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Abstract

Given a polytopal complex X, we examine the topological complement of its k-
skeleton. We construct a long exact sequence relating the homologies of the skeleton
complements and links of faces in X, and using this long exact sequence, we obtain
characterisations of Cohen–Macaulay and Leray complexes, stacked balls, and neigh-
bourly spheres in terms of their skeleton complements. We also apply these results
to CAT(0) cubical complexes, and find new similarities between such a complex and
an associated simplicial complex, the crossing complex.
Mathematics Subject Classifications: 57Q05, 05E45, 52B05

1 Introduction

Polytopal complexes are important objects in topology and combinatorics, which include
simplicial complexes, cubical complexes and polytopes. Their geometric realisations pro-
vide examples of a wide array of topological spaces, and much research has gone into
studying the interplay between their combinatorial and topological aspects.

One important feature of a polytopal complex is its k-skeleton, the set of faces of the
complex of dimension less than or equal to k. Skeletons act as a framework which the
high-dimensional faces are attached to, so studying the structure of a skeleton can reveal
a lot about a complex. For example, [4] surveys many results about objects that can
be reconstructed from their k-skeletons for certain values of k. Skeletons also play an
important role in defining cellular homology, and in important topological results such as
Poincaré duality.

In this paper, however, we aim to approach this topic from the other direction, starting
from the higher-dimensional faces instead of the low-dimensional ones. We define the kth
co-skeleton of a complex to be the set of faces of dimension higher than k. We discover
that there is a strong relationship between co-skeletons and links : a link of a face in a
polytopal complex captures the local structure of the complex around that face, so in
a sense, the co-skeletons give us a “global” summary of the “local” information of the
complex.
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Figure 1: An example of a polytopal complex

Section 2 of this paper sets out the basic definitions we will use. In Section 3, we
examine some initial facts about co-skeletons of arbitrary complexes, and their connections
with various forms of duality (see Proposition 6 and Corollary 8). In Section 4, we
construct a long exact sequence relating the kth and (k − 1)th co-skeletons and the links
of k-dimensional faces (Theorem 11). In Section 5, we use this long exact sequence to
study some families of complexes defined by properties of links — specifically, Cohen–
Macaulay complexes, Leray complexes, and stacked balls — and give characterisations of
these families in terms of the homology of their co-skeletons (Theorems 14, 21 and 22).
Finally, Section 6 examines cubical complexes, particularly CAT(0) cubical complexes: we
examine the “crossing complex” defined in [19], and show that a CAT(0) cubical complex
has one of the properties discussed in Section 5 if and only if its crossing complex shares
that property (Theorem 33).

2 Preliminaries

We begin with some definitions. Readers familiar with polytopal complexes and topology
may skip most of this section, but beware that we give slightly non-standard definitions
in a couple of places, specifically for geometric realisations and links.

2.1 Polytopal complexes

A polytopal complex X is a collection of polytopes in Euclidean space RN with the following
properties:

• If σ is in X and τ is a face of σ, then τ is in X, and

• If σ and σ′ are polytopes in X, then σ ∩ σ′ is a face of each (possibly the empty
face).

See Fig. 1 for a small example. In this paper, we will only consider finite polytopal
complexes.

If every polytope in X is a simplex, then we say that ∆ := X is a (geometric) simplicial
complex. If every polytope is a cube (that is, a polytope combinatorially equivalent to
[0, 1]i for some dimension i ⩾ 0), then := X is a cubical complex.
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(a) X and Y (b) |X \ Y | (c) |X − Y |

Figure 2: A comparison of the different types of deletion

An abstract simplicial complex ∆ is a poset isomorphic to the poset of faces of a
geometric simplicial complex, ordered by inclusion. Equivalently, it is a collection of
subsets of some finite set, with the property that σ ∈ ∆ and τ ⊆ σ implies τ ∈ ∆. The
dimension of a face σ is dimσ := #σ − 1.

In any of these types of complex, faces of dimension 0 and 1 are called vertices and
edges respectively, and a maximal face (by inclusion) is called a facet. If all facets of a
complex have the same dimension, the complex is pure. The dimension of the complex is
the maximum dimension of its faces. The number of faces of dimension k in a complex
X is denoted fk(X).

If σ is a polytope, |σ| will denote its relative interior. If S is a collection of faces
in a polytopal complex, then their geometric realisation |S| is the union of the relative
interiors of the polytopes in S. This is slightly different from the usual definition of a
geometric realisation — if σ is in S, we do not include the boundary of σ in the geometric
realisation |S| unless those boundary faces are also part of S, unlike other definitions.
We will take care to distinguish between S as a set of polytopes and |S| as a topological
space.

Suppose Y is a subset of a polytopal complex X. We write X \ Y to denote the
difference of sets, so X \ Y is the set of faces of X that are not in Y (which is not
generally a polytopal complex). If Y is a polytopal subcomplex of X, then X − Y will
denote the polytopal complex consisting of all faces of X that do not intersect any faces
of Y . We will reserve “−” to denote this “combinatorial” deletion, and use “\” to denote
deletion of sets or topological spaces. Note that |X \Y | = |X| \ |Y |, but the space |X−Y |
is not in general the same; see Fig. 2, for an example. However, these spaces are sometimes
related by the following lemma:

Lemma 1 ([15, Lemma 70.1]). If ∆ is a simplicial complex and Λ is an induced subcomplex
(in other words, every face of ∆ whose vertices are contained in the vertex set of Λ is a
face of Λ), then |∆− Λ| and |∆| \ |Λ| are homotopy equivalent.

Given a face σ of X, the (open) star of σ is the set of faces

starX σ := {τ ∈ X : σ ⊆ τ}.

The geometric realisation of a star is always contractible, if σ ̸= ∅. The link of σ is the
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Figure 3: The barycentric subdivision of the polytopal complex in Fig. 1

set

linkX σ := {τ ∈ X : σ ⊂ τ, τ ̸= σ}
= starX σ \ {σ}.

We will sometimes simply write “starσ” and “ linkσ” if the space X is clear from context.
Note that if ∆ is an abstract simplicial complex, the usual definition of a link is slightly
different: we will refer to the usual definition as the “simplicial link”, defined by

s-link∆ σ := {τ ∈ ∆ : σ ∪ τ ∈ ∆, σ ∩ τ = ∅}.

Although our link and the simplicial link are not the same, they are homotopy equivalent.
If X is a polytopal complex, its barycentric subdivision is the abstract simplicial

complex bary(X) which has one vertex vσ for each non-empty face σ of X, and a set
{vσ1 , . . . , vσm} forms a face of bary(X) whenever {σ1, . . . , σm} is a chain in the poset of
faces of X ordered by inclusion (that is, σ1 ⊂ · · · ⊂ σm, up to reordering). If each vertex
vσ is positioned at the barycentre of the polytope σ, then the geometric realisation of
bary(X) is exactly the geometric realisation of X, as a topological space. See Fig. 3 for
an example.

Given a polytopal complex X, the set of k-dimensional faces of X will be denoted Xk.
The k-skeleton of X is the subcomplex

Skelk X := {σ ∈ X : dimσ ⩽ k}.

The central definition in this paper is the kth co-skeleton of X, which is the complement
of the the k-skeleton:

Skelck X := X \ Skelk X
= {σ ∈ X : dimσ > k}.

We will mostly be interested in the topological properties of |Skelck X| = |X| \ |Skelk X|.
Note that the co-skeleton is not in general a polytopal complex, except in two special
cases: Skelc−1X is X itself (modulo the empty face, which makes no difference to the
topology), and if X is d-dimensional, Skelcd X is the polytopal complex with no faces.
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2.2 Topology

We will use the notation A ≃ B to indicate that the spaces A and B are homotopy
equivalent.

We assume that the reader is familiar with homology and cohomology; for background,
refer to [11, 15]. While this paper does focus on cell complexes, many spaces we consider
are not themselves cell complexes, so Hi(A) will denote singular homology, with coeffi-
cients in R where R is a field or Z. Reduced homology is denoted by H̃i(A). We use
the convention that H̃−1(∅) = R. Analogous statements apply to cohomology, denoted
H i(A).

For reference, here are two important theorems from algebraic topology that we will
use repeatedly.

Theorem 2 (Mayer–Vietoris, [11, p. 149], [15, Theorem 33.1]). If A and B are open
subsets of a topological space, then there is a long exact sequence:

· · · Hi(A ∩B) Hi(A)⊕Hi(B) Hi(A ∪B) Hi−1(A ∩B) · · · .

If A∩B ̸= ∅, then we may replace these unreduced homology groups with reduced homology
throughout.

Theorem 3 (Nerve theorem, [11, Corollay 4G.3], [5, Theorem 10.7]). Suppose U =
{U1, . . . , Un} is a family of open sets whose union is a paracompact space (e.g. any subspace
of Rn), or a family of closed sets whose union is a triangulable space. Suppose further
that for every index set I ⊆ {1, . . . , n}, the intersection

⋂
i∈I Ui is either contractible or

empty.
Construct a simplicial complex N(U) (called the “nerve” of U) where the vertex set is

{1, . . . , n} and the set I forms a face whenever
⋂

i∈I Ui is non-empty. Then

n⋃
i=1

Ui ≃ |N(U)|.

3 First results about co-skeletons

Let us begin to study the co-skeleton Skelck X.
This first lemma tells us that while Skelck X is not itself a polytopal complex, it is

homotopy equivalent to one. See Fig. 4.

Lemma 4. |Skelck X| ≃ |bary(X)− bary(Skelk X)|.

Proof. By definition,

|Skelck X| = |X| \ |Skelk X|
= |bary(X)| \ |bary(Skelk X)|.
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(a) Skelc0X (b) bary(X)− bary(Skel0X)

Figure 4: Lemma 4 applied to Fig. 1, with k = 0

Now, bary(Skelk X) is an induced subcomplex of the simplicial complex bary(X): if
vσ1 , . . . , vσm are vertices of bary(Skelk X) that form a face of bary(X), then the faces
σ1, . . . , σm form a chain in the face poset of X, so they still form a chain in the face poset
of Skelk X. Therefore, we may invoke Lemma 1:

|bary(X)| \ |bary(Skelk X)| ≃ |bary(X)− bary(Skelk X)|.

Corollary 5. Hi(Skel
c
k X) = 0 when i > dimX − k − 1.

Proof. The vertices of bary(X)−bary(Skelk X) correspond to faces σ of X of dimensions
between k+1 and dimX; therefore, the largest possible face of bary(X)− bary(Skelk X)
has dimX − k vertices, so its dimension is dimX − k − 1.

The name “co-skeleton” was chosen to suggest “complement”, but also duality. Let us
illustrate why.

Proposition 6. Suppose P is a (d+ 1)-dimensional polytope. Then

|Skelck ∂P | ≃ |Skeld−k−1 ∂P
∗|,

where P ∗ is the polar dual polytope to P .

Proof. By Lemma 4,

|Skelck ∂P | ≃ |bary(∂P )− bary(Skelk ∂P )|.

The faces of bary(∂P ) − bary(Skelk ∂P ) are the chains in the poset of faces of ∂P of
dimension greater than k. But the poset of non-empty faces of ∂P is isomorphic to the
poset of non-empty faces of ∂P ∗, flipped upside down. Under this flip, the faces of ∂P of
dimension greater than k become faces of ∂P ∗ of dimension less than or equal to d−k−1.
Therefore, bary(∂P )− bary(Skelk ∂P ) = bary(Skeld−k−1 ∂P

∗), so

|bary(∂P )− bary(Skelk ∂P )| = |bary(Skeld−k−1 ∂P
∗)|

= |Skeld−k−1 ∂P
∗|.
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Note that the assumption that P is a polytope is not essential to this proposition, just
that P has an associated “dual cell structure”. In fact, if X is a d-dimensional homology
manifold, the space |bary(X) − bary(Skelk X)| is exactly the (d − k − 1)-skeleton of the
dual cell structure used in some proofs of Poincaré duality — for example, see [15, §64],
which calls this space the “dual (d− k − 1)-skeleton” of the manifold.

A related duality result is the Alexander duality theorem, which has direct implications
for co-skeletons.

Theorem 7 (Alexander duality, [15, §71, particularly Theorem 71.1 and Exercise 4]).
Suppose X is a polytopal complex where dim∆ = d and |X| is homeomorphic to a sphere,
and suppose Y is a proper, non-empty subcomplex of X. Then

H̃ i(|Y |) ∼= H̃d−i−1(|X| \ |Y |) and H̃i(|Y |) ∼= H̃d−i−1(|X| \ |Y |).

Taking Y = Skelk X gives us this corollary:

Corollary 8. If X is a d-dimensional polytopal complex where |X| is homeomorphic to
a sphere, then for k = 0, . . . , d− 1,

H̃ i(|Skelk X|) ∼= H̃d−i−1(|Skelck X|) and H̃i(|Skelk X|) ∼= H̃d−i−1(|Skelck X|).

For a first example of an application for co-skeletons, let us consider neighbourly
simplicial spheres. Suppose ∆ is a simplicial sphere (that is, a simplicial complex where
|∆| is homeomorphic to a sphere) with n vertices. Then ∆ is t-neighbourly if every set of
t vertices is the vertex set of a face, or equivalently, if its (t − 1)-skeleton is isomorphic
to the (t − 1)-skeleton of a simplex with n vertices. For example, the boundaries of
d-dimensional cyclic polytopes are ⌊d/2⌋-neighbourly. A major reason why neighbourly
spheres have been studied is their connection with the Upper Bound Conjecture (see e.g.
[2]).

The following well-known fact lets us characterise skeletons of simplices by their ho-
mology.

Lemma 9. Suppose ∆ is a simplicial complex with n vertices, n ⩾ 1, and dim∆ = k < n.
Then

rank H̃k(|∆|;Z) ⩽
(
n− 1

k + 1

)
,

with equality if and only if ∆ is isomorphic to the k-skeleton of a simplex with n vertices. If
the coefficient ring is a field instead of Z, the same holds with rank replaced by dimension.

(This follows without much difficulty from [6, Theorem 3.1] and [13, Equation (3.6)].
Alternatively, for a self-contained proof sketch, let v be a vertex of ∆ and consider the
Mayer–Vietoris long exact sequence with A := |star v|, B := |∆| \ {v} ≃ |∆ − {v}|. The
sequence contains this segment:

H̃k(|∆− {v}|) H̃k(|∆|) H̃k−1(|link v|).
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The rank of the middle term is thus bounded by the sum of the ranks of the outer terms;
now, use induction on n.)

This lemma tells us that “being a skeleton of a simplex” is a homological property, if
dimension and number of vertices are fixed. Combining this with Corollary 8, we obtain
the following characterisations of neighbourly spheres in terms of their skeletons and their
co-skeletons:

Corollary 10. Suppose ∆ is a d-dimensional simplicial sphere with n vertices. Then for
t = 1, . . . , d, the following are equivalent:

• ∆ is t-neighbourly,

• rank H̃t−1(|Skelt−1∆|;Z) =
(
n−1
t

)
,

• rank H̃d−t(|Skelct−1∆|;Z) =
(
n−1
t

)
.

Proof. By definition, ∆ is t-neighbourly if and only if Skelt−1∆ is isomorphic to the
(t − 1)-skeleton of a simplex on n vertices. Lemma 9 says that this occurs if and only if
rank H̃t−1(|Skelt−1∆|;Z) =

(
n−1
t

)
. And Corollary 8 says that

H̃t−1(|Skelt−1∆|;Z) ∼= H̃d−t(|Skelct−1∆|;Z).

4 The key long exact sequence

We now reach the main tool of this paper, which we will make much use of in the upcoming
sections.

Theorem 11. If X is a d-dimensional polytopal complex and 0 ⩽ k ⩽ d, then there is
the following long exact sequence:

· · ·
⊕
σ∈Xk

H̃i(|linkX σ|) H̃i(|Skelck X|) H̃i(|Skelck−1X|)

⊕
σ∈Xk

H̃i−1(|linkX σ|) · · · .

Proof. We will begin with the case k = d. The link of any d-dimensional face is empty,
as is Skelcd X. The (d − 1)th co-skeleton Skelcd−1X consists only of the interiors of the
d-dimensional faces, so it retracts onto fd(X) points. Therefore, the non-zero part of the
claimed long exact sequence looks like this:

0 H̃0(Skel
c
d−1)

⊕
σ∈Xd

H̃−1(linkσ) H̃−1(Skel
c
d X) 0.

Rfd(X)−1 Rfd(X) R

∼= ∼= ∼=
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(a) A =
⊔

σ∈X0
|starbary(X) vσ| (b) B = |Skelc0X|

(c) A∩B =
⊔

σ∈X0
|starbary(X) vσ| \ |σ| (d) A ∪B = |Skelc−1X| = |X|

Figure 5: The sets A, B, A ∩ B and A ∪ B in the proof of Theorem 11, when k = 0 and
X is the polytopal complex in Fig. 1

These homology groups do indeed form an exact sequence, with appropriate maps. (We
won’t need to know what the maps are in the rest of this paper, just that they exist.)

For the remainder of this proof, we will assume that k < d. We will use the Mayer–
Vietoris theorem. Define the sets A and B by:

A :=
⋃

σ∈Xk

|starbary(X) vσ|,

B := |Skelck X| = |X| \ |Skelk X|.

See Figs. 5 and 6 for an example. Both A and B are open in |X|: A is a union of open
sets, and B is the complement of a closed set.

First, we claim that the union in A is in fact a disjoint union. If two stars, say
starbary(X) vσ and starbary(X) vτ , were to intersect, they would have a face of bary(X) in
common, and by the definition of an open star, this face would need to contain both vσ
and vτ . But faces in bary(X) correspond to chains in the face poset of X; therefore, no
face in bary(X) can contain both vσ and vτ , since σ and τ are both k-dimensional and
are thus incomparable in the face poset. So A is a disjoint union of stars. Since these
stars are open, each one thus forms a connected component of A.

Next, let us consider A ∩ B. Since starbary(X) vσ does not intersect any faces of X of
dimension less than k, and the only k-dimensional face it intersects is σ, we conclude that

A ∩B =
⊔

σ∈Xk

|starbary(X) vσ| \ |σ|.
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(a) A =
⊔

σ∈X1
|starbary(X) vσ| (b) B = |Skelc1X|

(c) A∩B =
⊔

σ∈X1
|starbary(X) vσ| \ |σ| (d) A ∪B = |Skelc0X|

Figure 6: The sets A, B, A ∩ B and A ∪ B in the proof of Theorem 11, when k = 1 and
X is the polytopal complex in Fig. 1

Now for A∪B. Suppose τ is an arbitrary face of X. If dim τ ⩽ k− 1, then |τ | is disjoint
from both A and B; if dim τ = k, then |τ | is a subset of |starbary(X) vτ | hence |τ | ⊆ A,
and if dim τ ⩾ k + 1 then |τ | is a subset of B. Therefore, A ∪ B consists of the relative
interiors of all faces of dimension k and greater; that is,

A ∪B = |Skelck−1X|.

We can now apply the Mayer–Vietoris theorem, with unreduced homology. This gives
us the following long exact sequence:

· · · Hi

( ⊔
σ∈Xk

|starbary(X) vσ| \ |σ|
)

Hi

( ⊔
σ∈Xk

|starbary(X) vσ|
)
⊕Hi(|Skelck X|)

Hi(|Skelck−1X|) · · · .

Since unreduced homology of a disconnected space can be decomposed as a direct sum
over components, we can simplify this long exact sequence:

· · ·
⊕
σ∈Xk

Hi

(
|starbary(X) vσ| \ |σ|

) ( ⊕
σ∈Xk

Hi(|starbary(X) vσ|)
)
⊕Hi(|Skelck X|)

Hi(|Skelck−1X|) · · · .

While this is a perfectly good long exact sequence, there are some steps we can do to
“clean it up” and make it more convenient for later proofs. The first step is to convert
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from unreduced to reduced homology, which affects this sequence in degrees 0 and −1.
For each face σ ∈ Xk, there are two cases to consider: either σ is not a facet, or it is.

If σ is not a facet, then |starbary(X) vσ|\|σ| is non-empty, so H0(|starbary(X) vσ|\|σ|) ̸= 0.
The map from H0(|starbary(X) vσ| \ |σ|) to H0(|starbary(X) vσ|) = R takes generators to
generators, so we can remove a summand of R from each of these two groups while
preserving exactness; the result is that these unreduced homology groups become reduced.

On the other hand, suppose σ is a facet: then |starbary(X) vσ| \ |σ| is empty, so
H0(|starbary(X) vσ| \ |σ|) = 0. Since H0(|Skelck−1X|) is non-zero, and the map from
H0(|starbary(X) vσ|) to H0(|Skelck−1X|) takes generators to generators, we can remove a
summand of R from each of these two groups. If we also add a summand of R to each
of H0(|Skelck−1X|) and H−1(|starbary(X) vσ| \ |σ|) = 0, then exactness is preserved, no net
change has occurred to H0(|Skelck−1X|), and the two homology groups H−1(|starbary(X) vσ|
and H0(|starbary(X) vσ| \ |σ|) become reduced.

There is one more change to make in converting from unreduced to reduced homology:
the map from H0(|Skelck X|) to H0(|Skelck−1X|) takes generators to generators (both groups
are non-zero because we assume k < d), so we may remove a summand of R from each to
replace both of these unreduced homology groups with reduced homology.

With the observation that H̃i(|starbary(X) vσ|) = 0 for all i, our long exact sequence
now becomes:

· · ·
⊕
σ∈Xk

H̃i

(
|starbary(X) vσ| \ |σ|

)
H̃i(|Skelck X|) H̃i(|Skelck−1X|) · · · .

There is one last thing to do to this long exact sequence: simplifying H̃i

(
|starbary(X) vσ|\

|σ|
)
. To do this, let us call on the Mayer–Vietoris theorem again. Assume that σ is not

a facet, so |starbary(X) vσ| \ |σ| is non-empty. Define two new spaces:

A′ := |starbary(X) vσ|,
B′ := |starX σ| \ |σ| = |linkX σ|

Since |σ| ⊆ |starbary(X) vσ| ⊆ |starX σ| — for example, see Fig. 7 — the intersection
A′ ∩ B′ is |starbary(X) vσ| \ |σ|, and the union A′ ∪ B′ is simply |starX σ|. Therefore, the
Mayer–Vietoris long exact sequence with reduced homology for A′ and B′ is the following:

· · · H̃i+1(|starX σ|) H̃i(|starbary(X) vσ| \ |σ|)

H̃i(|starbary(X) vσ|)⊕ H̃i(|starX σ| \ |σ|) H̃i(|starX σ|) · · · .

But stars of non-empty faces are contractible, so this becomes:

· · · 0 H̃i(|starbary(X) vσ| \ |σ|) H̃i(|starX σ| \ |σ|) 0 · · · .

Therefore, H̃i(|starbary(X) vσ| \ |σ|) ∼= H̃i(|starX σ| \ |σ|) = H̃i(|linkX σ|) for all non-facets
σ. Finally, note that if σ is a facet, this isomorphism still holds, since all spaces involved
are empty.

Hence we obtain the desired long exact sequence.
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σ1

σ2

σ3

(a) Three faces of X

|starbary(X) vσ1|
|starbary(X) vσ2|

|starbary(X) vσ3|

(b) |starbary(X) vσ| for σ = σ1, σ2, σ3

|starX σ1|
|starX σ2|

|starX σ3|

(c) |starX σ| for σ = σ1, σ2, σ3

Figure 7: The spaces |starbary(X) vσ| and |starX σ| in the proof of Theorem 11, for various
choices of σ

5 Complexes characterised by link conditions

Now that we have a long exact sequence relating co-skeletons and links, in this section
we will consider some particular families of polytopal complexes that are characterised by
links of faces having zero homology in some degrees.

5.1 Cohen–Macaulay complexes

A pure, d-dimensional polytopal complex X is Cohen–Macaulay if for every face σ, in-
cluding σ = ∅, and every i < d−dimσ− 1, the homology H̃i(|linkX σ|) is 0. If ∆ := X is
a simplicial complex, this condition is equivalent to the Stanley–Reisner ring of ∆ being
a Cohen–Macaulay ring [5, p. 1855].

Remark 12. Cohen–Macaulayness is also a topological condition: X is Cohen–Macaulay
if and only if H̃i(|X|) and H̃i(|X|, |X| \ {p}) are both 0 for all i < dimX and all points
p ∈ |X|. This was proved by Munkres [16, Corollary 3.4] for simplicial complexes, but a
similar proof applies to polytopal complexes as well, with the following modified version
of [16, Lemma 3.3]:

Lemma 13. If X is a polytopal complex, σ a face of X and p a point in the relative
interior of σ, then H̃i(|linkX σ|) ∼= H̃i+dimσ(|linkbary(X) vσ|) ∼= H̃i+dimσ+1(|X|, |X| \ {p}).
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Proof. We saw in the proof of Theorem 11 that

H̃i(|linkX σ|) ∼= H̃i(|starbary(X) vσ| \ |σ|)
= H̃i

(
|linkbary(X) vσ| \ (|σ| \ {vσ})

)
∼= H̃i(|s-linkbary(X) vσ| \ |bary(∂σ)|),

where “s-link” denotes the simplicial link. Since bary(∂σ) is an induced subcomplex of
the simplicial complex s-linkbary(X) vσ, Lemma 1 says that

|s-linkbary(X) vσ| \ |bary(∂σ)| ≃ |s-linkbary(X) vσ − bary(∂σ)|.

It is not hard to check that

s-linkbary(X) vσ =
(
s-linkbary(X) vσ − bary(∂σ)

)
∗ bary(∂σ),

where ∗ denotes simplicial join [15, §62], so [15, Theorem 62.5] implies that

H̃i(|s-linkbary(X) vσ − bary(∂σ)|) ∼= H̃i+dimσ(|s-linkbary(X) vσ|).

Finally, since bary(X) is a simplicial complex, we can apply [16, Lemma 3.3] to conclude
that

H̃i+dimσ(|s-linkbary(X) vσ|) ∼= H̃i+dimσ+1(|X|, |X| \ {vσ}),

and note that although vσ is typically defined to be the barycentre of σ, it can be chosen
to be any point in the relative interior of σ.

The following theorem allows us to determine whether a complex is Cohen–Macaulay
by considering its co-skeletons.

Theorem 14. A d-dimensional polytopal complex X is Cohen–Macaulay if and only if it
is pure and H̃i(|Skelck X|) = 0 for all i < d− k − 1 and all k = −1, . . . , d.

Note that this theorem combined with Corollary 5 means that the only non-zero
homology of |Skelck X| is in degree d− k − 1.

Proof of Theorem 14. To begin with, assume X is Cohen–Macaulay. We will prove that
H̃i(|Skelck X|) = 0 for i < d− k − 1 by induction on k.

For the base case, when k = −1, we have

H̃i(|Skelc−1X|) = H̃i(|X|) = H̃i(|linkX ∅|),

which is zero for all i < d since X is Cohen–Macaulay.
Now, suppose k > −1, and consider this part of the long exact sequence from Theo-

rem 11: ⊕
σ∈Xk

H̃i(|linkσ|) H̃i(|Skelck X|) H̃i(|Skelck−1X|).
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(a) A Cohen–Macaulay simplicial com-
plex

(b) A non-Cohen–Macaulay simplicial
complex

Figure 8: Two simplicial complexes whose skeletons have isomorphic homology groups

Since X is Cohen–Macaulay and i < d − k − 1, we know that H̃i(|linkσ|) is 0 for all
σ ∈ Xk. Also, since i is less than d− k− 1, it is certainly less than d− (k− 1)− 1, so by
induction, H̃i(|Skelck−1X|) is 0. Therefore, H̃i(|Skelck X|) must be 0 too, and we are done
with this direction of the proof.

Now, for the reverse direction, assume that H̃i(|Skelck X|) = 0 for all i < d− k− 1 and
all k = −1, . . . , d. Consider this part of the long exact sequence for k ⩾ 0:

H̃i+1(|Skelck−1X|)
⊕
σ∈Xk

H̃i(|linkσ|) H̃i(|Skelck X|)

By our assumption, H̃i(|Skelck X|) = 0. Also, since i < d − k − 1, we have i + 1 <

d − (k − 1) − 1, so our assumption tells us that H̃i+1(|Skelck−1X|) = 0 too. Therefore,⊕
σ∈Xk

H̃i(|linkσ|) is 0, so H̃i(|linkσ|) must be 0 for all i < d− k − 1 = d− dimσ − 1.
This is true for all faces σ of dimension k ⩾ 0, which leaves the case σ = ∅. In this

case,
H̃i(|linkσ|) = H̃i(|X|) = H̃i(|Skelc−1X|) = 0.

Therefore, X is Cohen–Macaulay.

Remark 15. This theorem has potential computational applications. Naïvely, to check
whether some complex X is Cohen–Macaulay, one must compute the homology groups of
the link of every face of X — if dimX = d, there are at least 2d+1 faces. But with this
result, one only needs to compute homologies of the kth co-skeletons of X for the d + 2
values of k between −1 and d, or equivalently (by Lemma 4) the simplicial complexes
bary(X)−bary(Skelk X). The tradeoff is that these simplicial complexes are much larger
and more complicated than the links of faces: for instance, the number of vertices of
bary(X)− bary(Skelk X) is at least on the order of 2d.
Remark 16. We saw in Corollary 10 that neighbourly spheres are characterised by the
homology groups of either their skeletons or their co-skeletons. However, for Cohen–
Macaulay complexes, the homology groups of skeletons are not sufficient for a charac-
terisation: for example, Fig. 8 shows two complexes, one Cohen–Macaulay and one not,
whose k-skeletons have isomorphic ith homology groups for all k and i.

Theorem 14 says that if X is Cohen–Macauly, almost all of the long exact sequence
from Theorem 11 is 0. The remaining non-zero terms are captured in the following
corollary:
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Corollary 17. If X is a Cohen–Macaulay polytopal complex and k = 0, . . . , d, we have
the following short exact sequence:

0 H̃d−k(|Skelck−1X|)
⊕
σ∈Xk

H̃d−k−1(|linkσ|) H̃d−k−1(|Skelck X|) 0.

Proof. Take the following segment of the long exact sequence from Theorem 11:

H̃d−k(|Skelck X|) H̃d−k(|Skelck−1X|)
⊕
σ∈Xk

H̃d−k−1(|linkσ|)

H̃d−k−1(|Skelck X|) H̃d−k−1(|Skelck−1X|).

The first term, H̃d−k(|Skelck X|), is 0 by Corollary 5. The last term, H̃d−k−1(|Skelck−1X|),
is 0 by Theorem 14.

We can combine these short exact sequences into a long exact sequence, using the
following homological algebra fact:

Lemma 18. Suppose we have two exact sequences:

· · · A2 A1 C 0
a2 a1 and 0 C B−1 B−2 · · · .b0 b−1

Then the horizontal sequence in the following diagram is exact:

0 0

· · · A2 A1 B−1 B−2 · · · .

C b0

a2

a1

b0◦a1

b−1

Proof. Since a1 is surjective, im(b0 ◦ a1) = im(b0) = ker(b−1). Since b0 is injective,
ker(b0 ◦ a1) = ker a1 = im a2.

Corollary 19. If X is Cohen–Macaulay, we have the following long exact sequence:

0 H̃d(|X|)
⊕
σ∈X0

H̃d−1(|linkσ|)
⊕
σ∈X1

H̃d−2(|linkσ|) · · ·

· · ·
⊕
σ∈Xd

H̃−1(|linkσ|) R 0.
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Proof. Use Lemma 18 to stitch together the short exact sequences from Corollary 17. The
start of the sequence looks like this:

0 0

0 H̃d(|Skelc−1 X|)
⊕
σ∈X0

H̃d−1(|linkσ|)
⊕
σ∈X1

H̃d−2(|linkσ|)
⊕
σ∈X2

H̃d−3(|linkσ|) · · ·

0 0

H̃d−1(|Skelc0 X|)

H̃d−2(|Skelc1 X|)

And the end like this:

0 0

· · ·
⊕

σ∈Xd−2

H̃1(|linkσ|)
⊕

σ∈Xd−1

H̃0(|linkσ|)
⊕
σ∈Xd

H̃−1(|linkσ|) H̃−1(|Skelcd X|) 0

0 0

H̃1(|Skelcd−2 X|)

H̃0(|Skelcd−1 X|)

Note that this exact sequence is reminiscent of the “partition complex”, a chain complex
defined in [1, Definition 25].
Remark 20. If the definition of a Cohen–Macaulay complex is altered to allow H̃i(|linkX σ|)
to be non-zero when σ = ∅, we get the definition of a Buchsbaum complex. Buchsbaum
complexes can also be characterised by homological properties of their co-skeletons, al-
though the statement is not as simple as for Cohen–Macaulay complexes in Theorem 14:
a complex X is Buchsbaum if and only if the map H̃i(|Skelck X|) → H̃i(|X|) induced by
the inclusion of topological spaces is an isomorphism for all i < d− k− 1 and a surjection
for i = d − k − 1, for all k = −1, . . . , d. This follows fairly easily from the long exact
sequence in Theorem 11, although we leave the details to the reader.

5.2 Leray complexes

A simplicial complex ∆ is r-Leray if every induced subcomplex Λ of ∆ has H̃i(|Λ|) = 0
for i ⩾ r. For example, if ∆ is the nerve of a family of convex open subsets of Rr, then it
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follows from the nerve theorem (Theorem 3) that ∆ is r-Leray [14].
Equivalently, ∆ is r-Leray if the homology H̃i(|link∆ σ|) is 0 for every face σ ∈ ∆

(including the empty face) and every i ⩾ r [14, Proposition 3.1]. We will use this condition
to generalise r-Leray-ness to polytopal complexes: we will say a complex X is r-Leray if
H̃i(|linkX σ|) = 0 for all faces σ (including σ = ∅) and all i ⩾ r. Note that this condition
is not equivalent to the condition on induced subcomplexes in the non-simplicial case: for
example, if X is a square, every non-empty link is contractible so X is 0-Leray, but the
subcomplex induced by a pair of diagonally opposite vertices is not connected.

The following theorem provides a characterisation of r-Leray complexes in terms of
their co-skeletons.

Theorem 21. A polytopal complex X is r-Leray if and only if H̃i(|Skelck X|) = 0 for all
i ⩾ r and all k = −1, . . . , d.

Proof. For the forward direction, assume X is r-Leray and let i ⩾ r. When k = −1,

H̃i(|Skelc−1X|) = H̃i(|X|) = H̃i(|linkX ∅|),

which is 0, since X is r-Leray.
For k ⩾ 0, consider the following subsequence of the long exact sequence from Theo-

rem 11: ⊕
σ∈Xk

H̃i(|linkσ|) H̃i(|Skelck X|) H̃i(|Skelck−1X|).

Since X is r-Leray, the first term in this subsequence is 0. Therefore, H̃i(|Skelck X|) injects
into H̃i(|Skelck−1X|). Since this is true for all k = 0, . . . , d, we get a series of injections:

H̃i(|Skelck X|) H̃i(|Skelck−1X|) H̃i(|Skelck−2X|) · · ·

· · · H̃i(|Skelc0X|) H̃i(|Skelc−1X|).

But we saw above that H̃i(|Skelc−1X|) = 0. Therefore, H̃i(|Skelck X|) injects into 0, so it
must itself be 0, for all k = 0, . . . , d.

For the reverse direction, assume that H̃i(|Skelck X|) = 0 for all k = −1, . . . , d and all
i ⩾ r. When k ⩾ 0, consider this part of the long exact sequence:

H̃i+1(|Skelck−1X|)
⊕
σ∈Xk

H̃i(|linkσ|) H̃i(|Skelck X|).

By our assumptions, the two outer terms here are both 0, hence the middle term is 0
as well, so H̃i(|linkσ|) = 0 for all k-faces σ. This works for all k = 0, . . . , d, which only
leaves k = −1: the only (−1)-dimensional face is ∅, and

H̃i(|linkX ∅|) = H̃i(|X|) = H̃i(|Skelc−1X|)

which we assumed to be 0.
Therefore, H̃i(|linkX σ|) = 0 for all faces σ and all i ⩾ r, so X is r-Leray.
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5.3 Stacked balls

A homology sphere is a polytopal complex X of dimension d where for every face σ
including σ = ∅,

H̃i(|linkσ|) =

{
0 if i ̸= d− dimσ − 1

R if i = d− dimσ − 1.

A homology manifold is defined similarly but only considering σ ̸= ∅. A homology ball of
dimension d is a complex X where:

• H̃i(|X|) = 0 for all i,

• for every non-empty face σ,

H̃i(|linkσ|) =

{
0 if i ̸= d− dimσ − 1

R or 0 if i = d− dimσ − 1,

and

• the set of faces σ with H̃d−dimσ−1(|linkσ|) = 0 forms a subcomplex of X that is a
(d− 1)-dimensional homology sphere.

If H̃d−dimσ−1(|linkσ|) is 0, σ is called a boundary face, and if this homology is R, σ is an
interior face.

Suppose X is a homology ball of dimension d. If every face of X of dimension less
than or equal to d − s − 1 is a boundary face, then X is said to be s-stacked. For
example, if X is 1-stacked, then the interior faces must all have dimension d or d − 1;
this condition is sometimes simply called “stacked” for simplicial complexes (e.g. [12]), or
“capped” for cubical complexes (e.g. [7]). Simplicial s-stacked balls are well studied due
to their connection to the Lower Bound Conjecture — see e.g. [17].

Just like Cohen–Macaulay and r-Leray complexes, we can characterise s-stacked balls
using their co-skeletons.

Theorem 22. Suppose X is a homology ball with dimension d. Then X is s-stacked if and
only if H̃d−k−1(|Skelck X|) = 0 for all k ⩽ d− s− 1 (or equivalently H̃j(|Skelcd−j−1X|) = 0
for all j ⩾ s, where j = d− k − 1).

Proof. By definition, a k-face σ is a boundary face if and only if H̃d−k−1(|linkσ|) is 0.
Therefore, X is s-stacked if and only if⊕

σ∈Xk

H̃d−k−1(|linkσ|) = 0

for all k ⩽ d− s− 1.
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(a) A 1-stacked sphere, the boundary
of the ball made from three stacked 3-
simplices

(b) A sphere that is not 1-stacked, the
boundary of an octahedron

Figure 9: Two spheres with homeomorphic co-skeletons

We could apply this fact directly to the long exact sequence from Theorem 11; however,
since X is a homology ball, it is Cohen–Macaulay, so we can take a shortcut by using the
short exact sequence from Corollary 17:

0 H̃d−k(|Skelck−1X|)
⊕
σ∈Xk

H̃d−k−1(|linkσ|) H̃d−k−1(|Skelck X|) 0.

The inner term of this short exact sequence is 0 for k ⩽ d− s− 1 if and only if both outer
terms are 0 for the same range of k, which is equivalent to the claimed condition.

Remark 23. A closely related notion is an s-stacked sphere, which is a complex that is the
boundary of some s-stacked ball. Unfortunately, s-stacked spheres cannot be distinguished
by topological features of their co-skeletons, at least for simplicial complexes. For example,
the two spheres shown in Fig. 9 have homeomorphic kth co-skeletons for all k, but only
one of the spheres is 1-stacked as a simplicial complex.

6 CAT(0) cubical complexes

For a further application of co-skeletons, let us consider some families of cubical complexes.
One of the key features of a cubical complex is its hyperplanes. If we associate an

r-dimensional cube with the space [0, 1]r in Rr, then the ith hyperplane of that cube is
the subspace where xi =

1
2

— see Fig. 10(b). A hyperplane in a cubical complex is
a maximally connected cubical complex obtained by glueing together hyperplanes of its
component cubes where they meet along faces — see Fig. 11. (We should note that in
general, issues can arise when a hyperplane “intersects itself”, in which case the hyperplane
is not a true polytopal complex by our definitions. However, the focus of this section will
be on CAT(0) cubical complexes, in which hyperplanes behave nicely — see e.g. Lemma 29
— so we will not dwell on this issue.)

Since each hyperplane of a cubical complex is itself a cubical complex, it also has its
own hyperplanes. Therefore, we will define an iterated hyperplane of to be a hyperplane
of a hyperplane of . . . of . We will say the original hyperplanes are the “1st iterated
hyperplanes”, the hyperplanes of the hyperplanes are the “2nd iterated hyperplanes”, and
so on. See Figs. 10(a) to 10(d). As these figures show, an iterated hyperplane can

the electronic journal of combinatorics 31(1) (2024), #P1.12 19



(a) A 3-cube (b) The hyperplanes
(aka the 1st iterated
hyperplanes)

(c) The 2nd iterated
hyperplanes

(d) The 3rd iterated
hyperplane

Figure 10: Hyperplanes and iterated hyperplanes of a 3-cube

(a) (b) The six hyperplanes of

Figure 11: A cubical complex and its hyperplanes

sometimes be obtained in more than one way, when considered as a subspace of —
for example, each line segment in Fig. 10(c) is a hyperplane of two different squares in
Fig. 10(b).

The following proposition reveals the connection between co-skeletons and iterated
hyperplanes.

Proposition 24. Suppose is a cubical complex. Then |bary( ) − bary(Skelk )| is
equal to the union of the (k + 1)th iterated hyperplanes of , considered as subspaces of

.

For example, compare Fig. 10(b) and Fig. 12. Note that in combination with Lemma 4,
this proposition tells us that |Skelck | is homotopy equivalent to the union of the (k+1)th
iterated hyperplanes.

Proof of Proposition 24. We will show that the intersections of |bary( )−bary(Skelk )|
and of the union of the (k+ 1)th iterated hyperplanes with each cube of are the same.

First, consider the union of the (k + 1)th hyperplanes. In each cube, identified with
[0, 1]r, a single (k+1)th iterated hyperplane is the result of setting (k+1) of the coordinates
to be 1

2
; therefore, the union of all (k + 1)th iterated hyperplanes is the space

Z :=
{
x ∈ |[0, 1]r| : at least k + 1 coordinates of x are 1

2

}
.

Now, consider |bary( ) − bary(Skelk )|. The intersection of this space with some
cube of , identified with |[0, 1]r|, is

B := |bary([0, 1]r)− bary(Skelk[0, 1]
r)|.
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Figure 12: bary([0, 1]3)− bary(Skel0[0, 1]
3)

For each face σ of [0, 1]r, we have a vertex vσ of bary([0, 1]r) at the barycenter of σ;
the coordinates of vσ will all be 0, 1 or 1

2
, and the number of coordinates equal to 1

2
is

dimσ. The remaining vertices of bary([0, 1]r) after deleting bary(Skelk[0, 1]
r), therefore,

are precisely those which have at least k + 1 coordinates equal to 1
2
.

For the rest of this proof, we will show that B = Z. First, we claim that B ⊆ Z. For
each face {vσ1 , . . . , vσm} of B, the set {σ1, . . . , σm} is a chain, so it has a minimal element
— without loss of generality, say this is σ1. By construction, the dimension of σ1 is at
least k + 1, so there is some index set I of at least k + 1 elements so that (vσ1)i = 1

2

for all i ∈ I. Since {σ1, . . . , σm} is a chain, every vσj
for j = 1, . . . ,m must also satisfy

(vσj
)i =

1
2

for all i ∈ I. Therefore, the entire set {vσ1 , . . . , vσm} lies in the affine subspace
{x ∈ Rr : xi =

1
2

for all i ∈ I}, so the convex hull of this set is contained in Z. Thus
B ⊆ Z.

Conversely, let z be a point in Z. By definition, there is an index set I of size k + 1
so that zi =

1
2

for all i ∈ I. The set of all points of [0, 1]r satisfying xi =
1
2

for i ∈ I
is an iterated hyperplane of [0, 1]r, and its barycentric subdivision is the subcomplex
of bary([0, 1]r) − bary(Skelk[0, 1]

r) generated by vertices satisfying (vσ)i =
1
2

for i ∈ I.
Therefore, z is in B, so Z ⊆ B.

In summary, the space |bary( )−bary(Skelk )| and the union of the (k+1)th iterated
hyperplanes agree within each cube of , so they must be the same subspace.

There is a class of cubical complexes where hyperplanes and co-skeletons work par-
ticularly well. In general, the link of any vertex in a cubical complex is isomorphic as a
poset to the non-empty faces of a simplicial complex. Suppose is a cubical complex in
which every cube is isometric to a standard cube [0, 1]r — such a complex is said to be
CAT(0) if:

• it is simply connected, and

• the link of every vertex is isomorphic to a flag simplicial complex.

A simplicial complex is flag if the vertex set of every clique in its 1-skeleton is the vertex
set of a face.

CAT(0) cubical complexes were first studied from the perspective of metric spaces:
equivalently, a cubical complex is CAT(0) if and only if it is simply connected and has
non-positive curvature at every point (see [8, Theorem 5.4 & Theorem 5.18]; see also [9]).
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H1

H3

H2

H5

H4

(a) , with hyperplanes labelled

1

2
3 4

5

(b) Cross( )

Figure 13: A CAT(0) cubical complex and its crossing complex

However, finite CAT(0) cubical complexes are also interesting from a purely combinatorial
and topological perspective [3, 10, 20, 18, 19].

One particular construction associated to a CAT(0) cubical complex is its crossing
complex, introduced in [19]: given a CAT(0) cubical complex , its crossing complex,
here denoted Cross( ), is a simplicial complex whose vertices are in bijection with the
hyperplanes of , and a set of vertices forms a face if the intersection of the corresponding
hyperplanes is non-empty. (In other words, the crossing complex is the nerve of the
hyperplanes, as defined in Theorem 3.)

We record here some basic facts about CAT(0) cubical complexes and their crossing
complexes.

Lemma 25 ([8, Corollary 1.5], [9, Section 4]). Any CAT(0) cubical complex is contractible
(not just simply connected).

Lemma 26 ([10, Lemma 2.15]). Cross( ) is always a flag simplicial complex. In particu-
lar, it is the clique complex of the “crossing graph” defined by Hagen [10, Definition 2.16].

Lemma 27 ([19, Proposition 6.4, Corollary 6.5]). There is a bijection between the facets
of and the facets of Cross( ). If a facet of has dimension k, the corresponding facet
of Cross( ) has dimension k − 1. Consequently, dimCross( ) = dim − 1, and is
pure if and only if Cross is pure.

Lemma 28 ([20, Theorem 4.11]). Every hyperplane (and thus every iterated hyperplane)
in a CAT(0) cubical complex is also CAT(0).

Ardila et al. [3, p. 9] described a way to embed a CAT(0) cubical complex with
m hyperplanes into the cube [0, 1]m as a subcomplex. This embedding is essentially
canonical, up to the choice of a “root vertex” and a choice of labelling for the hyperplanes
as H1, . . . , Hm.

Lemma 29 ([19, Proposition 5.7]). In this embedding of into [0, 1]m, the hyperplane
Hi of is the intersection of with the ith hyperplane of [0, 1]m.
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The resulting embedding of a hyperplane Hi into the ith hyperplane of [0, 1]m agrees
with Ardila et al.’s canonical embedding of Hi as a CAT(0) cubical complex into a cube;
thus the iterated hyperplanes of are themselves each an intersection of with some
set of hyperplanes of [0, 1]m. Therefore, if S is a subset of {1, . . . ,m} of size (k + 1), we
define

HS := ∩
⋂
i∈S

(ith hyperplane of [0, 1]m)

=
⋂
i∈S

(
∩ (ith hyperplane of [0, 1]m)

)
=

⋂
i∈S

Hi.

Either this is a (k+1)th iterated hyperplane of , or it is empty, and all (k+1)th iterated
hyperplanes of are of this form. By definition of Cross( ), HS is an iterated hyperplane
if and only if S is a face of Cross( ); therefore, the (k + 1)th iterated hyperplanes of
correspond to k-faces of Cross( ), for k = 0, . . . , d− 1.

We can now begin to prove some new results about CAT(0) cubical complexes. The
following proposition generalises [19, Theorem 6.3], which was the case of k = 0.

Proposition 30. If is a d-dimensional CAT(0) cubical complex and ∆ := Cross( ) is
its crossing complex, then |Skelck | ≃ |Skelck−1∆| for all k = 0, . . . , d.

Proof. If k = d, then both |Skelcd | and |Skelcd−1∆| are empty, since dim∆ = d − 1 by
Lemma 27. Therefore, for the rest of this proof, assume that k < d.

We will apply the nerve theorem (Theorem 3) to each of |Skelck | and |Skelck−1∆|, to
show that they are both homotopy equivalent to the same nerve.

First, consider |Skelck |, and define the family H := {Hσ : σ ∈ ∆k}, where Hσ :=⋂
i∈σ Hi as above. By Proposition 24 and the above discussion, |Skelck | is homotopy

equivalent to the union of H. Each Hσ is a closed set in , and by Proposition 24
their union is a triangulable space. Any intersection of spaces in H is itself an iter-
ated hyperplane if it is non-empty, which is CAT(0) by Lemma 28 and thus contractible
by Lemma 25. Therefore, we may apply the nerve theorem to H, and conclude that
|Skelck | ≃ |N(H)|.

But what is N(H)? The vertices are in bijection with k-faces σ of ∆. A set of vertices,
say {σ1, . . . , σm}, forms a face of N(H) whenever the intersection Hσ1 ∩ · · · ∩ Hσm is
non-empty. This intersection is the set

Hσ1 ∩ · · · ∩Hσm =
⋂
i∈σ1

Hi ∩ · · · ∩
⋂
i∈σm

Hi

=
⋂

i∈σ1∪···∪σm

Hi

= Hσ1∪···∪σm .

So {σ1, . . . , σm} is a face of N(H) if and only if σ1 ∪ · · · ∪ σm is a face of ∆.
Now, let us turn our attention to Skelck−1∆, the set of faces of ∆ of dimension at least

k. For each k-face σ of ∆, let Sσ denote |star∆ σ|, and define S := {Sσ : σ ∈ ∆k}. Every
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face of ∆ of dimension at least k is contained in star∆ σ for some k-face σ, and no face of
dimension less than k is, so the union of S is |Skelck−1∆|. Each Sσ is open in ∆, and any
non-empty intersection of stars is itself a star and thus contractible. Therefore, we may
apply the nerve theorem to S as well: |Skelck−1∆| ≃ N(S).

Let us examine N(S). The vertices are in bijection with k-faces σ of ∆, and a set
{σ1, . . . , σm} forms a face of N(S) whenever star∆ σ1 ∩ · · · ∩ star∆ σm is non-empty. This
happens if and only if there exists a face of ∆ that contains all of σ1, . . . , σm, which
happens whenever σ1 ∪ · · · ∪ σm is a face of ∆.

But this means that N(S) = N(H)! Therefore,

|Skelck | ≃ |N(H)| = |N(S)| ≃ |Skelck−1∆|.

Next, we will examine some applications of this result, but first we need one more
construction.

There is a standard bijection from the non-empty faces σ of the cube [0, 1]r to vectors
χσ in {0, 1, ∗}r, where the ith coordinate χσ

i of χσ is 0 or 1 if all points x in σ have xi = 0
or xi = 1 respectively, and χσ

i is ∗ otherwise. If σ and τ are two faces, then σ ⊆ τ if and
only if χσ

i ⪯ χτ
i for all i, where 0 ≺ ∗ and 1 ≺ ∗ are the only non-equality relations on 0,

1 and ∗.
Suppose ∆ is an abstract simplicial complex with vertex set {1, . . . , n}. We define

the cubical cone over ∆, denoted Cone(∆), to be the subcomplex of [0, 1]n consisting of
all faces σ such that the set

{
i : χσ

i ∈ {1, ∗}
}

is a face of ∆ (including the empty face).
For example, see Fig. 14. The reason for the name “cubical cone” is the following lemma,
analogous to properties of a simplicial cone.

Lemma 31. The cubical cone over ∆ is the unique subcomplex of a cube (up to isomor-
phism) with the property that there is a vertex v0 (the “cone point”, which is the point
(0, . . . , 0) in the standard labelling) such that:

• every facet contains v0, and

• the link of v0 is (isomorphic as a poset to the non-empty faces of) ∆.

Proof. First, let us check that the cubical cone does satisfy these properties. If σ is a face
of Cone(∆), we can replace every 1 in χσ with ∗ to obtain the vector of a face of Cone(∆)
that contains σ; therefore, the vectors of facets of Cone(∆) consist only of 0 and ∗, so
every facet contains v0 = (0, . . . , 0). Conversely, the faces that properly contain v0 are
precisely the faces σ ̸= v0 such that χσ consists of 0 and ∗, and these faces are in bijection
with non-empty faces of ∆, so the link of v0 is indeed ∆.

Now, suppose is an arbitrary subcomplex of a cube satisfying these properties. By
the symmetry of the cube, we may assume that v0 is the vertex (0, . . . , 0). As before, the
link of v0 is then the set of faces of whose vectors consist only of 0 and ∗; since we assume
this set is isomorphic to ∆, we may again use the symmetry of the cube to permute the
coordinates and assume that this set is equal to linkCone(∆) v0. Since contains these faces
of the cube, it must also contain every sub-face of these faces, so contains every face of
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(b) The cubical cone over ∆ (embedded into R3),
with vertices labelled

Figure 14: A cubical cone

Cone(∆). Moreover, it cannot contain any other faces: any such face must be contained
in some facet of , but that facet cannot be one that we have already accounted for in
link v0, so the facet would not contain v0. Therefore, ∼= Cone(∆).

While every flag simplicial complex is the crossing complex of some CAT(0) cubical
complex (see [10, Proposition 2.19] and [19, Lemma 3.3], where the construction is the
cubical cone), in general, there can be many CAT(0) cubical complexes with the same
crossing complex. However, we can now prove that if Cross( ) is a connected manifold,
the only possibility is = Cone(∆).

Corollary 32. Let be a d-dimensional CAT(0) cubical complex and ∆ its crossing
complex. If ∆ is a connected homology manifold, then is the cubical cone over ∆.

Proof. Examine this section of the long exact sequence from Theorem 11, taking k = 0
and using coefficients in Z/2:

H̃d(|Skelc−1 |)
⊕
v∈ 0

H̃d−1(|link v|) H̃d−1(|Skelc0 |) H̃d−1(|Skelc−1 |).

Note that |Skelc−1 | is simply | |, which is contractible since is CAT(0), so the first
and last terms of this sequence are 0. By Proposition 30, H̃d−1(|Skelc0 |) is isomorphic to
H̃d−1(|Skelc−1∆|) = H̃d−1(|∆|), and since ∆ is a connected homology manifold of dimension
d− 1, this homology group is Z/2. Therefore,⊕

v∈ 0

H̃d−1(|link v|) ∼= Z/2.

Thus there must be one vertex v0 for which H̃d−1(|link v0|) = Z/2, and all other vertices
have H̃d−1(|link v|) = 0.
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Every vertex link in a CAT(0) cubical complex is an induced subcomplex of the crossing
complex [19, Lemma 4.9]. However, the only induced subcomplex of a connected (d− 1)-
manifold with non-zero homology in degree d − 1 is the entire manifold. Therefore,
link v0 = ∆.

Lemma 27 says that there is a bijection between the facets of the cubical complex
and the facets of its crossing complex ∆. Since link v0 = ∆, we also have a bijection

between the facets of ∆ and the facets of that contain v0. Therefore, every facet of
must contain v0. Hence is a cubical cone.

We conclude this paper by combining Proposition 30 with Theorems 14, 22 and 21,
to compare the combinatorial properties discussed in Section 5 for and Cross( ).

Theorem 33. Suppose is a CAT(0) cubical complex and ∆ is its crossing complex.
Then:

(a) is Cohen–Macaulay if and only if ∆ is Cohen–Macaulay.

(b) is r-Leray if and only if ∆ is r-Leray.

(c) If and ∆ are both homology balls, then is s-stacked if and only if ∆ is s-stacked.

Note that the assumption that both and ∆ are balls in (c) is essential: it is possible
for one to be a ball and the other not. For example, if consists of m squares glued in
a 1×m rectangle, it is a 1-stacked ball, but its crossing complex is a star graph with m
pendants, which is not a ball for m > 2.

Proof of Theorem 33. Let d = dim .

(a) By Theorem 14, is Cohen–Macaulay if and only if it is pure and H̃i(|Skelck |) = 0
for all k = −1, . . . , d and all i < d− k − 1. Any CAT(0) cubical complex is always
contractible, so H̃i(|Skelc−1 |) is guaranteed to be 0, hence we only need to consider
k = 0, . . . , d. Now, Proposition 30 says that H̃i(|Skelck |) = H̃i(|Skelck−1∆|) for k in
this range, and Lemma 27 says that is pure if and only if ∆ is pure; therefore, is
Cohen–Macaulay if and only if ∆ is pure and H̃i(|Skelck−1∆|) = 0 for all k = 0, . . . , d
and all i < d−k−1 = (d−1)− (k−1)−1. But since dim∆ = d−1, this is exactly
the condition given by Theorem 14 for ∆ to be Cohen–Macaulay.

(b) By Theorem 21, is r-Leray if and only if H̃i(|Skelck |) = 0 for all i ⩾ r and all
k = −1, . . . , d. Because is CAT(0), |Skelc−1 | is guaranteed to be contractible, so
we only need to check k = 0, . . . , d. By Proposition 30, this condition is equivalent
to H̃i(|Skelcj ∆|) being 0 for all i ⩾ r and all j = −1, . . . , d − 1, where j = k − 1.
And this precisely means that ∆ is r-Leray.

(c) By Theorem 22, is s-stacked if and only if H̃d−k−1(|Skelck |) = 0 for all k ⩽
d − s − 1. Proposition 30 tells us this is equivalent to H̃d−k−1(|Skelck−1∆|) being 0

for k ⩽ d−s−1. Equivalently, letting j = k−1, we have H̃(d−1)−j−1(|Skelcj ∆|) = 0 for
j ⩽ (d−1)−s−1. Since dim∆ = d−1, this is equivalent to ∆ being s-stacked.
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