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Abstract

We introduce certain generalisations of the characters of the classical Lie groups,
extending the recently defined factorial characters of Foley and King. In this exten-
sion, the factorial powers are replaced with an arbitrary sequence of polynomials, as
in Sergeev-Veselov’s generalised Schur functions and Okada’s generalised Schur P-
and Q-functions. We also offer a similar generalisation for the rational Schur func-
tions. We derive Littlewood-type identities for our generalisations. These identities
allow us to give new (unflagged) Jacobi–Trudi identities for the Foley–King factorial
characters and for rational versions of the factorial Schur functions. We also pro-
pose an extension of the original Macdonald’s ninth variation of Schur functions to
the case of symplectic and orthogonal characters, which helps us prove Nägelsbach–
Kostka identities.
Mathematics Subject Classifications: 05E05, 05E10

1 Introduction

1.1 Motivation

In the paper “Schur functions: theme and variations” I. G. Macdonald [18] listed nine
generalisations of Schur functions, which he called variations. The 6th variation is the
factorial Schur functions. The ninth variation unifies variations 4–8.

The factorial Schur functions are defined as follows (see Macdonald [18], Molev [20]).
Take a sequence of variables x1, . . . , xn and a doubly infinite sequence of indeterminates
c = (cn)n∈Z. Define the factorial (interpolation) powers

(x |c)n = (x− c0) · · · (x− cn−1).
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Given a partition λ = (λ1, . . . , λn) of length `(λ) 6 n, the corresponding factorial Schur
function sλ(x |c) is the ratio of alternants

sλ(x |c) =
det
[
(xi |c)λj+n−j

]n
i,j=1

det [(xi |c)n−j]ni,j=1

.

It is easy to see that the denominator equals the usual Vandermonde determinant, so
sλ(x |c) is a (non-homogeneous) symmetric polynomial. Setting all cn = 0, the polynomial
sλ(x |c) turns into the usual Schur polynomial sλ(x). In the ck = k specialisation, one
recovers the shifted Schur polynomials s∗λ(y1, . . . , yn) in the variables yi = xi − n + i,
see Okounkov–Olshanski [24]. The ck = qn−k−1 specialisation gives the q = t case of
Olshanski’s interpolation polynomials Iλ(x1, . . . , xn; q, t), see Olshanski [26, (4.1)].

One can also define factorial analogues of the complete and elementary symmetric
polynomials:

hk(x |c) = s(k,0,...,0)(x |c), k > 0,

ek(x |c) = s(1k)(x |c), 0 6 k 6 n.

It turns out that the factorial Schur functions satisfy analogues of the Jacobi–Trudi,
Nägelsbach–Kostka (dual Jacobi–Trudi), Giambelli, Cauchy and dual Cauchy identities,
as well as a combinatorial formula representing them as a sum over semistandard Young
tableaux. To state these formulas, introduce the shift operators τ r for each r ∈ Z acting
on the sequence c as

(τ rc)n = cn+r.

The Jacobi–Trudi and Nägelsbach–Kostka formulas take the form

sλ(x |c) = det
[
hλi−i+j(x |τ 1−jc)

]n
i,j=1

= det
[
eλ′i−i+j(x |τ

j−1c)
]λ1
i,j=1

, (1.1)

where λ′ is the transpose of λ, hk(x | ·) = ek(x | ·) = 0 for k < 0, and ek(x | ·) = 0 for k > n,
see Macdonald [18, (6.7)]. The Giambelli identity remains valid in its original form:

sλ(x |c) = det
[
s(αi|βj)(x |c)

]d
i,j=1

,

where λ = (α1, . . . , αd|β1, . . . , βd) in the Frobenius notation. The Cauchy identity, due to
Molev [20, Theorem 3.1] and Olshanski in the special case of shifted Schur functions (see
also Olshanski [26, Proposition 4.8]), becomes∑

λ partition
`(λ)6n

sλ(x |c)ŝλ(u |c) =
1

n∏
i,j=1

(1− xiuj)
,

where u1, . . . , un is another sequence of variables. Here the dual object, ŝλ(u |c), is not a
symmetric polynomial anymore, but a symmetric power series in u1, . . . , un.

Macdonald’s ninth variation of Schur functions is defined in the following way. Let
hrs (r > 1, s ∈ Z) be indeterminates. Also, set h0s = 1 and hrs = 0 for r < 0 and all s.
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Define an authomorphism ϕ of the ring generated by the hrs by ϕ(hrs) = hr,s+1, so that
we can write hrs = ϕshr, where hr = hr0. Let λ be a partition of length `(λ) 6 n. The
ninth variation is defined as

sλ = det
[
ϕ1−jhλi−i+j

]n
i,j=1

.

This emulates the factorial Jacobi–Trudi identity: if we specialise ϕshr = hr(x |τ sc), we
obtain the Jacobi–Trudi determinant for the factorial Schur functions.

It turns out that already in the generality of Macdonald’s ninth variation, one can
prove the Nägelsbach–Kostka and Giambelli identities: we have

sλ = det
[
ϕj−1eλ′i−i+j

]λ1
i,j=1

= det
[
s(αi|βj)

]d
i,j=1

,

where ek = s(1k) for k > 0, and ek = 0 for k < 0, see Macdonald [18, (9.6’), (9.7)].
Subsequent to Macdonald’s paper, several other generalisations of the Schur functions

appeared, some of which are also referred to as ninth variations.
Nakagawa–Noumi–Shirakawa–Yamada [21] start with a bialternant formula and de-

duce flagged1 versions of the Jacobi–Trudi and Nägelsbach–Kostka identities, an unflagged
Giambelli identity, and a combinatorial formula. Namely, take an infinite matrix of vari-
ables X = (xij)16i,j<∞. Given a partition λ of length `(λ) 6 n, assign to it the increasing
sequence of integers

λn + 1 < λn−1 + 2 < · · · < λ1 + n.

Let ξ(n)λ (X) denote the minor of X corresponding to the rows 1, . . . , n and columns λn +
1, λn−1 +2, . . . , λ1 +n. Nakagawa–Noumi–Shirakawa–Yamada define their ninth variation
as the ratio

S
(n)
λ =

ξ
(n)
λ (X)

ξ
(n)
∅ (X)

.

If we specialise xij = (xi |c)j, we get the definition of the factorial Schur functions. Note
that the superscript (n) indicates the number of rows used, i.e. the number of variables
xi in the specialisation to factorial Schur functions. One can also consider

h
(n)
k = S

(n)
(k,0,...,0), k > 0,

e
(n)
k = S

(n)

(1k)
, k = 0, 1, . . . , n,

1The adjective flagged means that the number of variables in an entry of the corresponding determinantal
identity depends on its position in the matrix, as e.g. in (1.2). Otherwise the identity is unflagged. For
the usual Schur polynomials sλ(x1, . . . , xn), the unflagged and the flagged Jacobi–Trudi identities are

sλ(x1, . . . , xn) = det [hλi−i+j(x1, . . . , xn)]
n
i,j=1 ,

sλ(x1, . . . , xn) = det [hλi−i+j(x1, . . . , xn+1−j)]
n
i,j=1 .

The second identity is due to Nakagawa–Noumi–Shirakawa–Yamada [21]. In the case of the usual Schur
polynomials, it implies the first one. However, in the general situation of [21] only flagged Jacobi–Trudi
and Nägelsbach–Kostka hold. Surprisingly, the Giambelli formula remains unflagged.
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and we also define h(n)k = e
(n)
k = 0 for k < 0. Then the following flagged Jacobi–Trudi and

Nägelsbach–Kostka formulas hold,

S
(n)
λ = det

[
h
(n+1−j)
λi−i+j

]n
i,j=1

= det
[
e
(n+j−1)
λ′i−i+j

]λ1
i,j=1

, (1.2)

as well as the (unflagged) Giambelli formula

S
(n)
λ = det

[
h
(n)
(αi|βj)

]d
i,j=1

.

In [8], Foley and King start with a combinatorial formula and prove outside decompo-
sition determinantal identities (Hamel–Goulden determinants), which include the Jacobi–
Trudi, Nägelsbach–Kostka, and Giambelli identities. Since the present paper does not
deal with combinatorial formulas, we omit the details. See also [9].

Sergeev and Veselov [30] consider a ninth variation associated with a sequence of poly-
nomials, which they call generalised Schur functions. They take a sequence of polynomials
(fn(x))n>0 satisfying a certain recurrence relation, which is not important for the purposes
of this introduction, and consider the ratio

Sλ(x) =
det
[
fλj+n−j(xi)

]n
i,j=1

det [fn−j(xi)]
n
i,j=1

.

The recurrence relation allows them to produce versions of the Jacobi–Trudi and Giambelli
identities. Functions of this kind also appear in Itoh [12] and Olshanski [26] under the
name of Schur-type functions. The Sergeev–Veselov generalisation is the one we are most
concerned with in this paper.

These functions also appear in Okada [23], where Schur’s P - and Q-functions associ-
ated with an arbitrary sequence of polynomials are introduced, and no recurrence relations
on the sequence are assumed. Along with other results, Okada proves a Cauchy identity
for the generalised Schur P -functions.

All the aforementioned works take place in the type A. Recently Foley and King [6]
introduced factorial analogues of the characters of the other classical Lie groups (see
also Foley–King [7], where they introduce factorial analogues of the type BCD Schur Q-
functions). They define them deforming the respective Weyl character formulas: writing
xi for x−1i ,

spλ(x |c) =
det
[
xi(xi |c)λj+n−j − xi(xi |c)λj+n−j

]
det [xi(xi |c)n−j − xi(xi |c)n−j]

,

soλ(x |c) =
det
[
x
1/2
i (xi |c)λj+n−j − x1/2i (xi |c)λj+n−j

]
det
[
x
1/2
i (xi |c)n−j − x1/2i (xi |c)n−j

] ,

oλ(x |c) =
η det

[
(xi |c)λj+n−j + (xi |c)λj+n−j

]
1
2

det [(xi |c)n−j + (xi |c)n−j]
, where η =

{
1
2

if λn = 0,

1 if λn > 0.
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Here soλ(x |c) is a deformation of an SO(2n+ 1) character, while in the type D we work
with the full orthogonal group O(2n), hence the notation oλ(x |c). Note that setting
all cn = 0 recovers the Weyl character formulas in types CBD. Foley and King derive
flagged Jacobi–Trudi identities and combinatorial formulas for their factorial characters.
Our primary aim is to construct unflagged versions of the Jacobi–Trudi identities in the
factorial setting.

1.2 Results

The present work is based upon the observation that instead of factorial powers, one
can take an arbitrary sequence of polynomials in Foley–King’s definition. This offers
a Sergeev–Veselov kind of ninth variation for the symplectic and orthogonal characters
(Definition 3). The results of Nakagawa–Noumi–Shirakawa–Yamada immediately allow
us to give flagged Jacobi–Trudi and Nägelsbach–Kostka formulas, as well as an unflagged
Giambelli formula.

Furthermore, we extend both the factorial Schur functions and the Sergeev–Veselov
generalised Schur functions to the case when λ is not a partition but an arbitrary dominant
weight of GLn, i.e. a signature, see Section 2.4. The factorial case of the extension seems
to be known (see Jing–Rozhkovskaya [13, (5.3) and the unnumbered formula below (5.3)]),
while the general case is new.

Most importantly, it turns out that our ninth variation characters (in all types) satisfy
analogues of the Littlewood identities. Classically, as the Cauchy identity describes the
Howe duality between GLn and GLm, the Littlewood identities describe Howe dualities
for the symplectic/orthogonal pairs, see Howe [11]. Ninth variations of these identities
are given in Theorems 18, 19, 20. Their type A case is Theorem 26. It corresponds to a
Howe duality between U(p, q) and U(p)× U(q), see [27, Section 6].

Throughout the article we work with the types BCD first since the proofs are less
technically involved.

The Littlewood identities allow us to derive new unflagged Jacobi–Trudi formulas
for the factorial characters of Foley and King, as well as a Jacobi–Trudi formula for the
signature factorial Schur functions, see Theorems 30, 32, 33, 35. This is possible due to the
principle that once we have a Cauchy-type identity, which in our case is a ninth variation
Littlewood identity, it is natural to expect that an identity of the Jacobi–Trudi form could
be deduced from it (examples include [31, Section 7.16], [4, Section 6], [1, Section 5.4]).
For example, in the case of symplectic characters, our Jacobi–Trudi identity looks as
follows:

spλ(x |c) =
1

2
det
[
hλi−i+j(x, x |τ 1−n−jc) + hλi−i−j+2(x, x |τ−1−n+jc)

]n
i,j=1

,

where we assume that cn = 0 for n < 0. Note that this assumption is also actively used
in Foley–King [6].

Our Jacobi–Trudi identities for the Foley–King factorial characters make it possible
to define a ninth variation of symplectic and orthogonal characters in exactly the same
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way as Macdonald did originally. That is, we define

spλ =
1

2
det
[
ϕ1−jhλi−i+j + ϕj−1hλi−i−j+2

]n
i,j=1

,

and similarly for the orthogonal characters. In this generality we prove symplectic and
orthogonal Nägelsbach–Kostka identities (6.3), (6.5). For example,

spλ = det
[
ϕj−1eλ′i−i+j − ϕ

j−1eλ′i−i−j
]λ1
i,j=1

.

Recall that the classical Schur polynomials can be lifted to symmetric functions (Mac-
donald [19, Chapters I.2–I.3]). This is achieved by the fact that sλ(x1, . . . , xn, 0) =
sλ(x1, . . . , xn). Symplectic and orthogonal characters do not have such stability. Instead
(say in the symplectic case), Koike and Terada [15] propose to consider the symmetric
functions

1

2
det [hλi−i+j + hλi−i−j+2]

n
i,j=1 ,

which they call universal characters. Here hm are the complete symmetric functions.
Under the hm 7→ hm(x1, . . . , xn, x

−1
n , . . . , x−11 ) specialisation, the universal characters turn

into the symplectic characters, hence providing a lift to the ring of symmetric functions.
Macdonald’s ninth variation plays the same role for the factorial characters. This way, the
ninth variation spλ (as well as its orthogonal counterpart) is now a symmetric function
and not a Laurent polynomial.

At the same time, the factorial Schur functions have a stability property similar to clas-
sical Schur polynomials: sλ(x1, . . . , xn, c0 |c) = sλ(x1, . . . , xn |τc). Appropriately shifting
the sequence c, Molev [20] defines double Schur functions, which is another lift of factorial
Schur functions to symmetric functions. Additional relevant references include Olshan-
ski [26] and Rains [29].

2 Ninth variation characters

In this section we recall determinantal expressions of the characters of the classical Lie
groups and propose definitions for their ninth variations.

2.1 Characters of classical groups

Let us choose the upper-triangular Borel subroups and the diagonal Cartan subgroups in
each of the classical Lie groups GL(n,C), Sp(2n,C), SO(2n+1,C), SO(2n,C). We will be
considering characters as functions on the Cartan subgroups in the following coordinates:

diag(x1, . . . , xn), type A,
diag(x1, . . . , xn, x

−1
n , . . . , x−11 ), types C–D,

diag(x1, . . . , xn, 1, x
−1
n , . . . , x−11 ), type B,

where x1, . . . , xn ∈ C∗.
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The dominant weights of the groups GL(n,C), Sp(2n,C), SO(2n + 1,C), SO(2n,C)
are the integer sequences λ = (λ1, . . . , λn) ∈ Zn such that

λ1 > · · · > λn, type A,
λ1 > · · · > λn > 0, types C–B,
λ1 > · · · > λn−1 > |λn|, type D.

The dominant weights of type A are called signatures, while the dominant weights of
types C–B are partitions.

In the type D, if λn 6= 0, there are two dominant weights, λ+ = (λ1, . . . , λn−1, λn) and
λ− = (λ1, . . . , λn−1,−λn), where λn > 0. When λn = 0, the corresponding representa-
tion is a representation of the full orthogonal group O(2n,C), while when λn 6= 0, only
the direct sum of the representations corresponding to λ+ and λ− is a representation of
O(2n,C).

We denote the characters of the groups GL(n,C), Sp(2n,C), SO(2n+1,C) by, respec-
tively,

sλ(x1, . . . , xn), spλ(x1, . . . , xn), soλ(x1, . . . , xn).

The characters sλ(x1, . . . , xn) are the rational (also called composite) Schur functions.
In the case of SO(2n,C), it is more convinient to work with the character

oλ(x1, . . . , xn) =

{
χ
SO(2n,C)
λ if λn = 0,

χ
SO(2n,C)
λ+

+ χ
SO(2n,C)
λ−

if λn > 0,

where λ1 > · · · > λn > 0.

Notation. Note that we only use the notation soλ for the odd orthogonal groups, and oλ
for the even orthogonal groups.

As follows from Weyl’s character formula, they can be expressed as quotients of alter-
nants:

sλ(x1, . . . , xn) =
det
[
x
λj+n−j
i

]
det
[
xn−ji

] , (2.1)

spλ(x1, . . . , xn) =
det
[
x
λj+n−j+1
i − xλj+n−j+1

i

]
det
[
xn−j+1
i − xn−j+1

i

] , (2.2)

soλ(x1, . . . , xn) =
det
[
x
λj+n−j+1/2
i − xλj+n−j+1/2

i

]
det
[
x
n−j+1/2
i − xn−j+1/2

i

] , (2.3)

oλ(x1, . . . , xn) =
η det

[
x
λj+n−j
i + x

λj+n−j
i

]
1
2

det
[
xn−ji + xn−ji

] , where η =

{
1
2

if λn = 0,

1 if λn > 0.
(2.4)

The determinants above are of order n, and xi = x−1i .
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The Weyl denominator formula tells us that the denominators of (2.1)-(2.4) are

det
[
xn−ji

]
= V(x1, . . . , xn), (2.5)

det
[
xn−j+1
i − xn−j+1

i

]
=

n∏
i=1

(xi − xi) · V(x1 + x1, . . . , xn + xn), (2.6)

det
[
x
n−j+1/2
i − xn−j+1/2

i

]
=

n∏
i=1

(x
1/2
i − x

1/2
i ) · V(x1 + x1, . . . , xn + xn), (2.7)

1

2
det
[
xn−ji + xn−ji

]
= V(x1 + x1, . . . , xn + xn), (2.8)

where V(x1, . . . , xn) =
∏

16i<j6n
(xi − xj) is the Vandermonde determinant.

2.2 Generalised Schur functions

Let us recall the definition of Sergeev–Veselov’s generalised Schur functions in the gener-
ality of Okada [23].

Definition 1. Let F = (fn(x))n>0 be a sequence of polynomials over a field K of char-
acteristic 0. Following Okada [23], we call the sequence admissible if

1. deg fn(x) = n;

2. the polynomials are monic;

3. f0(x) = 1.

Such a sequence F is called constant-term free if for any n > 0 the polynomial fn(x) does
not have a constant term.

Let λ be a partition of length `(λ) 6 n, and F be an admissible sequence of poly-
nomials. Take a sequence of indeterminates x1, . . . , xn. The generalised Schur function
corresponding to the partition λ and the sequence F is defined by

sFλ (x1, . . . , xn) =
det
[
fλj+n−j(xi)

]n
i,j=1

det [fn−j(xi)]
n
i,j=1

. (2.9)

Since the polynomials fn are monic, the denominator is the usual Vandermonde determi-
nant V(x1, . . . , xn). Hence sFλ (x1, . . . , xn) is a symmetric polynomial in the xi’s.

Example 2. Let c = (cn)n∈Z be a sequence of indeterminates. Taking

fk(x) = (x |c)k = (x− c0) · · · (x− ck−1),

we recover the factorial Schur functions sλ(x |c).
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From the general results of Nakagawa–Noumi–Shirakawa–Yamada [21] (see Introduc-
tion), we have the flagged Jacobi–Trudi identity

sFλ (x1, . . . , xn) = det
[
sF(λi−i+j)(x1, . . . , xn−j+1)

]n
i,j=1

, (2.10)

the flagged Nägelsbach–Kostka identity

sFλ (x1, . . . , xn) = det

[
sF(

1λ
′
i
−i+j

)(x1, . . . , xn+j−1)
]λ1
i,j=1

,

and the Giambelli identity

sFλ (x1, . . . , xn) = det
[
sF(αi|βj)(x1, . . . , xn)

]d
i,j=1

,

where λ = (α1, . . . , αd|β1, . . . , βd) in the Frobenius notation.

2.3 Ninth variation C–B–D characters

Our definition of ninth variation characters in types C–B–D is inspired by the work of
Foley and King [6].

Definition 3. Let λ = (λ1, . . . , λn) be a partition of length `(λ) 6 n, and let F =
(fn(x))n>0 be an admissible sequence of polynomials. As before, we denote xi = x−1i . The
ninth variation characters are

spFλ (x1, . . . , xn) =
det
[
xifλj+n−j(xi)− xifλj+n−j(xi)

]
det [xifn−j(xi)− xifn−j(xi)]

, (2.11)

soFλ (x1, . . . , xn) =
det
[
x
1/2
i fλj+n−j(xi)− x

1/2
i fλj+n−j(xi)

]
det
[
x
1/2
i fn−j(xi)− x1/2i fn−j(xi)

] , (2.12)

oFλ (x1, . . . , xn) =
η det

[
fλj+n−j(xi) + fλj+n−j(xi)

]
1
2

det [fn−j(xi) + fn−j(xi)]
, where η =

{
1
2

if λn = 0,

1 if λn > 0.

(2.13)

Since the polynomials fn(x) are monic, the denominators coincide with the Weyl
denominators (2.6)-(2.8).

Example 4. If we set fk(x) = (x |c)k, we recover the factorial characters of Foley and
King [6]. We denote them by spλ(x |c), soλ(x |c) and oλ(x |c).

As in the case of generalised Schur functions, from [21] we have the flagged Jacobi–
Trudi, the flagged Nägelsbach–Kostka, and the Giambelli identities

spFλ (x1, . . . , xn) = det
[
spF(λi−i+j)(x1, . . . , xn−j+1)

]n
i,j=1

=

= det

[
spF(

1λ
′
i
−i+j

)(x1, . . . , xn+j−1)
]λ1
i,j=1

= det
[
spF(αi|βj)(x1, . . . , xn)

]d
i,j=1

,
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and similarly for soFλ (x1, . . . , xn) and oFλ (x1, . . . , xn). In the factorial case, the flagged
Jacobi–Trudi identities were proven by Foley and King [6] by means of certain recurrence
relations.

It is also immediate to obtain dual Cauchy identities for the ninth variation characters.

Proposition 5. Let g ∈ {s, sp, so, o}. Then we have

∑
λ⊂(mn)

(−1)|λ̃|gFλ (x1, . . . , xn)gF
λ̃

(y1, . . . , ym) =


n∏
i=1

m∏
j=1

(xi − yj) if g = s,

n∏
i=1

m∏
j=1

(xi + xi − yj − yj) if g = sp, so, o,

where λ̃ = (n− λ′m, n− λ′m−1, . . . , n− λ′1).

Proof. In the type A, consider the determinant

DenomFn+m(x1, . . . , xn, y1, . . . , ym) =



fn+m−1(x1) fn+m−2(x1) · · · f0(x1)
...

...
...

fn+m−1(xn) fn+m−2(xn) · · · f0(xn)
fn+m−1(y1) fn+m−2(y1) · · · f0(y1)

...
...

...
fn+m−1(ym) fn+m−2(ym) · · · f0(ym)


.

This is the type AWeyl denominator corresponding to the sequence F . Since the sequence
is admissible, the determinant is the same as for F = (xn)n>0. Hence the ratio

DenomFn+m(x1, . . . , xn, y1, . . . , ym)

DenomFn (x1, . . . , xn) DenomFm(y1, . . . , ym)

is equal to
n∏
i=1

m∏
j=1

(xi − yj). On the other hand, Laplace expansion of the determinant

DenomFn+m(x1, . . . , xn, y1, . . . , ym) along the first n and last m rows tells us that the ratio
is equal to ∑

λ⊂(mn)

(−1)|λ̃|sFλ (x1, . . . , xn)sF
λ̃

(y1, . . . , ym).

This proves the type A case, and all the other cases are dealt with similarly.

Remark 6. There is also a dual Cauchy identity for the Nakagawa–Noumi–Shirakawa–
Yamada version of Macdonald’s ninth variation, due to Noumi, see [22, (4.10)].

Remark 7. The very same argument allows one to obtain dual versions of the Littlewood
identities, see Sundaram [34, Theorem 4.9], i.e. for each g ∈ {sp, so, o} there is a closed
formula for the sum ∑

λ⊂(mn)

(−1)|λ̃|gFλ (x1, . . . , xn)sF
λ̃

(y1, . . . , ym).
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Remark 8. Macdonald [18, (6.19)] shows that the infinite-variable limit of the factorial
Schur function sλ(x1, . . . , xn |c) is the supersymmetric Schur function sλ(x/ − c) defined
by

sλ(x/− c) =
∑
µ⊂λ

sµ(x)sλ′/µ′(−c) ∈ Λ(x)⊗ Λ(c),

where Λ(x) and Λ(c) are the rings of symmetric functions in variables x = (x1, x2, . . . )
and c = (c0, c1, c2, . . . ).

The same argument as in [18, (6.19)] shows that the limit of the symplectic factorial
character spλ(x |c) is ∑

µ⊂λ

spµ(x)sλ′/µ′(−c) ∈ Λ(x)⊗ Λ(c),

where spµ(x) is the universal symplectic character (see [15]). This expression is the
infinite-variable limit of the orthosymplectic character scλ introduced by Benkart–Shader–
Ram [3, Section 4], studied later in [33], [32], [28]. The orthosymplectic characters scλ
describe irreducible submodules in small tensor powers of the tautological representation
of the orthosymplectic Lie algebra.

Similarly, the limit of the orthogonal factorial characters is∑
µ⊂λ

oµ(x)sλ′/µ′(−c) ∈ Λ(x)⊗ Λ(c),

where oµ(x) is the universal orthogonal character.

2.4 Ninth variation type A characters

Here we define certain ninth variation analogues of the rational Schur functions. In full
generality these analogues are not rational, so we call them simply ninth variation type A
characters.

Let us first define the factorial Schur functions corresponding to signatures, this will
motivate the general definition. For this we need to define the factorial powers (x |c)n for
negative n. Recall that we have the doubly infinite sequence c = (cn)n∈Z and the shift
operators τ r for each r ∈ Z defined by

(τ rc)n = cn+r.

It is clear that
(x |c)r+s = (x |c)r(x |τ rc)s

for all r, s > 0. Consequently, for a partition λ of length `(λ) 6 n we have

sλ+(1n)(x |c) =
n∏
i=1

(xi |c)1 · sλ(x |τc) = s(1n)(x |c) · sλ(x |τc).

In order to preserve this property we set

(x |c)−n =
1

(x− c−1) · · · (x− c−n)
(2.14)
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for n > 0. Then, indeed,
(x |c)r+s = (x |c)r(x |τ rc)s

for all r, s ∈ Z. Now, given a signature λ = (λ1, . . . , λn) of length `(λ) 6 n, we define the
corresponding factorial Schur function as

sλ(x |c) =
det
[
(xi |c)λj+n−j

]n
i,j=1

det [(xi |c)n−j]ni,j=1

.

The identity
sλ+(1n)(x |c) = s(1n)(x |c) · sλ(x |τc)

holds true for any signature λ. We note that (2.14) is not new: it has already appeared
in, for example, Jing–Rozhkovskaya [13, (5.3) and the unnumbered formula below (5.3)].
Observation. Notice that (x |c)−n is a power series in x−1 of order n (recall that the order

of a formal power series
∞∑
k=0

aky
k is the smallest integer n such that an 6= 0).

Let us now treat the general case. Let F = (fn(x))n>0 be an admissible sequence of
polynomials. We extend it to a doubly infinite sequence F = (fn(x))n∈Z requiring f−n(x)
to be a formal power series in x−1 of order n, where n > 0. That is, for all n > 0, we set

f−n(x) =
∞∑
k=n

an,kx
−k, where an,n 6= 0.

Given a signature λ = (λ1, . . . , λn) of length `(λ) 6 n, we define the ninth variation
type A character associated with the sequence F = (fn(x))n∈Z by

sFλ (x1, . . . , xn) =
det
[
fλj+n−j(xi)

]n
i,j=1

det [fn−j(xi)]
n
i,j=1

. (2.15)

As before, the denominator is the Vandermonde determinant.
Remark 9. Just like when λ is a partition, there is the following flagged Jacobi–Trudi
formula for the ninth variation type A characters:

sFλ (x1, . . . , xn) = det
[
sF(λi−i+j)(x1, . . . , xn−j+1)

]n
i,j=1

,

where λ is an arbitrary signature. This formula is not stated explicitly in [21], but their
arguments can be easily modified to cover signatures, as the authors remark at the bottom
of p. 181 in [21]. An identity of this type appeared in Borodin–Olshanski [4, Proposition
6.2].
Remark 10. Foley and King [6] give combinatorial formulas for the factorial characters
spλ(x |c), soλ(x |c), oλ(x |c). One can also prove the following combinatorial formula for
the factorial Schur function sλ(x |c) associated with a signature λ:

sλ(x |c) =
∑

G∈GTP(λ)

n∏
i=1

i∏
j=1

(xi |τ i−j+1+Gi−1,jc)Gi,j−Gi−1,j ,
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where GTP(λ) is the set of all integral Gelfand–Tsetlin patterns with top row λ, and the
entries of a pattern are enumerated as

G =


Gn1 Gn2 · · · Gn,n−1 Gnn

· · · · · · · · · · · ·
G31 G32 G33

G21 G22

G11

 .

That is, the entries are (not necessarily nonnegative) integers satisfying the inequalities
Gi+1,j > Gij > Gi+1,j+1 for all i, j = 1, . . . , n, and in the top row we put Gnj = λj for
each j = 1, . . . , n.

3 Cauchy identity

In this section we state a ninth variation of the classical Cauchy identity.

3.1 Dual sequences

Consider the following non-degenerate bilinear pairing between the algebras K[x] and
K[[u]]:

〈xn, um〉 = δnm.

Remark 11. Our pairing is slightly different to that of Okada [23], since it gives us Cauchy-
type determinants, while Okada is working with Pfaffians instead.

Lemma 12. Let F = (fn(x))n>0 be an admissible sequence of polynomials. Then

1. If F̂ = (f̂n(u))n>0 is a sequence of formal power series in u such that f̂n(u) has
order n for all n > 0, then

〈fn(x), f̂m(u)〉 = δnm if and only if
∞∑
n=0

fn(x)f̂n(u) =
1

1− xu
.

2. There exists a unique sequence F̂ satisfying the equivalent conditions of (1). We
call such a sequence F̂ the dual of F .

3. If F̂ is the dual of F , then F is constant-term free if and only if f̂0(u) = 1.

Conversely, given a sequence of formal power series F̂ = (f̂n(u))n>0 such that f̂n(u) has
order n for all n > 0, there exists a unique sequence of polynomials (fn(x))n>0 such that
fn(x) has degree n for all n > 0 and 〈fn(x), f̂m(u)〉 = δnm.

Proof. The proof is the same as in [23, Lemma 3.1].
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Example 13. The dual of the sequence fk(x) = (x |c)k is

f̂k(u) =
uk

k∏
l=0

(1− ucl)
.

This can be deduced from the identity

∞∑
m=0

(x |c)m

(u |c)m+1
=

1

u− x
,

the proof of which is the same as in Okounkov–Olshanski [24, Theorem 12.1, first proof].

3.2 Dual Schur functions

Let F = (fn(x))n>0 be an admissible sequence of polynomials, and let F̂ = (f̂n(u))n>0 be
its dual.

Definition 14. Given a partition λ of length `(λ) 6 n, the dual Schur function is defined
by

ŝFλ (u1, . . . , un) =
det
[
f̂λj+n−j(ui)

]n
i,j=1

V(u1, . . . , un)
, (3.1)

where V(u1, . . . , un) =
∏

16i<j6n
(ui − uj) is the Vandermonde determinant.

Note that we require the determinant to be the Vandermonde determinant. Thus,
generally, the dual Schur function ŝFλ (u1, . . . , un) does not coincide with sF̂λ (u1, . . . , un),
which is the generalised Schur function associated with the (non-polynomial) sequence F̂ .

Example 15. In the factorial case, the dual Schur function takes the form

ŝλ(u |c) =

det

 u
λj+n−j
i

λj+n−j∏
l=0

(1− uicl)


V(u1, . . . , un)

. (3.2)

3.3 Cauchy identity

The functions sFλ (x1, . . . , xn) satisfy an analogue of the Cauchy identity. Its proof is based
on an argument due to Ishikawa and Wakayama (see [25, Section 8]). The key fact is the
following lemma.
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Lemma 16. Let fm(x) and gm(u) be two sequences of functions, with m > 0. Let
x1, . . . , xn and u1, . . . , un be indeterminates. Then the following identity holds:∑

λ partition
`(λ)6n

det
[
fλj+n−j(xi)

]
· det

[
gλj+n−j(ui)

]
= det [h(i, j)] , (3.3)

where h(i, j) =
∞∑
m=0

fm(xi)gm(uj) and all the determinants are n× n.

Proof. Consider the following two infinite n×∞ matrices:

A =

 · · · f2(x1) f1(x1) f0(x1)
...

...
...

· · · f2(xn) f1(xn) f0(xn)

 ,
B =

 · · · g2(u1) g1(u1) g0(u1)
...

...
...

· · · g2(un) g1(un) g0(un)

 .
We number their columns by nonnegative integers in reverse order: . . . , 2, 1, 0. Let us
calculate the determinant of the n× n matrix ABt.

On the one hand, the ij-th entry of ABt is h(i, j) =
∞∑
m=0

fm(xi)gm(uj), so detABt is

the right-hand side of (3.3). On the other hand, by the Cauchy–Binet identity,

detABt =
∑

+∞>l1>···>ln>0

detAl1,...,ln detBl1,...,ln ,

where Al1,...,ln and Bl1,...,ln are the submatrices of A and B formed by the columns l1, . . . , ln.
Writing (l1, . . . , ln) = (λ1 +n− 1, . . . , λn) for a partition λ, we arrive at the left-hand side
of (3.3). This proves the lemma.

Let us apply the lemma to obtain the Cauchy identity.

Proposition 17. We have∑
λ partition
`(λ)6n

sFλ (x1, . . . , xn)ŝFλ (u1, . . . , un) =
1

n∏
i,j=1

(1− xiuj)
.

This is an identity in the ring of formal power series in u1, . . . , un with coefficients in the
ring of symmetric polynomials in x1, . . . , xn.

Proof. Set fm(x) = fm(x) and gm(x) = f̂m(u). Then

h(i, j) =
∞∑
n=0

fn(xi)f̂n(uj) =
1

1− xiuj
,
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and, by Lemma 16, we have∑
λ partition
`(λ)6n

det
[
fλj+n−j(xi)

]
· det

[
f̂λj+n−j(ui)

]
= det

[
1

1− xiuj

]
. (3.4)

The determinant on the right is the Cauchy determinant, which is equal to

det

[
1

1− xiuj

]
=

V(x1, . . . , xn) V(u1, . . . , un)
n∏

i,j=1

(1− xiuj)
.

Hence, dividing (3.4) by the Vandermondes V(x1, . . . , xn) V(u1, . . . , un), we arrive at the
desired identity.

4 Littlewood identities

In this section we introduce Littlewood identities for the ninth variation characters. See
Littlewood [17, p. 240], [16], Koike–Terada [15, Lemma 1.5.1] or Sundaram [34, Theo-
rem 4.8] for the classical case. The proofs are based on Lemma 16.

4.1 Types C, B, D

Hereafter we assume that F is an admissible polynomial sequence and F̂ is its dual.
We start with the symplectic case.

Theorem 18. The following identity holds, where xi = x−1i ,

∑
`(λ)6n

spFλ (x1, . . . , xn) ŝFλ (u1, . . . , un) =

∏
16i<j6n

(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
, (4.1)

as an equality of formal power series in u1, . . . , un with coefficients in the ring of symmetric
Laurent polynomials in x1, . . . , xn. The symmetry is with respect to the hyperoctahedral
group Sn n (Z/2Z)n, where the i-th copy of Z/2Z acts by xi ↔ xi.

Proof. Expand the left-hand side as∑
`(λ)6n

spFλ (x1, . . . , xn) ŝFλ (u1, . . . , un) =

=
∑
`(λ)6n

1
n∏
i=1

(xi − xi) · V(x1 + x1, . . . , xn + xn)
· 1

V(u1, . . . , un)
·

· det[xifλj+n−j(xi)− xifλj+n−j(xi)] · det[f̂λj+n−j(ui)].

(4.2)

the electronic journal of combinatorics 30(4) (2023), #P4.9 16



Let us take fn(x) = xfn(x) − xfn(x) and gn(u) = f̂n(u) in Lemma 16 and evaluate the
determinant det[h(i, j)]. First,

h(i, j) =
∞∑
m=0

(xifm(xi)− xifm(xi))f̂m(uj) =

= xi ·
1

1− xiuj
− xi ·

1

1− xiuj
=

xi − xi
(1− xiuj)(1− xiuj)

.

Hence our determinant is equal to

det[h(i, j)] =
n∏
i=1

(xi − xi) · det

[
1

(1− xiuj)(1− xiuj)

]
.

The latter determinant can be calculated by reduction to the Cauchy determinant:

det

[
1

(1− xiuj)(1− xiuj)

]
=

1

u1 · · ·un
det

[
1

(ui + ui)− (xj + xj)

]
=

= (−1)(
n
2)un−11 · · ·un−1n V(u1 + u1, . . . , un + un)

V(x1 + x1, . . . , xn + xn)
n∏

i,j=1

(1− xiuj)(1− xiuj)
=

= V(x1 + x1, . . . , xn + xn) · V(u1, . . . , un) ·

∏
16i<j6n

(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
,

where the last equality follows from the fact that

(−1)(
n
2)un−11 · · ·un−1n V(u1 + u1, . . . , un + un) = V(u1, . . . , un)

∏
16i<j6n

(1− uiuj).

Substituting this into det[h(i, j)], and det[h(i, j)] into (4.2), we arrive at the desired
identity.

The odd orthogonal case is proven in a similar way.

Theorem 19. The following identity holds, where xi = x−1i :

∑
`(λ)6n

soFλ (x1, . . . , xn) ŝFλ (u1, . . . , un) =
1

n∏
j=1

(1− uj)
·

∏
16i6j6n

(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
. (4.3)

Proof. Take fn(x) = x1/2fn(x)− x1/2fn(x) and gn(u) = f̂n(u). Then

h(i, j) =
∞∑
m=0

(x
1/2
i fm(xi)− x1/2i fm(xi))f̂m(uj) =

= x
1/2
i ·

1

1− xiuj
− x1/2i ·

1

1− xiuj
=

(1 + uj)(x
1/2
i − x

1/2
i )

(1− xiuj)(1− xiuj)
.
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Therefore, we have

det[h(i, j)] =
n∏
j=1

(1 + uj) ·
n∏
i=1

(x
1/2
i − x

1/2
i ) · det

[
1

(1− xiuj)(1− xiuj)

]
.

Now it suffices to notice that

n∏
j=1

(1 + uj)
∏

16i<j6n

(1− uiuj) =

∏
16i6j6n

(1− uiuj)

n∏
j=1

(1− uj)
,

and the theorem follows.

In the even orthogonal case we have to add the assumption that the sequence F is
constant-term free.

Theorem 20. Assume additionally that F is constant-term free. Then the following
identity holds, where xi = x−1i :

∑
`(λ)6n

oFλ (x1, . . . , xn) ŝFλ (u1, . . . , un) =

∏
16i6j6n

(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
. (4.4)

Proof. Take f0(x) = 1, fn(x) = fn(x) +fn(x) for n > 0, and gn(u) = f̂n(u) for all n. Then

h(i, j) = f̂0(uj) +
∞∑
m=1

(fm(xi) + fm(xi))f̂m(uj) =

=
1

1− xiuj
+

1

1− xiuj
− f̂0(uj) =

1− u2j
(1− xiuj)(1− xiuj)

.

The last equality holds under the assumption that F is constant-term free, since being
constant-term free is equivalent to the condition f̂0 = 1 by Lemma 12. The theorem now
follows immediately.

Corollary 21. In particular, we have Littlewood identites for the factorial characters
spλ(x |c), soλ(x |c) and oλ(x |c) of Foley and King.

4.2 Classical type A Littlewood identity

Let λ = (λ1, . . . , λn) be a signature of length `(λ) 6 n. It is possible to find a pair of
partitions µ and ν of lengths `(µ) 6 p and `(ν) 6 q, with n = p+ q, such that

(λ1, . . . , λn) = (µ1, . . . , µp,−νq, . . . ,−ν1).

In such a case we write λ = (µ, ν). We want to obtain an analogue of the following
formula.
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Proposition 22 (see Koike [14, Lemma 2.5] or Olshanski [25, Section 8]). Fix two non-
negative integers p, q > 0, and take n = p+ q.

Let µ range over the set of all partitions of length 6 p, and ν range over the set of all
partitions of length 6 q; write λ = (µ, ν). Take three sets of variables x = (x1, . . . , xn),
u = (u1, . . . , up), v = (v1, . . . , vq).

Then the following identity holds:∑
λ=(µ,ν)

sλ(x1, . . . , xn)sµ(u1, . . . , up)sν(v1, . . . , vq) =

=

p∏
i=1

q∏
j=1

(1− uivj)

n∏
k=1

p∏
i=1

(1− xkui) ·
n∏
k=1

q∏
j=1

(1− x−1k vj)

.

(4.5)

As we can see, there are two dual objects in this formula: the functions sµ(u1, . . . , up)
and sν(v1, . . . , vq). The first one will be replaced by the dual Schur function ŝFλ (u1, . . . , up).
There is a bit more work to be done to replace the second one.

4.3 Double dual Schur functions

Recall that we extended the polynomial sequence F to a doubly infinite sequence F =
(fn(x))n∈Z requiring that f−n(x) is a power series in x−1 of order n.

Consider the sequence F60 = (f−n(x))n>0, which consists of formal power series in

x−1. By means of Lemma 12, construct a sequence of polynomials qF =
(

qfn(v)
)
n>0

in

v that is dual to the sequence F60. In other words, the sequence qF is defined by the

condition that qfn(v) has degree n and
∞∑
n=0

f−n(x) qfn(v) =
1

1− x−1v
. Such a sequence is

unique but need not be monic. We call this sequence qF the double dual of F . Note also
that since f0(x) = 1, the sequence qF is constant-term free by the part (3) of Lemma 12.
Example 23. Let us calculate the double dual of F = ((x |c)n)n∈Z. Consider the reversed
sequence c̃ defined by c̃n = c−n−1 for all n ∈ Z. We claim that qfn(v) = v(v | c̃)n−1 for
n > 0, and qf0(v) = 1.

Proof. First, recall that (x |c)−n =
1

(x− c−1) · · · (x− c−n)
for n > 0. We can rewrite it as

(x |c)−n =
x−n

(1− x−1c−1) · · · (1− x−1c−n)
=

=
x−n

(1− x−1 · 0)(1− x−1c−1) · · · (1− x−1c−n)
.

Now, we know that
∞∑
n=0

(x |c)n un

n∏
l=0

(1− ucl)
=

1

1− xu
.
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From this equality we immediately deduce

∞∑
n=0

v(v | c̃)n−1 x−n

(1− x−1 · 0)(1− x−1c−1) · · · (1− x−1c−n)
=

1

1− vx−1
,

which is exactly our claim.

Recall that since f0(x) = 1, the sequence qF is constant-term free. Thus, for any n > 0,

the ratio
qfn+1(v)

v
is a polynomial.

Definition 24. Given a partition ν of length `(ν) 6 q, we define the double dual Schur
function by

qsFν (v1, . . . , vq) =

det

[
qfνj+q−j+1(vi)

vi

]q
i,j=1

V(v1, . . . , vq)
. (4.6)

Example 25. The double dual Schur functions in the factorial case are sν(v | c̃).

4.4 Ninth variation type A Littlewood identity

Now we are ready to state our ninth variation of the type A Littlewood identity.

Theorem 26. The following identity in K[x±11 , . . . , x±1n ]Sn [[u1, . . . , up, v1, . . . , vq]] holds:∑
λ=(µ,ν)

sFλ−(qn)(x1, . . . , xn) ŝFµ (u1, . . . , up) qsFν (v1, . . . , vq) =

=

p∏
i=1

q∏
j=1

(1− uivj)

n∏
k=1

p∏
i=1

(1− xkui) ·
n∏
k=1

q∏
j=1

(xk − vj)
,

(4.7)

where λ− (qn) = (λ1 − q, . . . , λn − q).

Before we embark on the proof, note that if one substitutes fk(x) = xk, the iden-
tity (4.7) transforms into the classical identity (4.5) since

sλ−(qn)(x1, . . . , xn) = (x1 · · ·xn)−qsλ(x1, . . . , xn)

and
1

n∏
k=1

q∏
j=1

(xk − vj)
=

(x1 · · ·xn)−q

n∏
k=1

q∏
j=1

(1− x−1k vj)

.
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Proof. Consider the following two infinite matrices:

A =

 · · · f2(x1) f1(x1) f0(x1), f−1(x1) f−2(x1) · · ·
...

...
...

...
...

· · · f2(xn) f1(xn) f0(xn), f−1(xn) f−2(xn) · · ·

 ,

B =



· · · f̂2(u1) f̂1(u1) f̂0(u1), 0 0 · · ·
...

...
...

...
...

· · · f̂2(up) f̂1(up) f̂0(up), 0 0 · · ·

· · · 0 0 0,
qf1(v1)

v1

qf2(v1)

v1
· · ·

...
...

...
...

...

· · · 0 0 0,
qf1(vq)

vq

qf2(vq)

vq
· · ·


.

We number their columns by all the integers in reverse order, . . . , 2, 1, 0,−1,−2, . . . , and
the commas in the matrices are placed between the 0-th and (−1)-st columns.

Let us evaluate the determinant detABt in two ways. First, one can calculate the
entries of the matrix ABt explicitly. Let 1 6 k 6 n, 1 6 i 6 p, 1 6 j 6 q. We have

(ABt)k,i =
∞∑
m=0

fm(xk)f̂m(ui) =
1

1− xkui
,

(ABt)k,p+j =
∞∑
m=1

f−m(xk)
qfm(vj)

vj
=

1

vj

∞∑
m=0

f−m(xk) qfm(vj)−
1

vj
f0(xk) qf0(vj).

Since F is admissible, f0(xk) = 1. It follows that qf0(vj) = 1. Hence the latter expression
becomes

1

vj

∞∑
m=0

f−m(xk) qfm(vj)−
1

vj
f0(xk) qf0(vj) =

1

vj

(
1

1− x−1k vj
− 1

)
=

1

xk − vj
.

Now we have

ABt =



1

1− x1u1
· · · 1

1− x1up
1

x1 − v1
· · · 1

x1 − vq
...

...
...

...
...

...
...

...
1

1− xnu1
· · · 1

1− xnup
1

xn − v1
· · · 1

xn − vq


.

The determinant of this matrix can be easily reduced to the Cauchy determinant. In this
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way we obtain

detABt = (−1)(
q
2) ·

p∏
i=1

q∏
j=1

(1− uivj)

n∏
k=1

p∏
i=1

(1− xkui) ·
n∏
k=1

q∏
j=1

(xk − vj)
·

·V(x1, . . . , xn) V(u1, . . . , up) V(v1, . . . , vq).

Now we turn to the second way. From the Cauchy–Binet identity it follows that

detABt =
∑

+∞>l1>···>ln>−∞

detAl1,...,ln detBl1,...,ln ,

where Al1,...,ln and Bl1,...,ln are the submatrices of A and B formed by the columns with
numbers l1, . . . , ln. The determinant detBl1,...,ln vanishes unless lp > 0 and lp+1 6 −1, so
we can write the sequence (l1, . . . , ln) as

(l1, . . . , ln) = (µ1, . . . , µp,−νq, . . . ,−ν1) + (p− 1, . . . , 0,−1, . . . ,−q),
where µ and ν are partitions. The determinant is then equal to

detBl1,...,ln = ŝFµ (u1, . . . , up) V(u1, . . . , up) · (−1)(
q
2) · qsFν (v1, . . . , vq) V(v1, . . . , vq).

To handle the second determinant, detAl1,...,ln , denote as before

λ = (λ1, . . . , λn) = (µ1, . . . , µp,−νq, . . . ,−ν1) = (µ, ν),

and rewrite the sequence (l1, . . . , ln) in another way:

(l1, . . . , ln) = (λ1 − q, . . . , λn − q) + (n− 1, . . . , 0).

Now it remains to notice that

detAl1,...,ln = sFλ−(qn)(x1, . . . , xn) V(x1, . . . , xn)

This concludes the proof of the theorem.

5 Jacobi–Trudi identities

Recall that for the factorial Schur functions there is a Jacobi–Trudi identity of the follow-
ing form (see Macdonald [18]):

sλ(x |c) = det
[
hλi−i+j(x |τ 1−jc)

]
,

where hk(x | ·) = s(k)(x | ·) are the complete factorial symmetric polynomials, and we agree
that hk(x | ·) = 0 for k < 0.

In this section we prove similar Jacobi–Trudi identities for the factorial characters of
Foley and King. In the nonfactorial case these identites are due to H. Weyl [35], see
also Koike–Terada [15]. They are also sometimes called second Weyl identities, first Weyl
identities being the Weyl character formula.

We use the principle that given a Cauchy-like identity, one can expect a Jacobi-Trudi
identity to hold, and vice versa. This was exploited by Molev [20] to produce a Cauchy
identity for the double Schur functions. Our proof follows along Molev’s lines.
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5.1 Generating functions

It is immediate to deduce generating functions from the Littlewood identities. In what
follows we will only need the generating function of hk(x |c)’s, but we give all four of them
for the sake of completeness.

These identities are taken as definitions of hglk (x |c) = hk(x |c), hspk (x |c) = sp(k)(x |c),
hook (x |c) = so(k)(x |c) and heok (x |c) = o(k)(x |c) in Foley–King [6].

Proposition 27. We have
∞∑
k=0

hk(x |c)
tk

k+n−1∏
l=0

(1− tcl)
=

1
n∏
i=1

(1− xit)
; (5.1)

∞∑
k=0

sp(k)(x |c)
tk

k+n−1∏
l=0

(1− tcl)
=

1
n∏
i=1

(1− xit)(1− xit)
; (5.2)

∞∑
k=0

so(k)(x |c)
tk

k+n−1∏
l=0

(1− tcl)
=

1 + t
n∏
i=1

(1− xit)(1− xit)
; (5.3)

∞∑
k=0

o(k)(x |c)
tk

k+n−1∏
l=0

(1− tcl)
=

1− t2
n∏
i=1

(1− xit)(1− xit)
. (5.4)

Proof. Set un = 0 in ŝλ(u1, . . . , un |c). The denominator becomes

V(u1, . . . , un−1, 0) = u1 · · ·un−1 V(u1, . . . , un−1).

If λn 6= 0, the numerator becomes 0, since the last row of the determinant in the numerator
consists entirely of zeros. Otherwise, it turns into

u1 · · ·un−1
(1− u1c0) · · · (1− un−1c0)

det

 u
λj+(n−1)−j
i

λj+(n−1)−j∏
l=0

(1− uicl+1)


n−1

i,j=1

.

Hence

ŝλ(u1, . . . , un |c) |un=0 = δλn,0
1

(1− u1c0) · · · (1− un−1c0)
ŝλ(u1, . . . , un−1 |τc).

Now let us successively substitute un−1 = 0, un−2 = 0, . . . , u2 = 0. Eventually, we are
left with

δλn,0 · · · δλ2,0
1

n−2∏
l=0

(1− u1cl)
ŝλ(u1 |τn−1c).

the electronic journal of combinatorics 30(4) (2023), #P4.9 23



Since ŝλ(u1 |τn−1c) =
uλ11

λ1∏
l=0

(1− u1cn−1+l)
, this is equal to

δλn,0 · · · δλ2,0
uλ11

λ1+n−1∏
l=0

(1− u1cl)
.

In order to obtain the generating functions (5.2), (5.3), (5.4) in the types CBD, take
any of the Littlewood identites (4.1), (4.3), (4.4) and substitute un = un−1 = · · · = u2 = 0.
Only the terms with λn = · · · = λ2 = 0 survive, and we arrive at the generating function
identities stated in the theorem.

To produce formula (5.1), take the type A Littlewood identity (4.7) with q = 0 (i.e. the
Cauchy identity) and apply the same procedure.

We will only need the type A generating function (5.1), and it will be more convinient
to have it in the following form:

Corollary 28. We have

∞∑
k=0

hk(x |c)
tk

k∏
l=1

(1− tcn−1+l)
=

n−1∏
l=0

(1− tcl)
n∏
i=1

(1− xit)
. (5.5)

Remark 29. Recall that Sk(C2n) is an irreducible module over Sp(2n,C). That is,

sp(k)(x) = hk(x, x).

It is natural to expect a similar formula for the factorial characters sp(k)(x |c). In other
words, we are looking for such a sequence a that

sp(k)(x |c) = hk(x, x |a).

It follows from (5.1) and (5.2) that the only natural way to choose such a sequence is

a = τ−n(ccut),

where (ccut)m = 0 for m < 0 and (ccut)m = cm for m > 0. This justifies the appearance of
negative shifts in the Jacobi–Trudi identities below.

5.2 Types C, B, D

We begin with the type C.
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Theorem 30. Assume that cn = 0 for all n < 0. Then we have the following identity:

spλ(x |c) =
1

2
det
[
hλi−i+j(x, x |τ 1−n−jc) + hλi−i−j+2(x, x |τ−1−n+jc)

]n
i,j=1

, (5.6)

where hk(x, x | ·) are the complete factorial symmetric polynomials in the 2n variables
x1, . . . , xn, x1, . . . , xn, and hk(x, x | ·) = 0 for k < 0.

Remark 31. One could also rewrite the identity (5.6) more succinctly using the sequence
a = τ−n(ccut) from above.

Proof. For each α = (α1, . . . , αn) ∈ Nn define

JTC
α (x |c) =

1

2
det
[
hαi−n+j(x, x |τ 1−n−jc) + hαi−n−j+2(x, x |τ−1−n+jc)

]n
i,j=1

.

Then on the right-hand side of (5.6) we have JTC
λ+ρ(x |c), where ρ = (n− 1, . . . , 0).

Consider the sum ∑
`(λ)6n

JTC
λ+ρ(x |c) ŝλ(u |c). (5.7)

As follows from the Littlewood identity, the theorem is proven if we show that this sum
is equal to ∏

16i<j6n
(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
.

Multiply the sum (5.7) by the Vandermonde V(u1, . . . , un). Then it turns into

∑
γ

JTC
γ (x |c) det

 u
γj
i

γj∏
l=0

(1− uicl)

 , (5.8)

where the sum is taken over n-tuples γ = (γ1, . . . , γn) ∈ Nn with γ1 > · · · > γn > 0.
Since

det

 u
γj
i

γj∏
l=0

(1− uicl)

 =
∑
σ∈Sn

sgn(σ)
n∏
i=1

u
γσ(i)
i

γσ(i)∏
l=0

(1− uicl)

and JTC
γ (x |c) is skew-symmetric under permutations of the components of γ, we can

rewrite (5.8) in the form ∑
α

JTC
α (x |c)

n∏
i=1

uαii
αi∏
l=0

(1− uicl)
,
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where the sum is taken over all n-tuples α = (α1, . . . , αn) ∈ Nn of nonnegative integers.
Using the definition of JTC

α (x |c) we can rewrite the sum once again:

1

2

∑
α

det

(hαi−n+j(x, x |τ 1−n−jc) + hαi−n−j+2(x, x |τ−1−n+jc)
) uαii

αi∏
l=0

(1− uicl)

 .
Writing the determinant as a sum over the symmetric group we get

1

2

∑
α

∑
σ∈Sn

sgn(σ)
n∏
j=1

(
hασ(j)−n+j(x, x |τ

1−n−jc) + hασ(j)−n−j+2(x, x |τ−1−n+jc)
)
·

·
u
ασ(j)
σ(j)

ασ(j)∏
l=0

(1− uσ(j)cl)
.

Interchanging the order of the sums we obtain

1

2

∑
σ∈Sn

sgn(σ)
n∏
j=1

∞∑
k=0

(
hk−n+j(x, x |τ 1−n−jc) + hk−n−j+2(x, x |τ−1−n+jc)

)
·

·
ukσ(j)

k∏
l=0

(1− uσ(j)cl)
.

(5.9)

Now it is left to calculate the following:
∞∑
k=0

(
hk−n+j(x, x |τ 1−n−jc) + hk−n−j+2(x, x |τ−1−n+jc)

) uk

k∏
l=0

(1− ucl)
=

=
∞∑
k=0

hk(x, x |τ 1−n−jc)
uk+n−j

k+n−j∏
l=0

(1− ucl)
+
∞∑
k=0

hk(x, x |τ−1−n+jc)
uk+n+j−2

k+n+j−2∏
l=0

(1− ucl)
.

The first sum is equal to

un−j

n−j∏
l=0

(1− ucl)
·
∞∑
k=0

hk(x, x |τ 1−n−jc)
uk

k∏
l=1

(1− ucn−j+l)
.

Recalling the generating function of the complete factorial symmetric polynomials (5.5)
and noticing that the number of variables in the hk’s is 2n, we get

un−j

n−j∏
l=0

(1− ucl)
·

2n−1∏
l=0

(1− uc1−n−j+l)
n∏
i=1

(1− xiu)(1− xiu)
.
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Using the assumption cn = 0 for n < 0, we are left with only

un−j

n∏
i=1

(1− xiu)(1− xiu)
.

The second sum is dealt with similarly:

un+j−2

n+j−2∏
l=0

(1− ucl)
·
∞∑
k=0

hk(x, x |τ−1−n+jc)
uk

k∏
l=1

(1− ucn+j−2+l)
=

=
un+j−2

n∏
i=1

(1− xiu)(1− xiu)
.

Substituting these into (5.9), we obtain

1

2

∑
σ∈Sn

sgn(σ)
n∏
j=1

un−jσ(j) + un+j−2σ(j)

n∏
i=1

(1− xiuσ(j))(1− xiuσ(j))
=

=
1

n∏
i,j=1

(1− xiuj)(1− xiuj)
· 1

2

∑
σ∈Sn

sgn(σ)
n∏
j=1

(
un−jσ(j) + un+j−2σ(j)

)
.

(5.10)

Here we see the determinant det
[
un−ji + un+j−2i

]
, which can be easily computed through

reduction to the type D Weyl denominator. The result is

det
[
un−ji + un+j−2i

]
= 2 V(u1, . . . , un)

∏
i<j

(1− uiuj).

Thus (5.10) transforms into

V(u1, . . . , un) ·

∏
16i<j6n

(1− uiuj)

n∏
i,j=1

(1− xiuj)(1− xiuj)
,

which is exactly what we awaited.

The Jacobi–Trudi identites in the types B and D are proven in exactly the same
fashion, so we omit the details.

Theorem 32. Assume that cn = 0 for all n < 0. Then we have the following identity:

soλ(x |c) = det
[
hλi−i+j(x, x, 1 |τ−n−jc) − hλi−i−j(x, x, 1 |τ−n+jc)

]n
i,j=1

, (5.11)

where hk(x, x, 1 | ·) are the complete factorial symmetric polynomials in the 2n+1 variables
x1, . . . , xn, x1, . . . , xn, 1, and hk(x, x, 1 | ·) = 0 for k < 0.
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In order to make use of the type D Littlewood identity, we need the condition that
the sequence F is constant-term free. In the case of factorial characters this is equivalent
to c0 = 0.

Theorem 33. Assume that cn = 0 for all n < 0 and also c0 = 0. Then we have the
following identity:

oλ(x |c) = det
[
hλi−i+j(x, x |τ 1−n−jc) − hλi−i−j(x, x |τ 1−n+jc)

]n
i,j=1

, (5.12)

where hk(x, x | ·) are the complete factorial symmetric polynomials in the 2n variables
x1, . . . , xn, x1, . . . , xn, and hk(x, x | ·) = 0 for k < 0.

5.3 Classical type A case

Let λ = (λ1, . . . , λn) be a signature. As above, decompose it into a pair of partitions
λ = (µ, ν), where µ and ν are of lengths `(µ) 6 p and `(ν) 6 q, and p+ q = n.

There is the following analogue of the Jacobi–Trudi identity for the rational Schur
function sλ(x1, . . . , xn); it was postulated by Balantekin and Bars [2] in dual form (i.e.
Nägelsbach–Kostka) and proven by Cummins and King [5], see also Koike [14, Proposi-
tion 2.8]. Let us denote

h∗k(x1, . . . , xn) = s(k,0,...,0)(x
−1
1 , . . . , x−1n ),

i.e. the character of Sk(Cn)∗, where Cn is the tautological representation of GL(n,C). In
other words,

h∗k(x1, . . . , xn) = s(k,0,...,0)∗(x1, . . . , xn),

where (k, 0, . . . , 0)∗ = (0, . . . , 0,−k) is the dual of the highest weight (k, 0, . . . , 0). Set also
h∗k(x1, . . . , xn) = 0 for negative k. Then

sλ(x1, . . . , xn) = det

[
h∗νq−i+1+i−j(x1, . . . , xn)

hµi−q−i+j(x1, . . . , xn)

]
, (5.13)

where on the right we have a block matrix consisting of two blocks of sizes q × n and
p × n. The indices in the upper block run through i = 1, . . . , q and j = 1, . . . , n, and in
the lower block through i = 1, . . . , p and j = 1, . . . , n.

We aim for a similar identity for the factorial Schur functions sλ(x |c). We will replace
h∗k(x1, . . . , xn) with gk(x |c), where we define

gk(x |c) =

{
0, if k < 0;

s(k,0,...,0)∗−(1n)(x |c), if k > 0.
(5.14)

We note, however, that gk(x |c) does not specialise into h∗k(x1, . . . , xn) if we set cm = 0
for all m ∈ Z, but rather into (x1 · · ·xn)−1h∗k(x1, . . . , xn).
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5.4 Generating function

First, we need the generating function of the gk(x |c)’s. Recall the reversed sequence c̃
from Example 23 we defined by c̃n = c−n−1, n ∈ Z.

Proposition 34. We have
∞∑
k=0

gk(x |c) (t | c̃)k =
1

n∏
i=1

(xi − t)
. (5.15)

Proof. Consider the type A Littlewood identity (4.7) with p = 0:∑
λ=(∅,ν)

sλ−(nn)(x1, . . . , xn |c) sν(v1, . . . , vn | c̃) =
1

n∏
i=1

n∏
j=1

(xi − vj)
. (5.16)

On the left we have λ = (∅, ν) = ν∗, and ν ranges over the set of all partitions of length
`(ν) 6 n.

Set vn = c̃0 = c−1. It is easy to see that

sν(v1, . . . , vn | c̃) |vn=c̃0 = δνn,0 sν(v1, . . . , vn−1 |τ c̃).

Set further vn−1 = c̃1 = c−2, . . . , v2 = c̃n−2 = c−n+1. Then we get

δνn,0 · · · δν2,0 sν(v1 |τn−1c̃),

which is equal to
δνn,0 · · · δν2,0 (v1 |τn−1c̃)ν1 .

Hence on the left of the equation (5.16) we see
∞∑
k=0

s(k,0,...,0)∗−(nn)(x1, . . . , xn |c)(v1 |τn−1c̃)k.

At the same time, on the right we have

1
n∏
i=1

(xi − v1) ·
n∏
i=1

(xi | c̃)n−1
.

Now note that

s(k,0,...,0)∗−(nn)(x1, . . . , xn |c) =
n∏
i=1

(xi |c)−n+1 · s(k,0,...,0)∗−(1n)(x1, . . . , xn |τ−n+1c),

and we can rewrite this as
1

n∏
i=1

(xi | c̃)n−1
gk(x |τ−n+1c).
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Thus (5.16) implies, letting t = v1, that

∞∑
k=0

gk(x |τ−n+1c) (t |τn−1c̃)k =
1

n∏
i=1

(xi − t)
.

Now it remains to notice that τn−1c̃ = τ̃−n+1c, and the theorem follows.

5.5 Jacobi–Trudi identity

Now we are ready to proceed with the Jacobi–Trudi identity.

Theorem 35. Decompose the signature λ as λ = (µ, ν). Then we have

sλ−(qn)(x |c) = det

[
gνq−i+1+i−j(x |τ 1−jc)
hµi−q−i+j(x |τ 1−jc)

]
, (5.17)

where in the upper block i = 1, . . . , q, in the lower block i = 1, . . . , p, and j = 1, . . . , n in
both blocks.

Proof. For an arbitrary sequence ε = (ε1, . . . , εn) ∈ Zn define

JTA
ε (x |c) = det

[
g−εp+i+q−j(x |τ 1−jc)
hεi−n−q+j(x |τ 1−jc)

]
, (5.18)

where in the upper block i = 1, . . . , q, in the lower block i = 1, . . . , p, and j = 1, . . . , n
in both blocks. Then on the right-hand side of (5.17) we have JTA

λ+ρ(x |c), where ρ =
(n− 1, . . . , 0).

Due to the Littlewood identity, we want to prove that the sum∑
λ=(µ,ν)

JTA
λ+ρ(x |c) ŝλ(u |c) sν(v | c̃) (5.19)

is equal to
p∏
i=1

q∏
j=1

(1− uivj)

n∏
k=1

p∏
i=1

(1− xkui) ·
n∏
k=1

q∏
j=1

(xk − vj)
.

First, multiply the sum (5.19) by the Vandermondes V(u1, . . . , up) and V(v1, . . . , vq). Then
it becomes

∑
γ,δ

JTA
(γ1+q,...,γp+q,−δq+q−1,...,−δ1+q−1)(x |c) det

 u
γj
i

γj∏
l=0

(1− uicl)


p

i,j=1

det
[
(vi | c̃)δj

]q
i,j=1

, (5.20)
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where the sum is taken over all the tuples γ ∈ Np and δ ∈ Nq with γ1 > · · · > γp > 0 and
δ1 > · · · > δq > 0.

Writing the two determinants as sums over symmetric groups and employing skew-
symmetry of JTA

ε (x |c), we can rewrite the sum (5.20) as

∑
α,β

JTA
(α1+q,...,αp+q,−βq+q−1,...,−β1+q−1)(x |c)

p∏
i=1

uαii
αi∏
l=0

(1− uicl)

q∏
j=1

(vj | c̃)βj ,

where the sum is taken over all tuples α ∈ Np and β ∈ Nq of nonnegative integers. Now
we can introduce the factors on the right into the determinant (5.18):

∑
α,β

det


gβq−i+1−j+1(x |τ 1−jc)(vq−i+1 | c̃)βq−i+1

hαi−n+j(x |τ 1−jc)
u
αi
i

αi∏
l=0

(1−uicl)

 .
Now we can expand the determinant as a sum over the symmetric group:

∑
α,β

∑
σ∈Sn

sgn(σ)

( ∏
j∈{1,...,n}:
16σ(j)6q

gβq−σ(j)+1−j+1(x |τ 1−jc)(vq−σ(j)+1 | c̃)βq−σ(j)+1 ·

·
∏

j∈{1,...,n}:
q+16σ(j)6p+q

hασ(j)−q−n+j(x |τ
1−jc)

u
ασ(j)−q
σ(j)−q

ασ(j)−q∏
l=0

(
1− uσ(j)−qcl

)
)
.

Reordering the sums and carrying them inside the brackets we arrive at

∑
σ∈Sn

sgn(σ)

( ∏
j∈{1,...,n}:
16σ(j)6q

∞∑
k=0

gk−j+1(x |τ 1−jc)(vq−σ(j)+1 | c̃)k·

·
∏

j∈{1,...,n}:
q+16σ(j)6p+q

∞∑
k=0

hk−n+j(x |τ 1−jc)
ukσ(j)−q

k∏
l=0

(
1− uσ(j)−qcl

)
)
.

(5.21)

Now let us calculate the two sums inside (5.21). The first is equal to

∞∑
k=0

gk−j+1(x |τ 1−jc)(v | c̃)k =
∞∑
k=0

gk(x |τ 1−jc)(v | c̃)k+j−1 =

= (v | c̃)j−1
∞∑
k=0

gk(x |τ 1−jc)(v |τ j−1c̃)k = (v | c̃)j−1 1
n∏
k=1

(xk − v)
,

the electronic journal of combinatorics 30(4) (2023), #P4.9 31



where in the last equality we use (5.15) together with the equality τ̃ 1−jc = τ j−1c̃. The
second sum equals

∞∑
k=0

hk−n+j(x |τ 1−jc)
uk

k∏
l=0

(1− ucl)
=

=
un−j

n−j∏
l=0

(1− ucl)
·
∞∑
k=0

hk(x |τ 1−jc)
uk

k∏
l=1

(1− ucn−j+l)
=

= un−j
j−1∏
s=1

(1− ucs−j) ·
n∏
k=1

1

1− xku
.

It follows that (5.21) is equal to

1
n∏
k=1

q∏
j=1

(xk − vj)
· 1

n∏
k=1

p∏
i=1

(1− xkui)
·
∑
σ∈Sn

sgn(σ)

( ∏
j∈{1,...,n}:
16σ(j)6q

(vq−σ(j)+1 | c̃)j−1·

·
∏

j∈{1,...,n}:
q+16σ(j)6p+q

un−jσ(j)−q

j−1∏
s=1

(1− uσ(j)−qcs−j)

)
.

(5.22)

We can see that the following determinant appeared:

det

 (vq−i+1 | c̃)j−1

un−ji

j−1∏
s=1

(1− uics−j)

 ,
where as usual in the upper block i = 1, . . . , q, in the lower block i = 1, . . . , p, and

j = 1, . . . , n in both blocks. Now notice that un−ji

j−1∏
s=1

(1 − uics−j) = un−1i (u−1i | c̃)j−1.

Hence our determinant is

det

[
(vq−i+1 | c̃)j−1

un−1i (u−1i | c̃)j−1

]
,

whence we see that it is independent of c̃. It is easy to see that

det

 vj−1q−i+1

un−ji

 = V(u1, . . . , up) V(v1, . . . , vq)

p∏
i=1

q∏
j=1

(1− uivj).

Therefore, (5.22) is equal to

V(u1, . . . , up) V(v1, . . . , vq)

p∏
i=1

q∏
j=1

(1− uivj)

n∏
k=1

p∏
i=1

(1− xkui) ·
n∏
k=1

q∏
j=1

(xk − vj)
,
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as we expected. This concludes the proof of the theorem.

6 Nägelsbach–Kostka identities

In this section we introduce another ninth variation of the orthogonal and symplectic
characters. We start from a Jacobi–Trudi identity, as originally done by Macdonald [18].
In this generality we derive orthogonal and symplectic Nägelsbach–Kostka identities.

6.1 Original ninth variation

First, we recall the original Macdonald’s ninth variation of Schur functions. Let hrs be
independent indeterminates with r > 1 and s ∈ Z. Set also h0s = 1 and hrs = 0 for
r < 0 and all s ∈ Z. Consider the ring generated by the hrs and define an automorphism
ϕ of this ring by ϕ(hrs) = hr,s+1 for all r, s ∈ Z. Thus we can write hrs = ϕshr, where
hr = hr0.

For any two partitions λ, µ of lengths 6 n define

sλ/µ = det
[
ϕµj+1−jhλi−µj−i+j

]n
i,j=1

.

For µ = ∅ we have
sλ = det

[
ϕ1−jhλi−i+j

]n
i,j=1

.

The same argument as in Macdonald [19, p. 71] shows that sλ/µ = 0 unless µ ⊂ λ, and
sλ/µ = 1 when µ = λ, due to the conditions imposed on the hrs, r 6 0.

Specialising hrs = hr(x |τ sc) gives us the factorial Schur functions, as follows from the
unflagged factorial Jacobi–Trudi identity (1.1). Setting hrs = sF(r,0,...,0)(x1, . . . , xn+s), we
obtain the generalised Schur functions, due to the flagged Jacobi–Trudi identity (2.10).
In particular, the hrs = hr(x1, . . . , xn+s |c) specialisation leads to the same factorial Schur
function as hrs = hr(x |τ sc).

We necessarily have that
s(r,0,...,0) = hr,

and we define
er = s(1r)

for r > 0 and er = 0 for r < 0.
Macdonald proves the following Nägelsbach–Kostka identity:

sλ/µ = det
[
ϕ−µ

′
j−1+jeλ′i−µ′j−i+j

]m
i,j=1

, (6.1)

where λ′ and µ′ are the conjugate partitions, and `(λ′), `(µ′) 6 m. It can be equivalently
rephrased as follows. Consider the lower unitriangular matrices

A =
[
ϕ1−n+jhi−j

]N
i,j=0

,

B =
[
(−1)i−jϕi−nei−j

]N
i,j=0

,
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where N + 1 = n + m. It is easy to see that the n × n minor of A corresponding to
the rows λi + n − i and columns µj + n − j, with 1 6 i, j 6 n, is equal to sλ/µ. The
corresponding complementary cofactor of Bt has row indices n − 1 + i − λ′i and column
indices n− 1 + j − µ′j, with 1 6 i, j 6 m, and is equal to the right-hand side of (6.1).

The Nägelsbach–Kostka identity is equivalent to the fact that the matrices A and B
are inverses of each other.

Remark 36. The matrices A and B are not the transposes of the matrices H and E
from [18, (9.3)], but they can be transformed into them using Macdonald’s involution ε,
see [18, (9.5)], as

A = εϕn−1(H t),

B = εϕn−1(Et).

6.2 Symplectic ninth variation

Now we can define a more general ninth variation of the symplectic characters:

spλ =
1

2
det
[
ϕ1−jhλi−i+j + ϕj−1hλi−i−j+2

]n
i,j=1

. (6.2)

Specialising hrs = hr(x, x |τ s−nc) and setting cn = 0 for n < 0, we obtain the factorial
characters spλ(x |c).

We note that in fact the entries in the first column are equal to 2hλi−i+1, which explains
the appearance of the 1

2
in front of the determinant. Hence we can restate the definition

as follows. Consider the lower unitriangular matrix A+ =
[
A+
ij

]N
i,j=0

with entries

A+
ij =

{
Aij + Ai, 2(n−1)−j if j < n− 1;

Aij if j > n− 1,

where we assume that Aij = 0 whenever i or j is not between 0 and N . Then, as above,
the n×n minor of A+ corresponding to the rows λi+n−i and columns n−j (1 6 i, j 6 n)
is equal to spλ.

More generally, given another partition µ of length `(µ) 6 n, we can define the skew
ninth variation character spλ/µ as the minor of the matrix A+ corresponding to the rows
λi + n− i and columns µj + n− j (1 6 i, j 6 n).

Consider the lower unitriangular matrix B− =
[
B−ij
]N
i,j=0

with entries

B−ij =

{
Bij −B2(n−1)−i,j if i > n− 1;

Bij if i 6 n− 1,

with the same assumption. The next lemma can be found in Fulton–Harris [10, Lemma
A.43]. We give a proof for the sake of completeness.

Proposition 37. The matrices A+ and B− are inverses of each other.
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Proof. Let us expand the ij-th entry of A+B−:

(A+B−)ij =
∑

06k<n−1

(Aik + Ai,2(n−1)−k)Bkj + Ai,n−1Bn−1,j+

+
∑

n−1<k6N

Aik(Bkj −B2(n−1)−k,j) =
N∑
k=0

AikBkj +
∑

06k<n−1

Ai,2(n−1)−kBkj −

−
∑

n−1<k6N

AikB2(n−1)−k,j.

The first sum,
N∑
k=0

AikBkj, is equal to δij since the matrices A and B are the inverses of

each other. Noticing that for B2(n−1)−k,j to be nonzero it is necessary that k 6 2(n− 1),
we can rewrite the last sum:∑

n−1<k6N

AikB2(n−1)−k,j =
∑

n−1<k62(n−1)

AikB2(n−1)−k,j.

Now it is left to note that∑
06k<n−1

Ai,2(n−1)−kBkj =
∑

n−1<k62(n−1)

AikB2(n−1)−k,j,

which gives us
(A+B−)ij = δij.

This completes the proof.

It follows that each minor ofA+ is equal to the complementary cofactor of the transpose
of B−. This readily implies the following symplectic Nägelsbach–Kostka identity.

Corollary 38. We have

spλ = det
[
ϕj−1eλ′i−i+j − ϕ

j−1eλ′i−i−j
]m
i,j=1

. (6.3)

In particular, for the Foley–King factorial characters spλ(x |c), we get

spλ(x |c) = det
[
eλ′i−i+j(x, x |τ

(j−1)−nc) − eλ′i−i−j(x, x |τ
(j−1)−nc)

]m
i,j=1

.

6.3 Orthogonal ninth variation

In a similar way we can define a ninth variation of the orthogonal characters:

oλ = det
[
ϕ1−jhλi−i+j − ϕ1+jhλi−i−j

]n
i,j=1

. (6.4)

Specialising hrs = hr(x, x, 1 |τ s−n−1c) and assuming cn = 0 for n < 0, we obtain soλ(x |c).
Setting hrs = hr(x, x |τ s−nc) and this time assuming cn = 0 for n 6 0, we get oλ(x |c).
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Consider the lower unitriangular matrix A◦ =
[
A◦ij
]N
i,j=0

with entries

A◦ij =

{
Aij − Ai, 2n−j if j < n;

Aij if j > n,

where we assume that Aij = 0 whenever i or j is not between 0 and N . The n× n minor
of A◦ corresponding to the rows λi +n− i and columns n− j (1 6 i, j 6 n) is equal to oλ.

Once again, we can also define the skew character oλ/µ as the minor of the matrix A◦
with rows λi + n− i and columns µj + n− j.

Consider also the lower unitriangular matrix B× =
[
B×ij
]N
i,j=0

with entries

B×ij =

{
Bij +B2n−i,j if i > n;

Bij if i 6 n,

with the same assumption as above.
Proposition 39. The matrices A◦ and B× are inverses of each other.
Proof. Expanding the ij-th entry of A◦B×, we get

(A◦B×)ij =
n−1∑
k=0

(Aik − Ai,2n−k)Bkj + AinBnj +
N∑

k=n+1

Aik(Bkj +B2n−k,j) =

=
N∑
k=0

AikBkj −
n−1∑
k=0

Ai,2n−kBkj +
N∑

k=n+1

AikB2n−k,j.

The latter sum is equal to
N∑

k=n+1

AikB2n−k,j =
2n∑

k=n+1

AikB2n−k,j =
n−1∑
k=0

Ai,2n−kBkj, since

B2n−k,j is zero for k > 2n, which gives us

(A◦B×)ij =
N∑
k=0

AikBkj = δij,

as required.

It follows that we have the following orthogonal Nägelsbach–Kostka identity.
Corollary 40. We have

oλ =
1

2
det
[
ϕi−1eλ′i−i+j + ϕ1−ieλ′i−i−j+2

]m
i,j=1

. (6.5)

In the factorial specialisations, we get

soλ(x |c) =
1

2
det
[
eλ′i−i+j(x, x, 1 |τ

(i−1)−n−1c) + eλ′i−i−j+2(x, x, 1 |τ (1−i)−n−1c)
]m
i,j=1

.

and
oλ(x |c) = det

[
eλ′i−i+j(x, x |τ

(i−1)−nc) + eλ′i−i−j+2(x, x |τ (1−i)−nc)
]m
i,j=1

.

Remark 41. Note that the Littlewood duality [15, Theorem 2.3.2] is lost. That is, the
involution ω : ϕshr 7→ ϕ−ser, which maps sλ to sλ′ as follows from the Nägelsbach–Kostka
identity (6.1), does not map spλ to oλ′ .
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