c

2
⌋,c. Woodall

[38] proposed a conjecture in 1976, which generalized Kopylov’s theorem to a minimum
degree version (see Conjecture 12 in Subsection 1.2). Ma and Ning [28] proved a stability
version of Woodall’s conjecture as follows. To understand Ma and Ning’s theorem clearly,
we need to introduce some notation (see [16, 28]).

Definition 2. ([16]) For n > c where c is odd, let Xn,c be the family of graphs of order n
such that a graph G ∈ Xn,c if and only if V (G) has a partition V (G) = A ∪ B ∪X such
that A is a clique, |A| = c−1

2
, both B and X are independent sets, all vertices in A are

adjacent to all vertices in B, and there exist two vertices a ∈ A and b ∈ B such that for
any x ∈ X, NG(x) = {a, b}.

Definition 3. ([16]) For n > c where c is odd, let Yn,c be the family of graphs of order n
such that a graph G ∈ Yn,c if and only if V (G) has a partition V (G) = A ∪ B ∪ Y such
that A is a clique, |A| = c−1

2
, B is an independent set, and every component of G[Y ] is

a star K1,r with r ! 1, all vertices in A are adjacent to all vertices in B, and there exist
two vertices a1, a2 ∈ A such that for every component H of G[Y ], NG(H) = {a1, a2} and
if |H| ! 3, then there exists ai, i = 1, 2, such that NG(y)∩A = {ai} for all leaves y of H.

Definition 4. ([28]) For n > c > 2k with k − 1|n− c, we set

Zn,k,c = K2 ∨
$
Kc−k+1 ∪

$
n− c

k − 1
+ 1

%
Kk−1

%
.

Moreover, we set Zn,k,c = Xn,c ∪ Yn,c if k = 2 and c is odd; Zn,k,c = {Zn,k,c} if k ! 3 and
k − 1|n− c, and Zn,k,c = ∅ otherwise.

The stability version of Woodall’s conjecture is as follows, which generalized results
mentioned in several papers [26, 14, 15]. Throughout this paper, we use c(G) to denote
the length of a longest cycle in a graph G, i.e., the circumference of G.
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Theorem 5 (Ma and Ning [28]). Let G be a 2-connected graph on n vertices with δ(G) ! k
and circumference c(G) " c, where 10 " c " n− 1. If

e(G) > max
)
e(Wn,k+1,c), e(Wn,⌊ c

2⌋−1,c)

*
,

then one of the following holds:
(a) G ⊆ Wn,k,c, or G ⊆ Wn,⌊ c

2
⌋,c;

(b) k = 2, c is odd, and G ⊆ H for some graph H ∈ Xn,c ∪ Yn,c; and
(c) k ! 3, k − 1|n− c, and G ⊆ Zn,k,c.

Ma and Ning’s theorem is a main tool for proving one of our theorems (i.e., Theorem
13).

1.2 Main results

An open problem on large cycles was given in [19] as follows:

Problem 6 ([19]). Let G be a connected graph of order n and k ! 1 be an integer, where
n is sufficiently large compared to k.
(a) Suppose that ρ(G) > ρ(Ln,k). Does G contain a Cn−k+1?
(b) Suppose that q(G) > q(Ln,k). Does G contain a Cn−k+1?

In this paper, we first give a positive answer (in stronger form) to Problem 6. When
k = 2, it implies one main theorem in [19].

Theorem 7. Let k ! 1 be an integer. Let G be a graph of order n. If either
(a) ρ(G) ! ρ(Ln,k) where n ! max{6k + 11, (k+3)(k+4)

2
} or,

(b) q(G) ! q(Ln,k) where n ! max{6k + 11, k2 + 2k + 3},
then G contains a Cℓ for each integer ℓ ∈ [3, n− k + 1] unless G = Ln,k.

In [37], Woodall determined Turán numbers of large cycles as follows.

Theorem 8 (Woodall [37]). For a graph G of order n ! 2k+3 where k ! 0 is an integer,
if e(G) !

!
n−k−1

2

"
+
!
k+2
2

"
+ 1, then G contains a Cℓ for each ℓ ∈ [3, n− k].

Let us introduce some notation.

Definition 9. Let k and n ! 2k+1 be integers. We define Ln,k to be a family of graphs,
such that a graph G ∈ Ln,k if and only if G is a graph of order n in which there is a
subgraph K ∼= Kn−k, and for each component H of G − V (K), V (H) is a clique and
all vertices in H are adjacent to a same vertex in K. (Notice that for distinct cliques of
G− V (K), the vertices sharing with the clique K may be different.) Specially, the graph
Ln,k is the one in Ln,k with the maximum number of edges.

As a main tool for proving Theorem 7, we shall prove a stability result of Theorem 8.
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Theorem 10. Let G be a graph of order n ! max{6k + 17, (k+4)(k+5)
2

} where k ! 0. If

e(G) ! e(Ln,k+2) =

$
n− k − 2

2

%
+

$
k + 3

2

%
,

then G contains a cycle Cℓ for each ℓ ∈ [3, c(G)]. Suppose that G contains no Cn−k. Then
one of the following holds:
(a) G ⊆ L for some L ∈ Ln,k+1;
(b) G = Ln,k+2

∼= K1 ∨ (Kn−k−3 ∪Kk+2);
(c) k = 0 and G ⊆ Wn,2,n−1 = K2 ∨ (Kn−4 ∪ 2K1);
(d) k = 1 and G = Wn,2,n−2 = K2 ∨ (Kn−5 ∪ 3K1).

Let G be a graph that is not a forest. The girth (circumference) of G, denoted by
g(G) (c(G)), is the length of a shortest (longest) cycle in G. We say that a graph is weakly
pancyclic if it contains all cycles of lengths from g(G) to c(G). We also refine Woodall’s
Theorem (by determining the unique extremal graph).

Theorem 11. Let G be a graph of order n ! max{6k + 11, (k+3)(k+4)
2

} where k ! 0. If

e(G) ! e(Ln,k+1) =

$
n− k − 1

2

%
+

$
k + 2

2

%
,

then G is weakly pancyclic with girth 3. Furthermore, one of the following is true:
(a) G contains a Cℓ for each ℓ ∈ [3, n− k];
(b) G = Ln,k+1

∼= K1 ∨ (Kn−k−2 ∪Kk+1).

In 1976, Woodall [38] proposed the following conjecture in the setting of 2-connected
graphs with a given minimum degree.

Conjecture 12 (Woodall [38]). LetG be a 2-connected graph on n vertices with minimum
degree δ(G) ! k ! 2. If 2 " c " n− 1 and

e(G) ! max{e(Wn,k,c), e(Wn,⌊ c
2
⌋,c)},

then c(G) ! c+ 1, unless G = Wn,k,c or G = Wn,⌊ c
2
⌋,c.

Lastly, we prove a sharp spectral condition for the circumference of 2-connected graphs,
which is a partial spectral analog of Woodall’s conjecture (i.e., Conjecture 12).

Theorem 13. Let G be a 2-connected graph on n vertices with minimum degree δ(G) !
k ! 2. If either
(a) ρ(G) ! ρ(Wn,k,c) where n > c ! max{5n+6k+5

6
, n−

√
2n+ 3k

4
+ 3}, or

(b) q(G) ! q(Wn,k,c) where n > c ! max{5n+6k+5
6

, n− 2
3

√
3n+ 2(2k+3)

3
},

then c(G) ! c+ 1 unless G = Wn,k,c.
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1.3 Organization

The paper is organized as follows. In Section 2, we give proofs of our main results.
In Subsection 2.1, we firstly prove Theorem 10 and Theorem 11. After that, we prove
Theorem 7 in Subsection 2.2. As a byproduct, we answer Problem 1 completely. In
Subsection 2.3, we prove Theorem 13. In the last section, we summarize all the results
related to Problem 1. We mention some unsolved problems related to cycles of given
lengths or longest cycles in 2-connected graphs for further study.

2 Proofs

2.1 Proofs for structural results

The proof of Theorem 11 needs the following three lemmas. The n-closure cln(G) of a
graph G on n vertices is defined to be its one supergraph with order n, which is obtained
by recursively joining any pair of nonadjacent vertices with degree sum at least n till there
is no such pair. A graph G is closed if G = cln(G) (i.e., every two nonadjacent vertices of
G have a degree sum less than n).

Lemma 14 (Bondy and Chvátal [5]). Let G be a graph of order n. Then c(G) = c(cln(G)).

Lemma 15 (Bondy [3]). Let G be a graph of order n. If c(G) = c and e(G) > c(2n−c)
4

,
then G is weakly pancyclic with girth 3.

For the third lemma, its original form in [26] needs the condition “k ! 1”. Here we
prove the small case that k = 0. This lemma is the key tool for our proof. Denote by
ω(G) the clique number of a graph G. Clearly c(G) ! ω(G).

Lemma 16. Let G be a closed graph of order n ! 6k + 5 where k ! 0. If

e(G) > e(Wn,k+1,n−1) =

$
n− k − 1

2

%
+ (k + 1)2

then ω(G) ! n− k.

Proof. Recall that the case of k ! 1 was proved in [26]. Let k = 0. Suppose that
there exist two non-adjacent vertices x, y ∈ V (G) such that d(x) + d(y) " n − 1. Let
H := G − {x, y}. Then e(G) " e(H) + d(x) + d(y) "

!
n−2
2

"
+ n − 1 =

!
n−1
2

"
+ 1, a

contradiction. Thus, for any two nonadjacent vertices, the degree sum of them is at least
n. By the definition of n-closure, G = Kn and so ω(G) = n.

We are now in stand for proving Theorem 11.
Proof of Theorem 11. Suppose that G is a graph satisfying the condition. We first show
that G is weakly pancyclic with girth 3. Let c := c(G). By Lemma 15, we only need to

show that
!
n−k−1

2

"
+
!
k+2
2

"
> c(2n−c)

4
. If not, then we have nc

2
− c2

4
! n2−(2k+3)n

2
+(k+1)(k+2),

which implies c2−2nc+2(n2−(2k+3)n)+4(k+2)(k+1) " 0. However, the discriminant of
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the quadratic form∆ = (2n)2−4 (2(n2 − (2k + 3)n) + 4(k + 1)(k + 2)) < 0 for n ! 2k+5,
a contradiction. This proves the first part of the theorem.

Now let G′ = cln(G). Since

e(G′) ! e(G) !
$
n− k − 1

2

%
+

$
k + 2

2

%
!

$
n− k − 2

2

%
+ (k + 2)2 + 1

for n ! (k+3)(k+4)
2

, by Lemma 16, ω(G′) ! n − k − 1 when n ! max{6k + 11, (k+3)(k+4)
2

}.
This implies that c(G′) ! n−k−1. If c(G′) ! n−k, then c(G) = c(G′) ! n−k by Lemma
14. Recall that G is weakly pancyclic, implying (a) holds. So assume c(G′) " n− k − 1,
implying that c(G′) = ω(G′) = n− k − 1.

Let S be a clique of G′ with |S| = n− k − 1, K = G′[S] and H = G′ − S. Thus K is
complete. Let H1 be a component of H. For any vertex v ∈ V (H1), if |NG′(v) ∩ S| ! 2
then c(G′) ! n − k, a contradiction. Thus, |NG′(v) ∩ S| " 1 holds for every vertex
v ∈ V (H). Now

e(G) " e(G′) = e(K) + e(H) + eG′(S, V (H))

"
$
n− k − 1

2

%
+

$
k + 1

2

%
+ (k + 1)

=

$
n− k − 1

2

%
+

$
k + 2

2

%
" e(G).

(Recall that e(G) !
!
n−k−1

2

"
+

!
k+2
2

"
.) We infer that every inequality above becomes

equality. This implies that G = G′, H is complete, and |NG(v) ∩ S| = 1 for every
v ∈ V (H). Recall that |N(H) ∩ S| = 1. All vertices in H have a common neighbor in S.
Thus G = Ln,k+1, and so (b) holds. The proof is complete.

We further prove a stability version of Woodall’s theorem.

Proof of Theorem 10. The argument used here is similar to Theorem 11. However,
more details are needed. We first claim that G is weakly pancyclic with girth 3. We
showed above that if e(G) ! e(Ln,k+1) and n ! 2k + 5, then G is weakly pancyclic with
girth 3. Similarly, we can prove: if e(G) ! e(Ln,k+2) and n ! 2k + 7, then G is weakly
pancyclic with girth 3 as well.

Let G′ := cln(G). If c(G′) ! n − k, then by Lemma 14, c(G) = c(G′) ! n − k.
Recall that G is weakly pancyclic, implying that G contains a Cn−k. So we assume that
c(G′) " n− k − 1. Since

e(G′) ! e(G) !
$
n− k − 2

2

%
+

$
k + 3

2

%
!

$
n− k − 3

2

%
+ (k + 3)2 + 1

for n ! (k+4)(k+5)
2

, by Lemma 16, ω(G′) ! n− k − 2 when n ! 6k + 17. If ω(G′) ! n− k.
then c(G′) ! ω(G′) ! n− k, a contradiction. Now we assume that ω(G′) = n− k − 2 or
ω(G′) = n− k− 1. Let S be a clique of G′ with |S| = ω(G′), K = G′[S] and H = G′ −S.

Case A. ω(G′) = n− k − 1. Let H1 be a component of H. If |NG′(H1) ∩ S| ! 2, then
c(G′) ! n − k (recall that S is a clique of G′), a contradiction. Thus, every component
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H1 of G
′−S satisfies |NG′(H1)∩S| " 1. It follows that G ⊆ G′ ⊆ L for some L ∈ Ln,k+1,

and (a) holds.
Case B. ω(G′) = n− k − 2. Set T = {v ∈ V (H) : |NG′(v) ∩ S| ! 2}. We distinguish

the following subcases.
Case B.1. |T | = 0. In this case, |NG′(v) ∩ S| " 1 for every vertex v ∈ V (H). Now

e(G) " e(G′) = e(K) + e(H) + eG′(S, V (H))

"
$
n− k − 2

2

%
+

$
k + 2

2

%
+ (k + 2)

=

$
n− k − 2

2

%
+

$
k + 3

2

%
" e(G).

(Recall that e(G) !
!
n−k−2

2

"
+

!
k+3
2

"
.) We infer that each inequality becomes equality.

This implies that G = G′, H is complete, and |NG(v)∩S| = 1 for every v ∈ V (H). Recall
that |N(H) ∩ S| = 1. All vertices in H have a common neighbor in S. Thus G = Ln,k+1,
and so (b) holds.

Case B.2. |T | = 1. Let v1 be the unique vertex in T . Let H1 be a component of H−v1.
If v1 ∈ NG′(H1), then NG′(H1) ∩ S = ∅; for otherwise c(G′) ! n − k. Furthermore, If
|NG′(H1)∩S| ! 2, then there are two independent edges between S and V (H1) (notice that
in G′, every vertex in H1 has at most one neighbor in S), implying that c(G′) ! n− k, a
contradiction. Thus, |NG′(H1)∩(S∪{v1})| " 1 for every component H1 of G

′−(S∪{v1}).
This implies that G ⊆ G′ ⊆ L for some L ∈ Ln,k+1, and (a) holds.

Case B.3. |T | ! 2. Let v1 be a vertex in T and u1, u2 be two vertices in NG′(v1)∩S. For
any other vertex v2 ∈ T , we have that NG′(v2)∩S = {u1, u2}, for otherwise c(G′) ! n−k.
Furthermore, NG′(v1) ∩ S = {u1, u2}. In brief, we have NG′(T ) ∩ S = {u1, u2}. If there
are two vertices in T which are adjacent in G′, then c(G′) ! n − k, a contradiction.
Hence T is an independent set in G′. For any vertex v ∈ V (G)\(S ∪ T ), we claim
that |NG′(v) ∩ (S ∪ T )| " 1. Indeed, as v /∈ T , v cannot have two neighbors in S. If
NG′(v) contains two vertices in T or contains one vertex in T and one vertex in S, then
c(G′) ! n− k, a contradiction. Set H1 = H − T and t = |T |. Notice that 2 " t " k + 2.
Now

e(G) " e(G′) = e(K) + eG′(S, T ) + e(H1) + eG′(S ∪ T, V (H1))

"
$
n− k − 2

2

%
+ 2t+

$
k + 2− t

2

%
+ (k + 2− t)

=

$
n− k − 2

2

%
+

$
k + 3

2

%
+

t2 − (2k + 1)t

2

" e(G) +
t(t− 2k − 1)

2
.

This implies that t ! 2k + 1. As 2 " t " k + 2, we only can have k = 0 and t = 2, or
k = 1 and t = 3. For each case, V (G) = S ∪ T . For the first case, G ⊆ G′ = Wn,2,n−1,
and (c) holds. For the second case G′ = Wn,2,n−2. Moreover, equality holds in the above
inequalities, implying that G = G′ and (d) holds.
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2.2 Proofs for spectral results

In the following, we prove the corresponding spectral part of this section. Let G be a
graph and u, v ∈ V (G). We use G[u → v] to denote a new graph obtained from G, by
replacing all edges uw by vw, where w ∈ NG(u)\(NG(v) ∪ {v}). Following Brouwer et
al.’s book [6], we call this “Kelmans operation”.

We need some results on the spectral properties of graphs under Kelmans operations.
These theorems will play important roles in our answer to Problem 1.

Theorem 17 (Csikvári [9]). Let G be a graph. Let u, v ∈ V (G) and G′ := G[u → v].
Then ρ(G′) ! ρ(G).

Theorem 18 (Li and Ning [26]). Let G be a graph. Let u, v ∈ V (G) and G′ := G[u → v].
Then q(G′) ! q(G).

For two variants of Theorems 17 and 18, see [39, 24].
The following theorem is very basic and famous.

Theorem 19. Let G be a connected graph and G′ be a proper subgraph of G. Then
ρ(G′) < ρ(G) and q(G′) < q(G).

The following spectral inequalities help us to invert our problems into ones in extremal
style.

Theorem 20 (Hong [22]). Let G be a graph on n vertices and m edges. If δ(G) ! 1 then
ρ(G) "

√
2m− n+ 1.

Theorem 21 (Feng and Yu [12]). Let G be a graph on n vertices and m edges. Then
q(G) " 2m

n−1
+ n− 2.

The following two lemmas will be used to determine the extremal graphs.

Lemma 22. Suppose that G is a subgraph of a member in Ln,k where n ! 2k + 1.
(a) If ρ(G) ! ρ(Ln,k) then G = Ln,k.
(b) If q(G) ! q(Ln,k) then G = Ln,k.

Proof. (a) Let L ∈ Ln,k with G ⊆ L. Since G ⊆ L, ρ(G) " ρ(L) by Theorem 19, with
equality if and only if G = L (recall that L is connected). Let K be the clique of L with
|K| = n − k. Let H1, H2, . . . , Ht be the components of L − K, and let vi, i ∈ [1, t], be
the unique vertex in N(Hi) ∩K. By a series of Kelmans operations from vi to v1 for all
vi ∕= v1, we get a graph L′ which is a subgraph of Ln,k. (In fact, the graph L′ consists of
some cliques sharing one common vertex.) By Theorem 17,

ρ(G) " ρ(L) " ρ(L′) " ρ(Ln,k).

Notice that L′ is always a subgraph of Ln,k. If L′ is a proper subgraph of Ln,k, then
ρ(G) < ρ(Ln,k). Thus, L′ = Ln,k, specially we have t = 1 and L = L′. Furthermore, if
G ∕= L then we also have ρ(G) < ρ(L), a contradiction. Thus, G = L = Ln,k. This proves
statement (a).

(b) The proof is almost the same as the one of (a). We just use Theorem 18 instead
of Theorem 17 in the whole proof. We omit the details.
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Lemma 23. Let n, k be integers where k ! 1. Then
(a) ρ(Ln,k) > ρ(Ln,k+1) and q(Ln,k) > q(Ln,k+1), for all n ! 2k + 3;
(b) ρ(Ln,1) > ρ(Wn,2,n−1) and q(Ln,1) > q(Wn,2,n−1) for all n ! 6;
(c) ρ(Ln,2) > ρ(Wn,2,n−2) for all n ! 7 and q(Ln,2) > q(Wn,2,n−2) for all n ! 8.

Proof. (a) Let V (Ln,k+1) = X ∪ Y ∪ {z}, where X ∪ {z} is the (k + 2)-clique in Ln,k+1

and Y ∪ {z} is the (n− k− 1)-clique in Ln,k+1. Choose x ∈ X. Ln,k can be obtained from
Ln,k+1 by deleting all edges xx′ for x′ ∈ X and adding all edges xy′ for y′ ∈ Y .

Let α be the Perron vector concerning ρ1 = ρ(Ln,k+1), where αx,αy,αz correspond to
the eigencomponents of vertices in X, vertices in Y and the vertex z, respectively. By
eigenequation, we have ρ1αx = kαx + αz and ρ1αy = (n− k − 3)αy + αz. It follows that
(ρ1 − k)αx = (ρ1 − (n− k − 3))αy. Since n ! 2k + 3, we have αy ! αx > 0. By Rayleigh
quotient, we have

ρ(Ln,k)− ρ(Ln,k+1) ! 2(n− k − 2)αxαy − 2kα2
x = 2αx((n− k − 2)αy − kαx) > 0.

This proves ρ(Ln,k) > ρ(Ln,k+1) for n ! 2k + 3.
Let β be the Perron vector with respect to q1 = q(Ln,k+1), where βx, βy, βz correspond

to the eigencomponents of vertices in X, vertices in Y and the vertex z, respectively. By
eigenequation, we have q1x = (2k+1)βx + βz and q1βy = (2n− 2k− 5)βy + βz. It follows
that (q1 − (2k + 1))βx = (q1 − (2n − 2k − 5))βy. If n ! 2k + 3, then βy ! βx > 0. By
Rayleigh quotient, we have

q(Ln,k)− q(Ln,k+1) ! (n− k − 2)(βx + βy)
2 − k(βx + βx)

2 > 0.

This proves q(Ln,k) > q(Ln,k+1) for n ! 2k + 3.
(b) By Theorems 20 and 21, for n ! 6,

ρ(Wn,2,n−1) "
+

2e(Wn,2,n−1)− n+ 1 =
√
n2 − 6n+ 15 < n− 2 < ρ(Ln,1),

q(Wn,2,n−1) "
2e(Wn,2,n−1)

n− 1
+ n− 2 =

2n2 − 8n+ 16

n− 1
" 2(n− 2) < q(Ln,1).

(c) If n ! 8, then by Theorem 20,

ρ(Wn,2,n−2) "
+

2e(Wn,2,n−2)− n+ 1 =
√
n2 − 8n+ 25 " n− 3 < ρ(Ln,2).

If n ! 10, then by Theorem 21,

q(Wn,2,n−2) "
2e(Wn,2,n−2)

n− 1
+ n− 2 =

2n2 − 10n+ 26

n− 1
" 2(n− 3) < q(Ln,2).

For the remainder case that n is small, one can solve it by computer (see Table 1).

Proof of Theorem 7. If G is disconnected, then we can add some edges between
different components recursively, and get a connected graph G′ with ρ(G′) > ρ(G) and
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Table 1: Special radii of Wn,2,n−2 and Ln,2 with n ∈ [6, 9]

Graphs W6,2,4 L6,2 W7,2,5 L7,2 W8,2,6 L8,2 W9,2,7 L9,2

ρ(·) 3.3723 3.2618 3.9095 4.1413 4.6056 5.0874 5.4172 6.0593
q(·) 7.4641 7.0000 8.7355 8.7016 10.5311 12.4244 11.7492 12.4389

q(G′) > q(G). Since the added edges are not contained in any cycle, if G′ contains some
cycles, then so does G. Thus we need only deal with the case that G is connected.

Suppose that (a) holds. Furthermore, suppose that G does not contain a Cℓ for every
ℓ ∈ [3, n− k + 1]. We shall show that G = Ln,k.

By Theorem 20, we have

,
2e(G)− n+ 1 ! ρ(G) ! ρ(Ln,k) ! n− k − 1.

It follows that

e(G) ! (n− k − 1)2 + n− 1

2
!

$
n− k − 1

2

%
+

$
k + 2

2

%

for n ! (k+2)2

2
. By Theorem 10, G is weakly pancyclic with girth 3 for n ! max{6k +

11, (k+3)(k+4)
2

}. Furthermore, if G does not contain a Cn−k+1, then one of the following is
true: (1) G ⊆ L for some L ∈ Ln,k; (2) G = Ln,k+1; (3) k = 1 and G ⊆ Wn,2,n−1, or k = 2
and G ⊆ Wn,2,n−2. By Lemma 22 and Lemma 23, G = Ln,k.

Suppose that (b) holds. By Theorem 21, we obtain

2e(G)

n− 1
+ n− 2 ! q(G) ! q(Ln,k) ! 2(n− k − 1),

which implies that

e(G) ! (2(n− k − 1)− n+ 2)(n− 1)

2
!

$
n− k − 1

2

%
+

$
k + 2

2

%

for n ! k2 + 2k + 2. By Theorem 10, G is weakly pancyclic with girth 3 for n !
max{6k+11, (k+3)(k+4)

2
}. Notice that (k+3)(k+4)

2
" max{6k+11, k2+2k+2}. Furthermore,

if G does not contain a Cn−k+1, then one of the following is true: (1) G ⊆ L for some
L ∈ Ln,k; (2) G = Ln,k+1; (3) k = 1 and G ⊆ Wn,2,n−1, or k = 2 and G ⊆ Wn,2,n−2. By
Lemma 22 and Lemma 23, G = Ln,k. The proof is complete.

2.3 Proof of Theorem 13

The goal of this section is to prove Theorem 13. One useful tool is a classical spectral
inequality by Hong, Shu, and Fang [23].
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Theorem 24 (Hong, Shu and Fang [23]). Let G be a connected graph on n vertices and
m edges. If δ(G) ! k ! 1, then

ρ(G) " k − 1

2
+

-
2m− kn+

(k + 1)2

4
.

The next spectral inequality was originally proposed by Guo, Wang, and Li [21] as a
conjecture and proved by Sun and Das [36].

Theorem 25 (Sun and Das [36]). Let G be a graph with minimum degree δ(G) ! 1. For
any v ∈ V (G), we have ρ2(G− v) ! ρ2(G)− 2d(v) + 1.

Lemma 26. Let G be a connected graph and H be an induced subgraph of G. Suppose
that |V (G)\V (H)| = k and e(G)− e(H) = m. Then ρ2(H) ! ρ2(G)− 2m+ k.

Proof. We remark that in Theorem 25, the condition δ(G) ! 1 can be replaced by that
dG(v) ! 1 and then also ensures ρ2(G − v) ! ρ2(G) − 2d(v) + 1. If G has some isolated
vertices, then taking G′ = G − V0, where V0 is the set of isolated vertices of G, and we
have ρ(G) = ρ(G′) and ρ(G− v) = ρ(G′ − v).

Now consider the connected graph G and an induced subgraph H. Let Hi : 1 " i " t
be the components of G−H, ui be a vertex in N(H)∩V (Hi), and Ti be a spanning tree of
Hi rooted at ui. NowH can be obtained fromG by removing vertices one by one, such that
each time we remove a leaf of some tree T ′

i ⊆ Ti, which is never isolated. Now applying the
variant of Theorem 25 we discussed above, we have shown ρ2(H) ! ρ2(G)− 2m+ k.

Next, we present a lemma involving pure computation, which is used in proofs of
Lemma 28 and Theorem 13.

Lemma 27. (1) If n ! 2k + 1 ! 1 and p ! n
3
+ k − 1

2
, then

p− 1

2
+

-
pn− 3p2 + 2p− 1

4
" 2p− k.

(2) If n ! 2k + 1 ! 1 and p ! 4n+k−5
10

, then

n

2
+ p− 1 +

-.n
2
+ p− 1

/2

− 2(p2 − p) " 4p− 2k.

(3) If 0 " n− c "
√
2n− 3k

4
− 3, then

1

2

0
kn+

$
c− 3k − 1

2

%2

− (k + 1)2

4

1
!

$
c− k − 1

2

%
+ (n− c+ k + 1)2.

(4) If n ! 12 and 0 " n− c " 2
3

√
3n− k − 1, then

(2(c− k)− (n− 2))(n− 1)

2
!

$
c− k − 1

2

%
+ (n− c+ k + 1)2.
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Proof. (1) The inequality is equal to

f(p) := 3p2 − (n+ 3k − 2)p+ k(k − 1) ! 0.

One can compute that f(n
3
+ k − 1

2
) = n

6
− k

2
+ k2 − 1

4
! 0, and f(p) is increasing when

p ! n
3
+ k − 1

2
. This proves the inequality.

(2) The inequality is equal to

f(p) := 5p2 − (2n+ 6k − 3)p+ k(n+ 2k − 2) ! 0.

One can compute that f(4n+k−5
10

) = n
5
+ 7k2

4
− 7k

10
− 1

4
! 0, and f(p) is increasing when

p ! 4n+k−5
10

. This proves the inequality.
(3) The inequality is equal to

f(n− c) := (n− c)2 +

$
3k

2
+ 4

%
(n− c)−

$
2n− k2 + 9k + 4

2

%
" 0.

When n ! k2+9k+4
4

, the quadratic equation f(n− c) = 0 for n− c has two real roots, one

of which is non-positive. Moreover, one can obtain that f(
√
2n − 3k

4
− 3) = −2

√
2n −

k2

16
+ 3k

2
− 1 " 0. Thus f(n − c) " 0 when 0 " n − c "

√
2n − 3k

4
− 3. Notice that√

2n− 3k
4
− 3 ! 0 implies n ! k2+9k+4

4
. This proves the inequality.

(4) The inequality is equal to

f(n− c) := (n− c)2 +

$
2k +

5

3

%
(n− c)−

$
4n

3
− 3k2 + 5k + 6

3

%
" 0.

When n ! 3k2+5k+6
4

, the quadratic equation f(n−c) = 0 for n−c has two real roots, one of

which is non-positive. Moreover, one can compute that f(2
3

√
3n−k−1) = −2

9

√
3n+ 4

3
" 0

when n ! 12. Thus f(n − c) " 0 when 0 " n − c " 2
3

√
3n − k − 1. Notice that

2
3

√
3n− k − 1 ! 0 implies n ! 3k2+5k+6

4
. This proves the inequality.

Lemma 28. Let n > c ! 2k + 1, where n, c, k are positive integers.
(a) If c ! 2n

3
+ k, then ρ(Wn,⌊ c

2
⌋,c) < ρ(Wn,k,c); if c ! 4n+k

5
, then q(Wn,⌊ c

2
⌋,c) < q(Wn,k,c).

(b) For any graph G ∈ Xn,c, we have ρ(G) < ρ(Wn,⌊ c
2
⌋,c) and q(G) < q(Wn,⌊ c

2
⌋,c).

(c) For any graph G ∈ Yn,c, we have ρ(G) < ρ(Wn,⌊ c
2
⌋,c) and q(G) < q(Wn,⌊ c

2
⌋,c).

(d) We have ρ(Zn,k,c) < ρ(Wn,k,c) and q(Zn,k,c) < q(Wn,k,c).

Proof. (a) Set p = ⌊ c
2
⌋. If c is even, then Wn,⌊ c

2
⌋,c = Sn,p. By simple algebraic operations,

ρ(Wn,⌊ c
2
⌋,c) = ρ(Sn,p) =

p− 1

2
+

-
pn− 3p2 + 2p− 1

4
.

On the other hand, ρ(Wn,k,c) > c− k = 2p− k. To prove that ρ(Wn,⌊ c
2
⌋,c) < ρ(Wn,k,c), we

only need to prove that

p− 1

2
+

-
pn− 3p2 + 2p− 1

4
" 2p− k.
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If c is odd, then Wn,⌊ c
2
⌋,c = S+

n,p, and

ρ(Wn,⌊ c
2
⌋,c) " ρ(Sn,p) + 1 " p+ 1

2
+

-
pn− 3p2 + 2p− 1

4
.

On the other hand, ρ(Wn,k,c) > c− k = 2p− k+1. To prove that ρ(Wn,⌊ c
2
⌋,c) < ρ(Wn,k,c),

we only need to prove that

p+ 1

2
+

-
pn− 3p2 + 2p− 1

4
" 2p− k + 1.

Both of the inequalities hold when p ! n
3
+ k − 1

2
(see Lemma 27). Thus if c ! 2n

3
+ 2k,

then ρ(Wn,⌊ c
2
⌋,c) < ρ(Wn,k,c).

Now we show that q(Wn,⌊ c
2
⌋,c) < q(Wn,k,c). If c is even, then by Lemma 27,

q(Wn,⌊ c
2
⌋,c) = q(Sn,p) =

n

2
+ p− 1 +

-.n
2
+ p− 1

/2

− 2(p2 − p).

On the other hand, q(Wn,k,c) > 2c− 2k = 4p− 2k. To prove that q(Wn,⌊ c
2
⌋,c) < q(Wn,k,c),

we only need to prove that

n

2
+ p− 1 +

-.n
2
+ p− 1

/2

− 2(p2 − p) " 4p− 2k.

If c is odd, then Wn,⌊ c
2
⌋,c = S+

n,p, and

q(Wn,⌊ c
2
⌋,c) " q(Sn,p) + 2 " n

2
+ p+ 1 +

-.n
2
+ p− 1

/2

− 2(p2 − p).

On the other hand, q(Wn,k,c) > 2c−2k = 4p−2k+2. To prove that q(Wn,⌊ c
2
⌋,c) < q(Wn,k,c),

we only need to prove that

n

2
+ p+ 1 +

-.n
2
+ p− 1

/2

− 2(p2 − p) " 4p− 2k + 2.

Both of inequalities hold when p ! 4n+k−5
10

(see Lemma 27). Thus if c ! 4n+k
5

, then
q(Wn,⌊ c

2
⌋,c) < q(Wn,k,c).

(b) Let A,B,X ⊆ V (G), and a ∈ A, b ∈ B, as given in Definition 2 (see Subsection
1.1). Let a′ ∈ A\{a}, and let G′ = G[b → a′]. By Theorems 17 and 18, ρ(G′) ! ρ(G) and
q(G′) ! q(G). Observe that G′ is a proper subgraph of Wn,⌊ c

2
⌋,c. Hence ρ(G) < ρ(Wn,⌊ c

2
⌋,c)

and q(G) < q(Wn,⌊ c
2
⌋,c). The proof of (b) is complete.

(c) Let A,B, Y ⊆ V (G), and a1, a2 ∈ A, as given in Definition 3 (see Subsection 1.1).
Let a′ ∈ A\{a1, a2}. Recall that each component of G[Y ] is a star. Let y1, . . . , yr be the
centers of these stars (for a K2-component, take any one of its two vertices as a center).
Let G′ be the graph obtained from G by Kelmans operations from yi to a′, i = 1, . . . , r.
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Observe that G′ is a proper subgraph of Wn,⌊ c
2
⌋,c. By the same analysis as (b), we can

prove (c).
(d) Set G ∼= Zn,k,c. Let A be the (c − k + 1)-clique, and Z1, Z2, . . . , Zr, where r =

n−(c−k+1)
k−1

, be the (k+1)-cliques of G as given in Definition 4 (see Subsection 1.1). Let x, x′

be the two common vertices of these cliques. Choose A′ = {a1, a2, . . . , ak−2} ⊆ A\{x, x′},
and for each j = 1, . . . , r, Z ′

j = {zj1, z
j
2, . . . , z

j
k−2} ⊆ Zj\{x, x′}. Let G′ be the graph

obtained from G by Kelmans operations from zji to ai, i = 1, . . . , k − 2, j = 1, . . . , r.
Observe that G′ is a proper subgraph of Wn,⌊ c

2
⌋,c. By the same analysis as (b), we can

prove (d).

Proof of Theorem 13. Let G′ = cln(G). We will first show that under the condition,
ω(G′) ! c− k. Suppose that (a) holds. By Theorem 24, we have

k − 1

2
+

-
2e(G′)− kn+

(k + 1)2

4
! ρ(G′) ! ρ(G) ! ρ(Wn,k,c) > c− k.

We infer that

e(G′) >
1

2

0$
c− 3k − 1

2

%2

− (k + 1)2

4
+ kn

1
!

$
c− k − 1

2

%
+ (n− c+ k + 1)2,

for 0 " n − c "
√
2n − 3k

4
− 3 (see Lemma 27 (3)). By Lemma 16, ω(G′) ! c − k when

n ! 6(n− c+ k) + 5.
Suppose now that (b) holds. By Theorem 21, we have

2e(G′)

n− 1
+ n− 2 ! q(G′) ! q(G) ! q(Wn,k,c) > 2(c− k).

We infer that

e(G′) >
(2(c− k)− (n− 2))(n− 1)

2
!

$
c− k − 1

2

%
+ (n− c+ k + 1)2,

for n ! 12 and 0 " n−c " 2
3

√
3n−k−1 (see Lemma 27 (4)). By Lemma 16, ω(G′) ! c−k

when n ! 6(n− c+ k)+ 5. Notice that n ! 6(n− c+ k)+ 5 implies n ! 12. In each case,
we have ω(G′) ! c− k, as claimed.

We next show that e(G′) > e(Wn,k+1,c). Let S be a maximum clique of G′ and
H = G′[S]. Suppose first that ω(G′) ! c− k + 1. Since δ(G′) ! δ(G) ! k, we have

e(G′) > e(H) +
1

2

2

v∈V (G′)\S

dG′(v)

!
$
c− k + 1

2

%
+

k(n− c+ k − 1)

2

!
$
c− k

2

%
+ (k + 1)(n− c+ k) = e(Wn,k+1,c),
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for n− c " 2n−(k2+5k)
k+4

. Recall that there holds 0 " n− c " 2
3

√
3n− k − 1. We only need

to prove that 2
3

√
3n− k − 1 " 2n−(k2+5k)

k+4
, which is equivalent to

3(n+ 2)2 ! n(k + 4)2. (1)

Since n > n− 2
3

√
3n+k+1 (i.e., the condition for the case (b)), we have 2

3

√
3n > k+1,

that is, n ! 3(k+1)2+1
4

. If we have 3n2 ! n(k+4)2 (i.e., n ! (k+4)2

3
), then (1) holds. Notice

that if k ! 5, then 3(k+1)2+1
4

! (k+4)2

3
, which proves (1) for the case k ! 5. Next,

we shall deal with the tiny cases that k = 2, 3, 4. When k = 2, (1) is equivalent to
n2− 8n+4 ! 0, which obviously holds (recall that n ! 12); when k = 3, (1) is equivalent
to n(3n − 37) + 12 ! 0, which holds for n ! 12; when k = 4, (1) is equivalent to

3n2 − 52n + 12 ! 0. Observe that n > n − 2
3

√
3n + k + 1 implies that n ! 3(k+1)2

4
= 75

4
,

and it follows that (1) holds.
Suppose now that ω(G′) = c− k. By Lemma 26, ρ2(H) ! ρ2(G′)− 2(e(G′)− e(H)) +

|V (G)\S|. Thus we have

e(G′) ! 1

2
(ρ2(G′)− ρ2(H) + 2e(H) + |V (G)\S|)

>
(c− k)2 − (c− k − 1)2 + (c− k)(c− k − 1) + (n− c+ k)

2

=
(c− k)2 + n− 1

2

!
$
c− k

2

%
+ (k + 1)(n− c+ k) = e(Wn,k+1,c)

for n− c " 2n−(2k2+3k+1)
2k+3

(which holds when 0 " n− c " 2
3

√
3n− 2(2k+3)

3
}).

If c(G) " c, then c(G′) = c(G) " c. Since f(n, k, c) =
!
c−k+1

2

"
+k(n−c+k−1), we have

df
dk

= n−2c+3k− 3
2
. As c ! 5n+6k+5

6
, we have f ′(k) " n− 5n+6k+5

3
+3k− 3

2
= −2n

3
+k− 19

6
.

Furthermore, by condition, we obtain n ! (2k+3)2

3
, and hence f ′(k) " −2(2k+3)2

9
+k− 19

6
" 0.

This implies that e(Wn,k+1,c) ! e(Wn,⌊ c
2
−1⌋,n).

By Theorem 5, G′ (and G) is a subgraph of some graph in {Wn,k,c,Wn,⌊ c
2
⌋,n} ∪ Zn,k,c.

By Lemma 28, G can only be Wn,k,c. The proof is complete.

3 Concluding remarks

Recall Nikiforov [32] conjectured that (a) every graph on sufficiently large order n contains
a C2k+1 or a C2k+2 if ρ(G) ! ρ(Sn,k), unless G = Sn,k where Sn,k := Kk ∨ (n − k)K1,
and that (b) every graph on sufficiently large order n contains a C2k+2 if ρ(G) ! ρ(S+

n,k),

unless G = S+
n,k where S+

n,k is obtained from Sn,k by adding an edge in the n− k isolated

vertices. One can easily compute that ρ(Sn,k) = Θ(
√
n) and ρ(S+

n,k) = Θ(
√
n). The

following refined version of Nikiforov’s conjecture is helpful to Problem 1.
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Problem 29 (A refined version of Nikiforov’s conjecture). For any integer k ! 3, de-
termine the infimum α := α(k) such that every graph of order n = Ω(kα) (where Ω(kα)
means there exists some constant c which is not related to k and n, such that n ! ckα)
satisfying λ(G) > λ(S+

n,k) contains a C2k+2.

If these conjectures turned out to be true (in a clear form), for example, if these
conjectures will be confirmed for n = Ω(k2), then we maybe obtain a tight spectral
condition for an even cycle Cℓ where ℓ ∈ [3,Θ(

√
n)]∪ [n−Θ(

√
n), n]. It is still mysterious

to determine tight spectral conditions for Cℓ, where ℓ = cn, 0 < c < 1, such as Cn
2
and

etc.
A classical result in Bollobás’ textbook [2, Corrolary 5.4] states a graph G contains all

cycles Cℓ for each ℓ ∈ [3,
3
n+3
2

4
] if e(G) > ⌊n2

4
⌋. Nikiforov [30] proposed a corresponding

spectral analogous open problem:

Problem 30 (Nikiforov [30]). What is the maximum C such that for all positive ε < C

and sufficiently large n, every graph G of order n with ρ(G) >
+

⌊n2

4
⌋ contains a cycle of

length ℓ for every integer ℓ " (C − ε)n.

Different from the original edge extremal case, Nikiforov [30] constructed the class

of graphs G = Ks ∨ (n − s)K1 where s =
5
(3−

√
5)n

4

6
(see [30]) from which one can find

C " (3−
√
5)

2
. On the other hand, Nikiforov [30] proved that C ! 1

320
and later it was

slightly improved by the second author and Peng [33] to C ! 1
160

. Recently, Zhai and
Lin [42] proved that every graph G on n vertices contains cycles of length ℓ ∈ [3, n

7
]

if ρ(G) >
+

⌊n2

4
⌋. Notice that they do not need the assumption that n is sufficiently

large. Only very recently, the current authors [27] showed C ! 1
4
by completely different

methods.

Theorem 31 (Li and Ning [27]). Let ε be real with 0 < ε < 1
4
. Then there exists an integer

N := N(ε), such that if G is a graph on n vertices with n ! N and ρ(G) >
+

⌊n2

4
⌋, then

G contains all cycles Cℓ with ℓ ∈ [3, (1
4
− ε)n].

From Theorem 31, we can see Problem 1 is known for the case ℓ < (1
4
− o(1))n where

ℓ is odd and n is large enough. Now we can summarize all results related to Problem 1
(see Subsection 1.1 and the last section here) as follows. For other related references, we
refer the reader to [40, 18, 7, 42].

Remark 32. Problem 1 is solved for each even integer ℓ ∈ [4, c] ∪ [n− ⌊−1+
√
8n+1

2
⌋ + 1, n]

where c is any fixed even integer and n is sufficiently large related to c, and each odd
integer ℓ ∈ [3, n

4
−K(1

8
)] ∪ [n− ⌊−1+

√
8n+1

2
⌋+ 1, n] where n is sufficiently large.2

Note that each of the extremal graphs in Theorem 7 has a cut-vertex. This motivates
us to conclude this paper with the following open problem (and also a more general one).

2Here K( 18 ) is a constant only related to 1
8 . The detailed definition can be found in [20]. In fact, the

current authors proved a slightly stronger result than the statement mentioned in Theorem 31 (see [27]).
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Problem 33. Determine tight spectral radius conditions for a cycle of length ℓ in a
2-connected graph of order n for each ℓ ∈ [⌊n+3

2
⌋, n].

Problem 34. Determine tight spectral radius conditions for a cycle of length ℓ in a
2-connected graph of order n with minimum degree δ ! k ! 2 for each ℓ ∈ [3, n].

One may find that under the condition (a) of Theorem 13, we need

c ! max

7
5n+ 6k + 5

6
, n−

√
2n+

3k

4
+ 3

8
.

If there is a real α < 1 such that nα ! k, then we know 3k
4
" 3nα

4
. It means the part (a) of

Theorem 13 also holds when n ! k
1
α and c ! max{5n

6
+nα+ 5

6
, n−

√
2n+ 3

4
nα+3}. Thus, for

large graphs, it is an open problem to study the case when 2k+1 " c < n−
√
2n+ 3

4
nα+3

in Theorem 13. As the first step, can we prove the case c " l1n, where l1 < 1 is a constant
independent of k and n?
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[9] P. Csikvári. On a conjecture of V. Nikiforov. Discrete Math., 309(13):4522–4526,
2009.
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7:227–229, 1962.
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Combin. Probab. Comput., 29(1):128–136, 2020.

[34] E. Nosal. Eigenvalues of Graphs. Master Thesis, University of Calgary, 1970.

[35] O. Ore. Arc coverings of graphs. Ann. Mat. Pura Appl., 55:315–321, 1961.

[36] S. W. Sun and K. C. Das. A conjecture on the spectral radius of graphs. Linear
Algebra Appl., 588:74–80, 2020.

[37] D. R. Woodall. Sufficient conditions for circuits in graphs. Proc. London Math. Soc.,
24(3):739–755, 1972.

[38] D. R. Woodall. Maximal circuits of graphs. I. Acta Math. Acad. Sci. Hungar.,
28(1-2):77–80, 1976.

[39] B. F. Wu, E. L. Xiao, and Y. Hong. The spectral radius of trees on k pendant
vertices. Linear Algebra Appl., 395:343–349, 2005.

[40] M. Q. Zhai, H. Q. Lin, and S.C. Gong. Spectral conditions for the existence of
specified paths and cycles in graphs. Linear Algebra Appl., 471:21–27, 2015.

[41] M. Q. Zhai and H. Q. Lin. Spectral extrema of graphs: forbidden hexagon. Discrete
Math., 343(10):112028, 6 pp. 2020.

[42] M. Q. Zhai and H. Q. Lin. A strengthening of the spectral chromatic critical edge
theorem: Books and theta graphs. J. Graph Theory, 102(3):502–520, 2023.

[43] M. Q. Zhai and B. Wang. Proof of a conjecture on the spectral radius of C4-free
graphs. Linear Algebra Appl., 437(7):1641–1647, 2012.

the electronic journal of combinatorics 30(1) (2023), #P1.39 20


