On Ryser's conjecture

P.E. Haxell*
Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Ont., Canada N2L 3G1
pehaxell@math.uwaterloo.ca

A.D. Scott
Mathematical Institute,
University of Oxford,
24-29 St Giles', Oxford OX1 3LB, UK
scott@maths.ox.ac.uk

Submitted: Sep 23, 2011; Accepted: Jan 15, 2012; Published: Jan 21, 2012
Mathematics Subject Classification: 05C70, 05C65

Abstract

Motivated by an old problem known as Ryser's Conjecture, we prove that for $r=4$ and $r=5$, there exists $\epsilon>0$ such that every r-partite r-uniform hypergraph \mathcal{H} has a cover of size at most $(r-\epsilon) \nu(\mathcal{H})$, where $\nu(\mathcal{H})$ denotes the size of a largest matching in \mathcal{H}.

1 Introduction

In this paper we are concerned with a packing and covering problem in hypergraphs. A hypergraph consists of a vertex set V and a set \mathcal{H} of edges, where each edge is a nonempty subset of $V=V(\mathcal{H})$. We say \mathcal{H} has rank r if the largest size of an edge is r, and that \mathcal{H} is r-uniform if every edge has size r. The packing number (also called matching number) $\nu(\mathcal{H})$ of \mathcal{H} is the size of a largest matching in \mathcal{H}, where a matching is a set of pairwise disjoint edges in \mathcal{H}. The covering number $\tau(\mathcal{H})$ of \mathcal{H} is the size of a smallest cover of \mathcal{H}, where a cover is a subset $W \subset V$ such that every edge of \mathcal{H} contains a vertex of W. It is clear that if \mathcal{H} has rank r then $\tau(\mathcal{H}) \leq r \nu(\mathcal{H})$, and this is attained for example by the complete r-uniform hypergraph $\mathcal{K}_{2 r-1}^{r}$ with $2 r-1$ vertices, which has $\nu\left(\mathcal{K}_{2 r-1}^{r}\right)=1$ and $\tau\left(\mathcal{K}_{2 r-1}^{r}\right)=r$.

Our focus here is on a long-standing open problem known as Ryser's Conjecture, which states that if \mathcal{H} is an r-partite r-uniform hypergraph then $\tau(\mathcal{H}) \leq(r-1) \nu(\mathcal{H})$ (see e.g. [4, 9]; a stronger version of the conjecture was proposed by Lovász [6]). Here \mathcal{H} being r-partite means that its vertex set has a partition $V_{1} \cup \cdots \cup V_{r}$ and every edge contains exactly one vertex of each V_{i}. When $r=2$ this is the classical theorem of König, and for $r=3$, after a number of partial results $[8,10,5]$, the conjecture was proved by Aharoni

[^0][1]. Apart from these two cases, very little is known about the problem. If true, the statement is best possible whenever $r-1$ is a prime power (see e.g. [9]). Until now no nontrivial bound of the form $\tau(\mathcal{H}) \leq(r-\epsilon) \nu(\mathcal{H})$ for $\epsilon>0$ and any $r \geq 4$ was known.

A hypergraph \mathcal{H} is said to be intersecting if $\nu(\mathcal{H})=1$. Even for intersecting hypergraphs, Ryser's Conjecture is open for all $r \geq 6$. There are many examples showing the result would be best possible in this case, and they can be quite sparse (see [7]). For $r \leq 5$, however, the conjecture has been proved in the special case of intersecting hypergraphs.

Theorem 1.1. (Tuza [9]) If \mathcal{H} is an intersecting r-partite hypergraph of rank r and $r \leq 5$ then $\tau(\mathcal{H}) \leq r-1$.

Our aim in this paper is to prove the following theorem, the proof of which depends on Theorem 1.1, and thus give a nontrivial upper bound for Ryser's problem in the cases $r=4$ and $r=5$.

Theorem 1.2. For each of $r=4$ and $r=5$, there exists a positive constant ϵ such that $\tau(\mathcal{H}) \leq(r-\epsilon) \nu(\mathcal{H})$ for every r-partite r-uniform hypergraph \mathcal{H}.

2 General r

We begin the proof of Theorem 1.2 in this section, arguing in terms of general r. We then complete the proof for $r=4$ and $r=5$ respectively in the next two sections.

Let \mathcal{J} be an r-partite r-uniform hypergraph, with a fixed partition $V_{1} \cup \ldots \cup V_{r}$. Let \mathcal{B} be a matching of size $\nu(\mathcal{J})$ in \mathcal{J}. It is clear that $V(\mathcal{B})$ is a cover of \mathcal{J} of $\operatorname{size} r \nu(\mathcal{J})$. For $B_{j} \in \mathcal{B}$ we let \mathcal{H}_{j} denote the set of edges of \mathcal{J} that intersect $V(\mathcal{B})$ only in vertices of B_{j}. Note then that \mathcal{H}_{j} is intersecting and $B_{j} \in \mathcal{H}_{j}$.

We call an edge $A \in \mathcal{J}$ bad if $A \cap V(\mathcal{B})=\{v\}$ for some v. The vertex v is also called $b a d$, and we say A is i-bad where v is in the i th colour class V_{i} of the r-partition of \mathcal{J}. Note that each bad edge is in \mathcal{H}_{j} for some j. Let $\mathcal{B}_{1}=\left\{B_{j} \in \mathcal{B}: B_{j}\right.$ has r bad vertices $\}$.

Lemma 2.1. If $\tau(\mathcal{J})>(r-1 / 2 r)|\mathcal{B}|$ then $\left|\mathcal{B}_{1}\right|>|\mathcal{B}| / 2$.
Proof. Suppose that $\left|\mathcal{B}_{1}\right| \leq|\mathcal{B}| / 2$. Then there is a colour class i such that at least $|\mathcal{B}| / 2 r$ of the $B_{j} \notin \mathcal{B}_{1}$ have no i-bad vertex. Let \mathcal{B}^{*} denote the set of these B_{j}. But then $\bigcup_{B_{j} \notin \mathcal{B}^{*}} B_{j} \cup \bigcup_{B_{j} \in \mathcal{B}^{*}} B_{j} \backslash V_{i}$ is a cover of \mathcal{J} of size at most $r\left(|\mathcal{B}|-\left|\mathcal{B}^{*}\right|\right)+(r-1)\left|\mathcal{B}^{*}\right| \leq$ $(r-1 / 2 r)|\mathcal{B}|$.

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed. Either \mathcal{J} has a suitably small cover, or we can find a special subset of \mathcal{B} whose size is a positive proportion of $|\mathcal{B}|$ (in this case \mathcal{B}_{1} which is at least half of \mathcal{B}) about which we can make a further assumption. We may then cover all edges of \mathcal{J} that intersect any edge of \mathcal{B} that is not in the special subset by taking every vertex of every edge of \mathcal{B} not in the special subset. This will not change the hypergraphs \mathcal{H}_{j}, or the notion of bad, for the edges of \mathcal{J} that remain. We then focus on showing that the remaining edges have a suitably small cover (in this
case of size at most $(r-\alpha)\left|\mathcal{B}_{1}\right|$ for some fixed positive α). In our proof of Theorem 1.2 we will apply this procedure $r+2$ times for $r=4$, and $r+3$ times for $r=5$.

By Lemma 2.1 we may assume that $\left|\mathcal{B}_{1}\right|>|\mathcal{B}| / 2$. As outlined in the previous paragraph, we let $\mathcal{J}_{1}=\left\{A \in \mathcal{J}: A \cap B_{j}=\emptyset\right.$ for all $\left.B_{j} \in \mathcal{B} \backslash \mathcal{B}_{1}\right\}$. Then $\nu\left(\mathcal{J}_{1}\right)=\left|\mathcal{B}_{1}\right|$, and $\tau(\mathcal{J}) \leq r\left(|\mathcal{B}|-\left|\mathcal{B}_{1}\right|\right)+\tau\left(\mathcal{J}_{1}\right)$.

Lemma 2.2. If $\tau\left(\mathcal{J}_{1}\right)>(r-1 / 2)\left|\mathcal{B}_{1}\right|$ then there is a matching of 1 -bad edges in \mathcal{J}_{1} of size at least $\left|\mathcal{B}_{1}\right| / 2 r$.

Proof. Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{t}\right\}$ be a maximum matching of 1-bad edges in \mathcal{J}_{1}. Note that since each \mathcal{H}_{j} is intersecting, all edges of \mathcal{M} are in distinct \mathcal{H}_{j}, say $\mathcal{H}_{1}, \ldots, \mathcal{H}_{t}$. Then

$$
\bigcup_{j=1}^{t}\left(M_{j} \cup B_{j}\right) \cup \bigcup_{j>t} B_{j} \backslash V_{1}
$$

is a cover of \mathcal{J}_{1} of size at most $(2 r-1)|\mathcal{M}|+(r-1)\left(\left|\mathcal{B}_{1}\right|-|\mathcal{M}|=(r-1)\left|\mathcal{B}_{1}\right|+r|\mathcal{M}|\right)$. If $|\mathcal{M}|<\left|\mathcal{B}_{1}\right| / 2 r$ then this is at most $(r-1 / 2)\left|\mathcal{B}_{1}\right|$.

By Lemma 2.2 we may assume that there is a matching \mathcal{M} of 1-bad edges in \mathcal{J}_{1} of size at least $\left|\mathcal{B}_{1}\right| / 2 r$. Let $\mathcal{B}_{2}=\left\{B_{j} \in \mathcal{B}_{1}: B_{j} \cap M_{k} \neq \emptyset\right.$ for some $\left.M_{k} \in \mathcal{M}\right\}$. Then $\left|\mathcal{B}_{2}\right|=|\mathcal{M}| \geq\left|\mathcal{B}_{1}\right| / 2 r$. Let $\mathcal{J}_{2}=\left\{A \in \mathcal{J}_{1}: A \cap B_{j}=\emptyset\right.$ for all $\left.B_{j} \in \mathcal{B}_{1} \backslash \mathcal{B}_{2}\right\}$. Then $\nu\left(\mathcal{J}_{2}\right)=\left|\mathcal{B}_{2}\right|$, and $\tau\left(\mathcal{J}_{1}\right) \leq r\left(\left|\mathcal{B}_{1}\right|-\left|\mathcal{B}_{2}\right|\right)+\tau\left(\mathcal{J}_{2}\right)$. We may repeat this argument another $r-1$ times for colour classes V_{2}, \ldots, V_{r} until we reach a hypergraph \mathcal{J}_{r+1} and a matching \mathcal{B}_{r+1} in \mathcal{J}_{r+1}, in which there exists a matching \mathcal{M}_{i} of i-bad edges with $\left|\mathcal{M}_{i}\right|=\left|\mathcal{B}_{r+1}\right|$ for each i. Each edge of \mathcal{M}_{i} is in a distinct \mathcal{H}_{j}, and $\nu\left(\mathcal{J}_{r+1}\right)=\left|\mathcal{B}_{r+1}\right|$. To prove Theorem 1.2 it will suffice to show that \mathcal{J}_{r+1} has a cover of size at most $(r-\alpha)\left|\mathcal{B}_{r+1}\right|$ for some fixed positive α.

We denote by \mathcal{C}_{j} the hypergraph consisting of the r edges of $\bigcup_{i=1}^{r} \mathcal{M}_{i}$ in \mathcal{J}_{r+1} that intersect B_{j}, together with the edge B_{j} itself. Then $\mathcal{C}_{j} \subset \mathcal{H}_{j}$.

Lemma 2.3. For each \mathcal{C}_{j} we have $\tau\left(\mathcal{C}_{j}\right) \geq 2$, and no cover of \mathcal{C}_{j} of size two consists of vertices from distinct colour classes.

Proof. If on the contrary $\tau\left(\mathcal{C}_{j}\right)=1$ then without loss of generality we may assume that the vertex of B_{j} of colour 1 covers \mathcal{C}_{j}. But then the \mathcal{M}_{2}-edge in \mathcal{C}_{j} is not covered. Thus $\tau\left(\mathcal{C}_{j}\right) \geq 2$.

Suppose now that vertices $v \in V_{1}$ and $w \in V_{2}$ form a cover of \mathcal{C}_{j}. We may assume without loss of generality that v is in B_{j}. Then the \mathcal{M}_{3} edge in \mathcal{C}_{j} is not covered by v, hence w must not be in B_{j}. But then the M_{2} edge in \mathcal{C}_{j} is not covered by $\{v, w\}$.

Next we would like to restrict to a hypergraph in which $V\left(\mathcal{H}_{j}\right) \cap V\left(\mathcal{C}_{k}\right) \neq \emptyset$ if and only if $j=k$. To do this we will need to consider a more general setting in which our r-uniform hypergraph is replaced with a hypergraph of rank r.

A sunflower with centre C in a hypergraph is a set \mathcal{S} of edges such that $S \cap S^{\prime}=C$ for all $S \neq S^{\prime}$ in \mathcal{S}. Each edge of \mathcal{S} is called a petal. A classical theorem of Erdős and

Rado [3] tells us that every hypergraph of rank r with more than $(t-1)^{r} r$! edges contains a sunflower of size t.

Let \mathcal{H} be a hypergraph of rank r. We call a set \mathcal{S} of t edges in \mathcal{H} a giant sunflower if it forms a sunflower and $t \geq r(2 r-4)+1$. Note that since $t>r$, if an intersecting hypergraph \mathcal{H} contains a giant sunflower \mathcal{S} with centre C, then $\mathcal{H}^{\prime}=\mathcal{H} \backslash \mathcal{S} \cup\{C\}$ is also intersecting. We refer to the hypergraph \mathcal{H}^{\prime} as the hypergraph obtained by picking the sunflower \mathcal{S}.

We apply the following procedure to each \mathcal{H}_{j} where $B_{j} \in \mathcal{B}_{r+1}$. If $\mathcal{H}_{j}=\mathcal{H}_{j}^{0}$ contains a giant sunflower \mathcal{S}_{0}, we pick it to obtain \mathcal{H}_{j}^{1}. We repeat this process with the current hypergraph \mathcal{H}_{j}^{k} to get \mathcal{H}_{j}^{k+1}, until for some u we obtain a hypergraph $\mathcal{D}_{j}=\mathcal{H}_{j}^{u}$ that is free of giant sunflowers. Then in particular each \mathcal{D}_{j} is intersecting. Let $\mathcal{J}^{\prime}=\left(\mathcal{J}_{r+1} \backslash \cup_{j} \mathcal{H}_{j}\right) \cup$ $\cup_{j} \mathcal{D}_{j}$. For every edge $A \in \mathcal{H}_{j}$ there exists a unique edge $\hat{A} \in \mathcal{J}^{\prime}$ and a sequence of edges $A=A^{0}, \ldots, A^{u}=\hat{A}$ with $A^{k} \in \mathcal{H}_{j}^{k}$ such that for $i=1, \ldots, u$, either $A^{i}=A^{i-1}$ or A^{i-1} is a petal of \mathcal{S}_{i-1} and A^{i} is its centre. We extend this definition to every $A \in \mathcal{J}_{r+1}$ by setting $\hat{A}=A$ for each $A \in \mathcal{J}_{r+1}$ that is not in any \mathcal{H}_{j}.

Note that \mathcal{J}^{\prime} has rank at most r but may not be r-uniform. Also, we do not know that $\nu\left(\mathcal{J}^{\prime}\right) \leq \nu\left(\mathcal{J}_{r+1}\right)$.

Lemma 2.4. Any cover of \mathcal{J}^{\prime} is also a cover of \mathcal{J}_{r+1}.
Proof. Every edge A of \mathcal{J}_{r+1} has a subset \hat{A} that is an edge of \mathcal{J}^{\prime}.
Thus to prove Theorem 1.2 it will suffice to find a cover of \mathcal{J}^{\prime} of size $(r-\alpha)\left|\mathcal{B}_{r+1}\right|$ for some $\alpha>0$.

Lemma 2.5. Let $\left\{A_{1}^{\prime}, \ldots, A_{s}^{\prime}\right\}$ be a matching of size $s \leq 2 r-3$ in \mathcal{J}^{\prime}. Then there exists a matching $\left\{A_{1}, \ldots, A_{s} \in \mathcal{J}_{r+1}\right\}$ such that

- $A_{i}^{\prime} \subseteq A_{i}$ for each i,
- if $A_{i}^{\prime} \in \mathcal{D}_{j}$ then $A_{i} \in \mathcal{H}_{j}$.

Proof. If every $A_{i}^{\prime} \in \mathcal{J}_{r+1}$ then we set $A_{i}=A_{i}^{\prime}$ for each i. Otherwise, since each \mathcal{D}_{j} is intersecting, we may assume that $A_{1}^{\prime}, \ldots, A_{c-1}^{\prime} \in \mathcal{J}_{r+1}$, and that there are distinct \mathcal{D}_{i} for $c \leq i \leq s$ such that $A_{i}^{\prime} \in \mathcal{D}_{i}$. Set $A_{i}=A_{i}^{\prime}$ for each $1 \leq i \leq c-1$.

Let A_{i} for $c \leq i \leq s$ be such that the following hold.

- $A_{i}^{\prime} \subseteq A_{i}$ for each i,
- $A_{i} \in \mathcal{H}_{i}^{k_{i}}$ for some k_{i},
- A_{1}, \ldots, A_{s} are all disjoint,
- $\sum_{i=c}^{s} k_{i}$ is as small as possible.

Such a choice of A_{i} exists because $A_{c}^{\prime}, \ldots, A_{s}^{\prime}$ satisfy the conditions. We claim that $k_{i}=0$ for each i, which implies the lemma.

Suppose on the contrary that $A_{i} \in \mathcal{H}_{i}^{k_{i}}$ for some i, where $k_{i} \geq 1$. Since $\sum_{i=c}^{s} k_{i}$ is as small as possible we know that $A_{i} \notin \mathcal{H}_{i}^{k_{i}-1}$, which implies that it is the centre of a giant sunflower \mathcal{S} in $\mathcal{H}_{i}^{k_{i}-1}$. Let $A_{i}^{*} \in \mathcal{H}_{i}^{k_{i}-1}$ be a petal of \mathcal{S} that is disjoint from all of A_{1}, \ldots, A_{i-1} and all of A_{i+1}, \ldots, A_{s}. This is possible because the union of these edges has size at most $r(s-1) \leq r(2 r-4)$, and \mathcal{S} has at least $r(2 r-4)+1$ petals. But then replacing A_{i} by A_{i}^{*} gives a new family satisfying the conditions, contradicting the fact that $\sum_{i=c}^{s} k_{i}$ was as small as possible. Thus $k_{i}=0$ for each i, completing the proof.

In fact it follows from the proof of Lemma 2.5 that $A_{i}^{\prime}=\hat{A}_{i}$ for each i.
Lemma 2.6. Each \mathcal{D}_{j} has at most $r^{r+1}(2 r-4)^{r} r$! vertices.
Proof. In particular there is no sunflower of size $r(2 r-4)+1$ in \mathcal{D}_{j}, so by the ErdősRado theorem \mathcal{D}_{j} has at most $(r(2 r-4))^{r} r!$ edges, and hence at most $r^{r+1}(2 r-4)^{r} r$! vertices.
Lemma 2.7. For each $B_{j} \in \mathcal{B}_{r+1}$ we have $\hat{B}_{j}=B_{j}$.
Proof. Suppose the contrary. Then for some k we have that B_{j} is a petal of a sunflower \mathcal{S}_{k} in \mathcal{H}_{j}^{k}. We may assume without loss of generality that the centre C of \mathcal{S}_{k} does not contain a vertex of colour 1 . Let M be the \mathcal{M}_{1}-edge in \mathcal{C}_{j}. Then $\hat{M} \cap C=\emptyset$, contradicting the fact that \mathcal{D}_{j} is intersecting.

Lemma 2.7 implies that if an edge $A \in \mathcal{J}^{\prime}$ intersects exactly one $B_{j} \in \mathcal{B}_{r+1}$ then $A \in \mathcal{D}_{j}$.

Lemma 2.8. $V\left(\mathcal{B}_{r+1}\right)$ is a cover of \mathcal{J}^{\prime}.
Proof. Suppose on the contrary that an edge $A \in \mathcal{J}^{\prime}$ is disjoint from $V\left(\mathcal{B}_{r+1}\right)$. Since each \mathcal{D}_{j} is intersecting and $B_{j} \in \mathcal{D}_{j}$, we know that $A \notin \mathcal{D}_{j}$ for any j, so $A \in \mathcal{J}_{r+1}$. But then since $V\left(\mathcal{B}_{r+1}\right)$ is a cover of \mathcal{J}_{r+1} we find a contradiction.

For each j let $\mathcal{C}_{j}^{\prime}=\left\{\hat{A}: A \in \mathcal{C}_{j}\right\}$, so $\mathcal{C}_{j}^{\prime} \subseteq \mathcal{D}_{j}$ for each j. To restrict to our hypergraph in which \mathcal{C}_{j}^{\prime} shares a vertex with \mathcal{D}_{k} if and only if $j=k$, for convenience we define an auxiliary directed graph G as follows. The vertex set of G is \mathcal{B}_{r+1}. We put an arc from B_{k} to B_{j} if and only if \mathcal{D}_{k} and \mathcal{C}_{j}^{\prime} share a vertex.

Lemma 2.9. The graph G has an independent set $\mathcal{B}^{\prime \prime}$ of vertices that has size at least $\left|\mathcal{B}_{r+1}\right| /\left(2 r^{r+3}(2 r-4)^{r} r!+1\right)$. Thus for any $B_{j}, B_{k} \in \mathcal{B}^{\prime \prime}$, if \mathcal{C}_{j}^{\prime} shares a vertex with \mathcal{D}_{k} then $j=k$.

Proof. Since each \mathcal{M}_{i} is a matching, no vertex can be in more than $r+1$ edges of $\bigcup_{j} \mathcal{C}_{j}^{\prime}=$ $\cup_{j}\left\{B_{j}\right\} \cup\left\{\hat{M}: M \in \mathcal{M}_{i}\right.$ for some $\left.1 \leq i \leq r\right\}$. By Lemma 2.6 each \mathcal{D}_{k} has fewer than $r^{r+1}(2 r-4)^{r} r$! vertices, and so can share a vertex with at most $r^{r+3}(2 r-4)^{r} r!C_{j}$'s. Thus the outdegree of G is at most $r^{r+3}(2 r-4)^{r} r$!, which implies that it has an independent set of size at most $|V(G)| /\left(2 r^{r+3}(2 r-4)^{r} r!+1\right)$.

Let $\mathcal{J}^{\prime \prime}=\left\{A \in \mathcal{J}^{\prime}: A \cap B_{j}=\emptyset\right.$ for all $\left.B_{j} \in \mathcal{B}_{r+1} \backslash \mathcal{B}^{\prime \prime}\right\}$. Then $\mathcal{B}^{\prime \prime}$ is a matching in $\mathcal{J}^{\prime \prime}$ such that $V\left(\mathcal{B}^{\prime \prime}\right)$ covers $\mathcal{J}^{\prime \prime}$, and to prove Theorem 1.2 it suffices to prove that $\tau\left(\mathcal{J}^{\prime \prime}\right)<(r-\alpha)\left|\mathcal{B}^{\prime \prime}\right|$ for some fixed positive α. One important consequence of the definition of $\mathcal{B}^{\prime \prime}$ is the fact that if $B_{j}, B_{k} \in \mathcal{B}^{\prime \prime}$ then $V\left(\mathcal{C}_{j}^{\prime}\right) \cap V\left(\mathcal{C}_{k}^{\prime}\right)=\emptyset$.

Lemma 2.10. Every edge of $\mathcal{J}^{\prime \prime}$ contains a cover of \mathcal{C}_{j}^{\prime} for some j.
Proof. Suppose not. Then since the \mathcal{C}_{j}^{\prime} are all vertex-disjoint, some edge A together with an edge A_{j} in \mathcal{C}_{j}^{\prime} for each j forms a matching of size $\left|\mathcal{B}^{\prime \prime}\right|+1$ in $\mathcal{J}^{\prime \prime}$. Except for the set I of at most r indices j for which $A \cap V\left(\mathcal{C}_{j}^{\prime}\right) \neq \emptyset$, we may assume $A_{j}=B_{j}$. Then Lemma 2.5 applied to A together with $\left\{A_{j}: j \in I\right\}$ gives a matching in \mathcal{J}_{r+1} of size $|I|+1$, which by our construction of $\mathcal{J}^{\prime \prime}$ consists of edges that do not intersect any edge of \mathcal{B}_{r+1} except $\left\{B_{j}: j \in I\right\}$. But then together with $\left\{B_{j}: j \notin I\right\}$ this forms a matching in \mathcal{J}_{r+1} of size $\left|\mathcal{B}_{r+1}\right|+1$, a contradiction.

Lemma 2.10 tells us that for every edge $A \in \mathcal{J}^{\prime \prime}$ there exists j such that A contains a cover of \mathcal{C}_{j}^{\prime}. Since every cover of \mathcal{C}_{j}^{\prime} is a cover of \mathcal{C}_{j}, Lemma 2.3 tells us that this cover is of size at least 3 . Thus j is unique for $r=4$ and $r=5$. Let $\mathcal{C}_{j}^{*}=\left\{A \in \mathcal{J}^{\prime \prime}\right.$: A contains a cover of $\left.\mathcal{C}_{j}^{\prime}\right\}$, so since \mathcal{C}_{j}^{\prime} is intersecting we have $\mathcal{C}_{j}^{\prime} \subseteq \mathcal{C}_{j}^{*}$. Then $\mathcal{J}^{\prime \prime}=\cup_{j} \mathcal{C}_{j}^{*}$, where the union is a disjoint union.

Lemma 2.11. Suppose that $A \cap A^{\prime}=\emptyset$ for $A, A^{\prime} \in \mathcal{C}_{j}^{*}$. Then there exists $k \neq j$ such that $A \cup A^{\prime}$ contains a cover of \mathcal{C}_{k}^{\prime}.

Proof. Suppose the contrary. Let I denote the set of at most $2(r-3)+1$ indices such that $\left(A \cup A^{\prime}\right) \cap V\left(\mathcal{C}_{j}^{\prime}\right) \neq \emptyset$. Then A and A^{\prime} together with an edge of \mathcal{C}_{k}^{\prime} for all $k \in I \backslash\{j\}$ forms a matching of size $|I|+1$, consisting of edges that are disjoint from each B_{j} with $j \notin I$. Then as in the proof of Lemma 2.10 this leads to a matching in \mathcal{J}_{r+1} that is larger than \mathcal{B}_{r+1}. This contradiction completes the proof.

$3 \quad r=4$

We have now done essentially all the required work to prove Theorem 1.2 for $r=4$.
Lemma 3.1. Suppose $r=4$. Then each \mathcal{C}_{j}^{*} is intersecting.
Proof. Suppose on the contrary that $A \cap A^{\prime}=\emptyset$ where $A, A^{\prime} \in \mathcal{C}_{j}^{*}$. By Lemma 2.3, each of A and A^{\prime} must have three vertices in $V\left(\mathcal{C}_{j}^{\prime}\right)$. By Lemma 2.11 we know $A \cup A^{\prime}$ covers \mathcal{C}_{k}^{\prime} for some $k \neq j$. Since every cover of \mathcal{C}_{k}^{\prime} is a cover of \mathcal{C}_{k}, and $V\left(\mathcal{C}_{j}^{\prime}\right) \cap V\left(\mathcal{C}_{k}^{\prime}\right)=\emptyset$, we may assume that the vertices of colour 1 in A and A^{\prime} form a cover of \mathcal{C}_{k}^{\prime}. But then one of these vertices is not in B_{k}, so one of the edges, say A, contains 3 vertices of \mathcal{C}_{j}^{\prime} and one vertex of \mathcal{C}_{k}^{\prime} that is not in B_{k}. Thus $A \in \mathcal{H}_{j}$, which implies $A \in \mathcal{D}_{j}$. But then A cannot intersect \mathcal{C}_{k}^{\prime} by Lemma 2.9.

We close this section with the $r=4$ case of Theorem 1.2.

Theorem 3.2. Suppose $r=4$. Then there exists $\epsilon>0$ such that $\tau(\mathcal{J}) \leq(4-\epsilon) \nu(\mathcal{J})$.
Proof. Since $\mathcal{J}^{\prime \prime}=\bigcup_{j} \mathcal{C}_{j}^{*}$, by Lemma 3.1 we may apply Theorem 1.1 to conclude that each \mathcal{C}_{j}^{*} has a cover of size 3 . Therefore $\tau\left(\mathcal{J}^{\prime \prime}\right) \leq 3\left|\mathcal{B}^{\prime \prime}\right|$, completing the proof.

$4 \quad r=5$

Our approach for the case $r=5$ will be to start with the hypergraph $\mathcal{J}^{\prime \prime}$ and the matching $\mathcal{B}^{\prime \prime}$ as defined in Section 2, and restrict once more to a portion of $\mathcal{J}^{\prime \prime}$ in which all the hypergraphs \mathcal{C}_{j}^{*} are intersecting.

We begin by fixing $B_{j} \in \mathcal{B}^{\prime \prime}$, and considering how the edges in \mathcal{C}_{j}^{*} can intersect other sets \mathcal{C}_{k}^{\prime}. In particular, we will need some technical information on pairs of disjoint edges in \mathcal{C}_{j}^{*}. We will make use of the following classical theorem of Bollobás [2].

Theorem 4.1. (Bollobás [2]) Suppose sets F_{1}, \ldots, F_{m} and $F_{1}^{\prime}, \ldots, F_{m}^{\prime}$ satisfy $F_{i} \cap F_{h}^{\prime}=\emptyset$ if and only if $i=h$. Then

$$
\sum_{i=1}^{m}\binom{\left|F_{i}\right|+\left|F_{i}^{\prime}\right|}{\left|F_{i}\right|}^{-1} \leq 1
$$

We say that a set of vertices is multicoloured if no two of its elements come from the same partition class V_{i}. For $B_{j} \in \mathcal{B}^{\prime \prime}$, suppose $\left(S, S^{\prime}\right)$ is a pair of disjoint multicoloured covers of \mathcal{C}_{j}^{\prime}. Since every cover of \mathcal{C}_{j}^{\prime} is a cover of \mathcal{C}_{j}, by Lemma 2.3 we know each of S and S^{\prime} has size at least three. Let

$$
\mathcal{A}\left(S, S^{\prime}\right)=\left\{\left(A, A^{\prime}\right): A, A^{\prime} \in \mathcal{C}_{j}^{*}, A \cap A^{\prime}=\emptyset, A \cap V\left(\mathcal{C}_{j}^{\prime}\right)=S, A^{\prime} \cap V\left(\mathcal{C}_{j}^{\prime}\right)=S^{\prime}\right\}
$$

Our key lemma in this section is the following.
Lemma 4.2. Let $B_{j} \in \mathcal{B}^{\prime \prime}$, and suppose $\left(S, S^{\prime}\right)$ is a fixed pair of disjoint multicoloured covers of \mathcal{C}_{j}^{\prime}. Let

$$
U=\left\{B_{k} \in \mathcal{B}^{\prime \prime} \backslash\left\{B_{j}\right\}: A \cup A^{\prime} \text { covers } \mathcal{C}_{k}^{\prime} \text { for some }\left(A, A^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)\right\}
$$

Then there exist $B, B^{\prime} \in \mathcal{B}^{\prime \prime} \backslash\left\{B_{j}\right\}$ such that for all but at most 42 elements $B_{k} \in U$, if $A \cup A^{\prime}$ covers \mathcal{C}_{k}^{\prime} where $\left(A, A^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)$ then $\left(A \cup A^{\prime}\right) \cap\left(B \cup B^{\prime}\right) \neq \emptyset$.

Proof. Note that since $|S|,\left|S^{\prime}\right| \geq 3$, for any $\left(A, A^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)$ we know that each of A and A^{\prime} has at most two vertices outside $V\left(\mathcal{C}_{j}^{\prime}\right)$.

Let U_{0} be the set of B_{k} in U for which there is some $\left(A, A^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)$ with $A \cup A^{\prime}$ covering \mathcal{C}_{k}^{\prime}, such that $A \cup A^{\prime}$ has at least 3 vertices in \mathcal{C}_{k}^{\prime}. Let $U_{1}=U \backslash U_{0}$.

Suppose that $\left|U_{0}\right| \geq 3$. For each $B_{k} \in U_{0}$ pick $\left(A_{k}, A_{k}^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)$ with $\mid\left(A_{k} \cup A_{k}^{\prime}\right) \cap$ $V\left(\mathcal{C}_{k}^{\prime}\right) \mid \geq 3$. Then one of A_{k}, A_{k}^{\prime} must have 2 vertices in \mathcal{C}_{k}^{\prime} and the other must have at least 1. Without loss of generality, we may assume that there are at least two sets A_{k}, say A_{1}, A_{2}, such that A_{k} has 2 vertices in \mathcal{C}_{k}^{\prime}. In particular, for $i=1,2, A_{i}$ is contained in $S \cup V\left(\mathcal{C}_{i}^{\prime}\right)$. Now consider A_{3}^{\prime} : if it has no vertex in \mathcal{C}_{i}^{\prime} then A_{3}^{\prime} and A_{i} are disjoint and
contradict Lemma 2.11. On the other hand, A_{3}^{\prime} has at most one vertex outside $B_{j} \cup V\left(\mathcal{C}_{3}^{\prime}\right)$. So we must have $\left|U_{0}\right| \leq 2$.

Now we consider U_{1}. For each $B_{k} \in U_{1}$ and $\left(A_{k}, A_{k}^{\prime}\right) \in \mathcal{A}\left(S, S^{\prime}\right)$ that covers \mathcal{C}_{k}^{\prime}, by Lemma 2.3 we know that the vertices y_{k} and y_{k}^{\prime} are of the same colour, where $A_{k} \cap V\left(\mathcal{C}_{k}^{\prime}\right)=$ $\left\{y_{k}\right\}$ and $A_{k}^{\prime} \cap V\left(\mathcal{C}_{k}^{\prime}\right)=\left\{y_{k}^{\prime}\right\}$.
Case 1. Suppose that there exist $B_{k} \in U_{1}$ and associated (A_{k}, A_{k}^{\prime}) such that for some $B_{l} \in \mathcal{B}^{\prime \prime} \backslash\left\{B_{j}, B_{k}\right\}$, the vertices x_{k} and x_{k}^{\prime} exist and are both in \mathcal{C}_{l}^{\prime}, where $\left\{x_{k}\right\}=$ $A_{k} \backslash\left(V\left(\mathcal{C}_{k}^{\prime}\right) \cup V\left(\mathcal{C}_{j}^{\prime}\right)\right)$ and $\left\{x_{k}^{\prime}\right\}=A_{k}^{\prime} \backslash\left(V\left(\mathcal{C}_{k}^{\prime}\right) \cup V\left(\mathcal{C}_{j}^{\prime}\right)\right)$. We claim that $B=B_{k}$ and $B^{\prime}=B_{l}$ satisfy the lemma in this case. To verify this, we first observe that by Lemma 2.3, one of A_{k} and A_{k}^{\prime} (say A_{k}) does not contain a vertex of B_{k}. If $x_{k} \in A_{k}$ is not a vertex of B_{l}, then since its other three vertices are in \mathcal{C}_{j}^{\prime}, and the \mathcal{C}_{h}^{\prime} are all vertex-disjoint, we find $A_{k} \in \mathcal{D}_{j}$. But this contradicts Lemma 2.9. Therefore $x_{k} \in A_{k} \cap B_{l}$, so $\left\{x_{k}, x_{k}^{\prime}\right\} \cap B_{l} \neq \emptyset$. We know $\left\{y_{k}, y_{k}^{\prime}\right\} \cap B_{k} \neq \emptyset$ since $\left\{y_{k}, y_{k}^{\prime}\right\}$ covers \mathcal{C}_{k}^{\prime}. Then to prove our claim we show that for every $B_{t} \in U_{1}$ and every associated $\left(A_{t}, A_{t}^{\prime}\right)$, if the colour of $\left\{y_{t}, y_{t}^{\prime}\right\}$ is the same as the colour of $\left\{y_{k}, y_{k}^{\prime}\right\}$ then $\left\{x_{k}, x_{k}^{\prime}\right\} \subset A_{t} \cup A_{t}^{\prime}$, and if the colour of $\left\{y_{t}, y_{t}^{\prime}\right\}$ is not the same as the colour of $\left\{y_{k}, y_{k}^{\prime}\right\}$ then either $\left\{y_{k}, y_{k}^{\prime}\right\} \subset A_{t} \cup A_{t}^{\prime}$ or $\left\{x_{k}, x_{k}^{\prime}\right\} \cap B_{l} \subset A_{t} \cup A_{t}^{\prime}$.

Let $B_{t} \neq B_{k}$ in U_{1} be given, and first assume that the colour of $\left\{y_{t}, y_{t}^{\prime}\right\}$ (say 2) is the same as the colour of $\left\{y_{k}, y_{k}^{\prime}\right\}$. Then A_{k} and A_{t}^{\prime} are both in \mathcal{C}_{j}^{*}. If they are not disjoint then A_{t}^{\prime} must contain x_{k}. Suppose they are disjoint. Then by Lemma 2.11 the vertex x_{t}^{\prime} where $A_{t}^{\prime}=S^{\prime} \cup\left\{y_{t}^{\prime}\right\} \cup\left\{x_{t}^{\prime}\right\}$ must exist and $\left\{x_{k}, x_{t}^{\prime}\right\}$ must cover \mathcal{C}_{l}^{\prime}, and hence x_{k} and x_{t}^{\prime} are the same colour (say 1). (Note that $\left\{y_{k}, x_{t}^{\prime}\right\}$ cannot cover \mathcal{C}_{k}^{\prime} because they are different colours, contradicting Lemma 2.3.) But then since $A_{k}^{\prime}=S^{\prime} \cup\left\{y_{k}^{\prime}\right\} \cup\left\{x_{k}^{\prime}\right\}$ and y_{k}^{\prime} has colour 2, we see that x_{k}^{\prime} has colour 1. Therefore $x_{k}^{\prime}=x_{t}^{\prime}$, since otherwise there is an edge of \mathcal{C}_{l}^{\prime} containing $x_{k}^{\prime} \in V\left(\mathcal{C}_{l}^{\prime}\right)$ that is not covered by $\left\{x_{k}, x_{t}^{\prime}\right\}$. Thus $x_{k}^{\prime} \in A_{t}^{\prime}$. Now the same argument applies to the pair A_{k}^{\prime} and A_{t}. Therefore since $A_{t} \cap A_{t}^{\prime}=\emptyset$ we find that $\left\{x_{k}, x_{k}^{\prime}\right\} \subset A_{t} \cup A_{t}^{\prime}$.

If the colour of $\left\{y_{t}, y_{t}^{\prime}\right\}$ (say 2) is not the same as the colour of $\left\{y_{k}, y_{k}^{\prime}\right\}$ (say 1) then both elements of $\left\{x_{k}, x_{k}^{\prime}\right\}$ also have colour 2. If $\mathcal{C}_{t}^{\prime} \neq \mathcal{C}_{l}^{\prime}$ then consider A_{k} and A_{t}^{\prime}. If they are disjoint then, since $A_{k} \cap V\left(\mathcal{C}_{t}^{\prime}\right)=\emptyset$, by Lemma 2.11 they must cover \mathcal{C}_{k}^{\prime}. Thus $y_{k}^{\prime} \in A_{t}^{\prime}$. If they are not disjoint then $y_{k} \in A_{t}^{\prime}$. The same argument applies to A_{k}^{\prime} and A_{t}, then since $A_{t} \cap A_{t}^{\prime}=\emptyset$ we conclude $\left\{y_{k}, y_{k}^{\prime}\right\} \subset A_{t} \cup A_{t}^{\prime}$. If $\mathcal{C}_{t}^{\prime}=\mathcal{C}_{l}^{\prime}$, recall that one of x_{k} and x_{k}^{\prime} is the vertex of colour 2 in B_{l}. But then since $\left\{y_{t}, y_{t}^{\prime}\right\}$ covers \mathcal{C}_{l}^{\prime} it must contain the vertex of colour 2 in B_{l}. Therefore $\left\{x_{k}, x_{k}^{\prime}\right\} \cap B_{l} \subset\left\{y_{t}, y_{t}^{\prime}\right\} \subset A_{t} \cup A_{t}^{\prime}$. This finishes the proof for Case 1.
Case 2. Suppose that for each $B_{k} \in U_{1}$ and associated (A_{k}, A_{k}^{\prime}), the vertices x_{k} and x_{k}^{\prime} (if they exist) do not lie in a common \mathcal{C}_{l}^{\prime}. To finish the proof we will show that $\left|U_{1}\right| \leq 40$. Suppose not, then there is a subset U_{2} of U_{1} of size at least 21 in which all $\left\{y_{k}, y_{k}^{\prime}\right\}$ are the same colour. For each x_{k} that exists and lies in a cover of size two of the \mathcal{C}_{l}^{\prime} it is in, set z_{k} to be the other vertex of the cover. Note that z_{k} is unique by Lemma 2.3. Define z_{k}^{\prime} similarly for each x_{k}^{\prime}. Define $F_{k}=\left(A_{k} \backslash S\right) \cup\left\{z_{k}\right\}$ and $F_{k}^{\prime}=\left(A_{k}^{\prime} \backslash S^{\prime}\right) \cup\left\{z_{k}^{\prime}\right\}$ for each k (if z_{k} or z_{k}^{\prime} do not exist then simply set $F_{k}=\left(A_{k} \backslash S\right), F_{k}^{\prime}=\left(A_{k}^{\prime} \backslash S^{\prime}\right)$). We claim that these pairs of sets satisfy the conditions for Theorem 4.1. Since x_{k} and x_{k}^{\prime} do not lie in a common B_{l}, we have that $F_{k} \cap F_{k}^{\prime}=\emptyset$ for each k. Suppose that $F_{k} \cap F_{l}^{\prime}=\emptyset$. Then
A_{k} and A_{l}^{\prime} are disjoint edges in \mathcal{C}_{j}^{\prime} that do not cover any \mathcal{C}_{t}^{\prime}, contradicting Lemma 2.11. Therefore by Theorem 4.1 we find that $\left|U_{2}\right| \leq\binom{ 6}{3}=20$. This contradiction completes the proof.

We define an auxiliary directed graph G on the vertex set $\mathcal{B}^{\prime \prime}$ as follows. Consider a vertex B_{j} and a pair (S, S^{\prime}) of disjoint multicoloured covers of \mathcal{C}_{j}^{\prime} of size at least three (and at most four), and let U be the set defined in Lemma 4.2 for this choice of B_{j} and $\left(S, S^{\prime}\right)$. If $|U| \leq 42$ then we put an $\operatorname{arc}\left(B_{j}, B_{k}\right)$ for each $B_{k} \in U$. If $|U| \geq 43$ then, for B, B^{\prime} guaranteed by Lemma 4.2, we put $\operatorname{arcs}\left(B_{j}, B\right)$ and $\left(B_{j}, B^{\prime}\right)$, and an $\operatorname{arc}\left(B_{j}, B_{k}\right)$ for each $B_{k} \in U$ that fails to satisfy the conclusion of Lemma 4.2. We do this for each B_{j} and each pair $\left(S, S^{\prime}\right)$ of disjoint multicoloured covers of \mathcal{C}_{j}^{\prime}.

Lemma 4.3. The directed graph G has outdegree less than $44(5)^{16}$, and hence has an independent set \mathcal{B}^{\dagger} of size at least $\left|\mathcal{B}^{\prime \prime}\right| / 100(5)^{16}$.

Proof. Since $\left|V\left(\mathcal{C}_{j}^{\prime}\right)\right| \leq\left|V\left(\mathcal{C}_{j}\right)\right|<r^{2}$, the number of distinct choices of $\left(S, S^{\prime}\right)$ in \mathcal{C}_{j}^{\prime} is less than $\left(\left|V\left(\mathcal{C}_{j}^{\prime}\right)\right|^{4}\right)^{2}<\binom{r^{2}}{4}^{2}<r^{16}=5^{16}$. Thus the outdegree of G is less than $49(5)^{16}$. Therefore G has an independent set of size at least $|V(G)| /\left(98(5)^{16}+1\right)<\left|\mathcal{B}^{\prime \prime}\right| / 100(5)^{16}$.

Let $\mathcal{J}^{\dagger}=\left\{A \in \mathcal{J}^{\prime \prime}: A \cap B_{j}=\emptyset\right.$ for all $\left.B_{j} \in \mathcal{B}^{\prime \prime} \backslash \mathcal{B}^{\dagger}\right\}$. Then \mathcal{B}^{\dagger} is a matching in \mathcal{J}^{\dagger} such that $V\left(\mathcal{B}^{\dagger}\right)$ covers \mathcal{J}^{\dagger}, and to prove Theorem 1.2 for $r=5$ it suffices to prove that $\tau\left(\mathcal{J}^{\dagger}\right)<(r-\alpha)\left|\mathcal{B}^{\dagger}\right|$ for some fixed positive α.

Lemma 4.4. Each $\mathcal{C}_{j}^{*} \cap \mathcal{J}^{\dagger}$ is intersecting.
Proof. Suppose on the contrary that A and $A^{\prime} \in \mathcal{C}_{j}^{*}$ are edges of \mathcal{J}^{\dagger} that do not intersect. We know by Lemma 2.11 that $A \cup A^{\prime}$ covers some $\mathcal{C}_{k}^{\prime}, k \neq j$. Since then $\left(A \cup A^{\prime}\right) \cap V\left(\mathcal{C}_{k}^{\prime}\right) \neq \emptyset$, it must be true that $B_{k} \in \mathcal{B}^{\dagger}$. Let $S=A \cap V\left(\mathcal{C}_{j}^{\prime}\right)$ and $S^{\prime}=A^{\prime} \cap V\left(\mathcal{C}_{j}^{\prime}\right)$. Since $B_{j}, B_{k} \in \mathcal{B}^{\dagger}$, there cannot be an arc $\left(B_{j}, B_{k}\right)$ in G. The construction of G implies then that for this choice of B_{j} and $\left(S, S^{\prime}\right)$, the set U satisfies $|U| \geq 47$ and that B and B^{\prime} exist satisfying the conclusion of Lemma 4.2. Since \mathcal{B}^{\dagger} is an independent set in G and $B_{j} \in \mathcal{B}^{\dagger}$ we know that $B, B^{\prime} \notin \mathcal{B}^{\dagger}$. But then by Lemma 4.2 one of A and A^{\prime} intersects B or B^{\prime}, and hence it is not an edge of \mathcal{J}^{\dagger} by definition. This contradiction completes the proof.

The $r=5$ case of Theorem 1.2 follows.
Theorem 4.5. Suppose $r=5$. Then there exists a fixed $\epsilon>0$ such that $\tau(\mathcal{H}) \leq(5-$ є) $\nu(\mathcal{H})$.

Proof. Since $\mathcal{J}^{\dagger}=\bigcup_{j} \mathcal{C}_{j}^{*} \cap \mathcal{J}^{\dagger}$, by Theorem 1.1 we conclude that each $\mathcal{C}_{j}^{*} \cap \mathcal{J}^{\dagger}$ has a cover of size 4 . Therefore $\tau\left(\mathcal{J}^{\dagger}\right) \leq 4\left|\mathcal{B}^{\dagger}\right|$, completing the proof.

We end with the remark that for each of $r=4$ and $r=5$, an explicit lower bound for ϵ could be computed by following the steps of our proof. However, as this value is probably very far from the truth we make no attempt to do this here.

References

[1] R. Aharoni, Ryser's Conjecture for tripartite 3-graphs, Combinatorica 21 (2001), 1-4.
[2] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16, (1965) 447452.
[3] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[4] Z. Füredi, Matchings and covers in hypergraphs, Graphs Comb. 4 (1988), 115-206.
[5] P. Haxell, A note on a conjecture of Ryser, Period. Math. Hungar. 30 (1995), 73-79.
[6] L. Lovász, A kombinatorika minimax tételeiröl (On minimax theorems in combinatorics), Matematikai Lapok 26 (1975), 209-264.
[7] T. Mansour, C. Song, and R. Yuster, A comment on Ryser's conjecture for intersecting hypergraphs, Graphs Comb. 25 (2009), 101-109.
[8] E. Szemerédi and Zs. Tuza, Upper bound for transversals of tripartite hypergraphs, Periodica Math. Hung. 13 (1982), 321-323.
[9] Zs. Tuza, Ryser's conjecture on transversals of r-partite hypergraphs, Ars Combinatoria 16(B) (1983), 201-209.
[10] Zs. Tuza, On the order of vertex sets meeting all edges of a 3-partite hypergraph, Ars Combinatoria 24(A) 59-63, 1987.

[^0]: *Research of P. Haxell partially supported by NSERC

