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Abstract

Motivated by an old problem known as Ryser’s Conjecture, we prove that for
r = 4 and r = 5, there exists ε > 0 such that every r-partite r-uniform hypergraph
H has a cover of size at most (r − ε)ν(H), where ν(H) denotes the size of a largest
matching in H.

1 Introduction

In this paper we are concerned with a packing and covering problem in hypergraphs. A
hypergraph consists of a vertex set V and a set H of edges, where each edge is a nonempty
subset of V = V (H). We say H has rank r if the largest size of an edge is r, and that H
is r-uniform if every edge has size r. The packing number (also called matching number)
ν(H) of H is the size of a largest matching in H, where a matching is a set of pairwise
disjoint edges in H. The covering number τ(H) of H is the size of a smallest cover of H,
where a cover is a subset W ⊂ V such that every edge of H contains a vertex of W . It
is clear that if H has rank r then τ(H) ≤ rν(H), and this is attained for example by the
complete r-uniform hypergraph Kr

2r−1 with 2r − 1 vertices, which has ν(Kr
2r−1) = 1 and

τ(Kr
2r−1) = r.
Our focus here is on a long-standing open problem known as Ryser’s Conjecture, which

states that if H is an r-partite r-uniform hypergraph then τ(H) ≤ (r − 1)ν(H) (see e.g.
[4, 9]; a stronger version of the conjecture was proposed by Lovász [6]). Here H being
r-partite means that its vertex set has a partition V1 ∪ · · · ∪ Vr and every edge contains
exactly one vertex of each Vi. When r = 2 this is the classical theorem of König, and for
r = 3, after a number of partial results [8, 10, 5], the conjecture was proved by Aharoni
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[1]. Apart from these two cases, very little is known about the problem. If true, the
statement is best possible whenever r − 1 is a prime power (see e.g. [9]). Until now no
nontrivial bound of the form τ(H) ≤ (r − ε)ν(H) for ε > 0 and any r ≥ 4 was known.

A hypergraph H is said to be intersecting if ν(H) = 1. Even for intersecting hyper-
graphs, Ryser’s Conjecture is open for all r ≥ 6. There are many examples showing the
result would be best possible in this case, and they can be quite sparse (see [7]). For r ≤ 5,
however, the conjecture has been proved in the special case of intersecting hypergraphs.

Theorem 1.1. (Tuza [9]) If H is an intersecting r-partite hypergraph of rank r and r ≤ 5
then τ(H) ≤ r − 1.

Our aim in this paper is to prove the following theorem, the proof of which depends
on Theorem 1.1, and thus give a nontrivial upper bound for Ryser’s problem in the cases
r = 4 and r = 5.

Theorem 1.2. For each of r = 4 and r = 5, there exists a positive constant ε such that
τ(H) ≤ (r − ε)ν(H) for every r-partite r-uniform hypergraph H.

2 General r

We begin the proof of Theorem 1.2 in this section, arguing in terms of general r. We then
complete the proof for r = 4 and r = 5 respectively in the next two sections.

Let J be an r-partite r-uniform hypergraph, with a fixed partition V1 ∪ . . . ∪ Vr. Let
B be a matching of size ν(J ) in J . It is clear that V (B) is a cover of J of size rν(J ).
For Bj ∈ B we let Hj denote the set of edges of J that intersect V (B) only in vertices of
Bj. Note then that Hj is intersecting and Bj ∈ Hj.

We call an edge A ∈ J bad if A ∩ V (B) = {v} for some v. The vertex v is also called
bad, and we say A is i-bad where v is in the ith colour class Vi of the r-partition of J .
Note that each bad edge is in Hj for some j. Let B1 = {Bj ∈ B : Bj has r bad vertices}.

Lemma 2.1. If τ(J ) > (r − 1/2r)|B| then |B1| > |B|/2.

Proof. Suppose that |B1| ≤ |B|/2. Then there is a colour class i such that at least |B|/2r
of the Bj /∈ B1 have no i-bad vertex. Let B∗ denote the set of these Bj. But then⋃

Bj /∈B∗ Bj ∪
⋃

Bj∈B∗ Bj \ Vi is a cover of J of size at most r(|B| − |B∗|) + (r − 1)|B∗| ≤
(r − 1/2r)|B|.

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed. Either J has a
suitably small cover, or we can find a special subset of B whose size is a positive proportion
of |B| (in this case B1 which is at least half of B) about which we can make a further
assumption. We may then cover all edges of J that intersect any edge of B that is not in
the special subset by taking every vertex of every edge of B not in the special subset. This
will not change the hypergraphs Hj, or the notion of bad, for the edges of J that remain.
We then focus on showing that the remaining edges have a suitably small cover (in this
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case of size at most (r − α)|B1| for some fixed positive α). In our proof of Theorem 1.2
we will apply this procedure r + 2 times for r = 4, and r + 3 times for r = 5.

By Lemma 2.1 we may assume that |B1| > |B|/2. As outlined in the previous para-
graph, we let J1 = {A ∈ J : A ∩ Bj = ∅ for all Bj ∈ B \ B1}. Then ν(J1) = |B1|, and
τ(J ) ≤ r(|B| − |B1|) + τ(J1).

Lemma 2.2. If τ(J1) > (r − 1/2)|B1| then there is a matching of 1-bad edges in J1 of
size at least |B1|/2r.

Proof. Let M = {M1, . . . ,Mt} be a maximum matching of 1-bad edges in J1. Note that
since each Hj is intersecting, all edges of M are in distinct Hj, say H1, . . . ,Ht. Then

t⋃
j=1

(Mj ∪Bj) ∪
⋃
j>t

Bj \ V1

is a cover of J1 of size at most (2r − 1)|M| + (r − 1)(|B1| − |M| = (r − 1)|B1| + r|M|).
If |M| < |B1|/2r then this is at most (r − 1/2)|B1|.

By Lemma 2.2 we may assume that there is a matching M of 1-bad edges in J1 of
size at least |B1|/2r. Let B2 = {Bj ∈ B1 : Bj ∩ Mk 6= ∅ for some Mk ∈ M}. Then
|B2| = |M| ≥ |B1|/2r. Let J2 = {A ∈ J1 : A ∩ Bj = ∅ for all Bj ∈ B1 \ B2}. Then
ν(J2) = |B2|, and τ(J1) ≤ r(|B1| − |B2|) + τ(J2). We may repeat this argument another
r− 1 times for colour classes V2, . . . , Vr until we reach a hypergraph Jr+1 and a matching
Br+1 in Jr+1, in which there exists a matching Mi of i-bad edges with |Mi| = |Br+1| for
each i. Each edge ofMi is in a distinct Hj, and ν(Jr+1) = |Br+1|. To prove Theorem 1.2
it will suffice to show that Jr+1 has a cover of size at most (r − α)|Br+1| for some fixed
positive α.

We denote by Cj the hypergraph consisting of the r edges of
⋃r

i=1Mi in Jr+1 that
intersect Bj, together with the edge Bj itself. Then Cj ⊂ Hj.

Lemma 2.3. For each Cj we have τ(Cj) ≥ 2, and no cover of Cj of size two consists of
vertices from distinct colour classes.

Proof. If on the contrary τ(Cj) = 1 then without loss of generality we may assume that
the vertex of Bj of colour 1 covers Cj. But then the M2-edge in Cj is not covered. Thus
τ(Cj) ≥ 2.

Suppose now that vertices v ∈ V1 and w ∈ V2 form a cover of Cj. We may assume
without loss of generality that v is in Bj. Then the M3 edge in Cj is not covered by v,
hence w must not be in Bj. But then the M2 edge in Cj is not covered by {v, w}.

Next we would like to restrict to a hypergraph in which V (Hj) ∩ V (Ck) 6= ∅ if and
only if j = k. To do this we will need to consider a more general setting in which our
r-uniform hypergraph is replaced with a hypergraph of rank r.

A sunflower with centre C in a hypergraph is a set S of edges such that S ∩ S ′ = C
for all S 6= S ′ in S. Each edge of S is called a petal. A classical theorem of Erdős and
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Rado [3] tells us that every hypergraph of rank r with more than (t−1)rr! edges contains
a sunflower of size t.

Let H be a hypergraph of rank r. We call a set S of t edges in H a giant sunflower
if it forms a sunflower and t ≥ r(2r − 4) + 1. Note that since t > r, if an intersecting
hypergraph H contains a giant sunflower S with centre C, then H′ = H\S ∪ {C} is also
intersecting. We refer to the hypergraph H′ as the hypergraph obtained by picking the
sunflower S.

We apply the following procedure to each Hj where Bj ∈ Br+1. If Hj = H0
j contains

a giant sunflower S0, we pick it to obtain H1
j . We repeat this process with the current

hypergraph Hk
j to get Hk+1

j , until for some u we obtain a hypergraph Dj = Hu
j that is free

of giant sunflowers. Then in particular each Dj is intersecting. Let J ′ = (Jr+1 \
⋃

jHj)∪⋃
j Dj. For every edge A ∈ Hj there exists a unique edge Â ∈ J ′ and a sequence of edges

A = A0, . . . , Au = Â with Ak ∈ Hk
j such that for i = 1, . . . , u, either Ai = Ai−1 or Ai−1

is a petal of Si−1 and Ai is its centre. We extend this definition to every A ∈ Jr+1 by
setting Â = A for each A ∈ Jr+1 that is not in any Hj.

Note that J ′ has rank at most r but may not be r-uniform. Also, we do not know
that ν(J ′) ≤ ν(Jr+1).

Lemma 2.4. Any cover of J ′ is also a cover of Jr+1.

Proof. Every edge A of Jr+1 has a subset Â that is an edge of J ′.

Thus to prove Theorem 1.2 it will suffice to find a cover of J ′ of size (r−α)|Br+1| for
some α > 0.

Lemma 2.5. Let {A′1, . . . , A′s} be a matching of size s ≤ 2r− 3 in J ′. Then there exists
a matching {A1, . . . , As ∈ Jr+1} such that

• A′i ⊆ Ai for each i,

• if A′i ∈ Dj then Ai ∈ Hj.

Proof. If every A′i ∈ Jr+1 then we set Ai = A′i for each i. Otherwise, since each Dj is
intersecting, we may assume that A′1, . . . , A

′
c−1 ∈ Jr+1, and that there are distinct Di for

c ≤ i ≤ s such that A′i ∈ Di. Set Ai = A′i for each 1 ≤ i ≤ c− 1.
Let Ai for c ≤ i ≤ s be such that the following hold.

• A′i ⊆ Ai for each i,

• Ai ∈ Hki
i for some ki,

• A1, . . . , As are all disjoint,

• ∑s
i=c ki is as small as possible.
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Such a choice of Ai exists because A′c, . . . , A
′
s satisfy the conditions. We claim that ki = 0

for each i, which implies the lemma.
Suppose on the contrary that Ai ∈ Hki

i for some i, where ki ≥ 1. Since
∑s

i=c ki is
as small as possible we know that Ai /∈ Hki−1

i , which implies that it is the centre of a
giant sunflower S in Hki−1

i . Let A∗i ∈ H
ki−1
i be a petal of S that is disjoint from all of

A1, . . . , Ai−1 and all of Ai+1, . . . , As. This is possible because the union of these edges
has size at most r(s− 1) ≤ r(2r − 4), and S has at least r(2r − 4) + 1 petals. But then
replacing Ai by A∗i gives a new family satisfying the conditions, contradicting the fact
that

∑s
i=c ki was as small as possible. Thus ki = 0 for each i, completing the proof.

In fact it follows from the proof of Lemma 2.5 that A′i = Âi for each i.

Lemma 2.6. Each Dj has at most rr+1(2r − 4)rr! vertices.

Proof. In particular there is no sunflower of size r(2r − 4) + 1 in Dj, so by the Erdős-
Rado theorem Dj has at most (r(2r − 4))rr! edges, and hence at most rr+1(2r − 4)rr!
vertices.

Lemma 2.7. For each Bj ∈ Br+1 we have B̂j = Bj.

Proof. Suppose the contrary. Then for some k we have that Bj is a petal of a sunflower
Sk in Hk

j . We may assume without loss of generality that the centre C of Sk does not

contain a vertex of colour 1. Let M be theM1-edge in Cj. Then M̂∩C = ∅, contradicting
the fact that Dj is intersecting.

Lemma 2.7 implies that if an edge A ∈ J ′ intersects exactly one Bj ∈ Br+1 then
A ∈ Dj.

Lemma 2.8. V (Br+1) is a cover of J ′.

Proof. Suppose on the contrary that an edge A ∈ J ′ is disjoint from V (Br+1). Since each
Dj is intersecting and Bj ∈ Dj, we know that A /∈ Dj for any j, so A ∈ Jr+1. But then
since V (Br+1) is a cover of Jr+1 we find a contradiction.

For each j let C ′j = {Â : A ∈ Cj}, so C ′j ⊆ Dj for each j. To restrict to our hypergraph
in which C ′j shares a vertex with Dk if and only if j = k, for convenience we define an
auxiliary directed graph G as follows. The vertex set of G is Br+1. We put an arc from
Bk to Bj if and only if Dk and C ′j share a vertex.

Lemma 2.9. The graph G has an independent set B′′ of vertices that has size at least
|Br+1|/(2rr+3(2r − 4)rr! + 1). Thus for any Bj, Bk ∈ B′′, if C ′j shares a vertex with Dk

then j = k.

Proof. Since eachMi is a matching, no vertex can be in more than r+ 1 edges of
⋃

j C ′j =⋃
j{Bj} ∪ {M̂ : M ∈ Mi for some 1 ≤ i ≤ r}. By Lemma 2.6 each Dk has fewer than

rr+1(2r−4)rr! vertices, and so can share a vertex with at most rr+3(2r−4)rr! Cj’s. Thus
the outdegree of G is at most rr+3(2r − 4)rr!, which implies that it has an independent
set of size at most |V (G)|/(2rr+3(2r − 4)rr! + 1).
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Let J ′′ = {A ∈ J ′ : A ∩ Bj = ∅ for all Bj ∈ Br+1 \ B′′}. Then B′′ is a matching
in J ′′ such that V (B′′) covers J ′′, and to prove Theorem 1.2 it suffices to prove that
τ(J ′′) < (r−α)|B′′| for some fixed positive α. One important consequence of the definition
of B′′ is the fact that if Bj, Bk ∈ B′′ then V (C ′j) ∩ V (C ′k) = ∅.

Lemma 2.10. Every edge of J ′′ contains a cover of C ′j for some j.

Proof. Suppose not. Then since the C ′j are all vertex-disjoint, some edge A together with
an edge Aj in C ′j for each j forms a matching of size |B′′|+1 in J ′′. Except for the set I of
at most r indices j for which A ∩ V (C ′j) 6= ∅, we may assume Aj = Bj. Then Lemma 2.5
applied to A together with {Aj : j ∈ I} gives a matching in Jr+1 of size |I| + 1, which
by our construction of J ′′ consists of edges that do not intersect any edge of Br+1 except
{Bj : j ∈ I}. But then together with {Bj : j /∈ I} this forms a matching in Jr+1 of size
|Br+1|+ 1, a contradiction.

Lemma 2.10 tells us that for every edge A ∈ J ′′ there exists j such that A contains
a cover of C ′j. Since every cover of C ′j is a cover of Cj, Lemma 2.3 tells us that this cover
is of size at least 3. Thus j is unique for r = 4 and r = 5. Let C∗j = {A ∈ J ′′ :
A contains a cover of C ′j}, so since C ′j is intersecting we have C ′j ⊆ C∗j . Then J ′′ =

⋃
j C∗j ,

where the union is a disjoint union.

Lemma 2.11. Suppose that A∩A′ = ∅ for A,A′ ∈ C∗j . Then there exists k 6= j such that
A ∪ A′ contains a cover of C ′k.

Proof. Suppose the contrary. Let I denote the set of at most 2(r − 3) + 1 indices such
that (A ∪A′) ∩ V (C ′j) 6= ∅. Then A and A′ together with an edge of C ′k for all k ∈ I \ {j}
forms a matching of size |I| + 1, consisting of edges that are disjoint from each Bj with
j /∈ I. Then as in the proof of Lemma 2.10 this leads to a matching in Jr+1 that is larger
than Br+1. This contradiction completes the proof.

3 r = 4

We have now done essentially all the required work to prove Theorem 1.2 for r = 4.

Lemma 3.1. Suppose r = 4. Then each C∗j is intersecting.

Proof. Suppose on the contrary that A ∩ A′ = ∅ where A,A′ ∈ C∗j . By Lemma 2.3, each
of A and A′ must have three vertices in V (C ′j). By Lemma 2.11 we know A ∪ A′ covers
C ′k for some k 6= j. Since every cover of C ′k is a cover of Ck, and V (C ′j) ∩ V (C ′k) = ∅, we
may assume that the vertices of colour 1 in A and A′ form a cover of C ′k. But then one of
these vertices is not in Bk, so one of the edges, say A, contains 3 vertices of C ′j and one
vertex of C ′k that is not in Bk. Thus A ∈ Hj, which implies A ∈ Dj. But then A cannot
intersect C ′k by Lemma 2.9.

We close this section with the r = 4 case of Theorem 1.2.
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Theorem 3.2. Suppose r = 4. Then there exists ε > 0 such that τ(J ) ≤ (4− ε)ν(J ).

Proof. Since J ′′ = ⋃
j C∗j , by Lemma 3.1 we may apply Theorem 1.1 to conclude that each

C∗j has a cover of size 3. Therefore τ(J ′′) ≤ 3|B′′|, completing the proof.

4 r = 5

Our approach for the case r = 5 will be to start with the hypergraph J ′′ and the matching
B′′ as defined in Section 2, and restrict once more to a portion of J ′′ in which all the
hypergraphs C∗j are intersecting.

We begin by fixing Bj ∈ B′′, and considering how the edges in C∗j can intersect other
sets C ′k. In particular, we will need some technical information on pairs of disjoint edges
in C∗j . We will make use of the following classical theorem of Bollobás [2].

Theorem 4.1. (Bollobás [2]) Suppose sets F1, . . . , Fm and F ′1, . . . , F
′
m satisfy Fi∩F ′h = ∅

if and only if i = h. Then
m∑
i=1

(
|Fi|+ |F ′i |
|Fi|

)−1
≤ 1.

We say that a set of vertices is multicoloured if no two of its elements come from the
same partition class Vi. For Bj ∈ B′′, suppose (S, S ′) is a pair of disjoint multicoloured
covers of C ′j. Since every cover of C ′j is a cover of Cj, by Lemma 2.3 we know each of S
and S ′ has size at least three. Let

A(S, S ′) = {(A,A′) : A,A′ ∈ C∗j , A ∩ A′ = ∅, A ∩ V (C ′j) = S,A′ ∩ V (C ′j) = S ′}.

Our key lemma in this section is the following.

Lemma 4.2. Let Bj ∈ B′′, and suppose (S, S ′) is a fixed pair of disjoint multicoloured
covers of C ′j. Let

U = {Bk ∈ B′′ \ {Bj} : A ∪ A′ covers C ′k for some (A,A′) ∈ A(S, S ′)}.

Then there exist B,B′ ∈ B′′ \ {Bj} such that for all but at most 42 elements Bk ∈ U , if
A ∪ A′ covers C ′k where (A,A′) ∈ A(S, S ′) then (A ∪ A′) ∩ (B ∪B′) 6= ∅.

Proof. Note that since |S|, |S ′| ≥ 3, for any (A,A′) ∈ A(S, S ′) we know that each of A
and A′ has at most two vertices outside V (C ′j).

Let U0 be the set of Bk in U for which there is some (A,A′) ∈ A(S, S ′) with A ∪ A′
covering C ′k, such that A ∪ A′ has at least 3 vertices in C ′k. Let U1 = U \ U0.

Suppose that |U0| ≥ 3. For each Bk ∈ U0 pick (Ak, A
′
k) ∈ A(S, S ′) with |(Ak ∪ A′k) ∩

V (C ′k)| ≥ 3. Then one of Ak, A′k must have 2 vertices in C ′k and the other must have at
least 1. Without loss of generality, we may assume that there are at least two sets Ak,
say A1, A2, such that Ak has 2 vertices in C ′k. In particular, for i = 1, 2, Ai is contained
in S ∪ V (C ′i). Now consider A′3: if it has no vertex in C ′i then A′3 and Ai are disjoint and
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contradict Lemma 2.11. On the other hand, A′3 has at most one vertex outside Bj∪V (C ′3).
So we must have |U0| ≤ 2.

Now we consider U1. For each Bk ∈ U1 and (Ak, A
′
k) ∈ A(S, S ′) that covers C ′k, by

Lemma 2.3 we know that the vertices yk and y′k are of the same colour, where Ak∩V (C ′k) =
{yk} and A′k ∩ V (C ′k) = {y′k}.
Case 1. Suppose that there exist Bk ∈ U1 and associated (Ak, A

′
k) such that for some

Bl ∈ B′′ \ {Bj, Bk}, the vertices xk and x′k exist and are both in C ′l, where {xk} =
Ak \(V (C ′k)∪V (C ′j)) and {x′k} = A′k \(V (C ′k)∪V (C ′j)). We claim that B = Bk and B′ = Bl

satisfy the lemma in this case. To verify this, we first observe that by Lemma 2.3, one of
Ak and A′k (say Ak) does not contain a vertex of Bk. If xk ∈ Ak is not a vertex of Bl, then
since its other three vertices are in C ′j, and the C ′h are all vertex-disjoint, we find Ak ∈ Dj.
But this contradicts Lemma 2.9. Therefore xk ∈ Ak ∩Bl, so {xk, x′k} ∩Bl 6= ∅. We know
{yk, y′k}∩Bk 6= ∅ since {yk, y′k} covers C ′k. Then to prove our claim we show that for every
Bt ∈ U1 and every associated (At, A

′
t), if the colour of {yt, y′t} is the same as the colour of

{yk, y′k} then {xk, x′k} ⊂ At∪A′t, and if the colour of {yt, y′t} is not the same as the colour
of {yk, y′k} then either {yk, y′k} ⊂ At ∪ A′t or {xk, x′k} ∩Bl ⊂ At ∪ A′t.

Let Bt 6= Bk in U1 be given, and first assume that the colour of {yt, y′t} (say 2) is the
same as the colour of {yk, y′k}. Then Ak and A′t are both in C∗j . If they are not disjoint
then A′t must contain xk. Suppose they are disjoint. Then by Lemma 2.11 the vertex
x′t where A′t = S ′ ∪ {y′t} ∪ {x′t} must exist and {xk, x′t} must cover C ′l, and hence xk and
x′t are the same colour (say 1). (Note that {yk, x′t} cannot cover C ′k because they are
different colours, contradicting Lemma 2.3.) But then since A′k = S ′ ∪{y′k}∪ {x′k} and y′k
has colour 2, we see that x′k has colour 1. Therefore x′k = x′t, since otherwise there is an
edge of C ′l containing x′k ∈ V (C ′l) that is not covered by {xk, x′t}. Thus x′k ∈ A′t. Now the
same argument applies to the pair A′k and At. Therefore since At ∩ A′t = ∅ we find that
{xk, x′k} ⊂ At ∪ A′t.

If the colour of {yt, y′t} (say 2) is not the same as the colour of {yk, y′k} (say 1) then
both elements of {xk, x′k} also have colour 2. If C ′t 6= C ′l then consider Ak and A′t. If they
are disjoint then, since Ak∩V (C ′t) = ∅, by Lemma 2.11 they must cover C ′k. Thus y′k ∈ A′t.
If they are not disjoint then yk ∈ A′t. The same argument applies to A′k and At, then
since At ∩A′t = ∅ we conclude {yk, y′k} ⊂ At ∪A′t. If C ′t = C ′l, recall that one of xk and x′k
is the vertex of colour 2 in Bl. But then since {yt, y′t} covers C ′l it must contain the vertex
of colour 2 in Bl. Therefore {xk, x′k} ∩Bl ⊂ {yt, y′t} ⊂ At ∪A′t. This finishes the proof for
Case 1.

Case 2. Suppose that for each Bk ∈ U1 and associated (Ak, A
′
k), the vertices xk and x′k

(if they exist) do not lie in a common C ′l. To finish the proof we will show that |U1| ≤ 40.
Suppose not, then there is a subset U2 of U1 of size at least 21 in which all {yk, y′k} are
the same colour. For each xk that exists and lies in a cover of size two of the C ′l it is in,
set zk to be the other vertex of the cover. Note that zk is unique by Lemma 2.3. Define
z′k similarly for each x′k. Define Fk = (Ak \ S) ∪ {zk} and F ′k = (A′k \ S ′) ∪ {z′k} for each
k (if zk or z′k do not exist then simply set Fk = (Ak \ S), F ′k = (A′k \ S ′)). We claim that
these pairs of sets satisfy the conditions for Theorem 4.1. Since xk and x′k do not lie in
a common Bl, we have that Fk ∩ F ′k = ∅ for each k. Suppose that Fk ∩ F ′l = ∅. Then
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Ak and A′l are disjoint edges in C ′j that do not cover any C ′t, contradicting Lemma 2.11.

Therefore by Theorem 4.1 we find that |U2| ≤
(
6
3

)
= 20. This contradiction completes

the proof.

We define an auxiliary directed graph G on the vertex set B′′ as follows. Consider a
vertex Bj and a pair (S, S ′) of disjoint multicoloured covers of C ′j of size at least three
(and at most four), and let U be the set defined in Lemma 4.2 for this choice of Bj and
(S, S ′). If |U | ≤ 42 then we put an arc (Bj, Bk) for each Bk ∈ U . If |U | ≥ 43 then, for
B,B′ guaranteed by Lemma 4.2, we put arcs (Bj, B) and (Bj, B

′), and an arc (Bj, Bk)
for each Bk ∈ U that fails to satisfy the conclusion of Lemma 4.2. We do this for each Bj

and each pair (S, S ′) of disjoint multicoloured covers of C ′j.

Lemma 4.3. The directed graph G has outdegree less than 44(5)16, and hence has an
independent set B† of size at least |B′′|/100(5)16.

Proof. Since |V (C ′j)| ≤ |V (Cj)| < r2, the number of distinct choices of (S, S ′) in C ′j is

less than (|V (C ′j)|4)2 <
(
r2

4

)2
< r16 = 516. Thus the outdegree of G is less than 49(5)16.

Therefore G has an independent set of size at least |V (G)|/(98(5)16 + 1) < |B′′|/100(5)16.

Let J † = {A ∈ J ′′ : A ∩ Bj = ∅ for all Bj ∈ B′′ \ B†}. Then B† is a matching in J †
such that V (B†) covers J †, and to prove Theorem 1.2 for r = 5 it suffices to prove that
τ(J †) < (r − α)|B†| for some fixed positive α.

Lemma 4.4. Each C∗j ∩ J † is intersecting.

Proof. Suppose on the contrary that A and A′ ∈ C∗j are edges of J † that do not intersect.
We know by Lemma 2.11 that A∪A′ covers some C ′k, k 6= j. Since then (A∪A′)∩V (C ′k) 6= ∅,
it must be true that Bk ∈ B†. Let S = A∩V (C ′j) and S ′ = A′∩V (C ′j). Since Bj, Bk ∈ B†,
there cannot be an arc (Bj, Bk) in G. The construction of G implies then that for this
choice of Bj and (S, S ′), the set U satisfies |U | ≥ 47 and that B and B′ exist satisfying
the conclusion of Lemma 4.2. Since B† is an independent set in G and Bj ∈ B† we know
that B,B′ /∈ B†. But then by Lemma 4.2 one of A and A′ intersects B or B′, and hence
it is not an edge of J † by definition. This contradiction completes the proof.

The r = 5 case of Theorem 1.2 follows.

Theorem 4.5. Suppose r = 5. Then there exists a fixed ε > 0 such that τ(H) ≤ (5 −
ε)ν(H).

Proof. Since J † =
⋃

j C∗j ∩J †, by Theorem 1.1 we conclude that each C∗j ∩J † has a cover
of size 4. Therefore τ(J †) ≤ 4|B†|, completing the proof.

We end with the remark that for each of r = 4 and r = 5, an explicit lower bound
for ε could be computed by following the steps of our proof. However, as this value is
probably very far from the truth we make no attempt to do this here.

the electronic journal of combinatorics 19 (2012), #P23 9



References

[1] R. Aharoni, Ryser’s Conjecture for tripartite 3-graphs, Combinatorica 21 (2001), 1–4.

[2] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16, (1965) 447–
452.
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