Improved bounds for cross-Sperner systems

Natalie Behague^a Natasha Morrison^b Akina Kuperus^b Ashna Wright^b

Submitted: Feb 7, 2023; Accepted: Mar 1, 2024; Published: Apr 5, 2024 © The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A collection of non-empty families $(\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_k) \in \mathcal{P}([n])^k$ is cross-Sperner if there is no pair $i \neq j$ for which some $F_i \in \mathcal{F}_i$ is comparable to some $F_j \in \mathcal{F}_j$. Two natural measures of the 'size' of such a family are the sum $\sum_{i=1}^k |\mathcal{F}_i|$ and the product $\prod_{i=1}^k |\mathcal{F}_i|$. We prove new upper and lower bounds on the maximum size of such a family under both of these measures for general n and $k \ge 2$ which improve considerably on the previous best bounds. In particular, we construct a rich family of counterexamples to a conjecture of Gerbner, Lemons, Palmer, Patkós, and Szécsi from 2011.

Mathematics Subject Classifications: 05D05

1 Introduction

A family $\mathcal{F} \subseteq \mathcal{P}([n])$ is an *antichain* (also known as a *Sperner* family) if for all distinct $F, G \in \mathcal{F}$, neither $F \subseteq G$ nor $G \subseteq F$ (i.e. F and G are *incomparable*). One of the principal results in extremal combinatorics is Sperner's theorem [21], which states that the largest size of an antichain in $\mathcal{P}([n])$ is $\binom{n}{\lfloor n/2 \rfloor}$. This can be seen to be tight by taking a 'middle layer', that is $\mathcal{F} = \binom{[n]}{\lfloor n/2 \rfloor}$ or $\mathcal{F} = \binom{[n]}{\lfloor n/2 \rfloor}$.

It is natural to consider a generalisation of Sperner's theorem to multiple families of sets. For $k \ge 2$, say that a collection of non-empty families $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k) \in \mathcal{P}([n])^k$, is cross-Sperner if for all $i \ne j$, the sets F_i and F_j are incomparable for any $F_i \in \mathcal{F}_i$ and $F_j \in \mathcal{F}_j$. (We may also write that $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$ is cross-Sperner in $\mathcal{P}([n])$.) The study of such objects goes back to the 1970s when Seymour [20] deduced from a result of Kleitman [13] that a cross-Sperner pair $(\mathcal{F}, \mathcal{G})$ in $\mathcal{P}([n])$ satisfies

$$|\mathcal{F}|^{1/2} + |\mathcal{G}|^{1/2} \leqslant 2^{n/2},$$
(1.1)

^aMathematics Institute, University of Warwick, Coventry, UK (natalie.behague@warwick.ac.uk).

^bDepartment of Mathematics and Statistics, University of Victoria, Victoria, Canada

⁽akuperus@uvic.ca, nmorrison@uvic.ca, ashnawright@uvic.ca).

hence resolving a related conjecture of Hilton (see [3]). Equality is obtained in Seymour's bound precisely when the minimal sets of \mathcal{F} are pairwise disjoint from the minimal sets intersecting each set of \mathcal{G} . A broad spectrum of research concerning discrete objects with 'Sperner-like' properties have since emerged (see, for example, [1, 2, 4, 5, 7, 10, 11, 12, 18, 22]). Many related results concern families satisfying both Sperner-type properties, and additional properties such as conditions on intersections (see, for example [6, 14, 16, 17, 19]).

Let $\mathcal{F} = (\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$ be cross-Sperner in $\mathcal{P}([n])$. There are several natural measures of the 'size' of such a family. These include the sum $\sum_{i=1}^{k} |\mathcal{F}_i|$ and the product $\prod_{i=1}^{k} |\mathcal{F}_i|$. The general study of these quantities was initiated by Gerbner, Lemons, Palmer, Patkós, and Szécsi [8], who essentially proved best possible bounds on cross-Sperner *pairs* of families.

Concerning the product, they gave a direct proof that a cross-Sperner pair $(\mathcal{F}, \mathcal{G})$ in $\mathcal{P}([n])$ satisfies

$$|\mathcal{F}| \cdot |\mathcal{G}| \leqslant 2^{2n-4}. \tag{1.2}$$

To see that this bound is tight, consider $\mathcal{F} = \{F \subseteq [n] : 1 \in F, n \notin F\}$ and $\mathcal{G} = \{G \subseteq [n] : 1 \notin G, n \in G\}$. It is straightforward to see that the bound in (1.2) can also be obtained as a direct consequence of (1.1) via the AM–GM inequality¹.

First, let us focus on product bounds for $k \ge 3$. It is convenient to define

$$\pi(n,k) := \max\left\{\prod_{i=1}^{k} |\mathcal{F}_i| : (\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_k) \text{ is cross-Sperner in } \mathcal{P}([n])\right\}.$$

In [8], it was observed that (1.1) can be used to obtain the upper bound $\pi(n,k) \leq 2^{k(n-2)}$. For k > 4, an improved bound of $\pi(n,k) \leq \left(\frac{2^n}{k}\right)^k$ can be obtained by a simple application of the AM-GM inequality.² Gerbner, Lemons Palmer, Patkós, and Szécsi [8] conjectured that $\pi(n,k) \leq 2^{k(n-\ell^*)}$, where $\ell^* = \ell^*(k)$ is the least positive integer such that $\binom{\ell^*}{\lfloor \ell^*/2 \rfloor} \geq k$. They described a construction which provides a matching lower bound to their conjecture: let A_1, \ldots, A_k be an antichain in $\mathcal{P}([\ell])$ and let $(\mathcal{F}_1, \ldots, \mathcal{F}_k) \in \mathcal{P}([n])$ be defined by $\mathcal{F}_i := \{F \in [n] : F \cap [\ell] = A_i\}.$

Our first theorem strongly disproves this conjecture.

Theorem 1.1. Let n and $k \ge 2$ be integers. For n sufficiently large,

$$\left(\frac{2^n}{ek}\right)^k \leqslant \pi(n,k).$$

A crude application of Stirling's approximation yields that $\ell^*(k) = \omega(\log k)$. So in particular, there is a function g(k) tending to infinity with k such that $2^{k(n-\ell^*)} = O\left(2^{kn}(k \cdot g(k))^{-k}\right)$. Therefore our lower bound is exponentially larger than the conjectured $2^{k(n-\ell^*)}$.

We also improve the previous best known upper bound by a factor of 2^k .

¹Observe that $2(|\mathcal{F}||\mathcal{G}|)^{1/4} \leq |\mathcal{F}|^{1/2} + |\mathcal{G}|^{1/2} \leq 2^{n/2}$.

²Similarly to above, we have $\left(\prod_{i=1}^{k} |\mathcal{F}_{i}|\right)^{\frac{1}{k}} \leq \frac{\sum_{i=1}^{k} |\mathcal{F}_{i}|}{k} \leq \frac{2^{n}}{k}.$

The electronic journal of combinatorics 31(2) (2024), #P2.4

Theorem 1.2. Let n and $k \ge 2$ be integers. Then

$$\pi(n,k) \leqslant \left(\frac{2^n}{k^2}\right)^k \left\lfloor \frac{k}{2} \right\rfloor^{\lfloor k/2 \rfloor} \left\lceil \frac{k}{2} \right\rceil^{\lceil k/2 \rceil}$$

Regarding bounds on the sum, in [8] it is shown that for n sufficiently large, a cross-Sperner pair in $\mathcal{P}([n])$ satisfies

$$\mathcal{F}|+|\mathcal{G}| \leqslant 2^n - 2^{\lceil n/2 \rceil} - 2^{\lfloor n/2 \rfloor} + 2.$$
(1.3)

This is tight, which can be seen by taking $\mathcal{F} = \{1, 2, \dots, \lfloor n/2 \rfloor\}$ and letting \mathcal{G} be all subsets of [n] that are not comparable to F. Gerbner, Lemons Palmer, Patkós, and Szécsi [8] also asked about bounds for the sum for general k. Analogously to in the product case, define

$$\sigma(n,k) := \max\left\{\sum_{i=1}^{k} |\mathcal{F}_i| : (\mathcal{F}_1, \mathcal{F}_2, \cdots, \mathcal{F}_k) \text{ is cross-Sperner in } \mathcal{P}([n])\right\}.$$

In our next theorem, we determine upper and lower bounds on $\sigma(n, k)$. Recall that each family is non-empty in a cross-sperner system.

Theorem 1.3. Let n, k be integers with $n \ge 2k$ and $k \ge 2$. Then

$$2^{n} - \frac{3}{\sqrt{2}}\sqrt{2^{n}k} + 2(k-1) \leqslant \sigma(n,k) \leqslant 2^{n} - 2\sqrt{2^{n}(k-1)} + 2(k-1).$$

When k is a power of 2 and $n - \log_2 k$ is even, we can further improve the lower bound to $2^n - 2\sqrt{2^n k} + 2(k-1)$, which is extremely close to the upper bound.

In order to prove Theorem 1.2 and the upper bound in Theorem 1.3, we exploit a connection between $\sigma(n, k)$ and the *comparability number* of a set (given in Section 2). In doing so, we recover a simple proof of (1.3) (see Theorem 2.4) that holds for all n (recall the result of [8] holds for large n).

The article is structured as follows. We introduce the comparability number in Section 2 and provide a lower bound (Theorem 2.3) that will be used in the proofs of Theorems 1.2 and 1.3. In Section 3 we prove Theorems 1.1 and 1.2 bounding the product. In Section 4 we prove Theorem 1.3 bounding the sum. We conclude in section 5 with some discussion and open questions.

2 Minimizing Comparability

Given a family $\mathcal{F} \subseteq \mathcal{P}([n])$ define the *comparability number of* \mathcal{F} to be

$$c(n, \mathcal{F}) := |\{X \subseteq [n] : X \text{ is comparable to some } A \in \mathcal{F}\}|.$$

When the setting is clear from context, we may write $c(\mathcal{F})$ for $c(n, \mathcal{F})$. Define

$$c(n,m) = \min\{c(n,\mathcal{F}) : \mathcal{F} \subseteq \mathcal{P}([n]), |\mathcal{F}| = m\}.$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.4

As noted in [8], there is a direct relationship between $\sigma(n, 2)$ and c(n, m). Observe that if $(\mathcal{F}, \mathcal{G})$ is cross-Sperner in $\mathcal{P}([n])$, we have

$$|\mathcal{F}| + |\mathcal{G}| \leq |\mathcal{F}| + 2^n - c(n, |\mathcal{F}|),$$

as only sets incomparable to every member of \mathcal{F} can be added to \mathcal{G} . We will use analogous ideas in Section 4 to provide upper bounds on $\sigma(n, k)$ for $k \ge 3$.

Our goal in this section is to find a lower bound on c(n, m). We begin by showing that families that minimize comparability are 'convex'.

Lemma 2.1. Let $\mathcal{F} \subseteq \mathcal{P}([n])$. Let $\mathcal{F}' := \mathcal{F} \cup \{Z \in \mathcal{P}([n]) : X \subseteq Z \subseteq Y, where X, Y \in \mathcal{F}\}$. Then $c(\mathcal{F}') = c(\mathcal{F})$.

Proof. Let Z be a set such that $X \subseteq Z \subseteq Y$, for some $X, Y \in \mathcal{F}$. Observe that any set in $\mathcal{P}([n])$ that is comparable to Z is either comparable to X or to Y. So $c(\mathcal{F} \cup Z) = c(\mathcal{F})$. Repeatedly applying this observation gives the result.

Theorem 2.3 can now be deduced from the Harris-Kleitman inequality. Recall that a family $\mathcal{U} \subseteq \mathcal{P}([n])$ is an *upset* if for all $X \in \mathcal{U}$, if $X \subseteq Y$, then $Y \in \mathcal{U}$. A family $\mathcal{D} \subseteq \mathcal{P}([n])$ is a *downset* if for all $X \in \mathcal{D}$, if $Y \subseteq X$, then $Y \in \mathcal{D}$.

Lemma 2.2 (Harris-Kleitman Inequality [13]). Let $\mathcal{U} \subseteq \mathcal{P}([n])$ be an upset and $\mathcal{D} \subseteq \mathcal{P}([n])$ be a downset. Then

$$\frac{|\mathcal{U} \cap \mathcal{D}|}{2^n} \leqslant \frac{|\mathcal{U}|}{2^n} \cdot \frac{|\mathcal{D}|}{2^n}.$$

We will apply Lemma 2.2 to prove a lower bound on c(n, m). For convenience, for a family $\mathcal{F} \subseteq \mathcal{P}([n])$, define

$$\mathcal{U}_{\mathcal{F}} = \{ X \in \mathcal{P}([n]) : F \subseteq X \text{ for some } F \in \mathcal{F} \}$$

and

$$\mathcal{D}_{\mathcal{F}} = \{ X \in \mathcal{P}([n]) : X \subseteq F \text{ for some } F \in \mathcal{F} \}.$$

Theorem 2.3. For $1 \leq m \leq 2^n$,

$$c(n,m) \ge 2^{n/2+1}\sqrt{m} - m.$$

Proof. Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be such that $|\mathcal{F}| = m$ and $c(\mathcal{F}) = c(n, m)$. We may assume \mathcal{F} is convex. If not, by Lemma 2.1 we may add sets to make it convex and then remove minimal or maximal elements to obtain \mathcal{F}' such that $|\mathcal{F}'| = |\mathcal{F}|$ and $c(\mathcal{F}') \leq c(\mathcal{F})$. Note that $c(\mathcal{F}) = |\mathcal{U}_{\mathcal{F}}| + |\mathcal{D}_{\mathcal{F}}| - |\mathcal{U}_{\mathcal{F}} \cap \mathcal{D}_{\mathcal{F}}|$. Since \mathcal{F} is convex, $|\mathcal{F}| = |\mathcal{U}_{\mathcal{F}} \cap \mathcal{D}_{\mathcal{F}}| = m$. Using the AM-GM inequality we get

$$c(\mathcal{F}) \ge 2\sqrt{|\mathcal{U}_{\mathcal{F}}||\mathcal{D}_{\mathcal{F}}|} - m.$$

Since $\mathcal{U}_{\mathcal{F}}$ is an upset and $\mathcal{D}_{\mathcal{F}}$ is a downset, we apply Lemma 2.2 to get

$$c(\mathcal{F}) \ge 2\sqrt{2^n m} - m = 2^{\frac{n}{2}+1}\sqrt{m} - m,$$

as required.

The electronic journal of combinatorics $\mathbf{31(2)}$ (2024), #P2.4

4

It is now a simple consequence of Theorem 2.3 to see that (1.3) holds for all n.

Theorem 2.4. Let $(\mathcal{F}, \mathcal{G})$ be cross-Sperner in $\mathcal{P}([n])$. Then

$$|\mathcal{F}| + |\mathcal{G}| \leq 2^n - 2^{\lfloor n/2 \rfloor} - 2^{\lceil n/2 \rceil} + 2.$$

Proof. Let $(\mathcal{F}, \mathcal{G}) \in \mathcal{P}([n])^2$ be a cross-Sperner pair. Suppose $|\mathcal{F}| = m$. Since $\mathcal{F}, \mathcal{G} \neq \emptyset$, $1 \leq m \leq 2^n - 1$. Moreover, we may assume without loss of generality that $|\mathcal{F}| \leq |\mathcal{G}|$. We know $|\mathcal{F}||\mathcal{G}| \leq 2^{2n-4}$ by (1.2), which implies that $m \leq 2^{n-2}$.

Then, $c(\mathcal{F}) \ge |\mathcal{U}_{\mathcal{F}}| + |\mathcal{D}_{\mathcal{F}}| - m$ and $|\mathcal{G}| \le 2^n - c(\mathcal{F}) \le 2^n - |\mathcal{U}_{\mathcal{F}}| - |\mathcal{D}_{\mathcal{F}}| + m$. Thus

$$|\mathcal{F}| + |\mathcal{G}| \leq 2^n - |\mathcal{U}_{\mathcal{F}}| - |\mathcal{D}_{\mathcal{F}}| + 2m.$$
(2.1)

We have the following two cases.

Case 1: Suppose m = 1. Since \mathcal{F} only consists of one set, say F, we have $|\mathcal{U}_{\mathcal{F}}| = 2^{n-|F|}$ and $|\mathcal{D}_{\mathcal{F}}| = 2^{|F|}$. Observe that $2^{|F|} + 2^{n-|F|}$ is minimized when $|F| \in \{\lfloor n/2 \rfloor, \lceil n/2 \rceil\}$. So (2.1) yields

$$|\mathcal{F}| + |\mathcal{G}| \leq 2^n - 2^{\lfloor n/2 \rfloor} - 2^{\lceil n/2 \rceil} + 2,$$

as required. This completes the case m = 1.

Case 2: Now suppose $m \ge 2$. By Theorem 2.3, $|\mathcal{U}_{\mathcal{F}}| + |\mathcal{D}_{\mathcal{F}}| \ge 2^{\frac{n}{2}+1}\sqrt{m}$, so Equation (2.1) gives

$$|\mathcal{F}| + |\mathcal{G}| \leqslant 2^n - 2^{\frac{n}{2}+1}\sqrt{m} + 2m.$$

By differentiation with respect to m we see that the expression on the right-hand side is decreasing in the range $2 \leq m \leq 2^{n-2}$. It is therefore maximized at m = 2, where we have

$$2^n - 2^{\frac{n}{2}+1}\sqrt{m} + 2m = 2^n - 2^{\frac{n+3}{2}} + 4.$$

Note that for all $n \ge 2$,

$$2^{\frac{n+3}{2}} - 4 \ge 2^{\lfloor n/2 \rfloor} + 2^{\lceil n/2 \rceil} - 2.$$

This implies that $2^n - 2^{\lfloor n/2 \rfloor} - 2^{\lceil n/2 \rceil} + 2 \ge 2^n - 2^{\frac{n}{2}+1}\sqrt{m} + 2m$ for all $2 \le m \le 2^{n-2}$ and $n \ge 2$. This completes the case $m \ge 2$.

We conclude that $|\mathcal{F}| + |\mathcal{G}| \leq 2^n - 2^{\lfloor n/2 \rfloor} - 2^{\lceil n/2 \rceil} + 2$, as desired.

3 Bounding $\pi(n,k)$

The goal of this section is to prove Theorems 1.1 and 1.2.

3.1 Lower Bound on $\pi(n,k)$

Theorem 1.1 follows directly from the following (slightly stronger) statement.

Lemma 3.1. Let n, k be integers with $k \ge 2$ and $n > k \log_2 k + k$. Then

$$\pi(n,k) \ge \left(\left(\frac{1}{k} - \frac{1}{2^{\lfloor n/k \rfloor}}\right) \left(1 - \frac{1}{k}\right)^{k-1} \right)^k 2^{kn}$$

Proof. Partition [n] into k parts A_1, A_2, \dots, A_k each of size $\lfloor \frac{n}{k} \rfloor$ or $\lceil \frac{n}{k} \rceil$. For each $1 \leq i \leq k$, take \mathcal{X}_i to be an initial segment of colex in $\mathcal{P}(A_i)$ such that $|\mathcal{X}_i| = \lambda_i 2^{|A_i|}$ for some $0 < \lambda_i < 1$, which will be chosen to be optimal at the end. Set $\mathcal{Y}_i := \mathcal{P}(A_i) \setminus \mathcal{X}_i$. Now we construct a cross-Sperner system $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$. Define

$$\mathcal{F}_i := \{ F \in \mathcal{P}([n]) : F \cap A_i \in \mathcal{X}_i, F \cap A_j \in \mathcal{Y}_j \text{ for all } j \neq i \}.$$

Refer to Example 3.3 for an example of this construction.

To see that $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$ is cross-Sperner in $\mathcal{P}([n])$, consider $S \in \mathcal{F}_i$ and $T \in \mathcal{F}_j$. We must show that S and T are incomparable. If $S \subseteq T$, then $S \cap A_j \subseteq T \cap A_j$, so there is some $Y \in \mathcal{Y}_j$ and $X \in \mathcal{X}_j$ such that $Y \subseteq X$, a contradiction. Analogously, we see that T cannot be a subset of S. Hence $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$ is cross-Sperner as required.

Observe that

$$|\mathcal{F}_i| = |\mathcal{X}_i| \prod_{j \neq i} |\mathcal{Y}_j|,$$

and so

$$\pi(n,k) \ge \prod_{i=1}^{k} |\mathcal{F}_i| = \prod_{i=1}^{k} \left(|\mathcal{X}_i| \prod_{j \neq i} |\mathcal{Y}_j| \right)$$

To complete the proof of Lemma 3.1 it remains to optimise the sizes of the λ_i . We have

$$|\mathcal{F}_i| = \lambda_i 2^{|A_i|} \prod_{j \neq i} (1 - \lambda_j) 2^{|A_j|} = \lambda_i 2^{|A_1| + |A_2| + \dots + |A_k|} \prod_{j \neq i} (1 - \lambda_j) = \lambda_i 2^n \prod_{j \neq i} (1 - \lambda_j).$$

So

$$\prod_{i=1}^{k} |\mathcal{F}_i| = \left(\prod_{i=1}^{k} \lambda_i (1-\lambda_i)^{k-1}\right) 2^{kn}$$
(3.1)

For each $1 \leq i \leq k$, set $\lambda_i = \frac{1}{2^{|A_i|}} \left\lfloor \frac{2^{|A_i|}}{k} \right\rfloor$. We have

$$\frac{1}{k} - \frac{1}{2^{\lfloor n/k \rfloor}} \leqslant \frac{1}{k} - \frac{1}{2^{|A_i|}} \leqslant \lambda_i \leqslant \frac{1}{k}.$$

For $n > k \log_2 k + k$ we have $2^{-\lfloor n/k \rfloor} \leq 2^{-(n/k-1)} < \frac{1}{k}$ and so λ_i is not zero. Therefore, with this choice of λ_i we get

$$\prod_{i=1}^{k} |\mathcal{F}_{i}| \ge \left(\left(\frac{1}{k} - \frac{1}{2^{\lfloor n/k \rfloor}}\right) \left(1 - \frac{1}{k}\right)^{k-1} \right)^{k} 2^{kn},$$

as required.

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.4

6

Remark 3.2. Note that if k is a power of 2, in the proof of Lemma 3.1 we have $\lambda_i = \frac{1}{k}$ for all $1 \leq i \leq k$. Therefore in this case we can eliminate the $-\frac{1}{2^{\lfloor n/k \rfloor}}$ term.

For clarity, we provide an example of the construction given in Lemma 3.1.

Example 3.3. Let n = 6 and k = 3. Partition [6] into

$$A_1 = \{1, 2\}, A_2 = \{3, 4\}, A_3 = \{5, 6\}.$$

To provide a more illustrative example, we choose $\lambda_i = \frac{1}{2}$ rather than $\frac{1}{4}$ as the proof of Lemma 3.1 stipulates. Let

$$\mathcal{X}_1 = \{\emptyset, \{1\}\}$$
$$\mathcal{X}_2 = \{\emptyset, \{3\}\}$$
$$\mathcal{X}_3 = \{\emptyset, \{5\}\}.$$

 So

$$\mathcal{Y}_1 = \{\{2\}, \{1, 2\}\}$$
$$\mathcal{Y}_2 = \{\{4\}, \{3, 4\}\}$$
$$\mathcal{Y}_3 = \{\{6\}, \{5, 6\}\}$$

Then we construct our cross-Sperner system to be

 $\begin{aligned} \mathcal{F}_1 &= \{\{4,6\},\{4,5,6\},\{3,4,6\},\{3,4,5,6\},\{1,4,6\},\{1,4,5,6\},\{1,3,4,6\},\{1,3,4,5,6\}\} \\ \mathcal{F}_2 &= \{\{2,6\},\{2,5,6\},\{2,3,6\},\{2,3,5,6\},\{1,2,6\},\{1,2,5,6\},\{1,2,3,6\},\{1,2,3,5,6\}\} \\ \mathcal{F}_3 &= \{\{2,4\},\{2,4,5\},\{2,3,4\},\{2,3,4,5\},\{1,2,4\},\{1,2,4,5\},\{1,2,3,4\},\{1,2,3,4,5\}\}. \end{aligned}$

We now deduce Theorem 1.1 (restated below for convenience) from Lemma 3.1.

Theorem 1.1. Let n and $k \ge 2$ be integers. For n sufficiently large,

$$\left(\frac{2^n}{ek}\right)^k \leqslant \pi(n,k).$$

Proof. Take n sufficiently large so that

$$\frac{1}{2^{\lfloor n/k \rfloor}} \leqslant \frac{1}{k} - \frac{1}{ek} \left(1 + \frac{1}{k-1} \right)^{k-1} = \frac{1}{ek} \left(e - \left(1 + \frac{1}{k-1} \right)^{k-1} \right).$$

This is possible as $\left(1 + \frac{1}{k-1}\right)^{k-1} < e$ for all k. Substituting this into Lemma 3.1, we see that

$$\pi(n,k) \ge \left(\frac{1}{ek} \left(1 + \frac{1}{k-1}\right)^{k-1} \left(1 - \frac{1}{k}\right)^{k-1}\right)^k 2^{kn} = \left(\frac{1}{ek}\right)^k 2^{kn}.$$

The electronic journal of combinatorics 31(2) (2024), #P2.4

3.2 Upper Bound on $\pi(n,k)$

The goal of this subsection is to prove Theorem 1.2, restated below for convenience.

Theorem 1.2. Let n and $k \ge 2$ be integers. Then

$$\pi(n,k) \leqslant \left(\frac{2^n}{k^2}\right)^k \left\lfloor \frac{k}{2} \right\rfloor^{\lfloor k/2 \rfloor} \left\lceil \frac{k}{2} \right\rceil^{\lceil k/2 \rceil}$$

We will use the following observation.

Lemma 3.4. Let $1 \leq j < k$ and let $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k) \subseteq \mathcal{P}([n])^k$ be cross-Sperner. Then $\left(\bigcup_{i=1}^j \mathcal{F}_i, \bigcup_{i=j+1}^k \mathcal{F}_i\right)$ is cross-Sperner in $\mathcal{P}([n])$.

Proof. Suppose for contradiction that $\left(\bigcup_{i=1}^{j} \mathcal{F}_{i}, \bigcup_{i=j+1}^{k} \mathcal{F}_{i}\right)$ is not cross-Sperner. Then there exists some $X \in \bigcup_{i=1}^{j} \mathcal{F}_{i}$ and $Y \in \bigcup_{i=j+1}^{k} \mathcal{F}_{i}$ such that $X \subseteq Y$ or $Y \subseteq X$. Since $X \in \mathcal{F}_{i}$ for some $1 \leq i \leq j$, and $Y \in \mathcal{F}_{t}$ for some $j+1 \leq t \leq k$ we deduce that $(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k})$ is not cross-Sperner, a contradiction. \Box

We now use Lemma 3.4, along with Theorem 2.3, to give an upper bound on $\pi(n, k)$.

Proof of Theorem 1.2. Suppose $(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_k)$ is cross-Sperner in $\mathcal{P}([n])$. Let $a = \lfloor k/2 \rfloor$ and $b = \lceil k/2 \rceil$. Observe that a + b = k. Let $\mathcal{G} = \bigcup_{i=1}^a \mathcal{F}_i$ and $\mathcal{H} = \bigcup_{a+1}^k \mathcal{F}_i$. Notice that $(\mathcal{G}, \mathcal{H}) \subseteq \mathcal{P}([n])^2$ is cross-Sperner by Lemma 3.4, so if $|\mathcal{G}| = m$, then $|\mathcal{H}| \leq 2^n - c(n, m)$. Moreover, $\prod_{i=1}^a |\mathcal{F}_i| \leq \left(\frac{m}{a}\right)^a$ and $\prod_{j=a+1}^k |\mathcal{F}_j| \leq \left(\frac{2^n - 2^{n/2+1}\sqrt{m} + m}{b}\right)^b$ since each product is maximized when the families are of equal sizes and c(n, m) is bounded below by Theorem 2.3. Thus,

$$\prod_{i=1}^{k} |\mathcal{F}_{i}| = \prod_{i=1}^{a} |\mathcal{F}_{i}| \prod_{j=a+1}^{k} |\mathcal{F}_{j}| \leq \left(\frac{m}{a}\right)^{a} \left(\frac{2^{n} - 2^{n/2+1}\sqrt{m} + m}{b}\right)^{b} := h(m).$$
(3.2)

To find an upper bound on the left hand side of (3.2), we differentiate with respect to m to find the value of m that maximises the right hand side.

$$\frac{d}{dm}h(m) = \left(\frac{m}{a}\right)^a \left(\frac{(2^{n/2} - \sqrt{m})^2}{b}\right)^b (a(\sqrt{m} - 2^{n/2}) + b\sqrt{m})(m^{3/2} - m2^{n/2})^{-1}.$$

Setting this equal to zero yields $m \in \{0, 2^n, \frac{a^2 2^n}{k^2}\}$. A simple calculation shows that (3.2) is maximized when $m = \frac{a^2 2^n}{k^2}$. As $2^n - 2^{n/1+1}\sqrt{m} + m = (2^{n/2} - \sqrt{m})^2 = \frac{2^n}{k^2}b^2$ when $m = \frac{a^2 2^n}{k^2}$,

$$\prod_{i=1}^{k} |\mathcal{F}_i| \leqslant \left(\frac{2^n}{k^2}\right)^k a^a b^b = \left(\frac{2^n}{k^2}\right)^k \left\lfloor \frac{k}{2} \right\rfloor^{\lfloor k/2 \rfloor} \left\lceil \frac{k}{2} \right\rceil^{\lfloor k/2 \rfloor},$$

as required.

Note that for k even, the upper bound given by Theorem 1.2 is $\left(\frac{2^n}{2k}\right)^k$. For k odd, it is not hard to check that the upper bound is less than $\left(1+\frac{1}{k}\right)\left(\frac{2^n}{2k}\right)^k$.

The electronic journal of combinatorics $\mathbf{31(2)}$ (2024), #P2.4

4 Bounding $\sigma(n,k)$

The goal of this section is to prove Theorem 1.3.

4.1 Lower Bound on $\sigma(n,k)$

For our proof of the lower bound in Theorem 1.3 we need the following counting lemma.

Lemma 4.1. Let $\mathcal{A} := \{F_1, F_2, \dots, F_{k-1}\}$ be an antichain in $\mathcal{P}([n])$ where $F_i := \{i\} \cup \{n - \ell + 1, \dots, n\}$. Then $c(\mathcal{A}) = k2^{\ell} + 2^{n-\ell} \left(1 - \frac{1}{2^{k-1}}\right) - (k-1)$.

Proof. First note that the existence of the antichain \mathcal{A} implies that $k - 1 < n - \ell + 1$. For each *i*, let \mathcal{S}_i be the collection of sets comparable to F_i . For ease of notation, let $G := \{n - \ell + 1, \dots, n\}$ Observe that

$$|\mathcal{S}_i| = |\mathcal{U}_{F_i} \cup \mathcal{D}_{F_i}| = 2^{\ell+1} + 2^{n-\ell-1} - 1,$$
(4.1)

since $|F_i| = \ell + 1$ and $\mathcal{U}_{F_i} \cap \mathcal{D}_{F_i} = \{F_i\}.$

Note that for each i > 1, we have

$$\mathcal{D}_{F_i} \setminus \bigcup_{j < i} \mathcal{D}_{F_j} = \mathcal{D}_{F_i} \setminus \mathcal{D}_{F_1} = \{\{i\} \cup Y : Y \subseteq G\}.$$
(4.2)

Similarly, observe that for each i > 1, we have

$$\mathcal{U}_{F_i} \setminus \bigcup_{j < i} \mathcal{U}_{F_i} = \{ Z \subseteq [n] : Z \supseteq F_i, Z \cap \{1, \dots, i-1\} = \emptyset \}.$$

$$(4.3)$$

So now putting together (4.1) (to bound $|\mathcal{S}_1|$), (4.2), and (4.3), we obtain

$$\left| \bigcup_{i=1}^{k-1} \mathcal{S}_i \right| = |\mathcal{S}_1| + \sum_{i=2}^{k-1} \left| \mathcal{D}_{F_i} \setminus \bigcup_{j < i} \mathcal{D}_{F_j} \right| + \sum_{i=2}^{k-1} \left| \mathcal{U}_{F_i} \setminus \bigcup_{j < i} \mathcal{U}_{F_j} \right| - (k-2)$$
$$= 2^{\ell+1} + 2^{n-\ell-1} - 1 + (k-2)2^{\ell} + \left(\sum_{i=2}^{k-1} 2^{n-\ell-i} \right) - (k-2).$$

The final term occurs as the sets F_i are counted both in their downset and their upset. Simplifying we get

$$c(\mathcal{A}) = k2^{\ell} + 2^{n-\ell} \left(1 - \frac{1}{2^{k-1}}\right) - (k-1).$$

We now prove the lower bound given in Theorem 1.3. We actually prove a slightly stronger statement.

Lemma 4.2. Let $n, k \in \mathbb{N}$ where $n \ge 2k - 1 - \log_2 k \ge 1$. Then

$$\sigma(n,k) \ge 2^n - \frac{3}{\sqrt{2}} \left(1 - \frac{1}{2^{k-1}}\right)^{\frac{1}{2}} \sqrt{2^n k} + 2(k-1).$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.4

Proof. Let a be an integer with the same partity as n to be specified later. Let $G := \{n - \frac{n-a}{2} + 1, \ldots, n\}$. Let $\mathcal{A} = \{F_1, F_2, \ldots, F_{k-1}\}$ be an antichain in $\mathcal{P}([n])$, where $F_i = G \cup \{i\}$. This is possible as long as $n - \frac{n-a}{2} \ge k - 1$, that is, $n \ge 2(k-1) - a$.

By Lemma 4.1 (setting $\ell = \frac{n^2 - a}{2}$), we obtain

$$c(\mathcal{A}) = k2^{\frac{n-a}{2}} + 2^{\frac{n+a}{2}} \left(1 - \frac{1}{2^{k-1}}\right) - (k-1)$$

Define $\mathcal{F}_i := \{F_i\}$ for $1 \leq i \leq k-1$ and $\mathcal{F}_k := \{Z \subseteq [n] : Z \text{ is incomparable to } F_i \text{ for all } 1 \leq i \leq k-1\}$. By construction, $(\mathcal{F}_1, \ldots, \mathcal{F}_k)$ is cross-Sperner in $\mathcal{P}([n])$. We have

$$\sum_{i=1}^{k} |\mathcal{F}_i| = (k-1) + 2^n - c(\mathcal{A})$$
$$= 2^n - \sqrt{2^n} \left(\frac{k}{\sqrt{2^a}} + \left(1 - \frac{1}{2^{k-1}}\right)\sqrt{2^a}\right) + 2(k-1).$$
(4.4)

Differentiating this expression with respect to a gives

$$\frac{\ln 2}{2}\sqrt{2^n}\left(\frac{k}{\sqrt{2^a}} - \left(1 - \frac{1}{2^{k-1}}\right)\sqrt{2^a}\right).$$

Thus we can see that if there were no restrictions on a the maximum value of (4.4) would be achieved when $2^a = k \frac{2^{k-1}}{2^{k-1}-1}$; that is, $a = \log_2(k) + \log_2\left(\frac{2^{k-1}}{2^{k-1}-1}\right)$. However, we require a to be an integer with the same parity as n. Set a to be the unique such integer such that

$$-1 < a - \log_2(k) - \log_2\left(\frac{2^{k-1}}{2^{k-1} - 1}\right) \le 1$$

and let $c = a - \log_2(k) - \log_2\left(\frac{2^{k-1}}{2^{k-1}-1}\right)$. Note that $n \ge 2k - 1 - \log_2 k \ge 1$ by hypothesis. This ensures that $n \ge 2(k-1) - a$ for any such value of a. From (4.4) we have

$$\sum_{i=1}^{k} |\mathcal{F}_{i}| = 2^{n} - \sqrt{2^{n}} \left(\frac{k}{\sqrt{2^{a}}} + \left(1 - \frac{1}{2^{k-1}} \right) \sqrt{2^{a}} \right) + 2(k-1)$$

$$= 2^{n} - \sqrt{2^{n}k} \left(1 - \frac{1}{2^{k-1}} \right)^{1/2} \left(\frac{1}{\sqrt{2^{c}}} + \sqrt{2^{c}} \right) + 2(k-1) \quad (4.5)$$

$$\leq 2^{n} - \sqrt{2^{n}k} \left(1 - \frac{1}{2^{k-1}} \right)^{1/2} \left(\frac{3}{\sqrt{2}} \right) + 2(k-1)$$

where the last inequality follows from the fact that the bracketed expression in (4.5) is maximised when c = 1 for c in the range $-1 < c \leq 1$.

For certain values of k we can prove a stronger lower bound which essentially matches the upper bound of Theorem 1.3.

The electronic journal of combinatorics 31(2) (2024), #P2.4

Corollary 4.6. Let $n, k \in \mathbb{N}$ and suppose that $k = 2^a$ where a has the same parity as n and $n \ge 2(k-1) - a$. Then

$$\sigma(n,k) \ge 2^n - 2\sqrt{2^n k} \left(1 - \frac{1}{2^k}\right) + 2(k-1).$$

Proof. If we apply the proof of Lemma 4.2 with $a = \log_2 k$, then the result follows from (4.4).

4.2 Upper Bound on $\sigma(n,k)$

Lemma 4.3. For $k \ge 2$ and n such that $2^n \ge (k-1)(1+\sqrt{k-1})^2$,

$$\sigma(n,k) \leq 2^n - 2\sqrt{2^n(k-1)} + 2(k-1).$$

Proof. Suppose $(\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_k)$ is cross-Sperner in $\mathcal{P}([n])$. We may and will assume that $|\mathcal{F}_1| \leq |\mathcal{F}_2| \leq \dots \leq |\mathcal{F}_k|$. Define $\mathcal{G} := \bigcup_{i=1}^{k-1} \mathcal{F}_i$. Let $m = |\mathcal{G}|$ and observe that, as each family is non-empty, we have $m \geq k-1$.

By Theorem 2.3, $|\mathcal{F}_k| \leq 2^n - c(n,m) \leq 2^n - 2^{n/2+1}\sqrt{m} + m = (\sqrt{2^n} - \sqrt{m})^2$. Since the families are ordered by increasing size, $|\mathcal{F}_k| \geq \frac{m}{k-1}$. Putting this together gives

$$\frac{m}{k-1} \leqslant |\mathcal{F}_k| \leqslant \left(\sqrt{2^n} - \sqrt{m}\right)^2.$$

Rearranging, we obtain

$$\sqrt{m} \leqslant \sqrt{2^n} \left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}} \right). \tag{4.7}$$

Now consider the sum

$$\sum_{i=1}^{k} |\mathcal{F}_i| = |\mathcal{G}| + |\mathcal{F}_k| \leqslant m + \left(\sqrt{2^n} - \sqrt{m}\right)^2.$$
(4.8)

Let $x = \frac{1}{2}\sqrt{2^n} - \sqrt{m}$. Substituting this into the right hand side of (4.8) gives

$$\left(\frac{1}{2}\sqrt{2^n} - x\right)^2 + \left(\frac{1}{2}\sqrt{2^n} + x\right)^2 = 2^{n-1} + 2x^2$$

and it is clear that the right hand side of (4.8) is maximised when $|x| = \left|\frac{1}{2}\sqrt{2^n} - \sqrt{m}\right|$ is as large as possible. Combining $m \ge k - 1$ with (4.7) gives $\sqrt{k-1} \le \sqrt{m} \le \sqrt{2^n} \left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}}\right)$, we need only find which of these end values is further from $\frac{1}{2}\sqrt{2^n}$.

If we have $2^n \ge (k-1)(1+\sqrt{k-1})^2$ then

$$\frac{1}{2}\sqrt{2^n} - \sqrt{k-1} \ge \frac{1}{2}\sqrt{2^n} - \frac{\sqrt{2^n}}{1+\sqrt{k-1}} = \sqrt{2^n}\left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}}\right) - \frac{1}{2}\sqrt{2^n}$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), #P2.4

and thus expression (4.8) is maximised when m = k - 1. Substituting m = k - 1 into (4.8) gives

$$\sum_{i=1}^{k} |\mathcal{F}_i| \leq (k-1) + \left(\sqrt{2^n} - \sqrt{k-1}\right)^2$$

= $2^n - 2\sqrt{2^n(k-1)} + 2(k-1).$

Proof of Theorem 1.3. Lemmas 4.2 and 4.3 together give Theorem 1.3. Observe that $2^{2k} \ge (k-1)(1+\sqrt{k-1})^2$ for $k \ge 2$ so the conditions of Lemma 4.3 hold.

5 Closing remarks

In Section 3 we provided upper and lower bounds on $\pi(n,k)$ in Theorems 1.1 and 1.2. Comparing these bounds shows that they differ by a factor of $\left(\frac{e}{2}\right)^k$ for k even and less than $\left(1+\frac{1}{k}\right)\left(\frac{e}{2}\right)^k$ for k odd. It would be interesting to tighten this gap. We believe that (for large n) the bound given in Lemma 3.1 ought to be essentially best possible.

Conjecture 5.1. Let $k \ge 2$ be fixed and n be sufficiently large with respect to k. Then

$$\pi(n,k) = (1+o(1))\left(\frac{(k-1)^{k-1}}{k^k}2^n\right)^k.$$

Our lower bound on $\pi(n, k)$ holds in the case $n > k \log_2 k + k$. For small fixed values of n and k, we also have some bounds for $\pi(n, k)$, see [15]. In particular, we have f(4, 3) = 9, $f(5,3) \ge 81$ $f(6,3) \ge 810$ and $f(5,4) \ge 108$.

Note added before submission: In the final stages of preparation of this article, we noticed a recent paper of Gowty, Horsley, and Mammoliti [9], concerning the comparability number. They give a very different proof of Theorem 2.3 (see Corollary 1.2 of [9]) and use it as we do to deduce Theorem 2.4. They also provide some very interesting further analysis of the comparability number and sets that minimise c(n, m).

Acknowledgements

Research of Natalie Behague was supported by a PIMS Postdoctoral Fellowship while at the University of Victoria. Research of Akina Kuperus was supported by NSERC CGS-M. Natasha Morrison is supported by NSERC Discovery Grant RGPIN-2021-02511 and NSERC Early Career Supplement DGECR-2021-00047. Research of Ashna Wright was supported by NSERC USRA.

References

- J. Balogh and R. A. Krueger. A sharp threshold for a random version of Sperner's theorem. arXiv:2205.11630, 2022.
- [2] J. Balogh, R. Mycroft, and A. Treglown. A random version of Sperner's theorem. J. Combin. Theory Ser. A, 128:104–110, 2014.
- [3] A. Brace and D. E. Daykin. Sperner type theorems for finite sets. In Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pages 18–37. Inst. Math. Appl., Southend-on-Sea, 1972.
- M. Collares and R. Morris. Maximum-size antichains in random set-systems. Random Structures Algorithms, 49(2):308–321, 2016.
- [5] K. Engel. Sperner theory, volume 65 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997.
- [6] Z. Füredi. Cross-intersecting families of finite sets. J. Combin. Theory Ser. A, 72(2):332–339, 1995.
- [7] D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, D. Pálvölgyi, and B. Patkós. Saturating Sperner families. *Graphs Combin.*, 29(5):1355–1364, 2013.
- [8] D. Gerbner, N. Lemons, C. Palmer, B. Patkós, and V. Szécsi. Cross-Sperner families. Studia Sci. Math. Hungar., 49(1):44–51, 2012.
- [9] A. Gowty, D. Horsley, and A. Mammoliti. Minimising the total number of subsets and supersets. *European Journal of Combinatorics*, 118:103882, 2024.
- [10] J. R. Griggs, T. Kalinowski, U. Leck, I. T. Roberts, and M. Schmitz. The saturation spectrum for antichains of subsets. Order, 40(3):537–574, 2023.
- [11] M. Grüttmüller, S. Hartmann, T. Kalinowski, U. Leck, and I. T. Roberts. Maximal flat antichains of minimum weight. *Electron. J. Combin.*, 16(1):#R69, 19, 2009.
- [12] J. R. Johnson, I. Leader, and P. A. Russell. Set systems containing many maximal chains. *Combin. Probab. Comput.*, 24(3):480–485, 2015.
- [13] D. J. Kleitman. Families of non-disjoint subsets. J. Combinatorial Theory, 1:153–155, 1966.
- [14] D. J. Kleitman. On a conjecture of Milner on k-graphs with non-disjoint edges. J. Combinatorial Theory, 5:153–156, 1968.
- [15] A. Kuperus. Cross-Sperner systems (Masters thesis). University of Victoria, In preparation.
- [16] J. Liu and C. Zhao. On a conjecture of Hilton. Australas. J. Combin., 24:265–274, 2001.
- [17] M. Matsumoto and N. Tokushige. The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families. J. Combin. Theory Ser. A, 52(1):90–97, 1989.
- [18] D. Osthus. Maximum antichains in random subsets of a finite set. J. Combin. Theory Ser. A, 90(2):336–346, 2000.

- [19] L. Pyber. A new generalization of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. A, 43(1):85–90, 1986.
- [20] P. D. Seymour. On incomparable collections of sets. *Mathematika*, 20:208–209, 1973.
- [21] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Math. Z., 27(1):544– 548, 1928.
- [22] D. B. West. Extremal problems in partially ordered sets. In Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pages 473–521. Reidel, Dordrecht-Boston, Mass., 1982.