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Abstract

Let R(G) be the 2-colour Ramsey number of a graph G. In this note, we prove
that for any non-decreasing function n 6 f(n) 6 R(Kn), there exists a sequence
of connected graphs (Gn)n∈N, with |V (Gn)| = n for all n > 1, such that R(Gn) =
Θ(f(n)). In contrast, we also show that an analogous statement does not hold for
hypergraphs of uniformity at least 5.

We also use our techniques to answer in the affirmative a question posed by
DeBiasio about the existence of sequences of graphs, but whose 2-colour Ramsey
number is linear whereas their 3-colour Ramsey number has superlinear growth.

Mathematics Subject Classifications: 05C88, 05C89

1 Introduction

For a graph G and r > 2, the r-colour Ramsey number Rr(G) of G is the smallest
number n such that every r-colouring of the edges of the complete graph Kn contains a
monochromatic copy of G, that is, a copy of G with all its edges in the same colour. For
r = 2, we will simply write R2(G) = R(G) and refer to this as the Ramsey number of
G. The most notorious open problem here is to determine the Ramsey number of cliques.
The classical bounds on R(Kn) by Erdős [13] and Erdős and Szekeres [14] imply that√

2
n
6 R(Kn) 6 4n, for n > 3, so R(Kn) is exponential in n, but despite tremendous

efforts its exact behaviour remains unknown (see [2] for the most recent improvements).
In general, if an n-vertex graph G has m edges and no isolated vertices, then 2Ω(m/n) 6

R(G) 6 2O(
√
m), where the lower bound follows from a probabilistic construction and the

upper bound was shown by Sudakov [20]. Given additional structure on G, there are many
cases where we can even obtain R(G) = O(n). This holds, for instance, for graphs with
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bounded maximum degree [8], bounded arrangeability [10], or bounded degeneracy [18].
We recommend [6] for a survey in the area.

As we have seen, the Ramsey number of an n-vertex graph can vary between linear and
exponential in n. A natural question is thus to ask which values (between n and R(Kn))
can be attained as the Ramsey number of some n-vertex graph. The aim of this note is
to study this question, and, in particular, to determine which functions f : N→ N, with
n 6 f(n) 6 R(Kn) for all n ∈ N, are the rate of growth of the Ramsey numbers of some
sequence of n-vertex graphs.

It is natural here to restrict our analysis to connected graphs. Note that after we
add n − r isolated vertices to an r-vertex graph H, we obtain an n-vertex graph H ′

satisfying R(H ′) = max{n,R(H)}. This means that we can obtain values for the Ramsey
numbers of n-vertex graphs which in essence correspond to the Ramsey numbers of r-
vertex graphs; restricting to connected graphs rules out such constructions. Our first
result is that every function, between the appropriate bounds, can be attained as the rate
of growth of some sequence of graphs, up to a multiplicative factor.

Theorem 1. There exists a positive constant C such that for every function f : N→ N,
with n 6 f(n) 6 R(Kn), there exists a sequence of connected graphs (Gn)n∈N such that
for all n ∈ N, |V (Gn)| = n and f(n) 6 R(Gn) 6 Cf(n).

In other words, Theorem 1 states1 that R(Gn) = Θ(f(n)), where the implicit constants
do not depend on the function f . We remark that by a result of Burr and Erdős [1] on
the Ramsey number of trees, it is known that every n-vertex connected graph G satisfies
R(G) > d4

3
ne − 1; thus taking the function f(n) = αn for any 1 6 α < 4/3 shows that

the conclusion of Theorem 1 cannot hold with R(Gn) = (1 + o(1))f(n) instead.
Our second result concerns k-uniform hypergraphs. A k-graph H is a pair H=(V,E)

where V is the set of vertices of H and every edge e ∈ E is a k-element subset of V . For
n ∈ N, the k-uniform clique on n vertices K

(k)
n is the k-graph on n vertices in which every

k-element set of vertices is an edge. Given a k-graph H, the Ramsey number R(H) of H

is the smallest number n such that every red-blue colouring of the edges of K
(k)
n yields a

monochromatic copy of H.
We prove that an analogue of Theorem 1 fails for k-graphs if k > 5 (even without any

kind of connectivity restrictions).

Theorem 2. Let k > 5. There exists a non-decreasing function f : N → N with n 6
f(n) 6 R(K

(k)
n ), such that for all c, C>0 and any n0, there is an n>n0 such that

R(H) 6 cf(n) or R(H) > Cf(n)

for every n-vertex k-graph H.

Using our techniques we can also answer a question pose by DeBiasio [11], who ask
for the existence of a sequence (Gn)n∈N of graphs where R2(Gn) is linear while R3(Gn)

1An alternative way to phrase Theorem 1 is that there exists an absolute constant C > 0 such that for all
n ∈ N and n 6 a 6 R(Kn), there exists a connected graph G on n vertices such that a 6 R(G) 6 Ca.
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is superlinear. Similar differences in behaviour depending on the number of colours have
been observed before in infinite graphs (see [3, Section 10.1]) and in 3-graphs (see [4]).

Theorem 3. There exists a sequence (Gn)n∈N of graphs such that |V (Gn)| = n, R2(Gn) =
O(n) and R3(Gn) = Ω(n log n).

Let us point out here that the graphs we construct for Theorem 3 have isolated vertices.
However, if we insist on sequences of connected graphs, we can get the following.

Theorem 4. There is a sequence (Gn)n∈N of connected graphs such that |V (Gn)| = n,
R2(Gn) = O(n log n) and R3(Gn) = Ω(n log2 n).

2 Proof of Theorem 1

Conlon, Fox and Sudakov [7, Lemma 5.5] applied a result by Erdős and Szemerédi [15]
to prove that the Ramsey number of a dense graph cannot decrease by much under the
deletion of one vertex. Recently, Wigderson [21] investigated this phenomenon in sparser
graphs. A graph on n vertices has density d if it has exactly d

(
n
2

)
edges.

Lemma 5 ([7]). There exists a function g : [0, 1] → R such that for every graph H of
density at least d and any graph H ′ obtained by deleting a single vertex from H, we have
R(H) 6 g(d)R(H ′).

In fact, in [7, Lemma 5.5] it is claimed the statement is true with g(d) = c log(1/d)/d,
for an absolute constant c > 0. However, such a function works for d bounded away from
1 only. Their proof can be trivially changed to obtain Lemma 5, which is all we need to
show the following corollary. In fact, 1 was already noted in [7].

Lemma 6. There exist constants c1, c2 > 1 such that for any n > 1,

1. R(Kn+1) 6 c1R(Kn),

2. R(Kn+1,n+1) 6 c2R(Kn,n).

We also need the Ramsey number of a path Pn with n edges, determined by Gerencsér
and Gyárfás [16].

Lemma 7. For every n > 1, R(Pn) = b(3n+ 1)/2c.

We shall also use a lower bound on the Ramsey number of complete bipartite graphs,
which follows from a standard probabilistic construction.

Lemma 8. For t > 1, R(Kt,t) > 2t/2.

Theorem 1 will be a direct consequence of the following two results.

Lemma 9. Suppose 1 6 t 6 n/2 and let Hn,t be the graph formed by taking a copy of Kt,t

and attaching to one of its vertices a path on n− 2t new vertices. Then

R(Hn,t) 6 3R(Kt,t)/2 + 3n .
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Proof. Let H = Hn,t and let N = b(3R(Kt,t) + 6n)/2c. Consider an arbitrary red-blue
edge-colouring of KN ; we shall show that it contains a monochromatic copy of H. For a
contradiction, assume it does not. By Lemma 7, there exists a monochromatic path P ′ in
KN of length at least R(Kt,t) + 2n− 1, and we assume without loss of generality that P ′

is red. Let P ⊆ P ′ be obtained after removing n− 2t vertices at one extreme of the path
P ′. Thus P has at least R(Kt,t) + 2n− (n− 2t) > R(Kt,t) + n vertices. Let S = V (P ).

If S contains a red copy of Kt,t, then together with P ′ we can find in KN a red path of
length at least n− t joined to one of its vertices, a contradiction. Since |S| > R(Kt,t) +n,
we can find a monochromatic copy of Kt,t in S, which must be blue. In fact, we can
greedily find vertex-disjoint blue copies of Kt,t until fewer than R(Kt,t) vertices remain
uncovered. Let K1, . . . , Ks be the copies that we have found. Note that these copies
together cover more than |S| −R(Kt,t) > n vertices.

For all 1 6 i 6 s, let Ai, Bi be the two classes of Ki. Given 1 6 i < s, note that not
all edges between Bi and Ai+1 can be red, as that would yield a red monochromatic copy
of Kt,t in S. Therefore, there are blue edges e1, . . . , es−1 where each ei has one endpoint
bi ∈ Bi and other endpoint ai+1 ∈ Ai+1. Let a1 ∈ A1 be arbitrary. For all 1 6 i < s,
take a blue path Pi ⊆ Ki which spans V (Ki) and has endpoints ai and bi. Thus, the
concatenation P1 + e1 + · · · + Ps−1 + es−1, together with Ks, forms a blue copy of H, a
final contradiction.

Lemma 10. Suppose 2 6 t 6 n and let Jn,t be the graph formed by taking a copy of Kt

and attaching to one of its vertices a path on n− t new vertices. Then

R(Jn,t) 6 3(R(Kt) + (t+ 1)n)/2 .

Proof. Let J = Jn,t and let N = b3(R(Kt) + (t+ 1)n)/2c. Consider an arbitrary red-blue
edge-colouring of KN ; we shall show that it contains a monochromatic copy of J . For a
contradiction, assume it does not. By Lemma 7, there exists a monochromatic path P ′

in KN of length at least R(Kt) + (t + 1)n− 1, and we assume without loss of generality
that P ′ is red. Let P ⊆ P ′ be obtained after removing n − t vertices at one extreme of
the path P ′. Thus P has at least R(Kt) + (t + 1)n− (n− t) > R(Kt) + nt vertices. Let
S = V (P ).

If S contains a red copy of Kt, then together with P ′ we can find in KN a red path of
length at least n− t joined to one of its vertices, a contradiction. Since |S| > R(Kt) +nt,
we can find a monochromatic copy of Kt in S, which must be blue. In fact, we can greedily
find vertex-disjoint blue copies of Kt until fewer than R(Kt) vertices remain uncovered.
Let Q1, . . . , Qs be the copies that were found. These copies, together, cover at least
|S| −R(Kt) > nt vertices of S, and thus we have s > n.

Define a clique-path to be a sequence of vertex-disjoint blue cliques Q1, . . . , Ql such
that for each 1 6 i < l there is a blue edge ei between Qi and Qi+1, and the edges ei are
vertex-disjoint for all 1 6 i < l.

Claim 11. There is a set of at most t − 1 clique-paths that together cover all cliques
Q1, . . . , Qs exactly once.
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Proof. Suppose otherwise and let P1, . . . , Pt−1 be t − 1 clique-paths which use pairwise-
disjoint sets of cliques and together use the maximum possible number of cliques. For
each 1 6 i 6 t− 1, let Qi be an “end-clique” of each Pi. Let Qt be any clique not covered
by {P1, . . . , Pt−1}, which exists by assumption. In each Q1, . . . , Qt, we select a vertex qi
which is not in any of the inter-clique edges of the clique-paths (here we use t > 2). Since
S contains no red Kt, there must be a blue edge between some pair qiqj. But then we can
obtain a new clique-path which contains Qi, Qj and the edge qiqj. Thus we have found a
new family of t− 1 clique-paths covering one more clique, a contradiction.

Therefore, there is a clique-path which uses at least s/(t− 1) > s/t cliques. In such a
clique-path, we can easily find a blue clique Kt together with a blue path which together
use at least t · (s/t) = s > n vertices, as required.

Now we are ready to prove the main result of this section.

Proof of Theorem 1. It is easily seen that Theorem 1 follows immediately from the fol-
lowing statement about ‘gaps’ in Ramsey numbers: there exists C > 0 such that for
all n, a ∈ N and n 6 a 6 R(Kn), there exists a connected n-vertex graph G with
a 6 R(G) 6 Ca. From now on, we prove this latter statement.

By the form of the statement, we can assume that n is sufficiently large so that the
inequalities that need it are true. Let c1 and c2 be the constants from Lemma 6 such that
R(Kt) 6 c1R(Kt−1) and R(Kt,t) 6 c2R(Kt−1,t−1) for all t > 2, and let C be a sufficiently
large constant.

We will split the proof into two cases, depending on how large a is. In fact, the two
ranges we consider are not disjoint, but they are enough to cover all possibilities between
n and R(Kn).

Case 1: n 6 a 6 2n/8. Let t be the minimal number such that R(Kt,t) > a. We note that
by the choice of t, we have R(Kt−1,t−1) 6 a < R(Kt,t). By Lemma 8, we have 2(t−1)/2 6 a
and thus t 6 2 log2 a + 1. Since a 6 2n/8, we have that t 6 n/4 + 1. Since we assume n
to be large, we can assume 2t 6 n. Let Gn = Hn,t be the graph as in Lemma 9. Since
Kt,t ⊆ Gn, we have R(Gn) > R(Kt,t) > a. For the upper bound, using Lemmata 6 and 9
we deduce that

R(Gn) 6
3

2
R(Kt,t) + 3n 6

3

2
c2a+ 3n 6 Ca.

Case 2: n2 6 a 6 R(Kn). Take t minimal subject to R(Kt) > a. Clearly, such t
always exists and is at most n. Thus we have R(Kt−1) < a 6 R(Kt). Moreover, since
R(Kr) > 2r/2 holds for all r, we know that t 6 min{n, 2 log2 a + 1}. Let Gn = Jn,t be as
in Lemma 10 and note that, since Kt ⊆ Gn, we have R(Gn) > R(Kt) > a. For the upper
bound, using Lemmata 10 and 6 we have

R(Gn) 6 3
2
(R(Kt) + (t+ 1)n) 6 3

2
(c1a+ (t+ 1)n)

6 Ca,

where the last inequality follows from (t+1)n 6 n(2 log2 a+2) 6 3n log2 a 6 6n2 6 6a.
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3 Proof of Theorem 2

For k-graphs, the so-called ‘stepping-up lemma’ of Erdős, Hajnal, and Rado [12] allows

us to deduce a tower-type lower bound for the Ramsey number R(K
(k)
n ) for every k > 3,

namely

an2 6 log
(k−2)
2 (R(K(k)

n )), (1)

where a > 0 is a constant depending only on k and log
(i)
2 (·) denotes the ith iterated base-2

logarithm (see [5] for more explicit bounds of this form).

Proof of Theorem 2. Let k> 5. We find a function g : N → N, with n6 g(n)6R(K
(k)
n )

as follows. For every n ∈ N, let In = [log2 n, log2R(K
(k)
n )] be an interval in R. Note that,

since k > 5, inequality (1) implies that

log2R(K(k)
n )− log2 n > 22an − log2 n.

Since the number of k-graphs on n vertices is at most 2n
k
, by averaging we find a sub-

interval I ′n ⊆ In which does not contain log2R(H) for any n-vertex k-graph H, and such
that I ′n has length at least

22an − log2 n

2nk + 1
> 2n+ 1,

where we used that n is sufficiently large. By passing to a sub-interval we may assume
that I ′n ∩ N has exactly 2n + 1 elements. Let mn ∈ I ′n be the middle point of I ′n ∩ N.
Then, for large n and every n-vertex k-graph H we have

log2R(H) 6 mn − n or log2R(H) > mn + n. (2)

Let g : N → N be defined by g(n) = 2mn . Since mn ∈ In we have n 6 g(n) 6 R(K
(k)
n ).

Then, from (2) we deduce that for every n and every n-vertex k-graph H,

R(H) 6 2−ng(n) or R(H) > 2ng(n) .

In particular, for every two positive constants c, C > 0 and for every sufficiently large n,
we have R(H) < cg(n) or R(H) > Cg(n), as required.

Note that we could finish the proof here if we were only interested in gaps for hyper-
graph Ramsey numbers. However, if we insist on having a non-decreasing function, we
may define f : N→ N by setting f(1) = g(1) and, for n > 2,

f(n) =

{
g(n) if g(n) > f(n− 1),

f(n− 1) if g(n) < f(n− 1) .

It is straightforward to check that f is non-decreasing and satisfies the desired
conditions.
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Notice that the proof of Theorem 2 relies on the fact that log2R(Kk
n) = ω(2n

k
) for

every k > 5. Erdős, Hajnal, and Rado [12] conjectured that (1) can be improved to

an 6 log
(k−1)
2 (R(K

(k)
n )) for every k > 3, in which case our proof of Theorem 2 works for

4-uniform hypergraphs as well. The situation for 3-uniform hypergraphs is not clear, even
if this conjecture were true.

4 Proofs of Theorems 3 and 4

We shall use the following simple lemma. We remark that similar statements have been
obtained before, e.g., by Lefmann [19]. For any graph G, let χ(G) be its chromatic
number.

Lemma 12. For every graph G and connected H ⊆ G, we have

R3(G) > (χ(H)− 1)(R2(H)− 1) + 1 .

Proof. Let N = (χ(H)− 1)(R2(H)− 1). We construct a red-blue-green colouring of KN

as follows: partition V (KN) into χ(H) − 1 sets V1, . . . , Vχ(H)−1 of size R2(H) − 1 each.
Inside each Vi use colours red and blue in such a way that the colouring does not contain
a red-blue copy of H; colour every other edge green.

This colouring does not contain a monochromatic copy of G. Indeed, a hypothetical
such copy cannot be red or blue, as otherwise there must exist a red or blue copy of H.
Since H is connected, such a copy of H must lie inside one of the sets Vi, but we have
chosen the red-blue edges so that this does not happen. Also, there are no green copies
of Gn, since the graph formed by the green edges is (χ(H)− 1)-partite but χ(G) > χ(H).
We conclude that R3(G) > N .

Proof of Theorem 3. Given n > 2, let t be the least integer such that n 6 R2(Kt). Note
that t > 2. By choice, we have R2(Kt−1) < n and, by Lemma 6, we have R2(Kt) 6
c1R2(Kt−1) < c1n. Let Gn be the graph obtained from Kt by adding n − t isolated
vertices, then |V (Gn)| = n and R2(Gn) = max{n,R2(Kt)} = R2(Kt) < c1n = O(n).
On the other hand, since n 6 R2(Kt) 6 4t, we know that t > 1

2
log2 n and therefore by

Lemma 12 we have R3(Gn) = Ω(n log n).

Proof of Theorem 4. Let t be the least integer so that R2(Kt) > n log2 n and let Gn = Jn,t.
Applying Lemma 10, we obtain a constant C > 0 such that

R(Gn) 6
3

2
(R(Kt) + (t+ 1)n) 6 Cn log2 n ,

where we use the bound R(Kt) 6 4t to deduce that t = Θ(log2(n)). Since χ(Gn) =
Ω(log n), then, by Lemma 12 and the definition of t, we have

R3(Gn) > (χ(Gn)− 1)(R2(Gn)− 1) = Ω(n log2 n),

as required.
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5 Concluding remarks

5.1 Gaps

For n ∈ N, let us consider the sets

Rn = {R(G) : |V (G)| = n},
R◦n = {R(G) : G does not contain isolated vertices and |V (G)| = n}, and

Rc
n = {R(G) : G is connected and |V (G)| = n}.

It is clear that Rc
n ⊆ R◦n ⊆ Rn ⊆ [n,R(Kn)]. Observe that n ∈ Rn since R(Kn) = n,

where Kn corresponds to an independent set on n vertices. Furthermore, consider a
disjoint union of two stars Σa,b = K1,a ∪K1,b. A result due to Grossman [17] implies that
R(Σa,a−i) = 3a − 2i for i ∈ {0, 1, 2}. Thus, by adding n − (2a − i + 2) extra isolated
vertices to Σa,a−i and letting the value of a vary from bn/3c to b(n − 2)/2c, we deduce
that [n, 3bn

2
c − 3] ⊆ Rn for large n ∈ N. Other families of sparse graphs can also be used

to show other inclusions of this kind.
As mentioned in the introduction, R(G) > d4

3
ne−1 holds for every connected graph G

on n vertices, and this bound is tight. In particular, it implies that

Rc
n ⊆

[⌈
4
3
n
⌉
− 1, R(Kn)

]
.

In a similar fashion, Burr and Erdős [1] showed that R(G) > n+log n−O(log log n) holds
for every G ∈ R◦n, which is almost tight as shown by Csákány and Komlós [9]. It would
be interesting to get a better understanding of the structures of Rn, R◦n, and Rc

n.
Given a constant c>1, say that a number a∈ [n,R(Kn)] is a c-gap for Rc

n if [a, ca] ∩
Rc
n = ∅. As mentioned inside its proof, it is easy to see that Theorem 1 is equivalent to

the existence of a constant c > 1 for which Rc
n has no c-gaps for every sufficiently large n.

In this direction, a proper (but non-empty) subset of the authors of this paper believes
that the answer to the following question should be affirmative.

Question 13. Does there exist an n0 ∈ N such that for every n > n0

Rn = [n,R(Kn)] and Rc
n =

[
d4

3
n
⌉
− 1, R(Kn)

]
?

Observe that the first equality would imply that for every function f : N → N

with n 6 f(n) 6 R(Kn) there is a sequence of graphs (Gn)n∈N such that f(n) = R(Gn)
for sufficiently large n ∈ N, and an analogous statement would hold for connected graphs
if the second identity was true. However, in order to show the first equality, one would
need to show that R(Kn− e) ∈ {R(Kn)− 1, R(Kn)} for sufficiently large n ∈ N, which is
likely to be a quite hard problem. A simpler question, which we still think is interesting
is as follows:

Question 14. Given c > 1, it is true that there are no c-gaps a for Rc
n with a > 4n/3,

for all sufficiently large n?
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5.2 Chromatic number and connectivity

We observe that the proof of the first case of Theorem 1 can be modified by replacing the
rôle of Kt,t with a complete k-partite graph Kt,...,t. In this way, we may ensure that the
graphs in the sequence (Gn)n∈N have large chromatic number for sufficiently large n.

Theorem 15. For every k>2, there are positive constants c, C, and n0 ∈ N such that
for every function f : N→ N, with n 6 f(n) 6 R(Kn), there is a sequence of connected
graphs (Gn)n∈N with |V (Gn)| = n such that cf(n) 6 R(Gn) 6 Cf(n) for all n ∈ N.
Moreover, χ(Gn) > k for every n > n0.

It would be interesting to ensure other properties for the graphs in this sequence. In
particular, we believe the graphs can also be taken to have large connectivity.

Conjecture 16. For every k > 2 and for every function f : N → N with n 6 f(n) 6
R(Kn), there is a sequence of graphs (Gn)n∈N with |V (Gn)| = n such that R(Gn) =
Θ(f(n)) and Gn is k-connected for all n sufficiently large.

It is also natural to ask if Theorem 3 holds if we require, in addition, that the graphs
Gn are connected.

Question 17. Is there a sequence {Gn}n∈N of connected graphs, with |V (Gn)| = n, such
that R2(Gn) = O(n), but R3(Gn) = ω(n)?

5.3 Hypergraphs

We finish by asking what happens with k-graphs in the cases not covered by Theorems 1
and 2, i.e. k ∈ {3, 4}. We phrase our question in terms of gaps.

Question 18. Given k ∈ {3, 4} and arbitrary C > 0, does there exist n ∈ N, and

n 6 a 6 R(K
(k)
n ) such that no k-graph H satisfies a 6 R(H) 6 Ca?
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[1] S. A. Burr and P. Erdős, Extremal Ramsey theory for graphs. Utilitas Mathematica.
An International Journal of Discrete and Combinatorial Mathematics, and Statistical
Design, 9: 247–258, 1976.

the electronic journal of combinatorics 30(3) (2023), #P3.24 9



[2] M. Campos, S. Griffiths, R. Morris, and J. Sahasrabudhe, An exponential improve-
ment for diagonal Ramsey. 2023. arXiv:2303.09521.

[3] J. Corsten, L. DeBiasio, and P. McKenney. Density of monochromatic infinite sub-
graphs II. 2020. arXiv:2007.14277.
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[20] B. Sudakov. A conjecture of Erdős on graph Ramsey numbers. Advances in Mathe-
matics, 227(1): 601–609, 2011.

[21] Y. Wigderson. Ramsey numbers upon vertex deletion. 2022. arXiv:2208.11181.

the electronic journal of combinatorics 30(3) (2023), #P3.24 11

http://real-j.mtak.hu/5464/
http://real-j.mtak.hu/5464/
https://arxiv.org/abs/2208.11181

	Introduction
	Proof of Theorem 1
	Proof of Theorem 2
	Proofs of Theorems 3 and 4
	Concluding remarks
	Gaps
	Chromatic number and connectivity
	Hypergraphs


