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Abstract

We give sharp upper bounds on the anticanonical degree of fake weighted pro-
jective spaces, only depending on the dimension and the Gorenstein index.

Mathematics Subject Classifications: 14M25, 52B20

1 Introduction

A d-dimensional fake weighted projective space is a quotient X = (Cd+1\{0})/G by a
diagonal action of G := C∗×Γ, where Γ is a finite abelian group and the factor C∗ acts via
positive weights. Any fake weighted projective space X is normal, Q-factorial, of Picard
number one and is a Fano variety, i.e. its anticanonical divisor −K is ample. Apart from
the classical projective spaces, all fake weighted projective spaces are singular, but have
at most abelian quotient singularities.

Fake weighted projective spaces form an interesting example class for the general ques-
tion of effectively bounding geometric data of a Fano variety in terms of its singularities.
For instance, Kasprzyk [12] bounds the order of the torsion part of the divisor class group
of a fake weighted projective space X and in [1] the authors give a sharp bound on this
invariant provided that X has at most canonical singularities. Another invariant of the
singularities is the Gorenstein index, i.e. the minimal positive integer ι such that ιK is
Cartier. In the case of Gorenstein index ι = 1, Nill [13] provides a bound for the degree of
a d-dimensional fake weighted projective space X, i.e. the self intersection number (−K)d

of its anticanonical divisor.
In the present paper, we extend Nill’s bound to higher Gorenstein indices. For any

d > 2 define a (d+ 1)-tuple of positive integers by

Qι,d :=

(
2tι,d
sι,1

, . . . ,
2tι,d
sι,d−1

, 1, 1

)
, sι,k := ι sι,1 · · · sι,k−1 + 1, tι,k := ι sι,1 · · · sι,k−1,
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where sι,1 := ι+ 1. For ι = 1, 2, 3 the beginning of the sequences (sι,k)k are the following

(s1,k)k = 2, 3, 7, . . . (s2,k)k = 3, 7, 43, . . . (s3,k)k = 4, 13, 157, . . .

Moreover, the corresponding (d+ 1)-tuples Qι,d for d = 2, 3 are given by:

Q1,2 = (2, 1, 1), Q2,2 = (4, 1, 1), Q3,2 = (6, 1, 1),

Q1,3 = (6, 4, 1, 1), Q2,3 = (28, 12, 1, 1), Q3,3 = (78, 24, 1, 1).

Our main result provides sharp upper bounds on the degree (−K)d in terms of the Goren-
stein index and lists the cases attaining these bounds:

Theorem 1. The anticanonical degree of any d-dimensional fake weighted projective
space X of Gorenstein index ι is bounded from above according to the following table.

d 1 2 2 3 3 > 4

ι > 1 1 >2 1 >2 > 1

bound on
(−K)d

2 9 2(ι+1)2

ι
72

2 t2ι,3
ι4

2 t2ι,d
ιd+1

attained
exactly by

P1 P2 P(2ι, 1, 1)
P(3, 1, 1, 1),
P(6, 4, 1, 1)

P(Qι,3) P(Qι,d)

Equality on the degree holds if and only if X is isomorphic to one of the weighted projective
spaces in the last row of the table.

Theorem 1 provides sharp upper degree bounds for fake weighted projective spaces.
Lower degree bounds for given dimension and Gorenstein index should exist due to the
fact that there are only finitely many isomorphy classes of fake weighted projective spaces
with fixed dimension and Gorenstein index, see [5] for a classification procedure; it would
be nice to have a closed formula for lower degree bounds like in Theorem 1. Leaving the
class of fake weighted projective spaces, in [3] the authors provide sharp upper degree
bounds for any toric Fano variety, only depending on it’s dimension, provided it has at
most canonical singularities.

The article is organized as follows. Section 2 provides basic properties of fake weighted
projective spaces. In Section 3 we assign to any d-dimensional fake weighted projective
space of Gorenstein index ι a certain partition of 1/ι into d + 1 unit fractions and give
a formula to compute the anticanonical degree in terms of the denominators of these
unit fractions. Section 4 contains the number theoretic part of the proof of Theorem 1.
In Section 5 we complete the proof of the main result. This amounts to constructing a
weighted projective space of given dimension d and Gorenstein index ι whose unit fraction
partition of 1/ι meets a maximality condition.
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2 Fake weighted projective spaces

We recall basic properties of fake weighted projective spaces and fix our notation, see
also [13, Sec. 3]. The reader is assumed to be familiar with the very basics of toric
geometry [8, 9]. Throughout the article N is a rank d lattice for some d ∈ Z>2. Its
dual lattice is denoted by M = Hom(N,Z) with pairing 〈·, ·〉 : M × N → Z. We write
NR := N⊗ZR and MR := M⊗ZR. Polytopes P ⊆ NR are assumed to be full dimensional.
The normalized volume of a d-dimensional polytope P is Vol(P ) = d! vol(P ), where vol(P )
denotes its euclidean volume. Suppose the origin 0 ∈ NR is contained in the interior of P .
Then the dual of P is the polytope

P ∗ := {u ∈MR; 〈u, v〉 > −1 for all v ∈ P} ⊆ MR.

For a facet F of P we denote by uF ∈ MR the unique linear form with 〈uF , v〉 = −1 for
all v ∈ F . We have

P ∗ = conv(uF ; F facet of P ), P = {v ∈ NR; 〈uF , v〉 > −1, F facet of P}.

A lattice polytope P ⊆ NR is a polytope whose vertices are lattice points in N . An IP-
polytope is a lattice polytope that contains the origin 0 ∈ NR in its interior. A Fano poly-
tope is an IP-polytope whose vertices are primitive lattice points. We regard two lattice
polytopes P ⊆ NR and P ′ ⊆ N ′R as isomorphic if there is a lattice isomorphism ϕ : N → N ′

mapping P bijectively to P ′.
For an elementary proof of the following Proposition we refer to [10, Sec. 2].

Proposition 2. The fake weighted projective spaces are precisely the toric varieties X =
X(P ) associated to the face fan of Fano simplices P ⊆ NR.

Example 3. As a running example, we consider the two-dimensional Fano simplex P
with the vertices

v0 = (1, 0), v1 = (1, 4), v2 = (−7,−12).

The corresponding fake weighted projective plane X = X(P ) has the divisor class group

Cl(X) ∼= Z⊕ Z/4Z.

Under this isomorphism the classes of the three torus-invariant divisors D0, D1, D2 of X
are given by

[D0] = (4, 3̄), [D1] = (3, 1̄), [D2] = (1, 0̄).

Denote by C(4) ⊆ C the group of 4-th roots of unity. The variety X can be realized as
the quotient of C3\{0} by the action of G = C∗ × C(4) given by

(t, η) · (z0, z1, z2) = (t4η3z0, t
3ηz1, tz2).
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Two fake weighted projective spaces are isomorphic if and only if the corresponding
Fano simplices are isomorphic. The weighted projective spaces among them correspond
to Fano simplices whose vertices generate the lattice. Many geometric properties of a fake
weighted projective space can be read off the corresponding simplex. Here we focus our
attention on the Gorenstein index and the anticanonical degree.

Definition 4. The index of an IP-polytope P ⊆ NR is the positive integer

ιP := min ( k ∈ Z>1; kP
∗ is a lattice polytope ) .

Lemma 5. The Gorenstein index of any fake weighted projective space X = X(P ) coin-
cides with the index ιP of the corresponding Fano simplex P ⊆ NR.

Proof. The dual polytope P ∗ coincides with the polytope P(−K) associated to −K:

P(−K) = conv(m ∈MR; χm ∈ Γ(X,OX(−K)) ).

The assertion thus follows from [8, Thm. 4.2.8].

Lemma 6. See for instance [9, p. 111]. Let X = X(P ) a d-dimensional fake weighted
projective space. Then we have (−KX)d = Vol(P ∗).

Example 7. We continue Example 3. The dual of P is the rational simplex P ∗ with the
vertices

u0 =

(
1,−1

2

)
, u1 =

(
−1,

2

3

)
, u2 = (−1, 0) .

Thus P has index ιP = 6. The group of Cartier divisor classes of X is the intersection of
the subgroups of Cl(X) generated by the torus-invariant divisor classes:

〈[D0]〉 ∩ 〈[D1]〉 ∩ 〈[D2]〉 = 〈(48, 0̄)〉 ⊆ Cl(X) = Z⊕ Z/4Z.

An anticanonical divisor of X is given by the sum of the torus-invariant divisors. In Cl(X)
we have

[−K] = [D0] + [D1] + [D2] = (8, 0̄).

The 6-fold ofK is the smallest multiple that is Cartier. ThusX has Gorenstein index ι = 6.

Any weighted projective space P(q0, . . . , qd) is up to an isomorphism uniquely deter-
mined by its weights (q0, . . . , qd). More generally we assign weights to any IP-simplex
P ⊆ NR.

Definition 8. See [7,13]. A weight system Q (of length d) is a (d+1)-tupleQ = (q0, . . . , qd)
of positive integers. We call

|Q| := q0 + · · ·+ qd, λQ := gcd(Q), Qred := Q/λQ

the total weight, the factor and the reduction of Q, respectively. A weight system Q is
called reduced if it coincides with its reduction and it is called well-formed if gcd(qj; j =
0, . . . , d, j 6= i) = 1 holds for all i = 0, . . . , d.
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Definition 9. See [7, 13]. To any IP-simplex P ⊆ NR with vertices v0, . . . , vd ∈ N we
associate a weight system by

QP := (q0, . . . , qd), qi := | det( vj; j = 0, . . . , d, j 6= i )|.

Weight systems of isomorphic IP-simplices coincide up to order. The reduction (QP )red
is the unique reduced weight system (q0, . . . , qd) satisfying

d∑
i=0

qivi = 0.

Moreover, if P is Fano, then (QP )red is well-formed. Following the naming convention
of [13] we call λP := [N : NP ] the factor of the IP-simplex P ⊆ NR, where NP ⊆ N is the
sublattice generated by the vertices of P . In [1, 12] it is called the multiplicity of P and
denoted by multP .

Example 10. For the two-dimensional Fano simplex P from Example 3 and Example 7
we have

QP = (16, 12, 4), |QP | = 32, λQP = 4, (QP )red = (4, 3, 1).

For the sublattice NP ⊆ Z2, generated by the vertices of P , and it’s index we have

NP = 〈 (1, 0), (0, 4) 〉, λP = [Z2 : NP ] = 4.

Lemma 11. See [7, Lemma 2.4]. For any IP-simplex P we have λP = λQP .

If P ⊆ NR is a Fano simplex then its factor λP coincides with the order of the
torsion part of Cl(X(P )). In particular X(P ) is a weighted projective space if and only
if QP is reduced. The following Theorem is a reformulation of [7, 4.5–4.7]. Compare
also [4, Thm. 5.4.5] and [6, Prop. 2].

Theorem 12. To any well-formed weight system Q of length d there exists a d-dimensional
Fano simplex PQ ⊆ NR, unique up to an isomorphism, with QPQ = Q. Any fake weighted
projective space X = X(P ) with (QP )red = Q is isomorphic to the quotient of the weighted
projective space P(Q) by the action of the finite group N/NP corresponding to the inclu-
sion NP ⊆ N .

As an immediate consequence of Theorem 12 we can relate the Gorenstein index and
the anticanonical degree of a fake weighted projective space X(P ) to those of the weighted
projective space P((QP )red).

Corollary 13. Let X = X(P ) a d-dimensional fake weighted projective space and let
X ′ = P((QP )red) the corresponding weighted projective space. Then the Gorenstein index
of X is a multiple of the Gorenstein index of X ′. Moreover we have λP (−KX)d = (−KX′)d.
In particular, (−KX)d = (−KX′)d holds if and only if X is isomorphic to X ′.
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Proof. By Theorem 12 there is a square matrix H in a lattice basis of N with determi-
nant λP such that P = HPQ holds. Dualizing yields P ∗Q = H∗P ∗, where H∗ denotes the
transpose of H. Applying Lemma 5 and Lemma 6 yields the assertions.

Example 14. We continue Example 10. The vertices v′0, v
′
1, v
′
2 of the Fano simplex P ′ as-

sociated with the weighted projective plane X ′ = P(4, 3, 1) = P((QP )red) and the vertices
u′0, u

′
1, u
′
2 of it’s dual simplex (P ′)∗ are given by

v′0 = (1, 0), v′1 = (0, 1), v′2 = (−4,−3),

u′0 = (1,−1), u′1 =

(
−1,

5

3

)
, u′2 = (−1,−1).

Thus P ′ has index ιP ′ = 3. The indices of P and P ′ satisfy ιP = 6 = 2 · 3 = 2 ιP ′ . The
simplex P is the image of P ′ under the linear map Z2 → Z2 given by the matrix

H =

[
1 1
0 4

]
.

We can recover X = X(P ) as the quotient of P(4, 3, 1) by the action of the group C(4)
of 4-th roots of unity given in homogeneous coordinates by

η · [z0, z1, z2] = [η3z0, ηz1, z2].

Using Lemma 6, for the degrees of X and X ′ we obtain

(−KX′)2 = Vol((P ′)∗) =
16

3
= 4 · 4

3
= λPVol(P ∗) = λP (−KX)2.

3 Unit fraction partitions

To any d-dimensional IP-simplex P ⊆ NR of index ι we assign a partition of 1/ι into a
sum of d + 1 unit fractions. The main result of this section is Proposition 17 where we
present a formula to compute the normalized volume of the dual polytope P ∗ in terms of
the denominators of these unit fractions.

Definition 15. Let ι ∈ Z>1. A tuple A = (a1, . . . , an) ∈ Zn>1 is called a uf-partition of ι
of length n if the following holds:

1

ι
=

n∑
k=1

1

ak
.

A tuple A = (a1, . . . , an) ∈ Zn>1 is called a uf-partition if it is a uf-partition of ι for
some ι ∈ Z>1.

Proposition 16. Let P ⊆ NR a d-dimensional IP-simplex of index ι with weight system
QP = (q0, . . . , qd). Then

A(P ) :=

(
ι|QP |
q0

, . . . ,
ι|QP |
qd

)
is a uf-partition of ι of length d+ 1. We call it the uf-partition of ι associated to P .
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Proof. The entries of A(P ) are positive. We show that they are integers. Denote by
v0, . . . , vd ∈ N the vertices of P . For 0 6 i 6 d let Fi = conv(v0, . . . , v̂i, . . . , vd) the i-th
facet of P , where v̂i means that vi is omitted. For all i = 0, . . . , d we have

0 =
d∑
j=0

qj〈ιuFi , vj〉 = 〈ιuFi , vi〉qi − ι
d∑

j=0,
j 6= i

qj = (〈ιuFi , vi〉+ 1)qi − ι|QP |.

By definition of the index, ιuFi ∈M holds. Thus qi divides ι|QP |, which means that A(P )
consists of integers. Now summing over the reciprocals of A(P ) we see that it is in fact a
uf-partition of ι.

Proposition 17. For any d-dimensional IP-simplex P ⊆ NR with associated uf-partition
A(P ) = (a0, . . . , ad) of ιP we have

λPVol(ιPP
∗) =

a0 · · · ad
lcm(a0, . . . , ad)

.

Example 18. We continue Example 14. The Fano simplex P has index ιP = 6 and
weight system QP = (16, 12, 4). It’s uf-partition is given by

A(P ) = (12, 16, 48).

This is a uf-partition of ιP = 6. Indeed, we have

1

6
=

1

12
+

1

16
+

1

48
.

With respect to the formula given in Proposition 17, we have

λPVol(ιPP
∗) = λP ι

2
PVol(P ∗) = 4 · 62 · 4

3
=

12 · 16 · 48

48
=

a0a1a2
lcm(a0, a1, a2)

.

Proposition 17 extends [13, Prop. 4.5.5] to the case of non-reflexive IP-simplices. For
the proof of Proposition 17 and in preparation for the proof of the main result we extend
Batyrev’s correspondence between weight systems of reflexive simplices and uf-partitions
of ι = 1 given in [4, Thm. 5.4.3] to the case of higher indices.

Definition 19. The index of a weight system Q = (q0, . . . , qd) is the positive integer

ιQ := min( k ∈ Z>1; qi | k |Q| for all i = 0, . . . , d ).

Definition 20. For a uf-partition A = (a1, . . . , an) of ι we call

tA := lcm(a1, . . . , an), λA := gcd(ι, a1, . . . , an), Ared := A/λA

the total weight, the factor and the reduction of A, respectively. A uf-partition A is called
reduced if it coincides with its reduction and it is called well-formed if ai | lcm(aj ; j 6= i)
holds for all i = 1, . . . , n.
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Proposition 21. Let Q = (q0, . . . , qd) any weight system of length d and index ι and let
A = (a0, . . . , ad) any uf-partition of length d+ 1. Then the following hold:

(i) A(Q) := (ι|Q|/q0, . . . , ι|Q|/qd) is a reduced uf-partition of ι of length d+ 1.

(ii) Q(A) := (tA/a0, . . . , tA/ad) is a reduced weight system of length d.

(iii) Q(A(Q)) = Qred and A(Q(A)) = Ared hold and this correspondence respects well-
formedness.

Example 22. We continue Example 18. We have the weight system and the uf-partition
of ιP = 6:

Q = Q(P ) = (16, 12, 4), A = A(P ) = (12, 16, 48).

The weight system Q has index ιQ = 3. Total weight, factor and reduction of A are given
by

tA = 48, λA = 2, Ared = (6, 8, 24).

With respect to Proposition 21, we obtain the uf-partition and the weight system

A(Q) = (6, 8, 24) = Ared, Q(A) = (4, 3, 1) = Qred.

For the proof of Proposition 21 we need the following Lemmas.

Lemma 23. For ι, a1, . . . , an ∈ Z set

G(ι; a1, . . . , an) :=



(a1 − ι) −ι . . . −ι

−ι (a2 − ι)
. . .

...
. . .

...
. . . (an−1 − ι) −ι

−ι . . . −ι (an − ι)


.

Then

det(G(ι; a1, . . . , an)) = a1 · · · an − ι
n∑
i=1

∏
j 6=i

aj.

Proof. We prove the Lemma by induction on n. The cases n = 1 and n = 2 are verified by
direct computation. Let n > 3. Subtracting the second to last row of G := G(ι; a1, . . . , an)
from the last row, we obtain

det(G) = an det(G′) + an−1 det(G′′),

where G′ = G(ι; a1, . . . , an−1) and G′′ = G(ι; a1, . . . , an−2, 0). By the induction hypothesis
we have

det(G′) = a1 · · · an−1 − ι
n−1∑
i=1

∏
j 6=i

aj, det(G′′) = −ιa1 · · · an−2.

Plugging these into the equation for det(G) yields the assertion.
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Lemma 24. For any uf-partition (a1, . . . , an) of ι and any 1 6 k < n we have

det(G(ι; a1, . . . , ak)) > 1.

Proof. For any 1 6 k < n we have 1/a1 + · · · + 1/ak < 1/ι. Multiplying both sides
by ι a1 · · · ak and subtracting the left hand side we obtain

0 < a1 · · · ak − ι
k∑
i=1

∏
j 6=i

aj = det(G(ι; a1, . . . , ak)).

Since the determinant of G(ι; a1, . . . , ak) is an integer, it must be at least one.

Proof of Proposition 21. We prove (i). The weight system Q is of index ι, so qi di-
vides ι |Q|. Hence A(Q) consists of positive integers. Summing over the reciprocals
of A(Q) shows that it is a uf-partition of ι. Assume A(Q) is not reduced and let A′

its reduction. Then A′ is a uf-partition of ι′ for some ι′ < ι. This means that each qi
divides ι′|Q|, which contradicts the minimality of the index ι of Q. Thus A(Q) is reduced.
Item (ii) follows directly from the definition of tA. We prove (iii). Let Q = (q0, . . . , qd)
a weight system of length d and index ι and write A(Q) = (a0, . . . , ad). To show
that Q(A(Q)) = Qred holds we consider the matrix G = G(ι; a0, . . . , ad) as defined in
Lemma 23. Both Q and Q(A(Q)) are contained in its kernel and the latter weight system
is reduced. So it suffices to show that G is of rank d. This follows from Lemma 24, as the
minor of G, obtained by deleting the last row and column, equals det(G(ι; a0, . . . , ad−1)).
Now let A = (a0, . . . , ad) a uf-partition of ι of length d+ 1. Write Q(A) = (q0, . . . , qd) and
let A(Q) = (a′0, . . . , a

′
d). This is a uf-partition of ιQ. Note that each qi divides ι |Q| as

well as ιQ|Q|. The minimality of the index of Q implies that ιQ divides ι. With λ := ι/ιQ
we obtain

λa′i =
ι

ιQ

ιQ|Q|
qi

=
ι tA(Q)ai
ι tA(Q)

= ai,

which yields A(Q) = λA′. As A′ is reduced, we obtain A(Q)red = A′. For the last
assertion in (iii) let Q = (q0, . . . , qd) a reduced weight system of length d and write
A(Q) = (a0, . . . , ad). By the first part of item (iii) we have qi = tA(Q)/ai. The weight
system Q is well-formed if and only if for all i = 0, . . . , d we have

∏
j 6=i

aj = tA(Q)gcd

(∏
k 6=i,j

ak; j 6= i

)
.

This in turn is equivalent to the well-formedness of A(Q).

Corollary 25. For any d-dimensional IP-simplex P ⊆ NR we have A(P )red = A(QP )
and ιP |QP | = λP tA(P ).

Proof. For the first assertion note that the uf-partitions A(P ) and A(QP ) only differ by
the factor ιP/ιQP . Moreover A(QP ) is reduced by Proposition 21 (i). The second assertion
follows from the identity |(QP )red| = tA(QP )/ιQP = tA(P )/ιP .

the electronic journal of combinatorics 31(1) (2024), #P1.43 9



Proof of Proposition 17. The normalized volume of an IP-simplex equals the total weight
of its associated weight system. Thus Vol(ιPP

∗) = |QιPP ∗ | holds. By [13, Prop. 3.6] the
total weights |QιPP ∗| and |QP | are related by the identity

|QιPP ∗ | =
ιdP |QP |d

q0 · · · qd
,

where QP = (q0, . . . , qd). Moreover by Corollary 25 we have λP = ιP |QP |/tA(P ). Multi-
plying the normalized volume by the factor λP then yields the assertion:

λPVol(ιPP
∗) = λP

ιdP |QP |d

q0 · · · qd
=

1

tA(P )

ιd+1
P |QP |d+1

q0 · · · qd
=

a0 · · · ad
lcm(a0, . . . , ad)

.

4 Sharp bounds for uf-partitions

The main result of this section is Proposition 27, which constitutes the number theoretic
part of the proof of Theorem 1. The Lemmas thereafter are preparation for the proof of
Proposition 27.

Definition 26. For any ι ∈ Z>1 we define a sequence Sι = (sι,1, sι,2, . . . ) of positive
integers by

sι,1 := ι+ 1, sι,k+1 := sι,k(sι,k − 1) + 1.

Moreover, for any k ∈ Z>1 we set tι,k := sι,k − 1. We denote by sylι,n the uf-partition of ι
of length n given by

sylι,n := (sι,1, . . . , sι,n−2, 2 tι,n−1, 2 tι,n−1).

Following the naming convention in [13] we call sylι,n the enlarged Sylvester partition of ι
of length n.

Proposition 27. Let ι ∈ Z>1 and n > 3. Assume (ι, n) 6= (1, 3). For any uf-partition
A = (a1, . . . , an) of ι with a1 6 · · · 6 an we have the two inequalities

a1 · · · an
lcm(a1, . . . , an)

6 a1 · · · an−1 6
2 t2ι,n−1
ι

.

The right inequality holds with equality if and only if one of the following holds:

- (ι, n) = (2, 3) and A = (6, 6, 6);

- (ι, n) = (1, 4) and A = (2, 6, 6, 6);

- A is the enlarged Sylvester partition sylι,n.
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Proposition 27 is an extension of [13, Thm. 5.1.3] to uf-partitions of ι > 2. There
Nill expands the techniques of Izhboldin and Kurliandchik presented in [11], see also [2].
Here we modify Nill’s arguments to incorporate the cases for ι > 2. Let ι, n ∈ Z>1. We
denote by Anι ⊆ Rn the compact set of all tuples x ∈ Rn that satisfy the following three
conditions:

(A1) x1 > · · · > xn > 0.

(A2) x1 + · · ·+ xn = 1/ι.

(A3) x1 · · ·xk 6 ι(xk+1 + · · ·+ xn) for all k = 1, . . . , n− 1.

Lemma 28. For any uf-partition A = (a1, . . . , an) of ι with a1 6 · · · 6 an the tuple
(1/a1, . . . , 1/an) is contained in Anι .

Proof. The tuple (1/a1, . . . , 1/an) fulfills conditions (A1) and (A2). For the third condi-
tion let 1 6 k 6 n− 1. Then we have

ι

(
1

ak+1

+ · · ·+ 1

an

)
= 1− ι

(
1

a1
+ · · ·+ 1

ak

)
=

a1 · · · ak − ι
(∑k

j=1

∏
i 6=j ai

)
a1 · · · ak

.

The numerator on the right hand side is at least one by Lemma 24. This yields the desired
inequality.

For the proof of Proposition 27 we need the following Lemmas 29 to 31. They ex-
tend [13, Lemmas 5.4, 5.6] to uf-partitions of ι > 2.

Lemma 29. Let ι ∈ Z>1, n ∈ Z>1 and 1 6 r 6 n. Assume (ι, n, r) 6= (1, 2, 2). Then we
have

(r + 1)r tr+1
ι,n−r+1 6 2 t2ι,n.

Equality holds if and only if either r = 1 or (ι, n, r) = (1, 3, 2) or (ι, n, r) = (2, 2, 2).

Proof. We prove the Lemma by induction on n and r. The case r = 1 is clear. Let r > 2.
The cases n = 2 and n = 3 are verified by direct computation. Let n > 4. Then
for any 2 6 r 6 n we have sι,n−1 > (r + 1)2/r. Furthermore, for any k ∈ Z>1 we
have sι,k > (r + 1)/r. Combining these two inequalities, we obtain:

r

(
r + 1

r

)r
< sι,n−r+1 · · · sι,n−1.

Moreover t2ι,n−1 < tι,n holds for all (ι, n). Now by the induction hypothesis the assertion is
true for (ι, n−1, r−1), ie. rr−1 trι,n−r+1 6 2 t2ι,n−1 holds. Combining this with the previous
inequalities, we obtain:

(r + 1)r tr+1
ι,n−r+1 6 2 t2ι,n−1 r

(
r + 1

r

)r
tι,n−r+1 < 2 t2ι,n−1 tι,n < 2 t2ι,n.
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Lemma 30. Let n > 3 and let y ∈ Anι minimizing the product y1 · · · yn−1. Denote
by i0 ∈ {1, . . . , n} the least index such that yi0 = yn holds. Then the following hold:

(i) i0 6 n− 1.

(ii) For any 1 6 k 6 i0 − 2 we have yk = 1/sι,k.

Proof. We prove (i). Assume yn−1 > yn. Choose 0 < ε < (yn−1 − yn)/2. Then the tuple

(ỹ1, . . . , ỹn) = (y1, . . . , yn−2, yn−1 − ε, yn + ε).

is contained in Anι and ỹ1 · · · ỹn−1 < y1 · · · yn−1 holds, contradicting the minimality of y.
Thus yn−1 = yn holds. We prove (ii). For this we first show that yk > yk+1 and y1 · · · yk =
ι(yk+1 + · · · + yn) holds for any 1 6 k 6 i0 − 2. Assume on the contrary that yk = yk+1

holds for some 1 6 k 6 i0 − 2. Then there are i, j with 1 6 i 6 k < j < i0 and

yi−1 > yi = . . . = yk = . . . = yj > yj+1.

Note that in this case y1 · · · yk < ι (yk+1 + · · · + yn) holds. Otherwise we could write
0 = yk(ι− y1 · · · yk−1) + ι(yk+2 + · · ·+ yn), but the right hand side is strictly positive. We
can thus find ε > 0 such that the tuple

(ỹ1, . . . , ỹn) = (y1, . . . , yi−1, yi + ε, yi+1, . . . , yj−1, yj − ε, yj+1, . . . , yn)

is contained in Anι . For the product of the first n− 1 entries of ỹ we have

ỹ1 · · · ỹn−1 = y1 · · · yn−1
(

1− ε2

yiyj

)
< y1 · · · yn−1,

contradicting the minimality of y. Hence yk > yk+1 holds for k = 1, . . . , i0 − 2. Now
assume that y1 · · · yk < ι(yk+1 + · · ·+ yn) holds. Again there is ε > 0 such that the tuple

(ỹ1, . . . , ỹn) = (y1, . . . , yk−1, yk + ε, yk+1 − ε, yk+2, . . . , yn)

is contained in Anι , leading to the same contradiction as before. Hence y1 · · · yk equals
ι(yk+1 + · · · + yn) for k = 1, . . . , i0 − 2. Using these identities we can compute yk. We
have y1 = ι(y2 + · · ·+ yn) = 1− ιy1. Solving this for y1 we obtain y1 = 1/(ι+ 1) = 1/sι,1.
Proceeding in this way with the remaining identities yields yk = 1/sι,k for all 1 6 k 6
i0 − 2.

Lemma 31. Let n > 3 and ι ∈ Z>1. Assume (ι, n) 6= (1, 3) and let x ∈ Anι . Then we
have

x1 · · ·xn−1 >
ι

2 t2ι,n−1
.

Equality holds if and only if one of the following holds:

- (ι, n) = (2, 3) and (x1, x2, x3) = (1/6, 1/6, 1/6).
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- (ι, n) = (1, 4) and (x1, x2, x3, x4) = (1/2, 1/6, 1/6, 1/6).

- (1/x1, . . . , 1/xn) is the enlarged Sylvester partition sylι,n.

Proof. Let y ∈ Anι minimizing the product y1 · · · yn−1. By Lemma 28 the tuple of recip-
rocals of the enlarged Sylvester partition sylι,n is contained in Anι . Hence

y1 · · · yn−1 6
1

sι,1
· · · 1

sι,n−2
· 1

2tι,n−1
=

ι

2 t2ι,n−1

holds. Let i0 ∈ {1, . . . , n} the least index with yi0 = yn. By Lemma 30 the index i0 is at
most n− 1. Set r := n− i0. We distinguish three cases.

Case 1. Assume i0 = 1. Then r = n − 1 and yk = 1/(ιn) holds for all k = 1, . . . , n. We
obtain

ι

2 t2ι,n−1
> y1 · · · yn−1 =

1

(ιn)n−1
=

1

(r + 1)rtrι,n−r
.

Comparing this to Lemma 29 for the case r = n − 1, we see that this is only possible
for (ι, n, r) = (2, 3, 2) and (y1, y2, y3) = (1/6, 1/6, 1/6) and in this case equality holds.

Case 2. Assume i0 = 2. Then r = n− 2 and y1 > y2 = · · · = yn holds. By condition (A2)
we can express y1 in terms of yn via y1 = 1/ι − (n − 1)yn. Using this identity, together
with condition (A3), we obtain an interval of possible values for yn. On this interval we
define a continuous function f by

f(yn) := y1 · · · yn−1 =

(
1

ι
− (n− 1)yn

)
yn−2n , yn ∈

[
1

(r + 1)tι,n−r
,

1

ιn

)
.

The function f is monotone increasing. It thus attains its minimum on the lower boundary
of the interval. We obtain

ι

2 t2ι,n−1
> y1 · · · yn−1 = f(yn) >

ι

(r + 1)rtr+1
ι,n−r

Comparing this to Lemma 29 for the case r = n− 2, this is only possible for (ι, n) equal
to (1, 4) and (y1, y2, y3, y4) = (1/2, 1/6, 1/6, 1/6), or n = 3 and (1/y1, 1/y2, 1/y3) = sylι,3.
In both cases equality holds.

Case 3. Assume i0 > 3. Since yn−1 = yn holds, this case only appears for n > 4. We
have 1 6 r 6 n − 3. By Lemma 30 we have yk = 1/sι,k for all 1 6 k 6 i0 − 2. Similar
to the second case we use conditions (A2) and (A3) to express yi0−1 in terms of yn and
determine an interval of possible values for yn:

yi0−1 =
1

tι,n−r−1
− (r + 1) yn, yn ∈

[
1

(r + 1)tι,n−r
,

1

(r + 2)tι,n−r−1

)
.

Again, we define a continuous function on that interval by f := y1 · · · yn−1. It is monotone
increasing up to some point in its domain and then it is monotone decreasing. It thus
attains its minimum at the boundary. We obtain:

ι

2 t2ι,n−1
> y1 · · · yn−1 > min

(
ι

(r + 1)rtrι,n−r
,

ι

(r + 2)r+1tr+1
ι,n−r−1

)
.
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Comparing this to Lemma 29 for 1 6 r 6 n − 3, this is only possible for r = 1 and
yn = 1/(2tι,n−1). Hence (1/y1, . . . , 1/yn) is the enlarged Sylvester partition sylι,n and in
this case equality holds.

Proof of Proposition 27. Let A = (a1, . . . , an) a uf-partition of ι with non-decreasing en-
tries. The first inequality in Proposition 27 is due to the fact that an divides
lcm(a1, . . . , an). By Lemma 28 the tuple x = (1/a1, . . . , 1/an) is contained in Anι . The
second inequality and the assertions thereafter follow immediately from Lemma 31.

5 Proof of the main result

We state and prove the main result of the article.

Definition 32. For any d > 2 and any ι ∈ Z>1 we denote by Qι,d the well-formed weight
system

Qι,d := Q(sylι,d+1) =

(
2tι,d
sι,1

, . . . ,
2tι,d
sι,d−1

, 1, 1

)
,

where tι,d and sι,k are defined in Definition 26.

Theorem 33. The anticanonical degree of any d-dimensional fake weighted projective
space X of Gorenstein index ι is bounded from above according to the following table.

d 1 2 2 3 3 > 4

ι > 1 1 >2 1 >2 > 1

bound on
(−KX)d

2 9 2(ι+1)2

ι
72

2t2ι,3
ι4

2t2ι,d
ιd+1

attained
exactly by

P1 P2 P(2ι, 1, 1)
P(3, 1, 1, 1),
P(6, 4, 1, 1)

P(Qι,3) P(Qι,d)

Equality on the degree holds if and only if X is isomorphic to one of the weighted projective
spaces in the last row of the table.

Proof. Let X a d-dimensional fake weighted projective space of Gorenstein index ι. Let
P ⊆ NR a d-dimensional Fano simplex with X(P ) ∼= X. Then P has index ι. Let
A := A(P ) = (a0, . . . , ad) the uf-partition of ι associated to P . We may assume that A is
ordered non-decreasingly. By Lemma 6 and Proposition 17 we have

(−KX)d = Vol(P ∗) =
1

ιd
Vol(ιP ∗) 6

1

ιd
a0 · · · ad

lcm(a0, . . . , ad)
.

For d = 1 there is only one fake weighted projective space, namely P1, which has anti-
canonical degree −KP1 = 2. Let d > 2. In case ι = 1 and d = 2 the right hand side of
the inequality is bounded from above by 9 and P2 is the only Gorenstein fake weighted
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projective plane whose degree attains that value, see [13, Ex. 4.7]. If (ι, d) 6= (1, 2), then
Proposition 27 provides the upper bound

(−KX)d 6
1

ιd
a0 · · · ad

lcm(a0, . . . , ad)
6

2t2ι,d
ιd+1

.

Equality in the first case holds if and only if X is a weighted projective space, see Corol-
lary 13. By Proposition 27 equality in the second case holds if and only if one of the
following holds:

(i) (ι, d) = (2, 2) and A = (6, 6, 6).

(ii) (ι, d) = (1, 3) and A = (2, 6, 6, 6).

(iii) A = sylι,d+1.

Note that the uf-partition in (i) is not reduced. In particular, there is no weighted
projective plane X(P ) of Gorenstein index 2 with A(P ) = (6, 6, 6). The uf-partitions
in (ii) and (iii) are reduced and well-formed. By Theorem 12 and Proposition 21 the
uf-partition A = (2, 6, 6, 6) corresponds to the three-dimensional Gorenstein weighted
projective space X = P(3, 1, 1, 1) and the uf-partition A = sylι,d+1 corresponds to the d-
dimensional weighted projective space X = P(Qι,d).
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