Improved bounds for cross-Sperner systems

Natalie Behague ${ }^{a}$
Natasha Morrison ${ }^{b}$

Akina Kuperus ${ }^{b}$
Ashna Wright ${ }^{b}$

Submitted: Feb 7, 2023; Accepted: Mar 1, 2024; Published: Apr 5, 2024
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A collection of non-empty families $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right) \in \mathcal{P}([n])^{k}$ is cross-Sperner if there is no pair $i \neq j$ for which some $F_{i} \in \mathcal{F}_{i}$ is comparable to some $F_{j} \in \mathcal{F}_{j}$. Two natural measures of the 'size' of such a family are the sum $\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|$ and the product $\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|$. We prove new upper and lower bounds on the maximum size of such a family under both of these measures for general n and $k \geqslant 2$ which improve considerably on the previous best bounds. In particular, we construct a rich family of counterexamples to a conjecture of Gerbner, Lemons, Palmer, Patkós, and Szécsi from 2011.

Mathematics Subject Classifications: 05D05

1 Introduction

A family $\mathcal{F} \subseteq \mathcal{P}([n])$ is an antichain (also known as a Sperner family) if for all distinct $F, G \in \mathcal{F}$, neither $F \subseteq G$ nor $G \subseteq F$ (i.e. F and G are incomparable). One of the principal results in extremal combinatorics is Sperner's theorem [21], which states that the largest size of an antichain in $\mathcal{P}([n])$ is $\binom{n}{\lfloor n / 2\rfloor}$. This can be seen to be tight by taking a 'middle layer', that is $\mathcal{F}=\binom{[n]}{[n / 2\rfloor}$ or $\mathcal{F}=\binom{[n]}{[n / 27}$.

It is natural to consider a generalisation of Sperner's theorem to multiple families of sets. For $k \geqslant 2$, say that a collection of non-empty families $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right) \in \mathcal{P}([n])^{k}$, is cross-Sperner if for all $i \neq j$, the sets F_{i} and F_{j} are incomparable for any $F_{i} \in \mathcal{F}_{i}$ and $F_{j} \in \mathcal{F}_{j}$. (We may also write that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$ is cross-Sperner in $\mathcal{P}([n])$.) The study of such objects goes back to the 1970s when Seymour [20] deduced from a result of Kleitman [13] that a cross-Sperner pair $(\mathcal{F}, \mathcal{G})$ in $\mathcal{P}([n])$ satisfies

$$
\begin{equation*}
|\mathcal{F}|^{1 / 2}+|\mathcal{G}|^{1 / 2} \leqslant 2^{n / 2} \tag{1.1}
\end{equation*}
$$

[^0]hence resolving a related conjecture of Hilton (see [3]). Equality is obtained in Seymour's bound precisely when the minimal sets of \mathcal{F} are pairwise disjoint from the minimal sets intersecting each set of \mathcal{G}. A broad spectrum of research concerning discrete objects with 'Sperner-like' properties have since emerged (see, for example, $[1,2,4,5,7,10,11,12,18$, 22]). Many related results concern families satisfying both Sperner-type properties, and additional properties such as conditions on intersections (see, for example $[6,14,16,17$, 19]).

Let $\mathcal{F}=\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$ be cross-Sperner in $\mathcal{P}([n])$. There are several natural measures of the 'size' of such a family. These include the sum $\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|$ and the product $\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|$. The general study of these quantities was initiated by Gerbner, Lemons, Palmer, Patkós, and Szécsi [8], who essentially proved best possible bounds on crossSperner pairs of families.

Concerning the product, they gave a direct proof that a cross-Sperner pair $(\mathcal{F}, \mathcal{G})$ in $\mathcal{P}([n])$ satisfies

$$
\begin{equation*}
|\mathcal{F}| \cdot|\mathcal{G}| \leqslant 2^{2 n-4} \tag{1.2}
\end{equation*}
$$

To see that this bound is tight, consider $\mathcal{F}=\{F \subseteq[n]: 1 \in F, n \notin F\}$ and $\mathcal{G}=\{G \subseteq[n]$: $1 \notin G, n \in G\}$. It is straightforward to see that the bound in (1.2) can also be obtained as a direct consequence of (1.1) via the AM-GM inequality ${ }^{1}$.

First, let us focus on product bounds for $k \geqslant 3$. It is convenient to define

$$
\pi(n, k):=\max \left\{\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|:\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right) \text { is cross-Sperner in } \mathcal{P}([n])\right\}
$$

In [8], it was observed that (1.1) can be used to obtain the upper bound $\pi(n, k) \leqslant 2^{k(n-2)}$. For $k>4$, an improved bound of $\pi(n, k) \leqslant\left(\frac{2^{n}}{k}\right)^{k}$ can be obtained by a simple application of the AM-GM inequality. ${ }^{2}$ Gerbner, Lemons Palmer, Patkós, and Szécsi [8] conjectured that $\pi(n, k) \leqslant 2^{k\left(n-\ell^{*}\right)}$, where $\ell^{*}=\ell^{*}(k)$ is the least positive integer such that $\binom{\ell^{*}}{\left.\ell^{*} / 2\right\rfloor} \geqslant k$. They described a construction which provides a matching lower bound to their conjecture: let A_{1}, \ldots, A_{k} be an antichain in $\mathcal{P}([\ell])$ and let $\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right) \in \mathcal{P}([n])$ be defined by $\mathcal{F}_{i}:=\left\{F \in[n]: F \cap[\ell]=A_{i}\right\}$.

Our first theorem strongly disproves this conjecture.
Theorem 1.1. Let n and $k \geqslant 2$ be integers. For n sufficiently large,

$$
\left(\frac{2^{n}}{e k}\right)^{k} \leqslant \pi(n, k)
$$

A crude application of Stirling's approximation yields that $\ell^{*}(k)=\omega(\log k)$. So in particular, there is a function $g(k)$ tending to infinity with k such that $2^{k\left(n-\ell^{*}\right)}=$ $O\left(2^{k n}(k \cdot g(k))^{-k}\right)$. Therefore our lower bound is exponentially larger than the conjectured $2^{k\left(n-\ell^{*}\right)}$.

We also improve the previous best known upper bound by a factor of 2^{k}.

[^1]Theorem 1.2. Let n and $k \geqslant 2$ be integers. Then

$$
\pi(n, k) \leqslant\left(\frac{2^{n}}{k^{2}}\right)^{k}\left\lfloor\frac{k}{2}\right\rfloor^{\lfloor k / 2\rfloor}\left\lceil\frac{k}{2}\right\rceil^{\lceil k / 2\rceil}
$$

Regarding bounds on the sum, in [8] it is shown that for n sufficiently large, a crossSperner pair in $\mathcal{P}([n])$ satisfies

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-2^{\lceil n / 2\rceil}-2^{\lfloor n / 2\rfloor}+2 . \tag{1.3}
\end{equation*}
$$

This is tight, which can be seen by taking $\mathcal{F}=\{1,2, \ldots,\lfloor n / 2\rfloor\}$ and letting \mathcal{G} be all subsets of $[n]$ that are not comparable to F. Gerbner, Lemons Palmer, Patkós, and Szécsi [8] also asked about bounds for the sum for general k. Analogously to in the product case, define

$$
\sigma(n, k):=\max \left\{\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|:\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right) \text { is cross-Sperner in } \mathcal{P}([n])\right\} .
$$

In our next theorem, we determine upper and lower bounds on $\sigma(n, k)$. Recall that each family is non-empty in a cross-sperner system.

Theorem 1.3. Let n, k be integers with $n \geqslant 2 k$ and $k \geqslant 2$. Then

$$
2^{n}-\frac{3}{\sqrt{2}} \sqrt{2^{n} k}+2(k-1) \leqslant \sigma(n, k) \leqslant 2^{n}-2 \sqrt{2^{n}(k-1)}+2(k-1) .
$$

When k is a power of 2 and $n-\log _{2} k$ is even, we can further improve the lower bound to $2^{n}-2 \sqrt{2^{n} k}+2(k-1)$, which is extremely close to the upper bound.

In order to prove Theorem 1.2 and the upper bound in Theorem 1.3, we exploit a connection between $\sigma(n, k)$ and the comparability number of a set (given in Section 2). In doing so, we recover a simple proof of (1.3) (see Theorem 2.4) that holds for all n (recall the result of [8] holds for large n).

The article is structured as follows. We introduce the comparability number in Section 2 and provide a lower bound (Theorem 2.3) that will be used in the proofs of Theorems 1.2 and 1.3. In Section 3 we prove Theorems 1.1 and 1.2 bounding the product. In Section 4 we prove Theorem 1.3 bounding the sum. We conclude in section 5 with some discussion and open questions.

2 Minimizing Comparability

Given a family $\mathcal{F} \subseteq \mathcal{P}([n])$ define the comparability number of \mathcal{F} to be

$$
c(n, \mathcal{F}):=\mid\{X \subseteq[n]: X \text { is comparable to some } A \in \mathcal{F}\} \mid
$$

When the setting is clear from context, we may write $c(\mathcal{F})$ for $c(n, \mathcal{F})$. Define

$$
c(n, m)=\min \{c(n, \mathcal{F}): \mathcal{F} \subseteq \mathcal{P}([n]),|\mathcal{F}|=m\}
$$

As noted in [8], there is a direct relationship between $\sigma(n, 2)$ and $c(n, m)$. Observe that if $(\mathcal{F}, \mathcal{G})$ is cross-Sperner in $\mathcal{P}([n])$, we have

$$
|\mathcal{F}|+|\mathcal{G}| \leqslant|\mathcal{F}|+2^{n}-c(n,|\mathcal{F}|),
$$

as only sets incomparable to every member of \mathcal{F} can be added to \mathcal{G}. We will use analogous ideas in Section 4 to provide upper bounds on $\sigma(n, k)$ for $k \geqslant 3$.

Our goal in this section is to find a lower bound on $c(n, m)$. We begin by showing that families that minimize comparability are 'convex'.

Lemma 2.1. Let $\mathcal{F} \subseteq \mathcal{P}([n])$. Let $\mathcal{F}^{\prime}:=\mathcal{F} \cup\{Z \in \mathcal{P}([n]): X \subseteq Z \subseteq Y$, where $X, Y \in$ $\mathcal{F}\}$. Then $c\left(\mathcal{F}^{\prime}\right)=c(\mathcal{F})$.
Proof. Let Z be a set such that $X \subseteq Z \subseteq Y$, for some $X, Y \in \mathcal{F}$. Observe that any set in $\mathcal{P}([n])$ that is comparable to Z is either comparable to X or to Y. So $c(\mathcal{F} \cup Z)=c(\mathcal{F})$. Repeatedly applying this observation gives the result.

Theorem 2.3 can now be deduced from the Harris-Kleitman inequality. Recall that a family $\mathcal{U} \subseteq \mathcal{P}([n])$ is an upset if for all $X \in \mathcal{U}$, if $X \subseteq Y$, then $Y \in \mathcal{U}$. A family $\mathcal{D} \subseteq \mathcal{P}([n])$ is a downset if for all $X \in \mathcal{D}$, if $Y \subseteq X$, then $Y \in \mathcal{D}$.
Lemma 2.2 (Harris-Kleitman Inequality [13]). Let $\mathcal{U} \subseteq \mathcal{P}([n])$ be an upset and $\mathcal{D} \subseteq$ $\mathcal{P}([n])$ be a downset. Then

$$
\frac{|\mathcal{U} \cap \mathcal{D}|}{2^{n}} \leqslant \frac{|\mathcal{U}|}{2^{n}} \cdot \frac{|\mathcal{D}|}{2^{n}}
$$

We will apply Lemma 2.2 to prove a lower bound on $c(n, m)$. For convenience, for a family $\mathcal{F} \subseteq \mathcal{P}([n])$, define

$$
\mathcal{U}_{\mathcal{F}}=\{X \in \mathcal{P}([n]): F \subseteq X \text { for some } F \in \mathcal{F}\}
$$

and

$$
\mathcal{D}_{\mathcal{F}}=\{X \in \mathcal{P}([n]): X \subseteq F \text { for some } F \in \mathcal{F}\}
$$

Theorem 2.3. For $1 \leqslant m \leqslant 2^{n}$,

$$
c(n, m) \geqslant 2^{n / 2+1} \sqrt{m}-m
$$

Proof. Let $\mathcal{F} \subseteq \mathcal{P}([n])$ be such that $|\mathcal{F}|=m$ and $c(\mathcal{F})=c(n, m)$. We may assume \mathcal{F} is convex. If not, by Lemma 2.1 we may add sets to make it convex and then remove minimal or maximal elements to obtain \mathcal{F}^{\prime} such that $\left|\mathcal{F}^{\prime}\right|=|\mathcal{F}|$ and $c\left(\mathcal{F}^{\prime}\right) \leqslant c(\mathcal{F})$. Note that $c(\mathcal{F})=\left|\mathcal{U}_{\mathcal{F}}\right|+\left|\mathcal{D}_{\mathcal{F}}\right|-\left|\mathcal{U}_{\mathcal{F}} \cap \mathcal{D}_{\mathcal{F}}\right|$. Since \mathcal{F} is convex, $|\mathcal{F}|=\left|\mathcal{U}_{\mathcal{F}} \cap \mathcal{D}_{\mathcal{F}}\right|=m$. Using the AM-GM inequality we get

$$
c(\mathcal{F}) \geqslant 2 \sqrt{\left|\mathcal{U}_{\mathcal{F}}\right|\left|\mathcal{D}_{\mathcal{F}}\right|}-m
$$

Since $\mathcal{U}_{\mathcal{F}}$ is an upset and $\mathcal{D}_{\mathcal{F}}$ is a downset, we apply Lemma 2.2 to get

$$
c(\mathcal{F}) \geqslant 2 \sqrt{2^{n} m}-m=2^{\frac{n}{2}+1} \sqrt{m}-m,
$$

as required.

It is now a simple consequence of Theorem 2.3 to see that (1.3) holds for all n.
Theorem 2.4. Let $(\mathcal{F}, \mathcal{G})$ be cross-Sperner in $\mathcal{P}([n])$. Then

$$
|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-2^{\lfloor n / 2\rfloor}-2^{\lceil n / 2\rceil}+2
$$

Proof. Let $(\mathcal{F}, \mathcal{G}) \in \mathcal{P}([n])^{2}$ be a cross-Sperner pair. Suppose $|\mathcal{F}|=m$. Since $\mathcal{F}, \mathcal{G} \neq \emptyset$, $1 \leqslant m \leqslant 2^{n}-1$. Moreover, we may assume without loss of generality that $|\mathcal{F}| \leqslant|\mathcal{G}|$. We know $|\mathcal{F}||\mathcal{G}| \leqslant 2^{2 n-4}$ by (1.2), which implies that $m \leqslant 2^{n-2}$.

Then, $c(\mathcal{F}) \geqslant\left|\mathcal{U}_{\mathcal{F}}\right|+\left|\mathcal{D}_{\mathcal{F}}\right|-m$ and $|\mathcal{G}| \leqslant 2^{n}-c(\mathcal{F}) \leqslant 2^{n}-\left|\mathcal{U}_{\mathcal{F}}\right|-\left|\mathcal{D}_{\mathcal{F}}\right|+m$. Thus

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-\left|\mathcal{U}_{\mathcal{F}}\right|-\left|\mathcal{D}_{\mathcal{F}}\right|+2 m \tag{2.1}
\end{equation*}
$$

We have the following two cases.
Case 1: Suppose $m=1$. Since \mathcal{F} only consists of one set, say F, we have $\left|\mathcal{U}_{\mathcal{F}}\right|=2^{n-|F|}$ and $\left|\mathcal{D}_{\mathcal{F}}\right|=2^{|F|}$. Observe that $2^{|F|}+2^{n-|F|}$ is minimized when $|F| \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$. So (2.1) yields

$$
|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-2^{\lfloor n / 2\rfloor}-2^{\lceil n / 2\rceil}+2,
$$

as required. This completes the case $m=1$.
Case 2: Now suppose $m \geqslant 2$. By Theorem 2.3, $\left|\mathcal{U}_{\mathcal{F}}\right|+\left|\mathcal{D}_{\mathcal{F}}\right| \geqslant 2^{\frac{n}{2}+1} \sqrt{m}$, so Equation (2.1) gives

$$
|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-2^{\frac{n}{2}+1} \sqrt{m}+2 m
$$

By differentiation with respect to m we see that the expression on the right-hand side is decreasing in the range $2 \leqslant m \leqslant 2^{n-2}$. It is therefore maximized at $m=2$, where we have

$$
2^{n}-2^{\frac{n}{2}+1} \sqrt{m}+2 m=2^{n}-2^{\frac{n+3}{2}}+4 .
$$

Note that for all $n \geqslant 2$,

$$
2^{\frac{n+3}{2}}-4 \geqslant 2^{\lfloor n / 2\rfloor}+2^{\lceil n / 2\rceil}-2 .
$$

This implies that $2^{n}-2^{\lfloor n / 2\rfloor}-2^{\lceil n / 2\rceil}+2 \geqslant 2^{n}-2^{\frac{n}{2}+1} \sqrt{m}+2 m$ for all $2 \leqslant m \leqslant 2^{n-2}$ and $n \geqslant 2$. This completes the case $m \geqslant 2$.

We conclude that $|\mathcal{F}|+|\mathcal{G}| \leqslant 2^{n}-2^{\lfloor n / 2\rfloor}-2^{\lceil n / 2\rceil}+2$, as desired.

3 Bounding $\pi(n, k)$

The goal of this section is to prove Theorems 1.1 and 1.2.

3.1 Lower Bound on $\pi(n, k)$

Theorem 1.1 follows directly from the following (slightly stronger) statement.
Lemma 3.1. Let n, k be integers with $k \geqslant 2$ and $n>k \log _{2} k+k$. Then

$$
\pi(n, k) \geqslant\left(\left(\frac{1}{k}-\frac{1}{2^{\lfloor n / k\rfloor}}\right)\left(1-\frac{1}{k}\right)^{k-1}\right)^{k} 2^{k n}
$$

Proof. Partition $[n]$ into k parts $A_{1}, A_{2}, \cdots, A_{k}$ each of size $\left\lfloor\frac{n}{k}\right\rfloor$ or $\left\lceil\frac{n}{k}\right\rceil$. For each $1 \leqslant i \leqslant k$, take \mathcal{X}_{i} to be an initial segment of colex in $\mathcal{P}\left(A_{i}\right)$ such that $\left|\mathcal{X}_{i}\right|=\lambda_{i} 2^{\left|A_{i}\right|}$ for some $0<\lambda_{i}<1$, which will be chosen to be optimal at the end. Set $\mathcal{Y}_{i}:=\mathcal{P}\left(A_{i}\right) \backslash \mathcal{X}_{i}$. Now we construct a cross-Sperner system $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$. Define

$$
\mathcal{F}_{i}:=\left\{F \in \mathcal{P}([n]): F \cap A_{i} \in \mathcal{X}_{i}, F \cap A_{j} \in \mathcal{Y}_{j} \text { for all } j \neq i\right\} .
$$

Refer to Example 3.3 for an example of this construction.
To see that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$ is cross-Sperner in $\mathcal{P}([n])$, consider $S \in \mathcal{F}_{i}$ and $T \in \mathcal{F}_{j}$. We must show that S and T are incomparable. If $S \subseteq T$, then $S \cap A_{j} \subseteq T \cap A_{j}$, so there is some $Y \in \mathcal{Y}_{j}$ and $X \in \mathcal{X}_{j}$ such that $Y \subseteq X$, a contradiction. Analogously, we see that T cannot be a subset of S. Hence $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$ is cross-Sperner as required.

Observe that

$$
\left|\mathcal{F}_{i}\right|=\left|\mathcal{X}_{i}\right| \prod_{j \neq i}\left|\mathcal{Y}_{j}\right|
$$

and so

$$
\pi(n, k) \geqslant \prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|=\prod_{i=1}^{k}\left(\left|\mathcal{X}_{i}\right| \prod_{j \neq i}\left|\mathcal{Y}_{j}\right|\right) .
$$

To complete the proof of Lemma 3.1 it remains to optimise the sizes of the λ_{i}. We have

$$
\left|\mathcal{F}_{i}\right|=\lambda_{i} 2^{\left|A_{i}\right|} \prod_{j \neq i}\left(1-\lambda_{j}\right) 2^{\left|A_{j}\right|}=\lambda_{i} 2^{\left|A_{1}\right|+\left|A_{2}\right|+\cdots\left|A_{k}\right|} \prod_{j \neq i}\left(1-\lambda_{j}\right)=\lambda_{i} 2^{n} \prod_{j \neq i}\left(1-\lambda_{j}\right) .
$$

So

$$
\begin{equation*}
\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|=\left(\prod_{i=1}^{k} \lambda_{i}\left(1-\lambda_{i}\right)^{k-1}\right) 2^{k n} \tag{3.1}
\end{equation*}
$$

$$
\frac{1}{k}-\frac{1}{2^{\lfloor n / k\rfloor}} \leqslant \frac{1}{k}-\frac{1}{2^{\left|A_{i}\right|}} \leqslant \lambda_{i} \leqslant \frac{1}{k} .
$$

For $n>k \log _{2} k+k$ we have $2^{-\lfloor n / k\rfloor} \leqslant 2^{-(n / k-1)}<\frac{1}{k}$ and so λ_{i} is not zero. Therefore, with this choice of λ_{i} we get

$$
\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right| \geqslant\left(\left(\frac{1}{k}-\frac{1}{2^{\lfloor n / k\rfloor}}\right)\left(1-\frac{1}{k}\right)^{k-1}\right)^{k} 2^{k n}
$$

as required.

Remark 3.2. Note that if k is a power of 2 , in the proof of Lemma 3.1 we have $\lambda_{i}=\frac{1}{k}$ for all $1 \leqslant i \leqslant k$. Therefore in this case we can eliminate the $-\frac{1}{2^{[n / k]}}$ term.

For clarity, we provide an example of the construction given in Lemma 3.1.
Example 3.3. Let $n=6$ and $k=3$. Partition [6] into

$$
A_{1}=\{1,2\}, A_{2}=\{3,4\}, A_{3}=\{5,6\} .
$$

To provide a more illustrative example, we choose $\lambda_{i}=\frac{1}{2}$ rather than $\frac{1}{4}$ as the proof of Lemma 3.1 stipulates. Let

$$
\begin{aligned}
& \mathcal{X}_{1}=\{\emptyset,\{1\}\} \\
& \mathcal{X}_{2}=\{\emptyset,\{3\}\} \\
& \mathcal{X}_{3}=\{\emptyset,\{5\}\} .
\end{aligned}
$$

So

$$
\begin{aligned}
\mathcal{Y}_{1} & =\{\{2\},\{1,2\}\} \\
\mathcal{Y}_{2} & =\{\{4\},\{3,4\}\} \\
\mathcal{Y}_{3} & =\{\{6\},\{5,6\}\} .
\end{aligned}
$$

Then we construct our cross-Sperner system to be

$$
\begin{aligned}
\mathcal{F}_{1} & =\{\{4,6\},\{4,5,6\},\{3,4,6\},\{3,4,5,6\},\{1,4,6\},\{1,4,5,6\},\{1,3,4,6\},\{1,3,4,5,6\}\} \\
\mathcal{F}_{2} & =\{\{2,6\},\{2,5,6\},\{2,3,6\},\{2,3,5,6\},\{1,2,6\},\{1,2,5,6\},\{1,2,3,6\},\{1,2,3,5,6\}\} \\
\mathcal{F}_{3} & =\{\{2,4\},\{2,4,5\},\{2,3,4\},\{2,3,4,5\},\{1,2,4\},\{1,2,4,5\},\{1,2,3,4\},\{1,2,3,4,5\}\} .
\end{aligned}
$$

We now deduce Theorem 1.1 (restated below for convenience) from Lemma 3.1.
Theorem 1.1. Let n and $k \geqslant 2$ be integers. For n sufficiently large,

$$
\left(\frac{2^{n}}{e k}\right)^{k} \leqslant \pi(n, k)
$$

Proof. Take n sufficiently large so that

$$
\frac{1}{2^{\lfloor n / k\rfloor}} \leqslant \frac{1}{k}-\frac{1}{e k}\left(1+\frac{1}{k-1}\right)^{k-1}=\frac{1}{e k}\left(e-\left(1+\frac{1}{k-1}\right)^{k-1}\right) .
$$

This is possible as $\left(1+\frac{1}{k-1}\right)^{k-1}<e$ for all k. Substituting this into Lemma 3.1, we see that

$$
\pi(n, k) \geqslant\left(\frac{1}{e k}\left(1+\frac{1}{k-1}\right)^{k-1}\left(1-\frac{1}{k}\right)^{k-1}\right)^{k} 2^{k n}=\left(\frac{1}{e k}\right)^{k} 2^{k n}
$$

3.2 Upper Bound on $\pi(n, k)$

The goal of this subsection is to prove Theorem 1.2, restated below for convenience.
Theorem 1.2. Let n and $k \geqslant 2$ be integers. Then

$$
\pi(n, k) \leqslant\left(\frac{2^{n}}{k^{2}}\right)^{k}\left\lfloor\frac{k}{2}\right\rfloor^{\lfloor k / 2\rfloor}\left\lceil\frac{k}{2}\right\rceil^{\lceil k / 2\rceil}
$$

We will use the following observation.
Lemma 3.4. Let $1 \leqslant j<k$ and let $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right) \subseteq \mathcal{P}([n])^{k}$ be cross-Sperner. Then $\left(\bigcup_{i=1}^{j} \mathcal{F}_{i}, \bigcup_{i=j+1}^{k} \mathcal{F}_{i}\right)$ is cross-Sperner in $\mathcal{P}([n])$.
Proof. Suppose for contradiction that $\left(\bigcup_{i=1}^{j} \mathcal{F}_{i}, \bigcup_{i=j+1}^{k} \mathcal{F}_{i}\right)$ is not cross-Sperner. Then there exists some $X \in \bigcup_{i=1}^{j} \mathcal{F}_{i}$ and $Y \in \bigcup_{i=j+1}^{k} \mathcal{F}_{i}$ such that $X \subseteq Y$ or $Y \subseteq X$. Since $X \in \mathcal{F}_{i}$ for some $1 \leqslant i \leqslant j$, and $Y \in \mathcal{F}_{t}$ for some $j+1 \leqslant t \leqslant k$ we deduce that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right)$ is not cross-Sperner, a contradiction.

We now use Lemma 3.4, along with Theorem 2.3, to give an upper bound on $\pi(n, k)$. Proof of Theorem 1.2. Suppose $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{k}\right)$ is cross-Sperner in $\mathcal{P}([n])$. Let $a=\lfloor k / 2\rfloor$ and $b=\lceil k / 2\rceil$. Observe that $a+b=k$. Let $\mathcal{G}=\cup_{i=1}^{a} \mathcal{F}_{i}$ and $\mathcal{H}=\cup_{a+1}^{k} \mathcal{F}_{i}$. Notice that $(\mathcal{G}, \mathcal{H}) \subseteq \mathcal{P}([n])^{2}$ is cross-Sperner by Lemma 3.4, so if $|\mathcal{G}|=m$, then $|\mathcal{H}| \leqslant 2^{n}-$ $c(n, m)$. Moreover, $\prod_{i=1}^{a}\left|\mathcal{F}_{i}\right| \leqslant\left(\frac{m}{a}\right)^{a}$ and $\prod_{j=a+1}^{k}\left|\mathcal{F}_{j}\right| \leqslant\left(\frac{2^{n}-2^{n / 2+1} \sqrt{m}+m}{b}\right)^{b}$ since each product is maximized when the families are of equal sizes and $c(n, m)$ is bounded below by Theorem 2.3. Thus,

$$
\begin{equation*}
\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|=\prod_{i=1}^{a}\left|\mathcal{F}_{i}\right| \prod_{j=a+1}^{k}\left|\mathcal{F}_{j}\right| \leqslant\left(\frac{m}{a}\right)^{a}\left(\frac{2^{n}-2^{n / 2+1} \sqrt{m}+m}{b}\right)^{b}:=h(m) \tag{3.2}
\end{equation*}
$$

To find an upper bound on the left hand side of (3.2), we differentiate with respect to m to find the value of m that maximises the right hand side.

$$
\frac{d}{d m} h(m)=\left(\frac{m}{a}\right)^{a}\left(\frac{\left(2^{n / 2}-\sqrt{m}\right)^{2}}{b}\right)^{b}\left(a\left(\sqrt{m}-2^{n / 2}\right)+b \sqrt{m}\right)\left(m^{3 / 2}-m 2^{n / 2}\right)^{-1}
$$

Setting this equal to zero yields $m \in\left\{0,2^{n}, \frac{a^{2} 2^{n}}{k^{2}}\right\}$. A simple calculation shows that (3.2) is maximized when $m=\frac{a^{2} 2^{n}}{k^{2}}$. As $2^{n}-2^{n / 1+1} \sqrt{m}+m=\left(2^{n / 2}-\sqrt{m}\right)^{2}=\frac{2^{n}}{k^{2}} b^{2}$ when $m=\frac{a^{2} 2^{n}}{k^{2}}$,

$$
\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right| \leqslant\left(\frac{2^{n}}{k^{2}}\right)^{k} a^{a} b^{b}=\left(\frac{2^{n}}{k^{2}}\right)^{k}\left\lfloor\frac{k}{2}\right\rfloor^{\lfloor k / 2\rfloor}\left\lceil\frac{k}{2}\right\rceil^{\lceil k / 2\rceil}
$$

as required.
Note that for k even, the upper bound given by Theorem 1.2 is $\left(\frac{2^{n}}{2 k}\right)^{k}$. For k odd, it is not hard to check that the upper bound is less than $\left(1+\frac{1}{k}\right)\left(\frac{2^{n}}{2 k}\right)^{k}$.

4 Bounding $\sigma(n, k)$

The goal of this section is to prove Theorem 1.3.

4.1 Lower Bound on $\sigma(n, k)$

For our proof of the lower bound in Theorem 1.3 we need the following counting lemma.
Lemma 4.1. Let $\mathcal{A}:=\left\{F_{1}, F_{2}, \ldots F_{k-1}\right\}$ be an antichain in $\mathcal{P}([n])$ where $F_{i}:=\{i\} \cup\{n-$ $\ell+1, \ldots, n\}$. Then $c(\mathcal{A})=k 2^{\ell}+2^{n-\ell}\left(1-\frac{1}{2^{k-1}}\right)-(k-1)$.

Proof. First note that the existence of the antichain \mathcal{A} implies that $k-1<n-\ell+1$. For each i, let \mathcal{S}_{i} be the collection of sets comparable to F_{i}. For ease of notation, let $G:=\{n-\ell+1, \ldots, n\}$ Observe that

$$
\begin{equation*}
\left|\mathcal{S}_{i}\right|=\left|\mathcal{U}_{F_{i}} \cup \mathcal{D}_{F_{i}}\right|=2^{\ell+1}+2^{n-\ell-1}-1, \tag{4.1}
\end{equation*}
$$

since $\left|F_{i}\right|=\ell+1$ and $\mathcal{U}_{F_{i}} \cap \mathcal{D}_{F_{i}}=\left\{F_{i}\right\}$.
Note that for each $i>1$, we have

$$
\begin{equation*}
\mathcal{D}_{F_{i}} \backslash \bigcup_{j<i} \mathcal{D}_{F_{j}}=\mathcal{D}_{F_{i}} \backslash \mathcal{D}_{F_{1}}=\{\{i\} \cup Y: Y \subseteq G\} . \tag{4.2}
\end{equation*}
$$

Similarly, observe that for each $i>1$, we have

$$
\begin{equation*}
\mathcal{U}_{F_{i}} \backslash \bigcup_{j<i} \mathcal{U}_{F_{i}}=\left\{Z \subseteq[n]: Z \supseteq F_{i}, Z \cap\{1, \ldots, i-1\}=\emptyset\right\} . \tag{4.3}
\end{equation*}
$$

So now putting together (4.1) (to bound $\left|\mathcal{S}_{1}\right|$), (4.2), and (4.3), we obtain

$$
\begin{aligned}
\left|\bigcup_{i=1}^{k-1} \mathcal{S}_{i}\right| & =\left|\mathcal{S}_{1}\right|+\sum_{i=2}^{k-1}\left|\mathcal{D}_{F_{i}} \backslash \bigcup_{j<i} \mathcal{D}_{F_{j}}\right|+\sum_{i=2}^{k-1}\left|\mathcal{U}_{F_{i}} \backslash \bigcup_{j<i} \mathcal{U}_{F_{j}}\right|-(k-2) \\
& =2^{\ell+1}+2^{n-\ell-1}-1+(k-2) 2^{\ell}+\left(\sum_{i=2}^{k-1} 2^{n-\ell-i}\right)-(k-2) .
\end{aligned}
$$

The final term occurs as the sets F_{i} are counted both in their downset and their upset. Simplifying we get

$$
c(\mathcal{A})=k 2^{\ell}+2^{n-\ell}\left(1-\frac{1}{2^{k-1}}\right)-(k-1) .
$$

We now prove the lower bound given in Theorem 1.3. We actually prove a slightly stronger statement.

Lemma 4.2. Let $n, k \in \mathbb{N}$ where $n \geqslant 2 k-1-\log _{2} k \geqslant 1$. Then

$$
\sigma(n, k) \geqslant 2^{n}-\frac{3}{\sqrt{2}}\left(1-\frac{1}{2^{k-1}}\right)^{\frac{1}{2}} \sqrt{2^{n} k}+2(k-1)
$$

THE ELECTRONIC JOURNAL OF COMBINATORICS 31(2) (2024), \#P2.4

Proof. Let a be an integer with the same partity as n to be specified later. Let $G:=\{n-$ $\left.\frac{n-a}{2}+1, \ldots, n\right\}$. Let $\mathcal{A}=\left\{F_{1}, F_{2}, \ldots, F_{k-1}\right\}$ be an antichain in $\mathcal{P}([n])$, where $F_{i}=G \cup\{i\}$. This is possible as long as $n-\frac{n-a}{2} \geqslant k-1$, that is, $n \geqslant 2(k-1)-a$.

By Lemma 4.1 (setting $\ell=\frac{n-a}{2}$), we obtain

$$
c(\mathcal{A})=k 2^{\frac{n-a}{2}}+2^{\frac{n+a}{2}}\left(1-\frac{1}{2^{k-1}}\right)-(k-1) .
$$

Define $\mathcal{F}_{i}:=\left\{F_{i}\right\}$ for $1 \leqslant i \leqslant k-1$ and $\mathcal{F}_{k}:=\left\{Z \subseteq[n]: Z\right.$ is incomparable to F_{i} for all $1 \leqslant i \leqslant k-1\}$. By construction, $\left(\mathcal{F}_{1}, \ldots, \mathcal{F}_{k}\right)$ is cross-Sperner in $\mathcal{P}([n])$. We have

$$
\begin{align*}
\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right| & =(k-1)+2^{n}-c(\mathcal{A}) \\
& =2^{n}-\sqrt{2^{n}}\left(\frac{k}{\sqrt{2^{a}}}+\left(1-\frac{1}{2^{k-1}}\right) \sqrt{2^{a}}\right)+2(k-1) . \tag{4.4}
\end{align*}
$$

Differentiating this expression with respect to a gives

$$
\frac{\ln 2}{2} \sqrt{2^{n}}\left(\frac{k}{\sqrt{2^{a}}}-\left(1-\frac{1}{2^{k-1}}\right) \sqrt{2^{a}}\right) .
$$

Thus we can see that if there were no restrictions on a the maximum value of (4.4) would be achieved when $2^{a}=k \frac{2^{k-1}}{2^{k-1}-1}$; that is, $a=\log _{2}(k)+\log _{2}\left(\frac{2^{k-1}}{2^{k-1}-1}\right)$. However, we require a to be an integer with the same parity as n. Set a to be the unique such integer such that

$$
-1<a-\log _{2}(k)-\log _{2}\left(\frac{2^{k-1}}{2^{k-1}-1}\right) \leqslant 1
$$

and let $c=a-\log _{2}(k)-\log _{2}\left(\frac{2^{k-1}}{2^{k-1}-1}\right)$. Note that $n \geqslant 2 k-1-\log _{2} k \geqslant 1$ by hypothesis. This ensures that $n \geqslant 2(k-1)-a$ for any such value of a. From (4.4) we have

$$
\begin{align*}
\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right| & =2^{n}-\sqrt{2^{n}}\left(\frac{k}{\sqrt{2^{a}}}+\left(1-\frac{1}{2^{k-1}}\right) \sqrt{2^{a}}\right)+2(k-1) \\
& =2^{n}-\sqrt{2^{n} k}\left(1-\frac{1}{2^{k-1}}\right)^{1 / 2}\left(\frac{1}{\sqrt{2^{c}}}+\sqrt{2^{c}}\right)+2(k-1) \tag{4.5}\\
& \leqslant 2^{n}-\sqrt{2^{n} k}\left(1-\frac{1}{2^{k-1}}\right)^{1 / 2}\left(\frac{3}{\sqrt{2}}\right)+2(k-1)
\end{align*}
$$

where the last inequality follows from the fact that the bracketed expression in (4.5) is maximised when $c=1$ for c in the range $-1<c \leqslant 1$.

For certain values of k we can prove a stronger lower bound which essentially matches the upper bound of Theorem 1.3.

Corollary 4.6. Let $n, k \in \mathbb{N}$ and suppose that $k=2^{a}$ where a has the same parity as n and $n \geqslant 2(k-1)-a$. Then

$$
\sigma(n, k) \geqslant 2^{n}-2 \sqrt{2^{n} k}\left(1-\frac{1}{2^{k}}\right)+2(k-1) .
$$

Proof. If we apply the proof of Lemma 4.2 with $a=\log _{2} k$, then the result follows from (4.4).

4.2 Upper Bound on $\sigma(n, k)$

Lemma 4.3. For $k \geqslant 2$ and n such that $2^{n} \geqslant(k-1)(1+\sqrt{k-1})^{2}$,

$$
\sigma(n, k) \leqslant 2^{n}-2 \sqrt{2^{n}(k-1)}+2(k-1) .
$$

Proof. Suppose $\left(\mathcal{F}_{1}, \mathcal{F}_{2}, \cdots, \mathcal{F}_{k}\right)$ is cross-Sperner in $\mathcal{P}([n])$. We may and will assume that $\left|\mathcal{F}_{1}\right| \leqslant\left|\mathcal{F}_{2}\right| \leqslant \cdots \leqslant\left|\mathcal{F}_{k}\right|$. Define $\mathcal{G}:=\cup_{i=1}^{k-1} \mathcal{F}_{i}$. Let $m=|\mathcal{G}|$ and observe that, as each family is non-empty, we have $m \geqslant k-1$.

By Theorem 2.3, $\left|\mathcal{F}_{k}\right| \leqslant 2^{n}-c(n, m) \leqslant 2^{n}-2^{n / 2+1} \sqrt{m}+m=\left(\sqrt{2^{n}}-\sqrt{m}\right)^{2}$. Since the families are ordered by increasing size, $\left|\mathcal{F}_{k}\right| \geqslant \frac{m}{k-1}$. Putting this together gives

$$
\frac{m}{k-1} \leqslant\left|\mathcal{F}_{k}\right| \leqslant\left(\sqrt{2^{n}}-\sqrt{m}\right)^{2}
$$

Rearranging, we obtain

$$
\begin{equation*}
\sqrt{m} \leqslant \sqrt{2^{n}}\left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}}\right) \tag{4.7}
\end{equation*}
$$

Now consider the sum

$$
\begin{equation*}
\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|=|\mathcal{G}|+\left|\mathcal{F}_{k}\right| \leqslant m+\left(\sqrt{2^{n}}-\sqrt{m}\right)^{2} \tag{4.8}
\end{equation*}
$$

Let $x=\frac{1}{2} \sqrt{2^{n}}-\sqrt{m}$. Substituting this into the right hand side of (4.8) gives

$$
\left(\frac{1}{2} \sqrt{2^{n}}-x\right)^{2}+\left(\frac{1}{2} \sqrt{2^{n}}+x\right)^{2}=2^{n-1}+2 x^{2}
$$

and it is clear that the right hand side of (4.8) is maximised when $|x|=\left|\frac{1}{2} \sqrt{2^{n}}-\sqrt{m}\right|$ is as large as possible. Combining $m \geqslant k-1$ with (4.7) gives $\sqrt{k-1} \leqslant \sqrt{m} \leqslant \sqrt{2^{n}}\left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}}\right)$, we need only find which of these end values is further from $\frac{1}{2} \sqrt{2^{n}}$.

If we have $2^{n} \geqslant(k-1)(1+\sqrt{k-1})^{2}$ then

$$
\frac{1}{2} \sqrt{2^{n}}-\sqrt{k-1} \geqslant \frac{1}{2} \sqrt{2^{n}}-\frac{\sqrt{2^{n}}}{1+\sqrt{k-1}}=\sqrt{2^{n}}\left(\frac{\sqrt{k-1}}{1+\sqrt{k-1}}\right)-\frac{1}{2} \sqrt{2^{n}}
$$

and thus expression (4.8) is maximised when $m=k-1$. Substituting $m=k-1$ into (4.8) gives

$$
\begin{aligned}
\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right| & \leqslant(k-1)+\left(\sqrt{2^{n}}-\sqrt{k-1}\right)^{2} \\
& =2^{n}-2 \sqrt{2^{n}(k-1)}+2(k-1)
\end{aligned}
$$

Proof of Theorem 1.3. Lemmas 4.2 and 4.3 together give Theorem 1.3. Observe that $2^{2 k} \geqslant(k-1)(1+\sqrt{k-1})^{2}$ for $k \geqslant 2$ so the conditions of Lemma 4.3 hold.

5 Closing remarks

In Section 3 we provided upper and lower bounds on $\pi(n, k)$ in Theorems 1.1 and 1.2. Comparing these bounds shows that they differ by a factor of $\left(\frac{e}{2}\right)^{k}$ for k even and less than $\left(1+\frac{1}{k}\right)\left(\frac{e}{2}\right)^{k}$ for k odd. It would be interesting to tighten this gap. We believe that (for large n) the bound given in Lemma 3.1 ought to be essentially best possible.

Conjecture 5.1. Let $k \geqslant 2$ be fixed and n be sufficiently large with respect to k. Then

$$
\pi(n, k)=(1+o(1))\left(\frac{(k-1)^{k-1}}{k^{k}} 2^{n}\right)^{k}
$$

Our lower bound on $\pi(n, k)$ holds in the case $n>k \log _{2} k+k$. For small fixed values of n and k, we also have some bounds for $\pi(n, k)$, see [15]. In particular, we have $f(4,3)=9$, $f(5,3) \geqslant 81 f(6,3) \geqslant 810$ and $f(5,4) \geqslant 108$.

Note added before submission: In the final stages of preparation of this article, we noticed a recent paper of Gowty, Horsley, and Mammoliti [9], concerning the comparability number. They give a very different proof of Theorem 2.3 (see Corollary 1.2 of [9]) and use it as we do to deduce Theorem 2.4. They also provide some very interesting further analysis of the comparability number and sets that minimise $c(n, m)$.

Acknowledgements

Research of Natalie Behague was supported by a PIMS Postdoctoral Fellowship while at the University of Victoria. Research of Akina Kuperus was supported by NSERC CGSM. Natasha Morrison is supported by NSERC Discovery Grant RGPIN-2021-02511 and NSERC Early Career Supplement DGECR-2021-00047. Research of Ashna Wright was supported by NSERC USRA.

References

[1] J. Balogh and R. A. Krueger. A sharp threshold for a random version of Sperner's theorem. arXiv:2205.11630, 2022.
[2] J. Balogh, R. Mycroft, and A. Treglown. A random version of Sperner's theorem. J. Combin. Theory Ser. A, 128:104-110, 2014.
[3] A. Brace and D. E. Daykin. Sperner type theorems for finite sets. In Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pages 18-37. Inst. Math. Appl., Southend-on-Sea, 1972.
[4] M. Collares and R. Morris. Maximum-size antichains in random set-systems. Random Structures Algorithms, 49(2):308-321, 2016.
[5] K. Engel. Sperner theory, volume 65 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1997.
[6] Z. Füredi. Cross-intersecting families of finite sets. J. Combin. Theory Ser. A, 72(2):332-339, 1995.
[7] D. Gerbner, B. Keszegh, N. Lemons, C. Palmer, D. Pálvölgyi, and B. Patkós. Saturating Sperner families. Graphs Combin., 29(5):1355-1364, 2013.
[8] D. Gerbner, N. Lemons, C. Palmer, B. Patkós, and V. Szécsi. Cross-Sperner families. Studia Sci. Math. Hungar., 49(1):44-51, 2012.
[9] A. Gowty, D. Horsley, and A. Mammoliti. Minimising the total number of subsets and supersets. European Journal of Combinatorics, 118:103882, 2024.
[10] J. R. Griggs, T. Kalinowski, U. Leck, I. T. Roberts, and M. Schmitz. The saturation spectrum for antichains of subsets. Order, 40(3):537-574, 2023.
[11] M. Grüttmüller, S. Hartmann, T. Kalinowski, U. Leck, and I. T. Roberts. Maximal flat antichains of minimum weight. Electron. J. Combin., 16(1):\#R69, 19, 2009.
[12] J. R. Johnson, I. Leader, and P. A. Russell. Set systems containing many maximal chains. Combin. Probab. Comput., 24(3):480-485, 2015.
[13] D. J. Kleitman. Families of non-disjoint subsets. J. Combinatorial Theory, 1:153-155, 1966.
[14] D. J. Kleitman. On a conjecture of Milner on k-graphs with non-disjoint edges. J. Combinatorial Theory, 5:153-156, 1968.
[15] A. Kuperus. Cross-Sperner systems (Masters thesis). University of Victoria, In preparation.
[16] J. Liu and C. Zhao. On a conjecture of Hilton. Australas. J. Combin., 24:265-274, 2001.
[17] M. Matsumoto and N. Tokushige. The exact bound in the Erdős-Ko-Rado theorem for cross-intersecting families. J. Combin. Theory Ser. A, 52(1):90-97, 1989.
[18] D. Osthus. Maximum antichains in random subsets of a finite set. J. Combin. Theory Ser. A, 90(2):336-346, 2000.
[19] L. Pyber. A new generalization of the Erdős-Ko-Rado theorem. J. Combin. Theory Ser. A, 43(1):85-90, 1986.
[20] P. D. Seymour. On incomparable collections of sets. Mathematika, 20:208-209, 1973.
[21] E. Sperner. Ein Satz über Untermengen einer endlichen Menge. Math. Z., 27(1):544548, 1928.
[22] D. B. West. Extremal problems in partially ordered sets. In Ordered sets (Banff, Alta., 1981), volume 83 of NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., pages 473-521. Reidel, Dordrecht-Boston, Mass., 1982.

[^0]: ${ }^{a}$ Mathematics Institute, University of Warwick, Coventry, UK (natalie.behague@warwick.ac.uk).
 ${ }^{b}$ Department of Mathematics and Statistics, University of Victoria, Victoria, Canada (akuperus@uvic.ca, nmorrison@uvic.ca, ashnawright@uvic.ca).

[^1]: ${ }^{1}$ Observe that $2(|\mathcal{F}||\mathcal{G}|)^{1 / 4} \leqslant|\mathcal{F}|^{1 / 2}+|\mathcal{G}|^{1 / 2} \leqslant 2^{n / 2}$.
 ${ }^{2}$ Similarly to above, we have $\left(\prod_{i=1}^{k}\left|\mathcal{F}_{i}\right|\right)^{\frac{1}{k}} \leqslant \frac{\sum_{i=1}^{k}\left|\mathcal{F}_{i}\right|}{k} \leqslant \frac{2^{n}}{k}$.

