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Abstract

A collection of non-empty families (F1,F2, · · · ,Fk) ∈ P([n])k is cross-Sperner
if there is no pair i ∕= j for which some Fi ∈ Fi is comparable to some Fj ∈ Fj .

Two natural measures of the ‘size’ of such a family are the sum
k

i=1 |Fi| and the

product
k

i=1 |Fi|. We prove new upper and lower bounds on the maximum size of
such a family under both of these measures for general n and k  2 which improve
considerably on the previous best bounds. In particular, we construct a rich family
of counterexamples to a conjecture of Gerbner, Lemons, Palmer, Patkós, and Szécsi
from 2011.

Mathematics Subject Classifications: 05D05

1 Introduction

A family F ⊆ P([n]) is an antichain (also known as a Sperner family) if for all distinct
F,G ∈ F , neither F ⊆ G nor G ⊆ F (i.e. F and G are incomparable). One of the principal
results in extremal combinatorics is Sperner’s theorem [21], which states that the largest
size of an antichain in P([n]) is


n

⌊n/2⌋

. This can be seen to be tight by taking a ‘middle

layer’, that is F =


[n]
⌊n/2⌋


or F =


[n]

⌈n/2⌉

.

It is natural to consider a generalisation of Sperner’s theorem to multiple families of
sets. For k  2, say that a collection of non-empty families (F1,F2, · · · ,Fk) ∈ P([n])k,
is cross-Sperner if for all i ∕= j, the sets Fi and Fj are incomparable for any Fi ∈ Fi

and Fj ∈ Fj. (We may also write that (F1,F2, · · · ,Fk) is cross-Sperner in P([n]).) The
study of such objects goes back to the 1970s when Seymour [20] deduced from a result of
Kleitman [13] that a cross-Sperner pair (F ,G) in P([n]) satisfies

|F|1/2 + |G|1/2  2n/2, (1.1)
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hence resolving a related conjecture of Hilton (see [3]). Equality is obtained in Seymour’s
bound precisely when the minimal sets of F are pairwise disjoint from the minimal sets
intersecting each set of G. A broad spectrum of research concerning discrete objects with
‘Sperner-like’ properties have since emerged (see, for example, [1, 2, 4, 5, 7, 10, 11, 12, 18,
22]). Many related results concern families satisfying both Sperner-type properties, and
additional properties such as conditions on intersections (see, for example [6, 14, 16, 17,
19]).

Let F = (F1,F2, · · · ,Fk) be cross-Sperner in P([n]). There are several natural mea-
sures of the ‘size’ of such a family. These include the sum

k
i=1 |Fi| and the productk

i=1 |Fi|. The general study of these quantities was initiated by Gerbner, Lemons,
Palmer, Patkós, and Szécsi [8], who essentially proved best possible bounds on cross-
Sperner pairs of families.

Concerning the product, they gave a direct proof that a cross-Sperner pair (F ,G) in
P([n]) satisfies

|F| · |G|  22n−4. (1.2)

To see that this bound is tight, consider F = {F ⊆ [n] : 1 ∈ F, n ∕∈ F} and G = {G ⊆ [n] :
1 ∕∈ G, n ∈ G}. It is straightforward to see that the bound in (1.2) can also be obtained
as a direct consequence of (1.1) via the AM–GM inequality1.

First, let us focus on product bounds for k  3. It is convenient to define

π(n, k) := max


k

i=1

|Fi| : (F1,F2, · · · ,Fk) is cross-Sperner in P([n])


.

In [8], it was observed that (1.1) can be used to obtain the upper bound π(n, k)  2k(n−2).

For k > 4, an improved bound of π(n, k) 

2n

k

k
can be obtained by a simple application

of the AM-GM inequality.2 Gerbner, Lemons Palmer, Patkós, and Szécsi [8] conjectured
that π(n, k)  2k(n−ℓ∗), where ℓ∗ = ℓ∗(k) is the least positive integer such that


ℓ∗

⌊ℓ∗/2⌋

 k.

They described a construction which provides a matching lower bound to their conjecture:
let A1, . . . , Ak be an antichain in P([ℓ]) and let (F1, . . . ,Fk) ∈ P([n]) be defined by
Fi := {F ∈ [n] : F ∩ [ℓ] = Ai}.

Our first theorem strongly disproves this conjecture.

Theorem 1.1. Let n and k  2 be integers. For n sufficiently large,

2n

ek

k

 π(n, k).

A crude application of Stirling’s approximation yields that ℓ∗(k) = ω(log k). So
in particular, there is a function g(k) tending to infinity with k such that 2k(n−ℓ∗) =
O

2kn(k · g(k))−k


. Therefore our lower bound is exponentially larger than the conjec-

tured 2k(n−ℓ∗).
We also improve the previous best known upper bound by a factor of 2k.

1Observe that 2 (|F||G|)1/4  |F|1/2 + |G|1/2  2n/2.

2Similarly to above, we have
k

i=1 |Fi|
 1

k 
k

i=1 |Fi|
k  2n

k .
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Theorem 1.2. Let n and k  2 be integers. Then

π(n, k) 

2n

k2

k 
k

2

⌊k/2⌋ 
k

2

⌈k/2⌉

Regarding bounds on the sum, in [8] it is shown that for n sufficiently large, a cross-
Sperner pair in P([n]) satisfies

|F|+ |G|  2n − 2⌈n/2⌉ − 2⌊n/2⌋ + 2. (1.3)

This is tight, which can be seen by taking F = {1, 2, . . . , ⌊n/2⌋} and letting G be all
subsets of [n] that are not comparable to F . Gerbner, Lemons Palmer, Patkós, and
Szécsi [8] also asked about bounds for the sum for general k. Analogously to in the
product case, define

σ(n, k) := max


k

i=1

|Fi| : (F1,F2, · · · ,Fk) is cross-Sperner in P([n])


.

In our next theorem, we determine upper and lower bounds on σ(n, k). Recall that each
family is non-empty in a cross-sperner system.

Theorem 1.3. Let n, k be integers with n  2k and k  2. Then

2n − 3√
2

√
2nk + 2(k − 1)  σ(n, k)  2n − 2


2n(k − 1) + 2(k − 1).

When k is a power of 2 and n− log2 k is even, we can further improve the lower bound
to 2n − 2

√
2nk + 2(k − 1), which is extremely close to the upper bound.

In order to prove Theorem 1.2 and the upper bound in Theorem 1.3, we exploit a
connection between σ(n, k) and the comparability number of a set (given in Section 2). In
doing so, we recover a simple proof of (1.3) (see Theorem 2.4) that holds for all n (recall
the result of [8] holds for large n).

The article is structured as follows. We introduce the comparability number in Sec-
tion 2 and provide a lower bound (Theorem 2.3) that will be used in the proofs of Theo-
rems 1.2 and 1.3. In Section 3 we prove Theorems 1.1 and 1.2 bounding the product. In
Section 4 we prove Theorem 1.3 bounding the sum. We conclude in section 5 with some
discussion and open questions.

2 Minimizing Comparability

Given a family F ⊆ P([n]) define the comparability number of F to be

c(n,F) := |{X ⊆ [n] : X is comparable to some A ∈ F}|.

When the setting is clear from context, we may write c(F) for c(n,F). Define

c(n,m) = min{c(n,F) : F ⊆ P([n]), |F| = m}.
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As noted in [8], there is a direct relationship between σ(n, 2) and c(n,m). Observe
that if (F ,G) is cross-Sperner in P([n]), we have

|F|+ |G|  |F|+ 2n − c(n, |F|),

as only sets incomparable to every member of F can be added to G. We will use analogous
ideas in Section 4 to provide upper bounds on σ(n, k) for k  3.

Our goal in this section is to find a lower bound on c(n,m). We begin by showing that
families that minimize comparability are ‘convex’.

Lemma 2.1. Let F ⊆ P([n]). Let F ′ := F ∪ {Z ∈ P([n]) : X ⊆ Z ⊆ Y, where X, Y ∈
F}. Then c(F ′) = c(F).

Proof. Let Z be a set such that X ⊆ Z ⊆ Y , for some X, Y ∈ F . Observe that any set in
P([n]) that is comparable to Z is either comparable to X or to Y . So c(F ∪ Z) = c(F).
Repeatedly applying this observation gives the result.

Theorem 2.3 can now be deduced from the Harris-Kleitman inequality. Recall that
a family U ⊆ P([n]) is an upset if for all X ∈ U , if X ⊆ Y , then Y ∈ U . A family
D ⊆ P([n]) is a downset if for all X ∈ D, if Y ⊆ X, then Y ∈ D.

Lemma 2.2 (Harris-Kleitman Inequality [13]). Let U ⊆ P([n]) be an upset and D ⊆
P([n]) be a downset. Then

|U ∩D|
2n

 |U|
2n

· |D|
2n

.

We will apply Lemma 2.2 to prove a lower bound on c(n,m). For convenience, for a
family F ⊆ P([n]), define

UF = {X ∈ P([n]) : F ⊆ X for some F ∈ F}

and
DF = {X ∈ P([n]) : X ⊆ F for some F ∈ F}.

Theorem 2.3. For 1  m  2n,

c(n,m)  2n/2+1
√
m−m.

Proof. Let F ⊆ P([n]) be such that |F| = m and c(F) = c(n,m). We may assume F
is convex. If not, by Lemma 2.1 we may add sets to make it convex and then remove
minimal or maximal elements to obtain F ′ such that |F ′| = |F| and c(F ′)  c(F). Note
that c(F) = |UF | + |DF | − |UF ∩ DF |. Since F is convex, |F| = |UF ∩ DF | = m. Using
the AM-GM inequality we get

c(F)  2


|UF ||DF |−m.

Since UF is an upset and DF is a downset, we apply Lemma 2.2 to get

c(F)  2
√
2nm−m = 2

n
2
+1
√
m−m,

as required.
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It is now a simple consequence of Theorem 2.3 to see that (1.3) holds for all n.

Theorem 2.4. Let (F ,G) be cross-Sperner in P([n]). Then

|F|+ |G|  2n − 2⌊n/2⌋ − 2⌈n/2⌉ + 2.

Proof. Let (F ,G) ∈ P([n])2 be a cross-Sperner pair. Suppose |F| = m. Since F ,G ∕= ∅,
1  m  2n − 1. Moreover, we may assume without loss of generality that |F|  |G|. We
know |F||G|  22n−4 by (1.2), which implies that m  2n−2.

Then, c(F)  |UF |+ |DF |−m and |G|  2n − c(F)  2n − |UF |− |DF |+m. Thus

|F|+ |G|  2n − |UF |− |DF |+ 2m. (2.1)

We have the following two cases.

Case 1: Suppose m = 1. Since F only consists of one set, say F , we have |UF | = 2n−|F |

and |DF | = 2|F |. Observe that 2|F | + 2n−|F | is minimized when |F | ∈ {⌊n/2⌋ , ⌈n/2⌉}. So
(2.1) yields

|F|+ |G|  2n − 2⌊n/2⌋ − 2⌈n/2⌉ + 2,

as required. This completes the case m = 1.

Case 2: Now suppose m  2. By Theorem 2.3, |UF |+ |DF |  2
n
2
+1
√
m, so Equation (2.1)

gives
|F|+ |G|  2n − 2

n
2
+1
√
m+ 2m.

By differentiation with respect to m we see that the expression on the right-hand side is
decreasing in the range 2  m  2n−2. It is therefore maximized at m = 2, where we
have

2n − 2
n
2
+1
√
m+ 2m = 2n − 2

n+3
2 + 4.

Note that for all n  2,

2
n+3
2 − 4  2⌊n/2⌋ + 2⌈n/2⌉ − 2.

This implies that 2n − 2⌊n/2⌋ − 2⌈n/2⌉ + 2  2n − 2
n
2
+1
√
m+ 2m for all 2  m  2n−2 and

n  2. This completes the case m  2.

We conclude that |F|+ |G|  2n − 2⌊n/2⌋ − 2⌈n/2⌉ + 2, as desired.

3 Bounding π(n, k)

The goal of this section is to prove Theorems 1.1 and 1.2.
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3.1 Lower Bound on π(n, k)

Theorem 1.1 follows directly from the following (slightly stronger) statement.

Lemma 3.1. Let n, k be integers with k  2 and n > k log2 k + k. Then

π(n, k) 


1

k
− 1

2⌊n/k⌋


1− 1

k

k−1
k

2kn

Proof. Partition [n] into k partsA1, A2, · · · , Ak each of size

n
k


or


n
k


. For each 1  i  k,

take Xi to be an initial segment of colex in P(Ai) such that |Xi| = λi2
|Ai| for some

0 < λi < 1, which will be chosen to be optimal at the end. Set Yi := P(Ai) \ Xi. Now we
construct a cross-Sperner system (F1,F2, · · · ,Fk). Define

Fi := {F ∈ P([n]) : F ∩ Ai ∈ Xi, F ∩ Aj ∈ Yj for all j ∕= i}.

Refer to Example 3.3 for an example of this construction.
To see that (F1,F2, · · · ,Fk) is cross-Sperner in P([n]), consider S ∈ Fi and T ∈ Fj.

We must show that S and T are incomparable. If S ⊆ T , then S ∩Aj ⊆ T ∩Aj, so there
is some Y ∈ Yj and X ∈ Xj such that Y ⊆ X, a contradiction. Analogously, we see that
T cannot be a subset of S. Hence (F1,F2, · · · ,Fk) is cross-Sperner as required.

Observe that
|Fi| = |Xi|



j ∕=i

|Yj|,

and so

π(n, k) 
k

i=1

|Fi| =
k

i=1


|Xi|



j ∕=i

|Yj|

.

To complete the proof of Lemma 3.1 it remains to optimise the sizes of the λi. We have

|Fi| = λi2
|Ai|



j ∕=i

(1− λj)2
|Aj | = λi2

|A1|+|A2|+···|Ak|


j ∕=i

(1− λj) = λi2
n


j ∕=i

(1− λj).

So
k

i=1

|Fi| =


k

i=1

λi(1− λi)
k−1


2kn (3.1)

For each 1  i  k, set λi =
1

2|Ai|


2|Ai|

k


. We have

1

k
− 1

2⌊n/k⌋
 1

k
− 1

2|Ai|
 λi 

1

k
.

For n > k log2 k + k we have 2−⌊n/k⌋  2−(n/k−1) < 1
k
and so λi is not zero. Therefore,

with this choice of λi we get

k

i=1

|Fi| 


1

k
− 1

2⌊n/k⌋


1− 1

k

k−1
k

2kn,

as required.
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Remark 3.2. Note that if k is a power of 2, in the proof of Lemma 3.1 we have λi =
1
k
for

all 1  i  k. Therefore in this case we can eliminate the − 1
2⌊n/k⌋ term.

For clarity, we provide an example of the construction given in Lemma 3.1.

Example 3.3. Let n = 6 and k = 3. Partition [6] into

A1 = {1, 2}, A2 = {3, 4}, A3 = {5, 6}.

To provide a more illustrative example, we choose λi =
1
2
rather than 1

4
as the proof of

Lemma 3.1 stipulates. Let

X1 = {∅, {1}}
X2 = {∅, {3}}
X3 = {∅, {5}}.

So

Y1 = {{2}, {1, 2}}
Y2 = {{4}, {3, 4}}
Y3 = {{6}, {5, 6}}.

Then we construct our cross-Sperner system to be

F1 = {{4, 6}, {4, 5, 6}, {3, 4, 6}, {3, 4, 5, 6}, {1, 4, 6}, {1, 4, 5, 6}, {1, 3, 4, 6}, {1, 3, 4, 5, 6}}
F2 = {{2, 6}, {2, 5, 6}, {2, 3, 6}, {2, 3, 5, 6}, {1, 2, 6}, {1, 2, 5, 6}, {1, 2, 3, 6}, {1, 2, 3, 5, 6}}
F3 = {{2, 4}, {2, 4, 5}, {2, 3, 4}, {2, 3, 4, 5}, {1, 2, 4}, {1, 2, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 4, 5}}.

We now deduce Theorem 1.1 (restated below for convenience) from Lemma 3.1.

Theorem 1.1. Let n and k  2 be integers. For n sufficiently large,


2n

ek

k

 π(n, k).

Proof. Take n sufficiently large so that

1

2⌊n/k⌋
 1

k
− 1

ek


1 +

1

k − 1

k−1

=
1

ek


e−


1 +

1

k − 1

k−1

.

This is possible as

1 + 1

k−1

k−1
< e for all k. Substituting this into Lemma 3.1, we see

that

π(n, k) 


1

ek


1 +

1

k − 1

k−1 
1− 1

k

k−1
k

2kn =


1

ek

k

2kn.
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3.2 Upper Bound on π(n, k)

The goal of this subsection is to prove Theorem 1.2, restated below for convenience.

Theorem 1.2. Let n and k  2 be integers. Then

π(n, k) 

2n

k2

k 
k

2

⌊k/2⌋ 
k

2

⌈k/2⌉

We will use the following observation.

Lemma 3.4. Let 1  j < k and let (F1,F2, . . . ,Fk) ⊆ P([n])k be cross-Sperner. Thenj
i=1 Fi,

k
i=j+1 Fi


is cross-Sperner in P([n]).

Proof. Suppose for contradiction that
j

i=1 Fi,
k

i=j+1 Fi


is not cross-Sperner. Then

there exists some X ∈
j

i=1 Fi and Y ∈
k

i=j+1 Fi such that X ⊆ Y or Y ⊆ X. Since
X ∈ Fi for some 1  i  j, and Y ∈ Ft for some j + 1  t  k we deduce that
(F1,F2, . . . ,Fk) is not cross-Sperner, a contradiction.

We now use Lemma 3.4, along with Theorem 2.3, to give an upper bound on π(n, k).

Proof of Theorem 1.2. Suppose (F1,F2, . . . ,Fk) is cross-Sperner in P([n]). Let a = ⌊k/2⌋
and b = ⌈k/2⌉. Observe that a + b = k. Let G = ∪a

i=1Fi and H = ∪k
a+1Fi. Notice

that (G,H) ⊆ P([n])2 is cross-Sperner by Lemma 3.4, so if |G| = m, then |H|  2n −
c(n,m). Moreover,

a
i=1 |Fi| 


m
a

a
and

k
j=a+1 |Fj| 


2n−2n/2+1√m+m

b

b

since each

product is maximized when the families are of equal sizes and c(n,m) is bounded below
by Theorem 2.3. Thus,

k

i=1

|Fi| =
a

i=1

|Fi|
k

j=a+1

|Fj| 
m
a

a

2n − 2n/2+1

√
m+m

b

b

:= h(m). (3.2)

To find an upper bound on the left hand side of (3.2), we differentiate with respect to m
to find the value of m that maximises the right hand side.

d

dm
h(m) =

m
a

a

(2n/2 −

√
m)2

b

b

(a(
√
m− 2n/2) + b

√
m)(m3/2 −m2n/2)−1.

Setting this equal to zero yields m ∈ {0, 2n, a22n
k2

}. A simple calculation shows that (3.2)

is maximized when m = a22n

k2
. As 2n − 2n/1+1

√
m + m = (2n/2 −

√
m)2 = 2n

k2
b2 when

m = a22n

k2
,

k

i=1

|Fi| 

2n

k2

k

aabb =


2n

k2

k 
k

2

⌊k/2⌋ 
k

2

⌈k/2⌉

,

as required.

Note that for k even, the upper bound given by Theorem 1.2 is

2n

2k

k
. For k odd, it

is not hard to check that the upper bound is less than

1 + 1

k

 
2n

2k

k
.
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4 Bounding σ(n, k)

The goal of this section is to prove Theorem 1.3.

4.1 Lower Bound on σ(n, k)

For our proof of the lower bound in Theorem 1.3 we need the following counting lemma.

Lemma 4.1. Let A := {F1, F2, . . . Fk−1} be an antichain in P([n]) where Fi := {i}∪{n−
ℓ+ 1, . . . , n}. Then c(A) = k2ℓ + 2n−ℓ


1− 1

2k−1


− (k − 1).

Proof. First note that the existence of the antichain A implies that k − 1 < n − ℓ + 1.
For each i, let Si be the collection of sets comparable to Fi. For ease of notation, let
G := {n− ℓ+ 1, . . . , n} Observe that

|Si| = |UFi
∪DFi

| = 2ℓ+1 + 2n−ℓ−1 − 1, (4.1)

since |Fi| = ℓ+ 1 and UFi
∩DFi

= {Fi}.
Note that for each i > 1, we have

DFi
\


j<i

DFj
= DFi

\ DF1 = {{i} ∪ Y : Y ⊆ G}. (4.2)

Similarly, observe that for each i > 1, we have

UFi
\


j<i

UFi
= {Z ⊆ [n] : Z ⊇ Fi, Z ∩ {1, . . . , i− 1} = ∅}. (4.3)

So now putting together (4.1) (to bound |S1|), (4.2), and (4.3), we obtain



k−1

i=1

Si

 = |S1|+
k−1

i=2

DFi
\


j<i

DFj

+
k−1

i=2

UFi
\


j<i

UFj

− (k − 2)

= 2ℓ+1 + 2n−ℓ−1 − 1 + (k − 2)2ℓ +


k−1

i=2

2n−ℓ−i


− (k − 2).

The final term occurs as the sets Fi are counted both in their downset and their upset.
Simplifying we get

c(A) = k2ℓ + 2n−ℓ


1− 1

2k−1


− (k − 1).

We now prove the lower bound given in Theorem 1.3. We actually prove a slightly
stronger statement.

Lemma 4.2. Let n, k ∈ N where n  2k − 1− log2 k  1. Then

σ(n, k)  2n − 3√
2


1− 1

2k−1

 1
2 √

2nk + 2(k − 1).

the electronic journal of combinatorics 31(2) (2024), #P2.4 9



Proof. Let a be an integer with the same partity as n to be specified later. Let G := {n−
n−a
2

+1, . . . , n}. Let A = {F1, F2, . . . , Fk−1} be an antichain in P([n]), where Fi = G∪{i}.
This is possible as long as n− n−a

2
 k − 1, that is, n  2(k − 1)− a.

By Lemma 4.1 (setting ℓ = n−a
2
), we obtain

c(A) = k2
n−a
2 + 2

n+a
2


1− 1

2k−1


− (k − 1).

Define Fi := {Fi} for 1  i  k − 1 and Fk := {Z ⊆ [n] : Z is incomparable to Fi for all
1  i  k − 1}. By construction, (F1, . . . ,Fk) is cross-Sperner in P([n]). We have

k

i=1

|Fi| = (k − 1) + 2n − c(A)

= 2n −
√
2n


k√
2a

+


1− 1

2k−1

√
2a

+ 2(k − 1). (4.4)

Differentiating this expression with respect to a gives

ln 2

2

√
2n


k√
2a

−

1− 1

2k−1

√
2a

.

Thus we can see that if there were no restrictions on a the maximum value of (4.4)

would be achieved when 2a = k 2k−1

2k−1−1
; that is, a = log2(k) + log2


2k−1

2k−1−1


. However, we

require a to be an integer with the same parity as n. Set a to be the unique such integer
such that

−1 < a− log2(k)− log2


2k−1

2k−1 − 1


 1

and let c = a− log2(k)− log2


2k−1

2k−1−1


. Note that n  2k− 1− log2 k  1 by hypothesis.

This ensures that n  2(k − 1)− a for any such value of a. From (4.4) we have

k

i=1

|Fi| = 2n −
√
2n


k√
2a

+


1− 1

2k−1

√
2a

+ 2(k − 1)

= 2n −
√
2nk


1− 1

2k−1

1/2 
1√
2c

+
√
2c

+ 2(k − 1) (4.5)

 2n −
√
2nk


1− 1

2k−1

1/2 
3√
2


+ 2(k − 1)

where the last inequality follows from the fact that the bracketed expression in (4.5) is
maximised when c = 1 for c in the range −1 < c  1.

For certain values of k we can prove a stronger lower bound which essentially matches
the upper bound of Theorem 1.3.

the electronic journal of combinatorics 31(2) (2024), #P2.4 10



Corollary 4.6. Let n, k ∈ N and suppose that k = 2a where a has the same parity as n
and n  2(k − 1)− a. Then

σ(n, k)  2n − 2
√
2nk


1− 1

2k


+ 2(k − 1).

Proof. If we apply the proof of Lemma 4.2 with a = log2 k, then the result follows from
(4.4).

4.2 Upper Bound on σ(n, k)

Lemma 4.3. For k  2 and n such that 2n  (k − 1)(1 +
√
k − 1)2,

σ(n, k)  2n − 2


2n(k − 1) + 2(k − 1).

Proof. Suppose (F1,F2, · · · ,Fk) is cross-Sperner in P([n]). We may and will assume that
|F1|  |F2|  · · ·  |Fk|. Define G := ∪k−1

i=1Fi. Let m = |G| and observe that, as each
family is non-empty, we have m  k − 1.

By Theorem 2.3, |Fk|  2n − c(n,m)  2n − 2n/2+1
√
m +m =

√
2n −

√
m
2
. Since

the families are ordered by increasing size, |Fk|  m
k−1

. Putting this together gives

m

k − 1
 |Fk| 

√
2n −

√
m
2

.

Rearranging, we obtain
√
m 

√
2n

 √
k − 1

1 +
√
k − 1


. (4.7)

Now consider the sum

k

i=1

|Fi| = |G|+ |Fk|  m+
√

2n −
√
m
2

. (4.8)

Let x = 1
2

√
2n −

√
m. Substituting this into the right hand side of (4.8) gives


1
2

√
2n − x

2

+


1
2

√
2n + x

2

= 2n−1 + 2x2

and it is clear that the right hand side of (4.8) is maximised when |x| =
1
2

√
2n−

√
m
 is as

large as possible. Combining m  k− 1 with (4.7) gives
√
k − 1  √

m 
√
2n

 √
k−1

1+
√
k−1


,

we need only find which of these end values is further from 1
2

√
2n.

If we have 2n  (k − 1)(1 +
√
k − 1)2 then

1
2

√
2n −

√
k − 1  1

2

√
2n −

√
2n

1 +
√
k − 1

=
√
2n

 √
k − 1

1 +
√
k − 1


− 1

2

√
2n
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and thus expression (4.8) is maximised when m = k − 1. Substituting m = k − 1 into
(4.8) gives

k

i=1

|Fi|  (k − 1) +
√

2n −
√
k − 1

2

= 2n − 2


2n(k − 1) + 2(k − 1).

Proof of Theorem 1.3. Lemmas 4.2 and 4.3 together give Theorem 1.3. Observe that
22k  (k − 1)(1 +

√
k − 1)2 for k  2 so the conditions of Lemma 4.3 hold.

5 Closing remarks

In Section 3 we provided upper and lower bounds on π(n, k) in Theorems 1.1 and 1.2.

Comparing these bounds shows that they differ by a factor of

e
2

k
for k even and less

than

1 + 1

k

 
e
2

k
for k odd. It would be interesting to tighten this gap. We believe that

(for large n) the bound given in Lemma 3.1 ought to be essentially best possible.

Conjecture 5.1. Let k  2 be fixed and n be sufficiently large with respect to k. Then

π(n, k) = (1 + o(1))


(k − 1)k−1

kk
2n
k

.

Our lower bound on π(n, k) holds in the case n > k log2 k+k. For small fixed values of
n and k, we also have some bounds for π(n, k), see [15]. In particular, we have f(4, 3) = 9,
f(5, 3)  81 f(6, 3)  810 and f(5, 4)  108.

Note added before submission: In the final stages of preparation of this article, we
noticed a recent paper of Gowty, Horsley, and Mammoliti [9], concerning the comparability
number. They give a very different proof of Theorem 2.3 (see Corollary 1.2 of [9]) and
use it as we do to deduce Theorem 2.4. They also provide some very interesting further
analysis of the comparability number and sets that minimise c(n,m).
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