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Abstract

We analyze the combinatorics behind the operation of taking the logarithm
of the generating function Gk for kth generalized Catalan numbers. We provide
combinatorial interpretations in terms of lattice paths and in terms of tree graphs.
Using explicit bijections, we are able to recover known closed expressions for the
coefficients of logGk by purely combinatorial means of enumeration. The non-
algebraic proof easily generalizes to higher powers logaGk, a > 2.

Mathematics Subject Classifications: 05A15, 05A10

The present article originated in the following question: given k ∈ N, what is the
combinatorial interpretation of the power series F (x) that solves the equation

eF (x) = 1 + x ekF (x), (1)

and is there a way of computing the coefficients of F (x) by counting suitable labeled com-
binatorial structures? The question was raised in the context of the statistical mechanics
for a one-dimensional system of non-overlapping rods on a line [6, Section 5.2]; up to
sign flips, the function F (x) corresponds to the pressure of a gas of rods of length k and
activity x on the discrete lattice Z.

The exponential exp(F (x)) is easily recognized as the generating function for (gen-
eralized) Catalan numbers, whose definition we recall below. Thus we are looking for a
combinatorial interpretation of the logarithm of the generating function for (generalized)
Catalan numbers. Logarithms of Catalan generating functions have in fact attracted in-
terest since Knuth’s Christmas lecture [7]; to the best of our knowledge, the focus has
been on the computation of coefficients, with the question of combinatorial interpretation
left open. We provide several such interpretations, among them one with cycle-rooted la-
beled trees. For the interpretation it is essential that we work with labeled combinatorial
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species, as is manifest already for a simple special case: For k = 1, the solution to (1) is

F (x) = − log(1− x) =
∞∑
n=1

xn

n
=
∞∑
n=1

xn

n!
(n− 1)!.

As 1/n is not an integer, the function F is not an ordinary generating function, but it is
the exponential generating function for a labeled structure, namely for cycles.

Let us recall some facts about Catalan numbers. The sequence of natural numbers
(Cn)n>0 with

Cn :=
(2n)!

(n+ 1)!n!
, n > 0,

is commonly referred to as Catalan numbers since the 1970’s. The name goes back to
Eugène Charles Catalan who was the first to introduce Catalan numbers in the above
form, after they already appeared in literature as far back as the 18th century, most
prominently in the work of Leonhard Euler.

Catalan numbers emerge in a huge variety of different counting problems: Over 200
possible interpretations are listed in the monograph [12] by R. P. Stanley alone; many
of those are of great significance in the field of combinatorics. Two especially prominent
types of structures enumerated by Catalan numbers are discrete paths (e.g., Dyck or
Motzkin paths) and tree graphs (e.g., binary or plane trees) under certain restrictions,
see items 4− 56 in [12, Chapter 2]).

The generating function G2 of Catalan numbers (Cn)n>0 is given by the formal power
series

G2(x) :=
∑
n>0

Cnx
n = 1 +

∑
n>1

xn

n!

(2n)!

(n+ 1)!
.

Naturally, one can view G2 as the ordinary generating function for any of the over 200
unlabeled structures in [12] or as the exponential generating function for any of the cor-
responding labeled structures (in the sense of combinatorial species and associated gen-
erating functions, see [1]). In particular, we will view G2 as the exponential generating
function for labeled lattice paths (see Section 2) or for labeled binary trees (see Section
3).

The generating function G2 can be generalized to the following formal power series:
For k > 2, consider the power series Gk, sometimes called the binomial series [2, 11],
given by

Gk(x) := 1 +
∑
n>1

xn

n

(
kn

n− 1

)
= 1 +

∑
n>1

xn

n!
(n− 1)!

(
kn

n− 1

)
and let us refer to the coefficients

1

n

(
kn

n− 1

)
, n > 1,

as generalized kth Catalan numbers following the terminology in [5] (also known under the
name of Fuss-Catalan numbers [9]); notice that the Catalan numbers (Cn)n>1 are indeed
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recovered for k = 2. The power series Gk satisfies

Gk(x) = 1 + xGk(x)k.

It is well-known (see [5]) that generalized kth Catalan numbers enumerate monotone lattice
paths, the so called k-good paths, or alternatively plane k-ary trees. Therefore, we can
and will interpret Gk as the exponential generating function for labeled lattice paths (see
Section 2) or for labeled plane k-ary trees (see Section 3).

The main object of study in this paper is the logarithm of the generating function Gk

for k > 2, which again can be represented by a formal power series. Explicit expressions
for the coefficients are already known from the literature: The expansion of logG2 was
presented 2014 in the annual Christmas lecture by Donald Knuth [7] — who subsequently
posed an elegant conjecture for the expansion of log2G2 as a problem in [8] to be solved
by various authors soon after:

log2G2(x) =
∑
n>2

xn

n

(
2n

n

)
(H2n−1 −Hn),

where the harmonic numbers (Hm)m∈N are given by Hm :=
∑m

i=1
1
i

for m ∈ N.
Higher powers logaGk, a > 2, were examined in [2] and [11], explicit formulas for the

coefficients were derived — in terms of harmonic numbers in the former and in terms of
Stirling cycle numbers in the latter work. The proofs are of algebraic nature and involve
general inversion formulas — in particular, the Lagrange inversion formula.

Here, we present a combinatorial, bijective proof providing explicit expressions for the
coefficients of logGk by means of exact enumeration. The proof easily generalizes to the
case of the higher powers logaGk, a > 2. For example, in the aforementioned case of the
squared logarithm log2Ck, we obtain

[xn] log2Gk(x) = 2
n∑
p=2

k − 1

kn− p

(
kn− p
n− p

)
Hp−1.

Naturally, this expression for the coefficients can be rewritten to match the one by
Knuth presented above. In the general case a > 1, we get the formula

[xn] logaGk(x) =
n∑
p=a

c
(p)
k,nNp,a,

where

c
(p)
k,n =

kp− p
kn− p

(
kn− p
n− p

)
and, using [n] := {1, . . . , n} for n ∈ N,

Np,a :=
∑

(q1,...,qa)∈[p]a
q1+···+qa=p

1∏a
i=1 qi

.
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While identifying the coefficients of logaCk for k > 2 and a > 1 is not a novel result
(since those are known from [2] and [11]), we think that our proof itself is of interest —
as we are not aware of any alternative proof that is essentially non-algebraic in nature.

The article is organized as follows: In Section 2, we provide a combinatorial interpre-
tation of logGk in terms of lattice paths (Theorem 5) by using bijective results identifying
lattice paths with sets of certain paths or path-like structures (Lemma 4 and Lemma 6).
Additionally, we use this interpretation to provide a closed expression for coefficients of
logGk (Theorem 8) via a purely combinatorial proof, which can be easily generalized to
higher powers logaGk, a > 2 (Theorem 9). In Section 3 we provide an alternative in-
terpretation of logGk in terms of plane trees (Theorem 14). Again, at the heart of this
interpretation is a bijective result identifying k-ary trees with sets of certain trees or tree-
like structures (Lemma 13 and Lemma 15). Finally, in the appendix, a method to encode
both lattice paths and plane trees via cyclically ordered multisets is introduced, providing
a bijection between the two combinatorial species and establishing a direct connection
between the two combinatorial interpretations of logGk.

1 Combinatorial interpretation via lattice paths

1.1 Lattice paths and associated generating functions

In this section, we want to consider a combinatorial interpretation of (generalized) Cata-
lan numbers in terms of monotone lattice paths and understand the logarithm of the
corresponding generating functions on the level of these combinatorial structures. We
concentrate on item 24 in [12, Chapter 2], but consider labeled structures instead of
unlabeled.

Definition 1 (Labeled good paths). Let n ∈ N and let k > 2. Let V ⊂ N be a finite
label set with |V | = n. A path on the quadratic lattice Z2 from (0, 0) to (n, (k − 1)n)
with steps (0, 1) or (1, 0), together with a labeling of the heights {(k − 1)j}06j6n−1 by
elements of V (as visualized in Figure 1), is called a V -labeled k-good path if it never
rises above the line y = (k − 1)x. Denote the set of all such paths by Pk(V ) and write
Pk(n) := Pk([n]).

Remark 1.1. By labeling we mean a bijective map from {(k − 1)j}06j6n−1 to V . Notice
these heights are exactly those on which the path can potentially intersect the diagonal
y = (k − 1)x.

Remark 1.2. Our notion of (unlabeled) good paths is essentially the same as introduced
in [5], up to a vertical shift of the path by 1. Notice that, by [5], Gk — as the generating
function for kth generalized Catalan numbers — is equal to the exponential generating
function for (Pk(n))n∈N0 , i.e.,

Gk(x) = 1 +
∑
n>1

xn

n!
|Pk(n)|.
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Figure 1: On the left side, we see a 3-good lattice path of length 12 (labeled by {1, 2, 3, 4});
on the right side, we see a 2-good lattice path of length 18 (labeled by {1, . . . , 9}).

Next, we want to introduce combinatorial structures that are enumerated by the co-
efficients of logGk.

Definition 2 (Label-minimal good paths). Let n ∈ N and let k > 2. Let V ⊂ N be a
finite label set with |V | = n. A V -labeled k-good path P is called label-minimal if the
label of the height 0 is minimal under all labels labeling heights at which P intersects the
diagonal y = (k − 1)x.

Denote the set of V -labeled k-good paths that are label-minimal by Pmin
k (V ) and write

Pmin
k (n) := Pmin

k ([n]). The corresponding exponential generating function is defined by
the following formal power series:

Gmin
k (x) =

∑
n>1

xn

n!
|Pmin

k (n)|.

Let 1 6 ` 6 n and let B1 ∪ . . . ∪ B` be a partition of [n]. For every i ∈ [`], let
Pi ∈Pmin

k (Bi). The set {P1, . . . , P`} is called a label-minimal k-field on [n]. Denote the
set of all label-minimal k-fields on [n] by Fmin

k (n).
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Figure 2: On the left side, we see a label-minimal 3-good lattice path of length 12 (labeled
by {1, 2, 3, 4}); on the right side, we see a label-minimal 2-good lattice path of length 18
(labeled by {1, . . . , 9}).
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Alternatively, just like the logarithm of the exponential generating function for permu-
tations can be interpreted as the exponential generating function for cycles (as explained
in the introduction), one can interpret logGk via certain cyclic structures as well. Infor-
mally speaking, those cyclic structures can be obtained by “bending k-good paths into
circles”, i.e., by identifying endpoints of [n]-labeled k-good paths with their starting points
and keeping the labelings (which thus become cycles on [n]).

Definition 3 (Labeled ornaments). Let n ∈ N and let k > 2. Let V be a finite label
set with |V | = n. For P ∈ Pk(V ) construct a labeled infinite lattice path P̂ by taking
(infinitely many) labeled paths j(n, (k− 1)n) + P , j ∈ Z, and concatenating them (while
keeping the labeling).

An equivalence relation on the set Pk(V ) can be defined as follows: Let two V -labeled
k-good paths P1 and P2 be equivalent if and only if P̂1 is a translate of P̂2 along the line
y = (k − 1)x (including the labeling).

The corresponding equivalence classes [P ] can be identified with the shape of the
infinite periodic paths P̂ together with an infinite periodic labeling (i.e., a cycle on [n])
which are obtained by identifying the endpoint and the starting point of P .

Denote the set of the equivalence classes, called V -labeled k-ornaments, by P◦
k(V ) and

write P◦
k(n) := P◦

k([n]). The corresponding exponential generating function is defined
by the following formal power series:

G◦k(x) =
∑
n>1

xn

n!
|P◦

k(n)|.

Let 1 6 ` 6 n and let B1 ∪ . . . ∪B` be a partition of [n]. For every i ∈ [`], let Oi be a
Bi-labeled k-ornament. The set {O1, . . . , O`} is called a k-ornament field on [n]. Denote
the set of all k-ornament fields on [n] by F ◦

k (n).
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Figure 3: Both 2-good paths of length 8 depicted on the right side are representatives of
the 2-ornament depicted on the left side.

Now, with these definitions at hand, we are ready to give a combinatorial interpre-
tation for logGk in terms of label-minimal k-good paths or, alternatively, in terms of
k-ornaments.
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1.2 Bijective results

The following lemma provides the combinatorial insight essential to the proofs of the
main results in this section: It enables us to identify labeled good paths with sets of
label-minimal good paths.

Lemma 4. Let n ∈ N and let k > 2. There is a bijection between Pk(n) and Fmin
k (n).

Proof. Let us define a bijection m : Pk(n) → Fmin
k (n). For a k-good path P ∈ Pk(n),

we obtain a label-minimal k-field m(P ) ∈ Fmin
k (n) from P by the following inductive

procedure:

Step 0: Set Π = P .

Step N > 1: Let 0 = y1 < · · · < y` denote the heights at which the path Π intersects
the line y = (k − 1)x and let i1, . . . , i` ∈ [n] denote the corresponding labels.

• If there exists a j ∈ [`] such that ij < i1 holds, set y := min{yj : j ∈ [`], ij < i1}
and set Π = P . Cut the path Π at the height y, obtaining two paths — a path
Π1 from (0, 0) to ( y

k−1 , y) and a path Π2 starting at ( y
k−1 , y) which inherit their

labelings from Π. Π1 and Π2 are again k-good paths — up to a translation
of Π2. Replace Π with the translate of Π2 starting in (0, 0) and GOTO Step
N+1.

• Otherwise STOP.

Naturally, this procedure produces a label-minimal k-field on [n].
Conversely, given a label-minimal k-field F ∈ F ◦

k (n), construct an [n]-labeled k-good
path m−1(F ) ∈ Pk(n) as follows: Order the labeled k-good paths from F decreasing
in the label at y = 0. Successively, glue the predecessor path to the successor path by
concatenation (identifying the endpoint of the former with the starting point of the lat-
ter). Naturally, the resulting lattice path is an [n]-labeled k-good path and the described
procedure does indeed define the inverse of the map m introduced above.

Remark 1.3. Clearly, our choice of label-minimal paths is somewhat arbitrary in the
following sense: In the inductive procedure from Lemma 4 defining the map m, one can
choose different rules to “cut” the path P at its intersections with the diagonal. E.g., one
could instead consider “label-maximal” paths (or, more generally, define y as the height
labeled minimally with respect to an arbitrary order on the labels instead of the canonical
one).

This bijective result allows us to interpret logGk as the exponential generating function
for label-minimal good paths:

Theorem 5. Let k > 2. The following holds as an identity between formal power series:

logGk = Gmin
k .
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Figure 4: On the left, we see a 2-good path of length 18, on the right we see the label-
minimal 2-field corresponding to it in the sense of the proof of Lemma 4.

Proof. The claim follows directly from Lemma 4 via a standard combinatorial argument
(see, e.g., [4], for the argument formulated in the framework of combinatorial species).

Lemma 6. For n ∈ N and k > 2, there is a bijection between the sets Pmin
k (n) and

P◦
k(n).

Proof. The bijection is given by assigning to the label-minimal path P ∈ Pmin
k (n) its

equivalence class [P ] ∈ P◦
k(n). This map is clearly invertible since every element of

P◦
k(n) has a unique representative P ∈Pmin

k (n) that is label-minimal.

Remark 1.4. Again, we see that the choice of label-minimal paths was somewhat arbitrary:
In the above proof, one could identify [P ] ∈ P◦

k(n) with a representative different from
P , e.g., with the “label-maximal” path in [P ], see Remark 1.3.

The lemma allows us to identify logGk with the exponential generating function for
labeled k-ornaments:

Theorem 7. Let k > 2. The following holds as an identity between formal power series:

logGk = G◦k.

Proof. The claim follows from Theorem 5 and Lemma 6 since the latter implies that
G◦k = Gmin

k for k > 2.

We have shown how taking the logarithm of the generating function for kth Catalan
numbers Gk can be interpreted on the level of lattice paths. By Theorem 5, it can be
interpreted as the exponential generating function for label-minimal k-good paths — so
that taking the logarithm of Gk corresponds to discarding those k-good paths that have
labels at height 0 which are not minimal among the labels labeling intersections of the path
with the diagonal y = (k − 1)x. Alternatively, by Theorem 7, logGk can be interpreted
as the exponential generating function for k-ornaments — so that taking the logarithm
corresponds to identifying those k-good paths that result in the same k-ornament when
they are “bent into a circle”.
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1.3 Identifying the coefficients

Lemma 4 also provides an elementary way to recover the explicit expressions for the
coefficients of logGk for every k > 2 (known from [6, 7]) — by simply counting k-
ornaments.

Theorem 8. Let k > 2. We have

logGk(x) =
∑
n>1

xn

n!

(kn− 1)!

(kn− n)!
.

Proof. A well-known result (see, e.g., [3]) provides the number c
(p)
k,n of Dyck paths of length

kn with exactly p ∈ N returns to zero (which corresponds to the number of unlabeled
k-good paths of length kn that intersect the diagonal y = (k − 1)x exactly p+ 1 times):

c
(p)
k,n =

kp− p
kn− p

(
kn− p
n− p

)
.

Notice that if some k-good lattice path P intersects the line y = (k−1)x exactly p+1 times
then the same holds for every path in [P ] and |[P ]| = p (since choosing a representative
of [P ] is equivalent to choosing which intersection point to place at y = 0). Therefore,
the number of [n]-labeled k-ornaments intersecting the diagonal y = (k − 1)x exactly p
times (for any representative, counting starting point and endpoint as one intersection)
is given by

n!
c
(p)
k,n

p

and thus we get

[xn] logGk(x) =
n∑
p=1

c
(p)
k,n

p
=

n∑
p=1

k − 1

kn− p

(
kn− p
n− p

)
=

1

n!

(kn− 1)!

(kn− n)!
.

The presented proof of the preceding theorem has the following advantage: It can
be easily modified to investigate the coefficients of logaGk for higher powers a > 2. As
mentioned in the introduction, the result itself is not novel and similar expressions for the
coefficients are known from [2, 11].

Theorem 9. Let a, k > 2 and n ∈ N. We have

[xn] logaGk(x) =
n∑
p=a

c
(p)
k,nNp,a,

where

c
(p)
k,n =

kp− p
kn− p

(
kn− p
n− p

)
and

Np,a :=
∑

(q1,...,qa)∈[p]a
q1+···+qa=p

1∏a
i=1 qi

.
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Remark 1.5. In the special case a = 2, considered by Knuth in [8], we get

[xn] log2Gk(x) =
n∑
p=2

c
(p)
k,n

∑
16q6p−1

1

q(p− q)
= 2

n∑
p=2

k − 1

kn− p

(
kn− p
n− p

)
Hp−1,

where (Hm)m∈N are the harmonic numbers defined in the introduction.

Proof. By Theorem 5 and by a standard combinatorial argument, logaGk is the exponen-
tial generating function for k-ornament fileds consisting of a > 2 k-ornaments. For every
n ∈ N, we need to determine the number of such k-ornament fields on [n]. To do so, we
employ the same decomposition as in the proof of Theorem 8 sorting the k-ornament fields
by the total number of intersections with the diagonal y = (k − 1)x (in any correspond-

ing set of representatives). So, let N̂
(k,n)
p,a denote the number of k-ornament fields on [n]

consisting of precisely a > 2 k-ornaments such that in total there are p intersections with
the diagonal y = (k − 1)x (for any representative, counting starting point and endpoint
as one intersection). Then

[xn] logaGk(x) =
a

n!

n∑
p=a

N̂ (k,n)
p,a .

In the proof of Theorem 8, we already established that

n!
c
(p)
k,n

p

is the number of [n]-labeled k-ornaments O intersecting the diagonal y = (k−1)x exactly
p times (for any representative, counting starting point and endpoint as one intersection).
We now want to determine how many k-ornament fields of precisely a > 2 k-ornaments
correspond to each such k-ornament O — in the sense that they can be obtain by cutting
O at precisely a > 2 intersections with the diagonal y = (k− 1)x. This number is exactly
the number of possible decompositions of a cycle of length p into a > 2 segments which
is given by ∑

(q1,...,qa)∈[p]a
q1+···+qa=p

p

a
,

where the tuple (q1, . . . , qa) corresponds to the lengths of the segments, the factor p
corresponds to the possible choice of the starting point for the first segment and the
factor 1

a
is due to the fact that there are a > 2 sequences (q1, . . . , qa) corresponding to the

same cycle on {q1, . . . , qa}.
Left to notice is the following: Consider a k-ornament field of a > 2 k-ornaments

and let the corresponding numbers of intersections with the diagonal y = (k − 1)x be
given by a fixed sequence (q1, . . . , qa) with q1 + · · · + qa = p. From how many distinct
k-ornaments intersecting the diagonal y = (k− 1)x precisely p times can this k-ornament
be obtained by the cutting procedure described above? Naturally, this is equivalent to
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asking how many different cycles on [p] can be cut to obtain a set of a > 2 cycles with
lengths (q1, . . . , qa) and the answer is just given by the number

∏k
i=1 qi.

Thus the number N̂
(k,n)
p,a is given by

N̂ (k,n)
p,a = n!

c
(p)
k,n

p

∑
(q1,...,qa)∈[p]a
q1+···+qa=p

p

a
∏a

i=1 qi

and, plugging that in the above expression, we obtain

[xn] logaGk(x) =
a

n!

n∑
p=a

n!
c
(p)
k,n

p

∑
(q1,...,qa)∈[p]a
q1+···+qa=p

p

a
∏a

i=1 qi

 =
n∑
p=a

c
(p)
k,nNp,a.

2 Combinatorial interpretation via tree graphs

2.1 Tree graphs and associated generating functions

In this section, we provide an alternative combinatorial interpretation for the logarithm
of the binomial series Gk in terms of tree graph structures. To do so, we introduce several
sets of labeled graphs.

Definition 10 (Rooted plane trees). Let k > 2. For a finite set V ⊂ N, we define a rooted
plane k-ary tree with the vertex set V as follows: Consider a quadruple (V,E, r, (`(v))v∈V )
such that

1. r ∈ V , E ⊂
(
V
2

)
,

2. the graph (V,E, r) is a tree rooted in r,

3. for each vertex v ∈ V , the set C(v) ⊂ V of children of v in (V,E, r) satisfies the
constraint |C(v)| 6 k,

4. for each vertex v ∈ V , `(v) : C(v)→ {1, . . . , k} is an injective map.

For each vertex v ∈ V , we interpret the numbers {1, . . . , k} as an ordered list of slots
potentially available for the children of v. We say that the pth v-slot is occupied by a
vertex j ∈ V , if j ∈ C(v) and l(v)(j) = p ∈ {1, . . . , k}. We say that the pth v-slot is
vacant, if such a j does not exist. The slots {1, . . . , k} are visualized in an increasing
order from left to right and vacant slots are depicted by small solid (unlabeled) nodes.

We denote the set of rooted plane k-ary trees with the vertex set V by Tk(V ).

Remark 2.1. Vacant slots can be interpreted as unlabeled leaf vertices (compare to the
full binary trees as in [5]).
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Figure 5: Binary (d ≡ 2) tree with n = 9 vertices.

Definition 11 (Root-minimal plane trees). Let k > 2. For a finite set V ⊂ N, let t be
a rooted plane k-ary tree with the vertex set V , i.e., t ∈ Tk(V ). We say that a vertex
v ∈ V is on the rightmost branch of t if v is an element of the vertex set B ⊂ V defined
via the following induction:

1. Let the root r ∈ V be in B.

2. If a vertex v ∈ V is in B, then the vertex occupying the kth (rightmost) v-slot is in
B.

We call t root-minimal if the root r ∈ V is smaller (with respect to the canonical order
on the natural numbers) than any of the other vertices on the rightmost branch of the
tree. The set of root-minimal plane k-ary trees is denoted by T min

k (V ). We denote the
set of root-minimal plane k-ary forests with the vertex set V by Fmin

k (V ).
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Figure 6: Root-minimal binary tree with n = 9 vertices.

Definition 12 (Cycle-rooted plane trees). Let k > 2. For a finite set V ⊂ N, we define
a cycle-rooted plane k-ary tree with the vertex set V as follows: Consider a quintuple
(V,E,R, o, (`(v))v∈V ) such that

1. R ⊂ V , E ⊂
(
V
2

)
,

2. (R,E ∩
(
R
2

)
) is the cycle graph associated with the cyclic permutation o on R and

is visualized as oriented clockwise,

the electronic journal of combinatorics 31(1) (2024), #P1.46 12



3. the graph (V,E\
(
R
2

)
, R) is a forest of |R| trees rooted in vertices from R,

4. for each vertex v ∈ V , the set C(v) ⊂ V of children of v in (V,E\
(
R
2

)
, R) satisfies

the constraint |C(v)| 6 k,

5. for each vertex v ∈ V , `(v) : C(v)→ {1, . . . , k} is an injective map; we use the same
vocabulary and interpret `(v) in the same manner as in Definition 10,

6. For every r ∈ R, the kth (rightmost) r-slot is vacant.

We denote the set of cycle-rooted plane k-ary trees with the vertex set V by T ◦
k (V ) and

the set of cycle-rooted k-ary forests with the vertex set V by F ◦
d (V ).

Remark 2.2. Cycle-rooted trees can be interpreted as equivalence classes of rooted plane
trees: Two rooted plane trees are equivalent if and only if they result in the same cycle-
rooted tree when we identify the root of the tree with its right-most leaf (the right-
most branch therefore becoming the cycle sub-graph in the resulting cycle-rooted tree).
In this way a cycle-rooted tree with a cycle of length r corresponds to an equivalence
class consisting of r rooted plane trees. Compare this to the definition of k-ornaments
(Definition 3 in Section 1).
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Figure 7: Cycle-rooted binary tree with n = 9 internal vertices.

Let n ∈ N and let k > 2. For notational convenience, we set Tk(n) := Tk([n]) and,
analogously, write T min

k (n), T ◦
k (n), Fmin

k (n) and F ◦
k (n) for any n ∈ N.

As mentioned in the introduction, the exponential generating function for (Tk(n))n∈N
is given by the series Gk (see [5]), i.e.,

Gk(x) = 1 +
∑
n>1

xn

n!
|Tk(n)|.

Moreover, we denote

• by Ĝmin
k the exponential generating function for (T min

k (n))n∈N given by

Ĝmin
k (x) =

∑
n>1

xn

n!
|T min

k (n)|,

the electronic journal of combinatorics 31(1) (2024), #P1.46 13



• by Ĝ◦d the exponential generating function for (T ◦
d (n))n∈N given by

Ĝ◦d(x) =
∑
n>1

xn

n!
|T ◦

d (n)|.

2.2 Bijective results.

The following lemma is the tree analogue of Lemma 4.

Lemma 13. Let n ∈ N and k > 2. There is a bijection between the set of k-ary trees
with n vertices Tk(n) and the set of root-minimal k-ary forests with n vertices Fmin

d (n).

Proof. We consider the following map m from Tk(n) to Fmin
k (n). Let t ∈ Tk(n), then we

obtain the forest m(t) ∈ Fmin
k (n) from t by the following inductive procedure:

Step 0: Set i = r. Set ` = i.

Step N > 1: • If the kth (rightmost) `-slot is vacant, STOP.

• If the kth (rightmost) `-slot is occupied by a vertex j ∈ V and j < i, then delete
the edge {`, j}, obtaining N + 1 trees, and leave the kth `-slot vacant. Let all
vertices that were roots in the previous step remain roots and let j become the
root in the tree to which it belongs. Set i = j, ` = i and GOTO Step N + 1.

• If the kth (rightmost) `-slot is occupied by a vertex j ∈ V and j > i, then do
nothing and the number of trees remains N . All vertices that were roots in the
previous step remain roots. If the j-slot d(j) is vacant, STOP. If the kth j-slot
is occupied by some vertex, set ` = j and GOTO Step N + 1.

Naturally, this procedure produces a forest of root-minimal trees while preserving
the vertex set and the offspring constraint k, thus the map m : Tk(n) → Fmin

k (n) is
well-defined.

Conversely, given a k-ary forest in Fmin
k (n), one can obtain a tree from it by the

following procedure: Order the trees of the forest decreasing in the root numbers (with
respect to the canonical order on the natural numbers). From this sequence of trees, we
obtain a single tree (with the root given by the largest of the initial roots) by successively
attaching the successor tree to the predecessor tree as follows: Let j be the last vertex
on the rightmost branch of the predecessor tree. We place the root of the successor tree
in the vacant kth (rightmost) j-slot, leaving the offspring structure unchanged otherwise.
Naturally, this procedure preserves the vertex set and the offspring constraint k as well,
and thus defines a map from Fmin

k (n) to Tk(n) — which clearly is the inverse for the map
m defined above.

Remark 2.3. Naturally, our choice of root-minimal trees is somewhat arbitrary in the
following sense: In the proof Lemma 13, one can choose a different rule to compare the
labels i and j. E.g., one could instead consider “maximal-rooted” trees (or, more generally,
use any arbitrary order on the natural numbers instead of the canonical one).
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Figure 8: On the left side, we see a binary tree with n = 9 vertices; on the right side,
we see the root-minimal binary forest corresponding to it in the sense of the proof of
Lemma 13.

The following theorem is the tree analogue of Theorem 5 and a direct consequence of
the preceding lemma.

Theorem 14. Let k > 2. The following holds as an identity between formal power series:

log Ĝk = Ĝmin
k .

Proof. Analogously to the proof of Theorem 5, the claim follows directly from Lemma 13
via a standard combinatorial argument (see, e.g., [4], for the argument formulated in the
framework of combinatorial species).

The following lemma is the tree analogue of Lemma 6.

Lemma 15. Let n ∈ N and k > 2. There is a bijection between the sets T ◦
k (n) and

T min
k (n).

Proof. We consider the following map p from T ◦
k (n) to T min

k (n). Starting with a cycle-
rooted tree c ∈ T ◦

k (n), one obtains a root-minimal tree p(c) ∈ T min
k (n) by the following

procedure: For every vertex r ∈ R on the unique cycle in c, the kth (rightmost) r-slot is
vacant by definition. Delete the edge {i, j} of the cycle which connects the minimal cycle
vertex i ∈ R with its neighbor in the counter-clockwise direction j ∈ R. Let the minimal
cycle vertex i now be the root of the resulting tree and, for every r ∈ R\{j}, let the kth

r-slot be occupied by the former clockwise neighbor of r on the cycle while leaving the kth

j-slot vacant. That way, the former cycle becomes the rightmost brunch of the resulting
tree. Otherwise, let the offspring structure be inherited from c. Notice that the resulting
tree is indeed in T min

k (n), the map p is thus well-defined.
Conversely, to obtain from a root-minimal tree t ∈ T min

k (n) a cycle-rooted tree in
T ◦
k (n) consider the following procedure: Add an edge between the root r of t and the last

vertex of the rightmost branch of t, obtaining a cycle. Set R ⊂ V to be the cycle nodes
(that are precisely the vertices on the right-most branch of the original root-minimal tree
t). For every cycle node r ∈ R, let the kth (rightmost) r-slot be vacant. Otherwise, for
every v ∈ V , let the offspring structure of v be inherited from the map l(v) defining t.
Clearly, this procedure provides the inverse to the map p defined above.

the electronic journal of combinatorics 31(1) (2024), #P1.46 15



Remark 2.4. If we identify the cycle-rooted trees with equivalence classes of trees as
hinted in Remark 2.2, then a bijection is given by just assigning to a root-minimal tree t
its equivalence class [t]. The map is indeed invertible, since every equivalence class has a
unique representative which is root-minimal (compare to the proof of Lemma 6).
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Figure 9: The cycle-rooted tree from Figure 7 (depicted on the left side) corresponds to
the root-minimal tree from Figure 6 (depicted on the right side) in the sense of the proof
of Lemma 15. The construction is illustrated in the middle.

The following theorem follows immediately from Lemma 15 and Theorem 14. It is the
tree analogue of Theorem 7:

Theorem 16. Let k > 2. The following holds as an identity between formal power series:

log Ĝk = Ĝ◦k.

Proof. The claim follows from Theorem 14 and Lemma 15 since the latter implies that
Ĝ◦k = Ĝmin

k for k > 2.

We have shown how taking the logarithm of the generating function for kth Catalan
numbers Gk can be interpreted on the level of trees. By Theorem 14, logGk can be inter-
preted as the exponential generating function for root-minimal plane k-ary trees — i.e.,
taking the logarithm of Gk corresponds to discarding those k-ary trees that have roots
that are not minimal among the vertices on the right-most branch of the tree. Alterna-
tively, by Theorem 16, logGk can be interpreted as the exponential generating function for
cycle-rooted k-ary trees — so that taking the logarithm corresponds to identifying those
trees that result in the same cycle-rooted tree when their right-most branch is “bent into
a circle”.

A Cyclic multisets: Encoding lattice ornaments and trees

Here we introduce a way to encode both k-ornaments and cycle-rooted k-ary trees by
structures we call cyclically ordered multisets. The rough idea of the encoding is best
explained starting from binary rooted trees. Each internal vertex (except for the root) sits
on a branch connecting one of its leaf-descendants to the root, and is at the origin of a new
branch emanating from it. Enumerating the vertices in the order in which they are visited
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by a depth-first search, along with the lengths of the associated emanating branches, we
obtain sequences (v(1), . . . , v(n)), (f(1), . . . , f(n)) of labels and branch lengths, with the
branch lengths summing up to the total number of vertices. In turn, the branch lengths
may be reinterpreted as step heights of lattice paths. Alternatively, we may view the
branch lengths f(j) as multiplicities of the element v(j) in some multiset. The precise
constructions are more involved as k-ary trees may have more than one branch emanating
from internal vertices and the natural structure for cycle-rooted trees is a cycle, rather
than an ordered list, of the vertex labels.

For every n ∈ N and k > 2, we will introduce a bijective map π encoding [n]-labeled
k-ornaments and a bijective map τ encoding cycle-rooted k-ary trees on [n] using the
same set of cyclically ordered multisets. Naturally, those maps τ and π induce a bijection
between the sets T ◦

k (n) and P◦
k(n) for every n ∈ N and k > 2 which can be interpreted as

a way to encode k-ary trees by monotone lattice paths and is similar the well-known en-
coding of binary trees by Dyck paths from [10]. Moreover, the bijections π and τ provide
an alternative approach to finding the coefficients of logGk — by simply counting cycli-
cally ordered multisets in the image of τ and π. Before we further discuss the encoding,
we would like to introduce the set of cyclically ordered multisets rigorously:

Definition 17 (Cyclically ordered multisets). Let k > 2. A cyclically ordered k-multiset
(σ, f) on [n] consists of a cycle (cyclic permutation) σ on [n] together with a map f :
[n]→ Nk−1

0 given by
[n] 3 i 7→ (f1(i), . . . , fk−1(i)) ∈ Nk−1

0

such that
∑n

i=1

∑k−1
q=1 fq(i) = n. To the cycle σ, assign the cycle graph Cσ = (V,E), given

by
V = [n]× [k − 1]

and

E = {{(i, q), (j, p)}| i = j and |q−p| = 1 or i is σ-predecessor of j, q = k−1 and p = 1}.

Alternatively, one can view f as a function on the nodes of Cσ, i.e., f : [n]× [k−1]→ N0,
(i, q) 7→ fq(i). We denote the set of cyclically ordered k-multisets on [n] by M ◦

k (n).

Let n ∈ N. In the binary case k = 2, one needs the whole set M ◦
2 (n) to encode the

corresponding 2-ornaments or binary trees. For k > 3, however, the set M ◦
k (n) is too big.

We introduce a subset of M ◦
k (n) which is naturally suited to encode the structures from

P◦
k(n) and T ◦

k (n):

Definition 18 (Multisets with root vertices). Let m = (σ, f) ∈M ◦
k (n), let i, j ∈ [n] and

let 1 6 ki, kj 6 k − 1. We call a simple path on the circle graph Cσ starting in (i, ki)
and ending in (j, kj) a segment of Cσ if i = j and ki 6 kj or if it is consistent with the
orientation of σ, i.e., if i 6= j and for every pair of consecutive points (`1, k − 1), (`2, 1) in
s we have that `2 is the σ-sucessor of `1. To any segment s of Cσ we assign the scope of
s given by

λ(s) = |{i ∈ [n]|(i,m) ∈ s for some 1 6 m 6 k − 1}|
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and the weight of s in m given by

w(m)(s) =
∑

(i,m)∈s

fm(i).

For m ∈M ◦
k (n), we define the set of root vertices W (m) by

W (m) := {i ∈ [n]| every segment s of Cσ starting in (i, 1) satisfies w(m)(s) > λ(s)}.

We denote the set of those multisets in M ◦
k (n) that possess root vertices by M(k, n), i.e.,

M(k, n) := {m ∈M ◦
k (n)|W (m) 6= ∅}.
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Figure 10: On the left side m ∈ M ◦
5 (2) is depicted, on the right side m′ ∈ M ◦

3 (4). The
numbers inside the circle graph depict the multiplicities of the vertices of the circle graph
Cσ closest to them. Notice that m /∈M(5, 2), but m′ ∈M(3, 4), since 1, 2 ∈ W (m′).

Now we can introduce a map encoding lattice ornaments by cyclically ordered multi-
sets:

Definition 19 (Map π encoding lattice ornaments by multisets). Let k > 2 and n ∈ N.
We define the embedding π : P◦

k(n)→M ◦
k (n) as follows: For a k-ornament O ∈P◦

k(n),
we set π(O) =: (σ, f), where σ is simply given by the labeling of O. To obtain the map f ,
take any representative of O and set fq(i), q ∈ [k − 1], i ∈ [n], to be the number of steps
to the right at the height y = yi + q − 1, where yi is the height labeled by i in O.

Remark A.1. Naturally, the map π is indeed injective. The property of the path O to
not rise above the diagonal y = (k − 1)x corresponds to the property W (π(O)) 6= ∅
on the level of multisets. Moreover, the set of labels marking the heights at which O
intersects the diagonal becomes the set W (π(O)). Thus the range π(P◦

k(n)) of π is given
by M(k, n) := {m ∈ M ◦

k (n)| W (m) 6= ∅} so that |P◦
k(n)| = |M(k, n)|. For k = 2, we

have M(k, n) = M ◦
k (n) and π is a bijection.

Now we investigate how cycle-rooted trees can be encoded by cyclically ordered mul-
tiset. To this end, we introduce the following map:
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Figure 11: The [4]-labeled 3-ornament corresponding to the 3-good path depicted on the
left side is mapped by π to the multiset in M ◦

3 (4) depicted on the right side.

Definition 20 (Map τ encoding cycle-rooted trees by multisets). Let k > 2 and n ∈ N.
We introduce an embedding τ : T ◦

k (n) →M ◦
k (n). Given a cycle-rooted tree t ∈ T ◦

k (n),
we construct the cyclically ordered multiset τ(t) = (f, σ) ∈ M ◦

k (n) by the following
two-step procedure:

• Step 1 (Constructing the cycle σ by exploration of vertices in t): Starting at any
root of t ∈ T ◦

k (n), the cycle σ is obtained by the following exploration procedure:
In every step of the exploration, we uncover a single vertex of t. In the first step,
we uncover an arbitrary root r of t. In every further step, as long as there are
unexplored vertices in the maximal k-ary subtree of t rooted in r, we go to the last
explored vertex that has an unexplored child and uncover its leftmost unexplored
child. When the maximal k-ary subtree of t rooted in r is explored, we move to the
next root in t according to the cyclic order induced by the oriented cycle of roots
t and repeat the procedure. We stop when all vertices of t are explored and define
σ as the cycle induced directly by the linear order in which the vertices of t were
uncovered.

• Step 2 (Define the function f by re-distributing multiplicities of vertices in t): Ini-
tially every vertex of t is assigned a single multiplicity. Then the multiplicities are
re-distributed between the vertices of t by “rolling-down” (viewed drawing the trees
growing upwards with equiangular branches, see Figure 12): Let i ∈ [n] be an arbi-
trary vertex of t. For q ∈ [k], consider the path Θq(i) given by the unique simple
path starting in i and ending in its leaf-descendant such that every vertex j 6= i on
the path occupies slot q of its parent. Denote by |Θq(i)| the number of vertices on
the path Θq(i).

If i is a root, i.e. i ∈ R, set

fq(i) := |Θq(i)|+ δq,1

for 1 6 q 6 k − 1.
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If i is not a root, then i is the child of a vertex, say i occupies slot p of its parent.
For 1 6 q 6 k − 1, let q′ denote the q-smallest element of [k]\{p} and set

fq(j) := |Θq′(j)|.

Notice that
∑n

j=1

∑k−1
q=1 fq(j) = n indeed holds for the function f defined above.
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Figure 12: Redistribution of multiplicities from Step 2 of Definition 20 in the binary case:
The multiplicities of non-root vertices “roll down” and the multiplicities of roots do not
move.

Remark A.2. The map τ is indeed injective. The set R of roots of t is mapped under τ
precisely onto the set W (τ(t)) on the level of multisets. Again, the range τ(T ◦

k (n)) of
τ is given by M(k, n) so that |T ◦

k (n)| = |M(k, n)|. In the binary case k = 2, we have
M(k, n) = M ◦

k (n) and τ is a bijection.
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Figure 13: Final result: The cycle-rooted tree from Figure 7 (depicted on the left side) is
mapped by τ to the multiset from M ◦

2 (9) (depicted on the right side).

Let k > 2 and n ∈ N. By Remark A.1 and Remark A.2, a bijection between the sets
T ◦
k (n) and P◦

k(n) is given by the composition π̂−1 ◦ τ , where π̂ : P◦
k(n) → M(k, n) is

given by π̂(O) = π(O) for O ∈ P◦
k(n). Moreover, let t ∈ T ◦

k (n) and Ot := π̂−1(τ(t)),
then there is a one-to-one correspondence between the roots of t (vertices R of the cycle
subgraph of t) and the labels at which Ot intersects the diagonal y = (k − 1)x. The
bijection can be viewed as an alternative to the well-known encoding of binary trees by
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Dyck paths presented in [10, Chapter 6.3] which also involves a depth-first exploration of
the tree (as described in Step 2 of Definition 20).

Finally, notice the following: It can be shown that the set M(k, n) contains exactly
the fraction 1

k−1 of all elements in M ◦
k (n). Since by definition |M ◦

k (n)| = (n−1)!
((
(k−1)n
n

))
holds, where

((
i
j

))
denotes the multiset coefficient and can be written as

((
i
j

))
=
(
i+j−1
j

)
for i, j ∈ N, we have

|M(k, n)| = |M
◦
k (n)|

k − 1
=

(n− 1!)

k − 1

(
kn− 1

n

)
=

(kn− 1)!

(kn− n)!
.

This outlines an alternative proof for Theorem 8, since we have |M(k, n)| = |P◦
k(n)| =

|T ◦
k (n)| and thus logGk is the exponential generating function for (Mk(n))n∈N, i.e.,

logGk(x) =
∑
n>1

xn

n!
|Mk(n)| =

∑
n>1

xn

n!

(kn− 1)!

(kn− n)!
.
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