A Spectral Extremal Problem on Non-Bipartite Triangle-Free Graphs

Yongtao Li ${ }^{a} \quad$ Lihua Feng \quad Yuejian Peng ${ }^{b}$
Submitted: Apr 18, 2023; Accepted: Jan 9, 2024; Published: Mar 8, 2024
(c) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

A theorem of Nosal and Nikiforov states that if G is a triangle-free graph with m edges, then $\lambda(G) \leqslant \sqrt{m}$, where the equality holds if and only if G is a complete bipartite graph. A well-known spectral conjecture of Bollobás and Nikiforov [J. Combin. Theory Ser. B 97 (2007)] asserts that if G is a K_{r+1}-free graph with m edges, then $\lambda_{1}^{2}(G)+\lambda_{2}^{2}(G) \leqslant\left(1-\frac{1}{r}\right) 2 m$. Recently, Lin, Ning and Wu [Combin. Probab. Comput. 30 (2021)] confirmed the conjecture in the case $r=2$. Using this base case, they proved further that $\lambda(G) \leqslant \sqrt{m-1}$ for every non-bipartite triangle-free graph G, with equality if and only if $m=5$ and $G=C_{5}$. Moreover, Zhai and Shu [Discrete Math. 345 (2022)] presented an improvement by showing $\lambda(G) \leqslant \beta(m)$, where $\beta(m)$ is the largest root of $Z(x):=x^{3}-x^{2}-(m-2) x+m-3$. The equality in Zhai-Shu's result holds only if m is odd and G is obtained from the complete bipartite graph $K_{2, \frac{m-1}{2}}$ by subdividing exactly one edge. Motivated by this observation, Zhai and Shu proposed a question to find a sharp bound when m is even. We shall solve this question by using a different method and characterize three kinds of spectral extremal graphs over all triangle-free non-bipartite graphs with even size. Our proof technique is mainly based on applying Cauchy interlacing theorem of eigenvalues of a graph, and with the aid of a triangle counting lemma in terms of both eigenvalues and the size of a graph.

Mathematics Subject Classifications: 05C35, 05C50

1 Introduction

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. We usually write n and m for the number of vertices and edges, respectively. One of the main problems of algebraic graph theory is to determine the combinatorial properties of a graph that are

[^0]reflected from the algebraic properties of its associated matrices. Let G be a simple graph on n vertices. The adjacency matrix of G is defined as $A(G)=\left[a_{i j}\right]_{n \times n}$ where $a_{i j}=1$ if two vertices v_{i} and v_{j} are adjacent in G, and $a_{i j}=0$ otherwise. We say that G has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ if these values are eigenvalues of the adjacency matrix $A(G)$. Let $\lambda(G)$ be the maximum value in absolute among all eigenvalues of G, which is known as the spectral radius of G.

1.1 The spectral extremal graph problems

A graph G is called F-free if it does not contain an isomorphic copy of F as a subgraph. Clearly, every bipartite graph is C_{3}-free. The Turán number of a graph F is the maximum number of edges in an n-vertex F-free graph, and it is usually denoted by ex (n, F). An F-free graph on n vertices with ex (n, F) edges is called an extremal graph for F. As is known to all, the Mantel theorem (see, e.g., [2]) asserts that if G is a triangle-free graph on n vertices, then

$$
\begin{equation*}
e(G) \leqslant\left\lfloor n^{2} / 4\right\rfloor, \tag{1}
\end{equation*}
$$

where the equality holds if and only if G is the balanced complete bipartite graph $K_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$.
There are numerous extensions and generalizations of Mantel's theorem; see [3, 5]. Especially, Turán (see, e.g., [2, pp. 294-301]) extended Mantel's theorem by showing that if G is a K_{r+1}-free graph on n vertices with maximum number of edges, then G is isomorphic to the graph $T_{r}(n)$, where $T_{r}(n)$ denotes the complete r-partite graph whose part sizes are as equal as possible. Each vertex part of $T_{r}(n)$ has size either $\left\lfloor\frac{n}{r}\right\rfloor$ or $\left\lceil\frac{n}{r}\right\rceil$. The graph $T_{r}(n)$ is usually called Turán's graph. Five alternative proofs of Turán's theorem are selected into THE BOOK 1 [1, p. 285]. Moreover, we refer the readers to the surveys [10, 41].

Spectral extremal graph theory, with its connections and applications to numerous other fields, has enjoyed tremendous growth in the past few decades. There is a rich history on the study of bounding the eigenvalues of a graph in terms of various parameters. For example, one can refer to [4] for spectral radius and cliques, [35] for independence number and eigenvalues, [44, 22] for eigenvalues of outerplanar and planar graphs, $[8,51]$ for excluding friendship graph, and $[45,52,12]$ for excluding minors. It is a traditional problem to bound the spectral radius of a graph. Let G be a graph on n vertices with m edges. It is natural to ask how large the spectral radius $\lambda(G)$ may be. A well-known result states that

$$
\begin{equation*}
\lambda(G)<\sqrt{2 m} \tag{2}
\end{equation*}
$$

This bound can be guaranteed by $\lambda(G)^{2}<\sum_{i=1}^{n} \lambda_{i}^{2}=\operatorname{Tr}\left(A^{2}(G)\right)=\sum_{i=1}^{n} d_{i}=2 m$. We recommend the readers to $[13,14,32]$ for more extensions.

It is also a popular problem to study the extremal structure for graphs with given number of edges. For example, it is not difficult to show that if G has m edges, then G contains at most $\frac{\sqrt{2}}{3} m^{3 / 2}$ triangles; see, e.g., $[2$, p. 304] and [7]. In addition, it is an

[^1]instrumental topic to study the interplay between these two problems mentioned-above. More precisely, one can investigate the largest eigenvalue of the adjacency matrix in a triangle-free graph with given number of edges ${ }^{2}$. Dating back to 1970, Nosal [40], and later Nikiforov [32, 35] independently obtained such a result.

Theorem 1 (Nosal [40], Nikiforov [32, 35]). Let G be a graph with m edges. If G is triangle-free, then

$$
\begin{equation*}
\lambda(G) \leqslant \sqrt{m} \tag{3}
\end{equation*}
$$

where the equality holds if and only if G is a complete bipartite graph.
Mantel's theorem in (1) can be derived from (3). Indeed, using Rayleigh's inequality, we have $\frac{2 m}{n} \leqslant \lambda(G) \leqslant \sqrt{m}$, which yields $m \leqslant\left\lfloor n^{2} / 4\right\rfloor$. Thus, Theorem 1 could be viewed as a spectral version of Mantel's theorem. Moreover, Theorem 1 implies a result of Lovász and Pelikán [27], which asserts that if G is a tree on n vertices, then $\lambda(G) \leqslant \sqrt{n-1}$, with equality if and only if $G=K_{1, n-1}$.

Inequality (3) impulsed the great interests of studying the maximum spectral radius for F-free graphs with given number of edges, see [32, 35] for K_{r+1}-free graphs, $[34,50,46]$ for C_{4}-free graphs, [49] for $K_{2, r+1}$-free graphs, [49, 31] for C_{5}-free or C_{6}-free graphs, [29] for C_{7}-free graphs, $[43,9,26]$ for C_{4}^{\triangle}-free or C_{5}^{\triangle}-free graphs, where C_{k}^{\triangle} is a graph on $k+1$ vertices obtained from C_{k} and C_{3} by sharing a common edge; see [37] for B_{k}-free graphs, where B_{k} denotes the book graph consisting of k triangles sharing a common edge, [21] for F_{2}-free graphs with given number of edges, where F_{2} is the friendship graph consisting of two triangles intersecting in a common vertex, [38,39] for counting the number of C_{3} and C_{4}. We refer the readers to the surveys $[36,18]$ and references therein.

In particular, Bollobás and Nikiforov [4] posed the following nice conjecture.
Conjecture 2 (Bollobás-Nikiforov, 2007). Let G be a K_{r+1}-free graph of order at least $r+1$ with m edges. Then

$$
\lambda_{1}^{2}(G)+\lambda_{2}^{2}(G) \leqslant 2 m\left(1-\frac{1}{r}\right) .
$$

Recently, Lin, Ning and Wu [23] confirmed the base case $r=2$; see, e.g., $[37,17]$ for related results. Furthermore, the base case leads to Theorem 3 in next section.

1.2 The non-bipartite triangle-free graphs

The extremal graphs determined in Theorem 1 are the complete bipartite graphs. Excepting the largest extremal graphs, the second largest extremal graphs were extensively studied over the past years. In this paper, we will pay attention mainly to the spectral extremal problems for non-bipartite triangle-free graphs with given number of edges. Using the inequalities from majorization theory, Lin, Ning and Wu [23] confirmed the triangle case in Conjecture 2, and then they proved the following result.

[^2]Theorem 3 (Lin-Ning-Wu, 2021). Let G be a triangle-free graph with m edges. If G is non-bipartite, then

$$
\lambda(G) \leqslant \sqrt{m-1},
$$

where the equality holds if and only if $m=5$ and $G=C_{5}$.
The upper bound in Theorem 3 is not sharp for $m>5$. Motivated by this observation, Zhai and Shu [50] provided a further improvement on Theorem 3. For every integer $m \geqslant 3$, we denote by $\beta(m)$ the largest root of

$$
\begin{equation*}
Z(x):=x^{3}-x^{2}-(m-2) x+m-3 . \tag{4}
\end{equation*}
$$

If m is odd, then we define $S K_{2, \frac{m-1}{2}}$ as the graph obtained from the complete bipartite graph $K_{2, \frac{m-1}{2}}$ by subdividing an edge; see Figure 1 for two drawings. Clearly, $S K_{2, \frac{m-1}{2}}$ is a triangle-free graph with m edges, and it is non-bipartite as it contains a copy of C_{5}. By computations, we know that $\beta(m)$ is the spectral radius of $S K_{2, \frac{m-1}{2}}$.

Figure 1: m is odd and the graph $S K_{2, \frac{m-1}{2}}$.

The improvement of Zhai and Shu [50] on Theorem 3 can be stated as below.
Theorem 4 (Zhai-Shu, 2022). Let G be a graph of size m. If G is triangle-free and non-bipartite, then

$$
\lambda(G) \leqslant \beta(m),
$$

with equality if and only if $G=S K_{2, \frac{m-1}{2}}$.
Indeed, the result of Zhai and Shu improved Theorem 3. It was proved in [50, Lemma 2.2] that for every $m \geqslant 6$,

$$
\begin{equation*}
\sqrt{m-2}<\beta(m)<\sqrt{m-1} \tag{5}
\end{equation*}
$$

The original proof of Zhai and Shu [50] for Theorem 4 is technical and based on the use of the Perron components. Subsequently, Li and Peng [19] provided an alternative proof by applying Cauchy interlacing theorem. We remark that $\lim _{m \rightarrow \infty}(\beta(m)-\sqrt{m-2})=0$. In addition, Wang [46] improved Theorem 4 slightly by determining all the graphs with size m whenever it is a non-bipartite triangle-free graph satisfying $\lambda(G) \geqslant \sqrt{m-2}$.

1.3 A question of Zhai and Shu

The upper bound in Theorem 4 could be attained only if m is odd, since the extremal graph $S K_{2, \frac{m-1}{2}}$ is well-defined only in this case. Thus, it is interesting to determine the spectral extremal graph when m is even. Zhai and Shu in [50, Question 2.1] proposed the following question formally.

Question 5 (Zhai-Shu [50]). For even m, what is the extremal graph attaining the maximum spectral radius over all triangle-free non-bipartite graphs with m edges?

In this paper, we shall solve this question and determine the spectral extremal graphs. Although Question 5 seems to be another side of Theorem 4, we would like to point out that the even case is actually more difficult and different, and the original method is ineffective in this case.

Definition 6 (Spectral extremal graphs). Suppose that $m \in 2 \mathbb{N}$. Let L_{m} be the graph obtained from the subdivision $S K_{2, \frac{m-2}{2}}$ by hanging an edge on a vertex with the maximum degree. If $\frac{m-3}{3}$ is a positive integer, then we define Y_{m} as the graph obtained from C_{5} by blowing up a vertex to an independent set $I_{\frac{m-3}{3}}$ on $\frac{m-3}{3}$ vertices, then adding a new vertex, and joining this vertex to all vertices of $I_{\frac{m-3}{3}}$. If $\frac{m-4}{3}$ is a positive integer, then we write T_{m} for the graph obtained from C_{5} by blowing up two adjacent vertices to independent sets $I_{\frac{m-4}{3}}$ and I_{2}, respectively, where $I_{\frac{m-4}{3}}$ and I_{2} form a complete bipartite graph; see Figure 2.

Figure 2: Extremal graphs in Theorem 7.
Theorem 7 (Main result). Let m be even and $m \geqslant 4.7 \times 10^{5}$. Suppose that G is a triangle-free graph with m edges and G is non-bipartite.
(a) If $m=3 t$ for some $t \in \mathbb{N}$, then $\lambda(G) \leqslant \lambda\left(Y_{m}\right)$, with equality if and only if $G=Y_{m}$.
(b) If $m=3 t+1$ for some $t \in \mathbb{N}$, then $\lambda(G) \leqslant \lambda\left(T_{m}\right)$, with equality if and only if $G=T_{m}$.
(c) If $m=3 t+2$ for some $t \in \mathbb{N}$, then $\lambda(G) \leqslant \lambda\left(L_{m}\right)$, with equality if and only if $G=L_{m}$.

The construction of L_{m} is natural. Nevertheless, it is not apparent to find Y_{m} and T_{m}. There are some analogous results that the extremal graphs depend on the parity of
the size m in the literature. For example, the C_{5}-free or C_{6}-free spectral extremal graphs with m edges are determined in [49] when m is odd, and later in [31] when m is even. Moreover, the C_{4}^{Δ}-free or C_{5}^{\triangle}-free spectral extremal graphs are determined in [43] for odd m, and subsequently in $[9,26]$ for even m. In addition, the results of Nikiforov [33], Zhai and Wang [48] showed that the C_{4}-free spectral extremal graphs with given order n also rely on the parity of n. In a nutshell, for large size m, there is a common phenomenon that the extremal graphs in two cases are extremely similar, that is, the extremal graph in the even case is always constructed from that in the odd case by handing an edge to a vertex with maximum degree. Surprisingly, the extremal graphs in our conclusion break down this common phenomenon and show a new structure of the extremal graphs.

Outline of the paper. In Section 2, we shall present some lemmas, which shows that the spectral radius of L_{m} is smaller than that of Y_{m} if $\frac{m}{3} \in \mathbb{N}$, as well as that of T_{m} if $\frac{m-1}{3} \in \mathbb{N}$. Moreover, we will provide the estimations on both $\lambda\left(L_{m}\right)$ and $\beta(m)$. In Section 3, we will show some forbidden induced subgraphs, which helps us to characterize the local structure of the desired extremal graph. In Section 4, we present the proof of Theorem 7. Our proof of Theorem 7 is quite different from that of Theorem 4 in [50]. The techniques used in our proof borrows some ideas from Lin, Ning and Wu [23] as well as Ning and Zhai [38]. We shall apply Cauchy's interlacing theorem and a triangle counting result, which make full use of the information of all eigenvalues of a graph. In Section 5, we conclude this paper with some possible open problems for interested readers.

Notations. We shall follow the standard notation in [6] and consider only simple and undirected graphs. Let $N(v)$ be the set of neighbors of a vertex v, and $d(v)$ be the degree of v. For a subset $S \subseteq V(G)$, we write $e(S)$ for the number of edges with two endpoints in S, and $N_{S}(v)=N(v) \cap S$ for the set of neighbors of v in S. Let K_{r+1} be the complete graph on $r+1$ vertices, and $K_{s, t}$ be the complete bipartite graph with parts of sizes s and t. Let I_{k} be an independent set on k vertices. We write C_{n} and P_{n} for the cycle and path on n vertices, respectively. Given graphs G and H, we write $G \cup H$ for the union of G and H. In other words, $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. For simplicity, we write $k G$ for the union of k copies of G. We denote by $t(G)$ the number of triangles in G.

2 Preliminaries and outline of the proof

In this section, we will give the estimation on the spectral radius of L_{m}. Note that L_{m} exists whenever m is even, while Y_{m} and T_{m} are well-defined only if $m(\bmod 3)$ is 0 or 1 , respectively. We will show that Y_{m} and T_{m} have larger spectral radius than L_{m}. In addition, we will introduce Cauchy interlacing theorem, a triangle counting result in terms of eigenvalues, and an operation of graphs which increases the spectral radius strictly. Before showing the proof of Theorem 7, we will illustrate the key ideas of our proof, and then we outline the main steps of the framework.

2.1 Bounds on the spectral radius of extremal graphs

By computations, we can obtain that $\lambda\left(Y_{m}\right)$ is the largest root of

$$
\begin{equation*}
Y(x):=x^{4}-x^{3}+(2-m) x^{2}+(m-3) x+\frac{m}{3}-1 . \tag{6}
\end{equation*}
$$

Similarly, $\lambda\left(T_{m}\right)$ is the largest root of

$$
\begin{equation*}
T(x):=x^{5}-m x^{3}+\frac{7 m-22}{3} x+\frac{16-4 m}{3}, \tag{7}
\end{equation*}
$$

and $\lambda\left(L_{m}\right)$ is the largest root of the polynomial

$$
\begin{equation*}
L(x):=x^{6}-m x^{4}+\left(\frac{5 m}{2}-7\right) x^{2}+(4-m) x+2-\frac{m}{2} . \tag{8}
\end{equation*}
$$

Lemma 8. If $m \in\{6,8,10\}$, then $\lambda\left(L_{m}\right)>\sqrt{m-2}$. If $m \geqslant 12$ is even, then

$$
\sqrt{m-2.5}<\lambda\left(L_{m}\right)<\sqrt{m-2}
$$

Moreover, we have $\lambda\left(L_{6}\right) \approx 2.1149, \lambda\left(L_{8}\right) \approx 2.4938$ and $\lambda\left(L_{10}\right) \approx 2.8424$.
Proof. The case $m \in\{6,8,10\}$ is straightforward. Next, we shall consider the case $m \geqslant$ 12. By a direct computation, it is easy to verify that

$$
L(\sqrt{m-2.5})=-(1.25+\sqrt{m-2.5}) m+4 \sqrt{m-2.5}+3.875<0
$$

which gives $\lambda\left(L_{m}\right)>\sqrt{m-2.5}$. Moreover, we have

$$
L(\sqrt{m-2})=\frac{1}{2}\left(m^{2}-(9+2 \sqrt{m-2}) m+8(2+\sqrt{m-2})\right)>0 .
$$

Furthermore, we have $L^{\prime}(x):=\frac{\mathrm{d}}{\mathrm{d} x} L(x)=6 x^{5}-4 m x^{3}+(5 m-14) x-m+4$. By calculations, one can check that $L^{\prime}(\sqrt{m-2})>0$ and $L^{\prime}(x) \geqslant 0$ for every $x \geqslant \sqrt{m-2}$, which yields $L(x)>L(\sqrt{m-2})>0$ for every $x>\sqrt{m-2}$. Thus $\lambda\left(L_{m}\right)<\sqrt{m-2}$.

Lemma 9. If $m \geqslant 38$ is even and $m=3 t$ for some $t \in \mathbb{N}^{*}$, then

$$
\lambda\left(L_{m}\right)<\lambda\left(Y_{m}\right)
$$

Proof. We know from (6) that $\lambda\left(Y_{m}\right)$ is the largest root of

$$
Y(x)=x^{4}-x^{3}+(2-m) x^{2}+(m-3) x+\frac{m-3}{3}
$$

By calculations, we can verify that

$$
L(x)-x^{2} Y(x)=x^{5}-2 x^{4}+(3-m) x^{3}+\left(\frac{13 m}{6}-6\right) x^{2}+(4-m) x+2-\frac{m}{2},
$$

and for every $m \geqslant 38$, we have

$$
L(x)-\left.x^{2} Y(x)\right|_{x=\sqrt{m-3}}=\frac{m^{2}}{6}-m \sqrt{m-3}-m+4 \sqrt{m-3}+2>0
$$

Moreover, we can show that $\frac{\mathrm{d}}{\mathrm{d} x}\left(L(x)-x^{2} Y(x)\right)>0$ for every $x \geqslant \sqrt{m-3}$. Thus, it follows that $L(x)>x^{2} Y(x)$ for every $x \geqslant \sqrt{m-3}$. So $\lambda\left(L_{m}\right)<\lambda\left(Y_{m}\right)$, as needed.

Lemma 10. If $m \geqslant 10$ is even and $m=3 t+1$ for some $t \in \mathbb{N}^{*}$, then

$$
\lambda\left(L_{m}\right)<\lambda\left(T_{m}\right) .
$$

Proof. Recall in (7) that $\lambda\left(T_{m}\right)$ is the largest root of $T(x)$. It is sufficient to prove that $L(x)>x T(x)$ for every $x \geqslant 3$. Upon computation, we can get

$$
L(x)-x T(x)=\frac{m+2}{6} x^{2}+\frac{m-4}{3} x+\frac{4-m}{2}>0 .
$$

Consequently, we have $\lambda\left(L_{m}\right)<\lambda\left(T_{m}\right)$, as desired.
The next lemma provides a refinement on (5) for every $m \geqslant 62$.
Lemma 11. Let m be even and $m \geqslant 62$. Then

$$
\sqrt{m-2}<\beta(m)<\sqrt{m-1.85}
$$

Proof. Firstly, we have $Z(\sqrt{m-2})=-1<0$, which yields $\sqrt{m-2}<\beta(m)$. Secondly, one can check that $Z(\sqrt{m-1.85})>0$ for every $m \geqslant 62$, and $Z^{\prime}(x)=3 x^{2}-2 x-(m-2)>0$ for $x \geqslant \sqrt{m-1.85}$. Therefore, we have $Z(x)>Z(\sqrt{m-1.85})>0$ for every $x>$ $\sqrt{m-1.85}$, which yields $\beta(m)<\sqrt{m-1.85}$, as required.

The following lemma is referred to as the eigenvalue interlacing theorem, also known as Cauchy interlacing theorem, which states that the eigenvalues of a principal submatrix of a Hermitian matrix interlace those of the underlying matrix; see, e.g., [53, pp. 52-53] or [54, pp. 269-271]. The eigenvalue interlacing theorem is a powerful tool to extremal combinatorics and plays a significant role in two recent breakthroughs $[15,16]$.

Lemma 12 (Eigenvalue Interlacing Theorem). Let H be an $n \times n$ Hermitian matrix partitioned as

$$
H=\left[\begin{array}{cc}
A & B \\
B^{*} & C
\end{array}\right]
$$

where A is an $m \times m$ principal submatrix of H for some $m \leqslant n$. Then for every $1 \leqslant i \leqslant m$,

$$
\lambda_{n-m+i}(H) \leqslant \lambda_{i}(A) \leqslant \lambda_{i}(H)
$$

Recall that $t(G)$ denotes the number of triangles in G. It is well-known that the value of (i, j)-entry of $A^{k}(G)$ is equal to the number of walks of length k in G starting from vertex v_{i} to v_{j}. Since each triangle of G contributes 6 closed walks of length 3 , we can count the number of triangles and obtain

$$
\begin{equation*}
t(G)=\frac{1}{6} \sum_{i=1}^{n} A^{3}(i, i)=\frac{1}{6} \operatorname{Tr}\left(A^{3}\right)=\frac{1}{6} \sum_{i=1}^{n} \lambda_{i}^{3} . \tag{9}
\end{equation*}
$$

The forthcoming lemma could be regarded as a triangle spectral counting lemma in terms of both the eigenvalues and the size of a graph. This could be viewed as a useful variant of (9) by using $\sum_{i=1}^{n} \lambda_{i}^{2}=\operatorname{tr}\left(A^{2}\right)=\sum_{i=1}^{n} d_{i}=2 m$.

Lemma 13 (see [38]). Let G be a graph on n vertices with m edges. If $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ are all eigenvalues of G, then

$$
t(G)=\frac{1}{6} \sum_{i=2}^{n}\left(\lambda_{1}+\lambda_{i}\right) \lambda_{i}^{2}+\frac{1}{3}\left(\lambda_{1}^{2}-m\right) \lambda_{1} .
$$

For convenience, we introduce a function $f(x)$, which will be frequently used in Section 3 to find the induced substructures that are forbidden in the extremal graph.

Lemma 14. Let $f(x)$ be a function given as

$$
f(x):=(\sqrt{m-2.5}+x) x^{2} .
$$

If $a \leqslant x \leqslant b \leqslant 0$, then

$$
f(x) \geqslant \min \{f(a), f(b)\} .
$$

Proof. The function $f(x)$ is increasing when $x \in\left(-\infty,-\frac{2}{3} \sqrt{m-2.5}\right)$, and decreasing when $x \in\left[-\frac{2}{3} \sqrt{m-2.5}, 0\right]$. Thus the desired statement holds immediately.

The following lemma [47] is also needed in this paper, it provides an operation on a connected graph and increases the adjacency spectral radius strictly.

Lemma 15 (Wu-Xiao-Hong [47], 2005). Let G be a connected graph and $\left(x_{1}, \ldots, x_{n}\right)^{T}$ be a Perron vector of G, where x_{i} corresponds to v_{i}. Assume that $v_{i}, v_{j} \in V(G)$ are vertices such that $x_{i} \geqslant x_{j}$, and $S \subseteq N_{G}\left(v_{j}\right) \backslash N_{G}\left(v_{i}\right)$ is a non-empty set. Denote $G^{*}=G-\left\{v_{j} v\right.$: $v \in S\}+\left\{v_{i} v: v \in S\right\}$. Then $\lambda(G)<\lambda\left(G^{*}\right)$.

2.2 Proof overview

As promised, we will interpret the key ideas and steps of the proof of Theorem 7. First of all, we would like to make a comparison of the proofs of Theorem 3 and Theorem 4. The proof of Theorem 3 in [23] is short and succinct. It relies on the base case in Conjecture 2 , which states that if G is a triangle-free graph with $m \geqslant 2$ edges, then

$$
\begin{equation*}
\lambda_{1}^{2}(G)+\lambda_{2}^{2}(G) \leqslant m, \tag{10}
\end{equation*}
$$

where the equality holds if and only if G is one of some specific bipartite graphs; see $[23,37]$. Combining the condition in Theorem 3, we know that if G is a triangle-free non-bipartite graph such that $\lambda_{1}(G) \geqslant \sqrt{m-1}$, then $\lambda_{2}(G)<1$. Such a bound on the second largest eigenvalue provides great convenience to characterize the local structure of G. For instance, combining $\lambda_{2}(G)<1$ with the Cauchy interlacing theorem, we obtain that C_{5} is a shortest odd cycle of G. However, it is not sufficient to use (10) for the proof of Theorem 4. Indeed, if G satisfies further that $\lambda(G) \geqslant \beta(m)$, then we get $\lambda_{2}(G)<2$ only, since $\beta(m) \rightarrow \sqrt{m-2}$ as m tends to infinity. Nevertheless, this bound is invalid for our purpose to describe the local structure of G. The original proof of Zhai and Shu [50]
for Theorem 4 avoids the use of (10) and applies the Perron components. Thus it needs to make more careful structure analysis of the desired extremal graph.

To overcome the aforementioned obstacle, we will get rid of the use of (10), and then exploit the information of all eigenvalues of graphs, instead of the second largest eigenvalue merely. Our proof of Theorem 7 grows out from the original proof [23] of Theorem 3, which provided a method to find forbidden induced substructures. We will frequently use Cauchy interlacing theorem and the triangle counting result in Lemma 13.

The main steps of our proof can be outlined as below. It introduces the main ideas of the approach of this paper for treating the problem involving triangles.
© Assume that G is a spectral extremal graph with even size, that is, G is a nonbipartite triangle-free graph and attains the maximum spectral radius. First of all, we will show that G is connected and it does not contain the odd cycle $C_{2 k+1}$ as an induced subgraph for every $k \geqslant 3$. Consequently, C_{5} is a shortest odd cycle in G.
\bigcirc Let S be the set of vertices of a copy of C_{5} in G. By using Lemma 12 and Lemma 13, we will find more forbidden substructures in the desired extremal graph; see, e.g., the graphs H_{1}, H_{2}, H_{3} in Lemma 17. In this step, we will characterize and refine the local structure on the vertices around the cycle S.
\& Using the information on the local structure of G, we will show that $V(G) \backslash S$ has at most one vertex with distance two to S; see Claim 22. Moreover, there are at most three vertices of $V(G) \backslash S$ with exactly one neighbor on S, and all these vertices are adjacent to a same vertex of S.
\diamond Combining with the three steps above, we will determine the structure of G and show some possible graphs with large spectral radius. By comparing the polynomials of graphs, we will prove that G is isomorphic to Y_{m}, T_{m} or L_{m}.

3 Some forbidden induced subgraphs

In this section, we always assume that G is a non-bipartite triangle-free graph with even size m and G attains the maximal spectral radius. Since L_{m} is triangle-free and nonbipartite, we get by Lemma 8 that

$$
\begin{equation*}
\lambda(G) \geqslant \lambda\left(L_{m}\right)>\sqrt{m-2.5} \tag{11}
\end{equation*}
$$

On the other hand, we obtain from Theorem 4 and Lemma 11 that

$$
\begin{equation*}
\lambda(G)<\beta(m)<\sqrt{m-1.85} . \tag{12}
\end{equation*}
$$

Our aim in this section is to determine some forbidden induced substructures of the extremal graph G. In this process, we need to exclude 16 induced substructures for our purpose. One of the main research directions in the proof is to show that G has at
least one triangle, i.e., $t(G)>0$, whenever the substructure forms an induced copy in G. Throwing away some tedious calculations, the main tools used in our proof attribute to Cauchy Interlacing Theorem (Lemma 12) and the triangle counting result (Lemma 13).

Lemma 16. For any odd integer $s \geqslant 7$, an extremal graph G does not contain C_{s} as an induced cycle. Consequently, C_{5} is a shortest odd cycle in G.

Proof. Since G is non-bipartite, let s be the length of a shortest odd cycle in G. Since G is triangle-free, we have $s \geqslant 5$. Moreover, a shortest odd cycle $C_{s} \subseteq G$ must be an induced odd cycle. It is well-known that the eigenvalues of C_{s} are given as $\left\{2 \cos \frac{2 \pi k}{s}: k=0,1, \ldots, s-1\right\}$. In particular, we have

$$
\text { Eigenvalues }\left(C_{7}\right)=\{2,1.246,1.246,-0.445,-0.445,-1.801,-1.801\}
$$

Since C_{s} is an induced copy in G, we know that $A\left(C_{s}\right)$ is a principal submatrix of $A(G)$. Lemma 12 implies that for every $i \in\{1,2, \ldots, s\}$,

$$
\lambda_{n-s+i}(G) \leqslant \lambda_{i}\left(C_{s}\right) \leqslant \lambda_{i}(G)
$$

where λ_{i} means the i-th largest eigenvalue. We next show that $s=5$. For convenience, we write $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ for eigenvalues of G in the non-increasing order.

Suppose on the contrary that C_{7} is an induced odd cycle of G, then $\lambda_{2} \geqslant \lambda_{2}\left(C_{7}\right)=$ $2 \cos \frac{2 \pi}{7} \approx 1.246$ and $\lambda_{3} \geqslant \lambda_{3}\left(C_{7}\right)=2 \cos \frac{12 \pi}{7} \approx 1.246$. Recall in Lemma 14 that

$$
f(x)=(\sqrt{m-2.5}+x) x^{2} .
$$

Evidently, we get

$$
f\left(\lambda_{2}\right) \geqslant f(1.246) \geqslant 1.552 \sqrt{m-2.5}+1.934
$$

and

$$
f\left(\lambda_{3}\right) \geqslant f(1.246) \geqslant 1.552 \sqrt{m-2.5}+1.934
$$

Our goal is to get a contradiction by applying Lemma 13 and showing $t(G)>0$. It is not sufficient to obtain $t(G)>0$ by using the positive eigenvalues of C_{7} only. Next, we are going to exploit the negative eigenvalues of C_{7}. For $i \in\{4,5,6,7\}$, we know that $\lambda_{i}\left(C_{7}\right)<0$. The Cauchy interlacing theorem yields $\lambda_{n-3} \leqslant \lambda_{4}\left(C_{7}\right)=-0.445, \lambda_{n-2} \leqslant$ $\lambda_{5}\left(C_{7}\right)=-0.445, \lambda_{n-1} \leqslant \lambda_{6}\left(C_{7}\right)=-1.801$ and $\lambda_{n} \leqslant \lambda_{7}\left(C_{7}\right)=-1.801$. To apply Lemma 14, we need to find the lower bounds on λ_{i} for each $i \in\{n-3, n-2, n-1, n\}$. We know from (11) that $\lambda_{1} \geqslant \lambda\left(L_{m}\right)>\sqrt{m-2.5}$, and then $\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{n-3}^{2}+\lambda_{n-2}^{2}+\lambda_{n-1}^{2}\right)<$ $2 m-(m-2.5+6.744)=m-4.244$, which implies $-\sqrt{m-4.244}<\lambda_{n} \leqslant-1.801$. By Lemma 14, we get

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-4.244}), f(-1.801)\}>0.8 \sqrt{m-2.5} .
$$

Similarly, we have $\lambda_{n-1}^{2}+\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{n-3}^{2}+\lambda_{n-2}^{2}\right)<m-1.001$. Combining with $\lambda_{n-1}^{2} \leqslant \lambda_{n}^{2}$, we get $-\sqrt{(m-1.001) / 2}<\lambda_{n-1} \leqslant-1.801$. By Lemma 14, we obtain

$$
f\left(\lambda_{n-1}\right) \geqslant \min \{f(-\sqrt{(m-1.001) / 2}), f(-1.801)\}>3.243 \sqrt{m-2.5}-5.841
$$

Using (11) and (12), we have $\sqrt{m-2.5}<\lambda_{1}<\sqrt{m-1.85}$. By Lemma 13, we get

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n}\right)+f\left(\lambda_{n-1}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(7.147 \sqrt{m-2.5}-5 \sqrt{m-1.85}-1.973)>0 .
\end{aligned}
$$

This is a contradiction. By the monotonicity of $\cos x$, we can prove that C_{s} can not be an induced subgraph of G for each odd integer $s \geqslant 7$. Thus we get $s=5$.

Using a similar method as in the proof of Lemma 16, we can prove the following lemmas, whose proofs are postponed to the Appendix. To avoid unnecessary calculations, we did not attempt to get the best bound on m, and we consider the case $m \geqslant 4.7 \times 10^{5}$.

Lemma 17. G does not contain any graph of $\left\{H_{1}, H_{2}, H_{3}\right\}$ as an induced subgraph.

Lemma 18. G does not contain any graph of $\left\{T_{1}, T_{2}, T_{3}, T_{4}\right\}$ as an induced subgraph.

Lemma 19. Any graph of $\left\{J_{1}, J_{2}, J_{3}, J_{4}\right\}$ can not be an induced subgraph of G.

the electronic Journal of combinatorics 31(1) (2024), \#P1.52

Lemma 20. Any graph of $\left\{L_{1}, L_{2}, L_{3}, L_{4}\right\}$ can not be an induced subgraph of G.

4 Proof of the main theorem

It is the time to show the proof of Theorem 7.
Proof of Theorem 7. Suppose that G is a non-bipartite triangle-free graph with m edges ($m \geqslant 4.7 \times 10^{5}$ is even) such that G attains the maximum spectral radius. Thus we have $\lambda(G) \geqslant \lambda\left(L_{m}\right)$ since L_{m} is one of the triangle-free non-bipartite graphs. Our goal is to prove that $G=Y_{m}$ if $\frac{m}{3} \in \mathbb{N} ; G=T_{m}$ if $\frac{m-1}{3} \in \mathbb{N}$, and $G=L_{m}$ if $\frac{m-2}{3} \in \mathbb{N}$. First of all, we can see that G must be connected. Otherwise, we can choose G_{1} and G_{2} as two different components, where G_{1} attains the spectral radius of G. By identifying two vertices from G_{1} and G_{2}, respectively, we get a new graph with larger spectral radius, which is a contradiction. By Lemma 16, we can draw the following claim.

Claim 21. C_{5} is a shortest odd cycle in G.
By Claim 21, we denote by $S=\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ the set of vertices of a copy of C_{5}, where $u_{i} u_{i+1} \in E(G)$ and $u_{5} u_{1} \in E(G)$. Let $N(S):=\left(\cup_{u \in S} N(u)\right) \backslash S$ be the union of neighborhoods of vertices of S, and let $d_{S}(v)=|N(v) \cap S|$ be the number of neighbors of v in the set S. Clearly, we have $d_{S}(v) \in\{0,1,2\}$ for every $v \in V(G) \backslash S$. Otherwise, if $d_{S}(v) \geqslant 3$, then one can find a triangle immediately, a contradiction.
Claim 22. $V(G) \backslash S$ does not contain a vertex with distance 3 to S, and $V(G) \backslash S$ has at most one vertex with distance 2 to S.

Proof. This claim is a consequence of Lemmas 17 and 19. Firstly, suppose on the contrary that $V(G) \backslash S$ contains a vertex which has distance 3 to S. Let w_{1} be such a vertex and $P_{4}=w_{1} w_{2} w_{3} u_{1}$ be a shortest path of length 3 . Then w_{2} can not be adjacent to any vertex of S. Since G is triangle-free, we know that neither $w_{3} u_{2}$ nor $w_{3} u_{5}$ can be an edge, and at least one of $w_{3} u_{3}$ and $w_{3} u_{4}$ is not an edge. If $w_{3} u_{3} \notin E(G)$ and $w_{3} u_{4} \notin E(G)$, then $\left\{w_{2}, w_{3}\right\} \cup S$ induces a copy of J_{1}, contradicting with Lemma 19. If $w_{3} u_{3} \in E(G)$ and $w_{3} u_{4} \notin E(G)$, then $\left\{w_{1}, w_{2}, w_{3}\right\} \cup\left(S \backslash\left\{u_{2}\right\}\right)$ forms an induced copy of J_{1} since $w_{1} w_{3}, w_{1} u_{i}$ and $w_{2} u_{i}$ are not edges of G, a contradiction. By symmetry, $w_{3} u_{3} \notin E(G)$ and $w_{3} u_{4} \in E(G)$ yield a contradiction similarly.

Secondly, suppose on the contrary that $V(G) \backslash S$ contains two vertices, say w_{1}, w_{2}, which have distance 2 to S. Let v_{1} and v_{2} be two vertices out of S such that $w_{1} \sim v_{1} \sim S$ and $w_{2} \sim v_{2} \sim S$. Since J_{1} can not be an induced copy of G and G is triangle-free, we know that $d_{S}\left(v_{1}\right)=d_{S}\left(v_{2}\right)=2$. If $v_{1}=v_{2}$, then $\left\{w_{1}, w_{2}, v_{1}\right\} \cup S$ forms an induced copy of J_{2} in G, we get a contradiction by Lemma 19. Thus, we get $v_{1} \neq v_{2}$. Without loss of generality, we may assume that $N_{S}\left(v_{1}\right)=\left\{u_{1}, u_{3}\right\}$. By Lemma 17, G does not contain H_{3} as an induced subgraph, we get $N_{S}\left(v_{2}\right) \neq\left\{u_{3}, u_{5}\right\}$ and $N_{S}\left(v_{2}\right) \neq\left\{u_{1}, u_{4}\right\}$. By symmetry, we have either $N_{S}\left(v_{2}\right)=\left\{u_{2}, u_{4}\right\}$ or $N_{S}\left(v_{2}\right)=\left\{u_{1}, u_{3}\right\}$. For the former case, since H_{2} is not an induced subgraph of G by Lemma 17, we get $v_{1} v_{2} \in E(G)$. If $w_{1} w_{2} \in E(G)$, then G contains J_{4} as an induced subgraph, which is a contradiction by Lemma 19. Thus $w_{1} w_{2} \notin E(G)$. By Lemma 15, one can compare the Perron components of v_{1} and v_{2}, and then move w_{1} and w_{2} together, namely, either making w_{1} adjacent to v_{2}, or w_{2} adjacent to v_{1}. In this process, the resulting graph remains triangle-free and non-bipartite as well. However, it has larger spectral radius than G, which contradicts with the maximality of the spectral radius of G. For the latter case, i.e., $N_{S}\left(v_{1}\right)=N_{S}\left(v_{2}\right)=\left\{u_{1}, u_{3}\right\}$. Since J_{3} is not an induced copy in G, a similar argument shows $w_{1} w_{2} \notin E(G)$, and then it also leads to a contradiction.

By Claim 22, we shall partition the remaining proof in two cases, which are dependent on whether $V(G) \backslash S$ contains a vertex with distance 2 to the 5 -cycle S.

Case 1. Every vertex of $V(G) \backslash S$ is adjacent a vertex of S.
In this case, we have $V(G)=S \cup N(S)$. For convenience, we denote $N(S)=V_{1} \cup V_{2}$, where $V_{i}=\left\{v \in N(S): d_{S}(v)=i\right\}$ for each $i=1,2$. At the first glance, different vertices of V_{1} can be joined to different vertices of S. By Lemma 18, G does not contain T_{1} and T_{2} as induced subgraphs, we obtain that V_{1} is an independent set in G. Using Lemma 15, we can move all vertices of V_{1} together such that all of them are adjacent to a same vertex of S, and get a new graph with larger spectral radius. Note that this process can keep the resulting graph being triangle-free and non-bipartite since V_{1} is edge-less and S is still a copy of C_{5}. By Lemma 17, H_{1} can not be an induced subgraph of G, then $\left|V_{1}\right| \leqslant 3$.

We can fix a vertex $v \in N(S)$ and assume that $N_{S}(v)=\left\{u_{1}, u_{3}\right\}$. For each $w \in$ $V(G) \backslash(S \cup\{v\})$, since G contains no triangles and no H_{3} as an induced subgraph by Lemma 17, we know that $N_{S}(w) \neq\left\{u_{3}, u_{5}\right\}$ and $N_{S}(w) \neq\left\{u_{4}, u_{1}\right\}$. It is possible that $N_{S}(w)=\left\{u_{1}, u_{3}\right\},\left\{u_{2}, u_{4}\right\}$ or $\left\{u_{5}, u_{2}\right\}$. Furthermore, if $N_{S}(w)=\left\{u_{1}, u_{3}\right\}$, then $w v \notin E(G)$ since G contains no triangle; if $N_{S}(w)=\left\{u_{2}, u_{4}\right\}$, then $w v \in E(G)$ since G contains no induced copy of H_{2}. We denote $N_{i, j}:=\left\{w \in V(G) \backslash S: N_{S}(w)=\left\{u_{i}, u_{j}\right\}\right\}$. Note that G has no induced copy of H_{3}, then at least one of the sets $N_{2,4}$ and $N_{5,2}$ is empty.

Subcase 1.1. If both $N_{2,4}=\varnothing$ and $N_{5,2}=\varnothing$, then $V_{2}=N_{1,3}$ and $V(G)=S \cup V_{1} \cup N_{1,3}$. By Lemma 18, T_{3} and T_{4} can not be induced subgraphs of G. Hence, all vertices of V_{1} are adjacent to the vertex u_{1} or u_{2} by symmetry. Next, we will show that $\left|V_{1}\right| \in\{1,3\}$, and then we prove that V_{1} and $N_{1,3}$ form a complete bipartite graph or an empty graph.

Figure 3: The structure of G when $\left|V_{1}\right|=1$ or $\left|V_{1}\right|=3$.
Suppose that all vertices V_{1} are adjacent to u_{1}. Then there is no edge between V_{1} and $N_{1,3}$ since G is triangle-free. Note that $m=5+2\left|N_{1,3}\right|+\left|V_{1}\right|$ is even, we get $\left|V_{1}\right| \in\{1,3\}$; see L_{m} and G_{4} in Figure 3.

If $\left|V_{1}\right|=1$, then G is the desired extremal graph L_{m};
If $\left|V_{1}\right|=3$, then by computation, we get $\lambda\left(G_{4}\right)$ is the largest root of

$$
F_{4}(x):=x^{6}-m x^{4}+\left(\frac{7 m}{2}-14\right) x^{2}+(6-m) x+9-\frac{3 m}{2} .
$$

Clearly, we can check that $L(x)<F_{4}(x)$ for each $x \geqslant 1$, and so $\lambda\left(G_{4}\right)<\lambda\left(L_{m}\right)$.
Suppose that all vertices of V_{1} are adjacent to u_{2}. If there is no edge between V_{1} and $N_{1,3}$, then $\left|V_{1}\right| \in\{1,3\}$ and G is isomorphic to G_{2} or G_{5}; see Figure 3. By computations or Lemma 15 , we can get $\lambda(G)<\lambda\left(L_{m}\right)$; If there exists an edge between V_{1} and $N_{1,3}$, then we claim that V_{1} and $N_{1,3}$ form a complete bipartite subgraph by Lemma 20. Indeed, Lemma 20 asserts that G does not contain L_{1} as an induced subgraph. In other words, if $v \in V_{1}$ is a vertex which is adjacent to one vertex of $N_{1,3}$, then v will be adjacent to all vertices of $N_{1,3}$. Note that G does not contain L_{2} as an induced subgraph, which means that other vertices of V_{1} are also adjacent to all vertices of $N_{1,3}$. Observe that $m=5+2\left|N_{1,3}\right|+\left|V_{1}\right|\left(1+\left|N_{1,3}\right|\right)$ is even, which yields that $\left|V_{1}\right|$ is odd, and so $\left|V_{1}\right| \in\{1,3\}$. Consequently, G is isomorphic to either Y_{m} or G_{6}; see Figure 3.

If $\left|V_{1}\right|=1$, then $\left|N_{1,3}\right|=\frac{m-6}{3}$ and $G=Y_{m}$. By Lemma 9, we get $\lambda\left(L_{m}\right)<\lambda\left(Y_{m}\right)$. Thus, Y_{m} is the required extremal graph whenever $m=3 t$ for some even $t \in \mathbb{N}$.

If $\left|V_{1}\right|=3$, then $\left|N_{1,3}\right|=\frac{m-8}{5}$ and $\lambda\left(G_{6}\right)$ is the largest root of

$$
F_{6}(x):=x^{4}-x^{3}+(2-m) x^{2}+(m-3) x+\frac{3 m-9}{5} .
$$

It is not hard to check that $\lambda\left(G_{6}\right)<\lambda\left(L_{m}\right)$. Indeed, by calculation, we know that the largest roots of $x^{2} F_{6}(x)$ and $L(x)$ are located in $(\sqrt{m-3}, \sqrt{m-2})$. Moreover, we denote

$$
D(x):=L(x)-x^{2} F_{6}(x)=x^{5}-2 x^{4}+(3-m) x^{3}+\left(\frac{19 m}{10}-\frac{26}{5}\right) x^{2}+(4-m) x+2-\frac{m}{2} .
$$

Clearly, we can verify that $D(\sqrt{m-3})<0$ and $D(\sqrt{m-2})<0$. Furthermore, one can prove that $\frac{\mathrm{d}}{\mathrm{d} x} D(x)>0$ for each $x \geqslant \sqrt{m-3}$. Consequently, it leads to $D(x)<0$ for every $x \in(\sqrt{m-3}, \sqrt{m-2})$, and so $L(x)<x^{2} F_{6}(x)$, which yields $\lambda\left(G_{6}\right)<\lambda\left(L_{m}\right)$.

Subcase 1.2. Without loss of generality, we may assume that $N_{2,4} \neq \varnothing$ and $N_{5,2}=\varnothing$, then $N(S)=V_{1} \cup N_{1,3} \cup N_{2,4}$. By Lemma 17, H_{2} can not be an induced subgraph of G. Thus, $N_{1,3}$ and $N_{2,4}$ induce a complete bipartite subgraph in G. Now, we consider the vertices of V_{1}. Recall that all vertices of V_{1} are adjacent to a same vertex of S. By Lemma 18, G does not contain T_{3} and T_{4} as induced subgraphs. Then the vertices of V_{1} can not be adjacent to u_{1}, u_{4} or u_{5}. By Lemma 20, we know that L_{3} and L_{4} can not be induced subgraph of G. Thus, all vertices of V_{1} can not be adjacent to u_{2} or u_{3}. To sum up, we get $V_{1}=\varnothing$, and so $N(S)=N_{1,3} \cup N_{2,4}$. We denote $A=N_{1,3} \cup\left\{u_{2}, u_{4}\right\}$ and $B=N_{2,4} \cup\left\{u_{3}, u_{1}\right\}$. Let $|A|=a$ and $|B|=b$. Then we observe that G is isomorphic to the subdivision of the complete bipartite graph $K_{a, b}$ by subdividing the edge $u_{1} u_{4}$ of $K_{a, b}$. Note that $m=a b+1$ and $a, b \geqslant 3$ are odd integers. Without loss of generality, we may assume that $a \geqslant b$.

If $b=3$, then $m=3 a+1$ for some $a \in \mathbb{N}^{*}$. In this case, we get $G=T_{m}$. Invoking Lemma 10, we have $\lambda\left(L_{m}\right)<\lambda\left(T_{m}\right)$ and thus T_{m} is the desired extremal graph.

If $b \geqslant 5$, then $m=a b+1$ and $\lambda\left(S K_{a, b}\right)$ is the largest root of

$$
F_{a, b}(x):=x^{5}-m x^{3}+(3 m-2-2 a-2 b) x-2 m+2 a+2 b .
$$

Recall in (8) that $\lambda\left(L_{m}\right)$ is the largest root of $L(x)$. We can verify that

$$
L(x)-x F_{a, b}(x)=-\left(\frac{m}{2}+5-2 a-2 b\right) x^{2}+(4+m-2 a-2 b) x-\frac{m}{2}+2 .
$$

Since $b \geqslant 5$ and $m=a b+1$, we get $\frac{m}{2}+5-2 a-2 b=\frac{1}{2}((a-4)(b-4)-5)>0$. It follows that $L(x) \leqslant x F_{a, b}(x)$ for every $x \geqslant 3$. Thus, we get $\lambda\left(S K_{a, b}\right)<\lambda\left(L_{m}\right)$, as required.

Case 2. There is exactly one vertex of $V(G) \backslash S$ with distance 2 to the cycle S. Let w_{2}, w_{1} be two vertices with $w_{2} \sim w_{1} \sim S$, and $N_{S}\left(w_{1}\right)=\left\{u_{1}, u_{3}\right\}$ by Lemma 19. We denote $V(G) \backslash\left(S \cup\left\{w_{1}, w_{2}\right\}\right):=V_{1} \cup V_{2}$, where $V_{i}=\left\{v \in V(G): v \notin S \cup\left\{w_{1}, w_{2}\right\}, d_{S}(v)=i\right\}$ for each $i=1,2$. Similar with the argument in Case 1, using Lemmas 18 and 15, one can move all vertices of V_{1} such that all of them are adjacent to a same vertex of S. By Lemma $17, H_{1}$ is not an induced subgraph of G. Then $\left|V_{1}\right| \leqslant 3$.

Let $v \in V_{2}$ be any vertex. We claim that $N_{S}(v)=\left\{u_{1}, u_{3}\right\}$. Indeed, Lemma 17 implies that $N_{S}(v) \neq\left\{u_{3}, u_{5}\right\}$ and $N_{S}(v) \neq\left\{u_{1}, u_{4}\right\}$. If $N_{S}(v)=\left\{u_{2}, u_{4}\right\}$, then $w_{1} v \in E(G)$ since G does not contain H_{2} as an induced subgraph by Lemma 17 again. Consequently, $S \cup\left\{w_{1}, w_{2}, v\right\}$ forms an induced copy of L_{4}, which contradicts with Lemma 20. Thus, we get $N_{S}(v) \neq\left\{u_{2}, u_{4}\right\}$. Similarly, we can show $N_{S}(v) \neq\left\{u_{2}, u_{5}\right\}$. In conclusion, we obtain $N_{S}(v)=\left\{u_{1}, u_{3}\right\}$ for every $v \in V_{2}$. Since m is even, we get $\left|V_{1}\right| \in\{0,2\}$.

First of all, suppose that $\left|V_{1}\right|=0$. Then G is isomorphic to G_{2}, the graph obtained from a C_{5} by blowing up the vertex u_{2} exactly $\frac{m-4}{2}$ times and then hanging an edge to u_{2}; see Figure 3. By computations, we $\lambda\left(G_{2}\right)<\lambda\left(L_{m}\right)$, as desired.

Now, suppose that $\left|V_{1}\right|=2$ and $V_{1}:=\left\{v_{1}, v_{2}\right\}$. By Lemma 18, we know that T_{3} and T_{4} are not induced subgraphs of G. Then the vertices of V_{1} can not be adjacent to u_{4}
and u_{5}. By symmetry of u_{1} and u_{3}, there are two possibilities, namely, all vertices of V_{1} are adjacent to u_{1} or u_{2}. If all vertices of V_{1} are adjacent to u_{1}, then $v_{1} w_{2} \notin E(G)$ and $v_{2} w_{2} \notin E(G)$ since T_{1} can not be an induced subgraph of G by Lemma 18. By comparing the Perron components of u_{1} and w_{1}, one can move v_{1}, v_{2} and w_{2} together using Lemma 15. Thus, G is isomorphic to G_{4} or G_{5} in Figure 3. If all vertices of V_{1} are adjacent to u_{2}, then $v_{1} w_{2} \notin E(G)$ and $v_{2} w_{2} \notin E(G)$ since J_{3} is not an induced subgraph in G by Lemma 19. A similar argument shows that G is isomorphic to G_{5} in Figure 3. By direct computations, we can obtain $\lambda\left(G_{4}\right)<\lambda\left(L_{m}\right)$ and $\lambda\left(G_{5}\right)<\lambda\left(L_{m}\right)$. This completes the proof.

5 Concluding remarks

Although we have solved Question 5 for every $m \geqslant 4.7 \times 10^{5}$, our proof requires a lot of calculations of eigenvalues. As shown in Figure 2, there are three kinds extremal graphs depending on $m(\bmod 3) \in\{0,1,2\}$. Thus, it seems unavoidable to make calculations and comparisons among the spectral radii of these three graphs. Unlike the odd case in Theorem 4 , the bound $\beta(m)$ is sharp for all odd integers $m \in \mathbb{N}$. For the even case, Theorem 7 presents all extremal graph for $m \geqslant 4.7 \times 10^{5}$. We do not try our best to optimize the lower bound on m. In addition, for $m \in\{6,8,10\}$, Lemma 8 gives $\lambda\left(L_{m}\right)>\sqrt{m-2}$. Using a result in [46, Theorem 5], we can prove that Y_{6}, L_{8} and T_{10} are extremal graphs when $m \in\{6,8,10\}$, respectively. In view of this evidence, it is possible to find a new proof of Question 5 to characterize the extremal graphs for every $m \geqslant 12$.

The blow-up of a graph G is a new graph obtained from G by replacing each vertex $v \in V(G)$ with an independent set I_{v}, and for two vertices $u, v \in V(G)$, we add all edges between I_{u} and I_{v} whenever $u v \in E(G)$. It was proved in [23,37] that if G is a trianglefree graph with $m \geqslant 2$ edges, then $\lambda_{1}^{2}(G)+\lambda_{2}^{2}(G) \leqslant m$, where the equality holds if and only if G is a blow-up of a member of the family $\mathcal{G}=\left\{P_{2} \cup K_{1}, 2 P_{2} \cup K_{1}, P_{4} \cup K_{1}, P_{5} \cup K_{1}\right\}$. This result confirmed the base case of a conjecture of Bollobás and Nikiforov [4]. Observe that all extremal graphs in this result are bipartite graphs. Therefore, it is possible to consider the maximum of $\lambda_{1}^{2}(G)+\lambda_{2}^{2}(G)$ in which G is triangle-free and non-bipartite.

The extremal problem was also studied for non-bipartite triangle-free graphs with given number of vertices. We write $S K_{s, t}$ for the graph obtained from the complete bipartite graph $K_{s, t}$ by subdividing an edge. In 2021, Lin, Ning and Wu [23] proved that if G is a non-bipartite triangle-free graph on n vertices, then

$$
\begin{equation*}
\lambda(G) \leqslant \lambda\left(S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}\right) \tag{13}
\end{equation*}
$$

and equality holds if and only if $G=S K_{\left\lfloor\frac{n-1}{2}\right\rfloor,\left\lceil\frac{n-1}{2}\right\rceil}$. Comparing this result with Theorem 4 , one can see that the extremal graphs with given order and size are extremely different although both of them are subdivisions of complete bipartite graphs. Roughly speaking, the former is nearly balanced, but the latter is exceedingly unbalanced.

Later, Li and Peng [20] extended (13) to the non- r-partite K_{r+1}-free graphs with n vertices. Notice that the extremal graph in (13) has many copies of C_{5}. There is another
way to extend (13) by considering the non-bipartite graphs on n vertices without any copy of $\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$ where $k \geqslant 2$. This was done by Lin and Guo [24] as well as Li , Sun and Yu [17] independently. Subsequently, the corresponding spectral problem for graphs with m edges was studied in [42, 19, 28]. However, the extremal graphs in this setting can be achieved only for odd m. Hence, we propose the following question for interested readers ${ }^{3}$.

Question 23. For even m, what is the extremal graph attaining the maximum spectral radius over all non-bipartite $\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$-free graphs with m edges?

We write $q(G)$ for the signless Laplacian spectral radius, i.e., the largest eigenvalue of the signless Laplacian matrix $Q(G)=D(G)+A(G)$, where $D(G)=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$ is the degree diagonal matrix and $A(G)$ is the adjacency matrix. A theorem of He, Jin and Zhang [11] implies that if G is a triangle-free graph on n vertices, then $q(G) \leqslant n$, with equality if and only if G is a complete bipartite graph (need not be balanced). This result can also be viewed as a spectral version of Mantel's theorem. It is worth mentioning that Liu, Miao and Xue [25] characterized the maximum signless Laplacian spectral radius among all non-bipartite triangle-free graphs with given order n and size m, respectively. Fortunately, the corresponding extremal graphs are independent of the parity of m. Soon after, they [30] also provided the extensions for graphs without any copy of $\left\{C_{3}, C_{5}, \ldots, C_{2 k+1}\right\}$.

Acknowledgements

The research of Yuejian Peng was supported by National Natural Science Foundation of China (Nos. 11931002 and 12271527) and Postdoctoral Fellowship Program of CPSF (No. GZC20233196).

This work was supported by NSFC (Grant No. 11931002 and 12271527), Natural Science Foundation of Hunan Province (Grant No. 2020JJ4675 and 2021JJ40707) and Postdoctoral Fellowship Program of CPSF (No. GZC20233196). We thank the referees for their careful review and valuable suggestions which improved the presentation.

References

[1] M. Aigner, G. M. Ziegler, Proofs from THE BOOK, 6th edition, Springer-Verlag, New-York, 2018. (see Chapter 41)
[2] B. Bollobás, Extremal Graph Theory, Academic Press, New York, 1978.
[3] B. Bollobás, A. Thomason, Dense neighbourhoods and Turán's theorem, J. Combin. Theory Ser. B 31 (1981) 111-114.
[4] B. Bollobás, V. Nikiforov, Cliques and the spectral radius, J. Combin. Theory Ser. B 97 (2007) 859-865.

[^3][5] J.A. Bondy, Large dense neighbourhoods and Turán's theorem, J. Combin. Theory Ser. B 34 (1983) 109-111.
[6] J.A. Bondy, U.S.R. Murty, Graph Theory, Vol. 244 of Graduate Texts in Mathematics, Springer, 2008.
[7] D. Chakraborti, D.Q. Chen, Many cliques with few edges and bounded maximum degree, J. Combin. Theory Ser. B. 151 (2021) 1-20.
[8] S.M. Cioabă, L.H. Feng, M. Tait, X.-D. Zhang, The spectral radius of graphs with no intersecting triangles, Electron. J. Combin. 27(4):\#P4.22 (2020).
[9] X. Fang, L. You, The maximum spectral radius of graphs of given size with forbidden subgraph, Linear Algebra Appl. 666 (2023) 114-128.
[10] Z. Füredi, M. Simonovits, The history of degenerate (bipartite) extremal graph problems, in Erdős Centennial, Bolyai Soc. Math. Stud., 25, János Bolyai Math. Soc., Budapest, 2013, pp. 169-264.
[11] B. He, Y.-L. Jin, X.-D. Zhang, Sharp bounds for the signless Laplacian spectral radius in terms of clique number, Linear Algebra Appl. 438 (2013) 3851-3861.
[12] X. He, Y. Li, L. Feng, Spectral extremal graphs without intersecting triangles as a minor, 21 pages (2023), arXiv:2301.06008.
[13] Y. Hong, A bound on the spectral radius of graphs, Linear Algebra Appl. 108 (1988) 135-140.
[14] Y. Hong, J.-L. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J. Combin. Theory Ser. B 81 (2001) 177-183.
[15] H. Huang, Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture, Annals of Math., 190 (2019) 949-955.
[16] Z. Jiang, J. Tidor, Y. Yao, S. Zhang, Y. Zhao, Equiangular lines with a fixed angle, Annals of Math., 194 (2021) 729-743.
[17] S. Li, W. Sun, Y. Yu, Adjacency eigenvalues of graphs without short odd cycles, Discrete Math. 345 (2022) 112633.
[18] Y. Li, L. Feng, W. Liu, A survey on spectral conditions for some extremal graph problems, Advances in Math. (China), 51 (2) (2022) 193-258.
[19] Y. Li, Y. Peng, The maximum spectral radius of non-bipartite graphs forbidding short odd cycles, Electron. J. Combin. 29(4):\#P4.2 (2022).
[20] Y. Li, Y. Peng, Refinement on spectral Turán's theorem, SIAM J. Discrete Math. 37 (4) (2023) 2462-2485.
[21] Y. Li, L. Lu, Y. Peng, Spectral extremal graphs for the bowtie, Discrete Math. 346 (2023) 113680.
[22] H. Lin, B. Ning, A complete solution to the Cvetković-Rowlinson conjecture, J. Graph Theory 97 (3) (2021) 441-450.
[23] H. Lin, B. Ning, B. Wu, Eigenvalues and triangles in graphs, Combin. Probab. Comput. 30 (2) (2021) 258-270.
[24] H. Lin, H. Guo, A spectral condition for odd cycles in non-bipartite graphs, Linear Algebra Appl. 631 (2021) 83-93.
[25] R. Liu, L. Miao, J. Xue, Maxima of the Q-index of non-bipartite C_{3}-free graphs, Linear Algebra Appl. 673 (2023) 1-13.
[26] Y. Liu, L. Wang, Spectral radius of graphs of given size with forbidden subgraphs, 16 pages, (2022), arXiv:2302.01916.
[27] L. Lovász, J. Pelikán, On the eigenvalues of trees, Period. Math. Hunger. 3 (1973) 175-182.
[28] Z. Lou, L. Lu, X. Huang, Spectral radius of graphs with given size and odd girth, 11 pages, (2022), arXiv:2207.12689.
[29] J. Lu, L. Lu, Y. Li, Spectral radius of graphs forbidden C_{7} or C_{6}^{\triangle}, Discrete Math. 347 (2) (2024), No. 113781.
[30] L. Miao, R. Liu, J. Xue, Maxima of the Q-index of non-bipartite graphs: forbidden short odd cycles, Discrete Appl. Math. 340 (2023) 104-114.
[31] G. Min, Z. Lou, Q. Huang, A sharp upper bound on the spectral radius of C_{5}-free $/ C_{6}{ }^{-}$ free graphs with given size, Linear Algebra Appl. 640 (2022) 162-178.
[32] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002) 179-189.
[33] V. Nikiforov, Bounds on graph eigenvalues II, Linear Algebra Appl. 427 (2007) 183189.
[34] V. Nikiforov, The maximum spectral radius of C_{4}-free graphs of given order and size, Linear Algebra Appl. 430 (2009) 2898-2905.
[35] V. Nikiforov, More spectral bounds on the clique and independence numbers, J. Combin. Theory Ser. B 99 (2009), no. 6, 819-826.
[36] V. Nikiforov, Some new results in extremal graph theory, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., 392, Cambridge Univ. Press, Cambridge, 2011, pp. 141-181.
[37] V. Nikiforov, On a theorem of Nosal, 12 pages, (2021), arXiv:2104.12171.
[38] B. Ning, M. Zhai, Counting substructures and eigenvalues I: triangles, European J. Combin. 110 (2023) 103685.
[39] B. Ning, M. Zhai, Counting substructures and eigenvalues II: quadrilaterals, 14 pages, (2021), arXiv:2112.15279.
[40] E. Nosal, Eigenvalues of graphs, Master's thesis, University of Calgary, 1970.
[41] M. Simonovits, Paul Erdős' influence on extremal graph theory, in The Mathematics of Paul Erdős II, Springer, New York, 2013, pp. 245-311.
[42] W. Sun, S. Li, The maximum spectral radius of $\left\{C_{3}, C_{5}\right\}$-free graphs of given size, Discrete Math. 346 (2023), No. 113440.
[43] W. Sun, S. Li, W. Wei, Extensions on spectral extrema of C_{5} / C_{6}-free graphs with given size, Discrete Math. 346 (2023) 113591.
[44] M. Tait, J. Tobin, Three conjectures in extremal spectral graph theory, J. Combin. Theory Ser. B 126 (2017) 137-161.
[45] M. Tait, The Colin de Verdière parameter, excluded minors, and the spectral radius, J. Combin. Theory Ser. A 166 (2019) 42-58.
[46] Z. Wang, Generalizing theorems of Nosal and Nikiforov: Triangles and quadrilaterals, Discrete Math. 345 (2022) 112973.
[47] B. Wu, E. Xiao, Y. Hong, The spectral radius of trees on k-pendant vertices, Linear Algebra Appl. 395 (2005) 343-349.
[48] M. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C_{4}-free graphs, Linear Algebra Appl. 437 (2012) 1641-1647.
[49] M. Zhai, H. Lin, J. Shu, Spectral extrema of graphs with fixed size: Cycles and complete bipartite graphs, European J. Combin. 95 (2021), 103322.
[50] M. Zhai, J. Shu, A spectral version of Mantel's theorem, Discrete Math. 345 (2022), 112630.
[51] M. Zhai, R. Liu, J. Xue, A unique characterization of spectral extrema for friendship graphs, Electron. J. Combin. 29 (3):\#P3.32 (2022).
[52] M. Zhai, H. Lin, Spectral extrema of $K_{s, t}$-minor free graphs - on a conjecture of M. Tait, J. Combin. Theory Ser. B 157 (2022), 184-215.
[53] X. Zhan, Matrix Theory, Graduate Studies in Mathematics, vol. 147, Amer. Math. Soc., Providence, RI, 2013.
[54] F. Zhang, Matrix Theory: Basic Results and Techniques, 2nd edition, Springer, New York, 2011.

A Proofs of Lemmas 17, 18, 19 and 20

In the appendix, we shall provide the detailed proof of some lemmas in Section 3.
Proof of Lemma 17. Suppose on the contrary that G contains H_{i} as an induced subgraph for some $i \in\{1,2,3\}$. To obtain a contradiction, we shall show that $t(G)>0$ by using Lemma 13. The eigenvalues of graphs H_{1}, H_{2} and H_{3} can be seen in Table 1.

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}
H_{1}	2.578	1.373	0.618	0	0	0	-0.451	-1.618	-2.501
H_{2}	2.641	1	0.723	0.414	-0.589	-1.775	-2.414		
H_{3}	2.681	1	0.642	0	0	-2	-2.323		

Table 1: Eigenvalues of H_{1}, H_{2} and H_{3}.
First of all, we consider the case that H_{1} is an induced subgraph in G. The Cauchy interlacing theorem implies $\lambda_{n-9+i}(G) \leqslant \lambda_{i}\left(H_{1}\right) \leqslant \lambda_{i}(G)$ for every $i \in\{1,2, \ldots, 9\}$. We
denote $\lambda_{i}=\lambda_{i}(G)$ for short. Obviously, we have

$$
f\left(\lambda_{2}\right) \geqslant f(1.371) \geqslant 1.879 \sqrt{m-2.5}+2.576
$$

and

$$
f\left(\lambda_{3}\right) \geqslant f(0.618) \geqslant 0.381 \sqrt{m-2.5}+0.236
$$

Moreover, for each $i \in\{4,5,6\}$, we know that $\lambda_{i} \geqslant 0$, which gives $f\left(\lambda_{i}\right) \geqslant 0$. Next, we shall consider the negative eigenvalues of G. The Cauchy interlacing theorem implies $\lambda_{n-2} \leqslant \lambda_{7}\left(H_{1}\right)=-0.451$ and $\lambda_{n-1} \leqslant \lambda_{8}\left(H_{1}\right)=-1.618$ and $\lambda_{n} \leqslant \lambda_{9}\left(H_{1}\right)=-2.501$. Moreover, we get from Lemma 8 that $\lambda_{1} \geqslant \lambda\left(L_{m}\right)>\sqrt{m-2.5}$ and $\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\right.$ $\left.\lambda_{3}^{2}+\lambda_{n-2}^{2}+\lambda_{n-1}^{2}\right) \leqslant 2 m-(m-2.5+5.091)=m-2.591$, which implies $-\sqrt{m-2.591}<$ $\lambda_{n} \leqslant-2.501$. By Lemma 14, we have

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.591}), f(-2.501)\}>0.04 \sqrt{m-2.5} .
$$

Since $\lambda_{n-1}^{2}+\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{n-2}^{2}\right)<m+0.026$ and $\lambda_{n-1}^{2} \leqslant \lambda_{n}^{2}$, we get $-\sqrt{(m+0.026) / 2}<\lambda_{n-1} \leqslant-1.618$. By Lemma 14, we get

$$
f\left(\lambda_{n-1}\right) \geqslant \min \{f(-\sqrt{(m+0.026) / 2}), f(-1.618)\}>2.617 \sqrt{m-2.5}-4.235
$$

Moreover, we have $-\sqrt{(m+0.23) / 3}<\lambda_{n-2} \leqslant-0.451$ and then

$$
f\left(\lambda_{n-2}\right) \geqslant \min \{f(-\sqrt{(m+0.23) / 3}), f(-0.451)\}>0.203 \sqrt{m-2.5}-0.091
$$

Theorem 4 and Lemma 11 imply

$$
\lambda_{1}<\beta(m)<\sqrt{m-1.85} .
$$

By Lemma 13, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.12 \sqrt{m-2.5}-5 \sqrt{m-1.85}-1.514)>0,
\end{aligned}
$$

where the last inequality holds for $m \geqslant 188$. This is a contradiction.
Second, assume that H_{2} is an induced subgraph of G. Then Cauchy interlacing theorem gives $\lambda_{2} \geqslant 1, \lambda_{3} \geqslant 0.723$ and $\lambda_{4} \geqslant 0.414$. Similarly, we get

$$
\begin{aligned}
& f\left(\lambda_{2}\right) \geqslant f(1)=\sqrt{m-2.5}+1 \\
& f\left(\lambda_{3}\right) \geqslant f(0.723) \geqslant 0.522 \sqrt{m-2.5}+0.377
\end{aligned}
$$

and

$$
f\left(\lambda_{4}\right) \geqslant f(0.414) \geqslant 0.171 \sqrt{m-2.5}+0.07
$$

The negative eigenvalues of H_{2} imply that $\lambda_{n-2} \leqslant-0.589, \lambda_{n-1} \leqslant-1.775$ and $\lambda_{n} \leqslant$ -2.414 . As $\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{4}^{2}+\lambda_{n-2}^{2}+\lambda_{n-1}^{2}\right)<2 m-(m-2.5+5.191)=m-2.691$, we get $-\sqrt{m-2.691} \leqslant \lambda_{n} \leqslant-2.414$. Lemma 14 gives

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.691}), f(-2.414)\}>0.09 \sqrt{m-2.5} .
$$

In addition, we have $-\sqrt{(m+0.459) / 2} \leqslant \lambda_{n-1} \leqslant-1.775$ and

$$
f\left(\lambda_{n-1}\right) \geqslant \min \{f(-\sqrt{(m+0.459) / 2}), f(-1.775)\}>3.15 \sqrt{m-2.5}-5.592
$$

Moreover, we get $\sqrt{(m+0.805) / 3}<\lambda_{n-2} \leqslant-0.589$ and

$$
f\left(\lambda_{n-2}\right) \geqslant \min \{f(-\sqrt{(m+0.805) / 3}), f(-0.589)\}>0.346 \sqrt{m-2.5}-0.204
$$

Using Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.279 \sqrt{m-2.5}-5 \sqrt{m-1.85}-4.349)>0
\end{aligned}
$$

where the last inequality holds for $m \geqslant 258$, which is also a contradiction.
Finally, if H_{3} is an induced subgraph of G, then we get $\lambda_{2} \geqslant 2$ and $\lambda_{3} \geqslant 0.642$. Thus

$$
f\left(\lambda_{2}\right) \geqslant f(1)=\sqrt{m-2.5}+1
$$

and

$$
f\left(\lambda_{3}\right) \geqslant f(0.642) \geqslant 0.412 \sqrt{m-2.5}+0.264
$$

Moreover, Cauchy interlacing theorem gives $\lambda_{n-1} \leqslant-2$ and $\lambda_{n} \leqslant-2.323$. Since $\lambda_{n}^{2} \leqslant$ $2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{n-1}^{2}\right)<2 m-(m-2.5+5.412)=m-2.912$, we get $-\sqrt{m-2.912}<$ $\lambda_{n} \leqslant-2.323$. Then

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.912}), f(-2.323)\} \geqslant 0.2 \sqrt{m-2.5}
$$

Similarly, we have $-\sqrt{(m+1.087) / 2}<\lambda_{n-1} \leqslant-2$ and

$$
f\left(\lambda_{n-1}\right) \geqslant \min \{f(-\sqrt{(m+1.087) / 2}), f(-2)\} \geqslant 4 \sqrt{m-2.5}-8
$$

Combining Lemma 13 with $\lambda_{1}<\sqrt{m-1.85}$, we get

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2}{3} \lambda_{1} \\
& >\frac{1}{6}(5.612 \sqrt{m-2.5}-5 \sqrt{m-1.85}-6.736)>0
\end{aligned}
$$

where the last inequality holds for $m \geqslant 162$, which is a contradiction.

Using the similar method as in the proofs of Lemmas 16 and 17, we can prove Lemmas 18, 19 and 20 as well. For simplicity, we next present a brief sketch only.

Proof of Lemma 18. First of all, the eigenvalues of T_{1}, \ldots, T_{4} can be given as below.

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}
T_{1}	2.377	1.273	0.801	0	-0.554	-1.651	-2.246
T_{2}	2.342	1	1	0.470	-1	-1.813	-2
T_{3}	2.641	1	0.723	0.414	-0.589	-1.775	-2.414
T_{4}	2.447	1.176	0.656	0	-0.264	-1.832	-2.183

Table 2: Eigenvalues of T_{1}, T_{2}, T_{3} and T_{4}.
Suppose on the contrary that T_{1} is an induced subgraph of G. Then Lemma 12 gives $\lambda_{2} \geqslant 1.273$ and $\lambda_{3} \geqslant 0.801$. Thus, we get

$$
f\left(\lambda_{2}\right) \geqslant f(1.273) \geqslant 1.62 \sqrt{m-2.5}+2.062
$$

and

$$
f\left(\lambda_{3}\right) \geqslant f(0.801) \geqslant 0.641 \sqrt{m-2.5}+0.513
$$

Moreover, using the same technique in Lemma 17, the negative eigenvalues of T_{1} implies $\lambda_{n}^{2} \leqslant 2 m-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}+\lambda_{n-2}^{2}+\lambda_{n-1}^{2}\right)<2 m-(m-2.5+5.299)=m-2.799$, and so $-\sqrt{m-2.799}<\lambda_{n} \leqslant-2.246$. By Lemma 14, it follows that

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.799}), f(-2.246)\}>0.14 \sqrt{m-2.5} .
$$

Similarly, we can get

$$
f\left(\lambda_{n-1}\right) \geqslant f(-1.651) \geqslant 2.725 \sqrt{m-2.5}-4.5
$$

and

$$
f\left(\lambda_{n-2}\right) \geqslant f(-0.554) \geqslant 0.306 \sqrt{m-2.5}-0.17 .
$$

Using Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.432 \sqrt{m-2.5}-5 \sqrt{m-1.85}-2.095)>0,
\end{aligned}
$$

which is a contradiction. Thus, G does not contain T_{1} as an induced subgraph.
Suppose on the contrary that G contains T_{2} as an induced subgraph. Then Lemma 12 implies $\lambda_{2} \geqslant 1, \lambda_{3} \geqslant 1$ and $\lambda_{4} \geqslant 0.47$. Thus, we have

$$
\begin{aligned}
& f\left(\lambda_{2}\right) \geqslant f(1)=\sqrt{m-2.5}+1 \\
& f\left(\lambda_{3}\right) \geqslant f(1)=\sqrt{m-2.5}+1
\end{aligned}
$$

and

$$
f\left(\lambda_{4}\right) \geqslant f(0.47) \geqslant 0.22 \sqrt{m-2.5}+0.103
$$

Moreover, we have $-\sqrt{m-4.01}<\lambda_{n} \leqslant-2$. Then Lemma 14 leads to

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-4.01}), f(-2)\} \geqslant 0.7 \sqrt{m-2.5} .
$$

In addition, we have

$$
f\left(\lambda_{n-1}\right) \geqslant f(-1.813) \geqslant 3.28 \sqrt{m-2.5}-5.959
$$

and

$$
f\left(\lambda_{n-2}\right) \geqslant f(-1)=\sqrt{m-2.5}-1 .
$$

By Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, it follows that

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(7.2 \sqrt{m-2.5}-5 \sqrt{m-1.85}-4.856)>0,
\end{aligned}
$$

a contradiction. So G does not contain T_{2} as an induced subgraph.
Suppose on the contrary that T_{3} is an induced subgraph of G. Using Lemma 12, we obtain $\lambda_{2} \geqslant 1, \lambda_{3} \geqslant 0.723$ and $\lambda_{4} \geqslant 0.414$. Then

$$
\begin{aligned}
& f\left(\lambda_{2}\right) \geqslant f(1)=\sqrt{m-2.5}+1 \\
& f\left(\lambda_{3}\right) \geqslant f(0.723) \geqslant 0.522 \sqrt{m-2.5}+0.377
\end{aligned}
$$

and

$$
f\left(\lambda_{4}\right) \geqslant f(0.414) \geqslant 0.171 \sqrt{m-2.5}+0.07
$$

Moreover, we can get $-\sqrt{m-2.695} \leqslant \lambda_{n} \leqslant-2.414$. By Lemma 14, we have

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.695}), f(-2.414)\} \geqslant 0.08 \sqrt{m-2.5} .
$$

Similarly, we obtain

$$
f\left(\lambda_{n-1}\right) \geqslant f(-1.775) \geqslant 3.15 \sqrt{m-2.5}-5.592
$$

and

$$
f\left(\lambda_{n-2}\right) \geqslant f(-0.589) \geqslant 0.346 \sqrt{m-2.5}-0.204
$$

Consequently, Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$ gives

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.269 \sqrt{m-2.5}-5 \sqrt{m-1.85}-4.349)>0,
\end{aligned}
$$

where the last inequality holds for $m \geqslant 276$. This leads to a contradiction. Hence T_{3} can not be an induced subgraph of G.

Suppose on the contrary that T_{4} is an induced subgraph of G. Applying Lemma 12, we obtain $\lambda_{2} \geqslant 1.176$ and $\lambda_{3} \geqslant 0.656$. Thus

$$
f\left(\lambda_{2}\right) \geqslant f(1.176) \geqslant 1.382 \sqrt{m-2.5}+1.626
$$

and

$$
f\left(\lambda_{3}\right) \geqslant f(0.656) \geqslant 0.43 \sqrt{m-2.5}+0.282
$$

Moreover, we have $-\sqrt{m-2.741} \leqslant \lambda_{n} \leqslant-2.183$. Lemma 14 implies

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.741}), f(-2.183)\} \geqslant 0.1 \sqrt{m-2.5}
$$

Similarly, one can get

$$
f\left(\lambda_{n-1}\right) \geqslant f(-1.832) \geqslant 3.356 \sqrt{m-2.5}-6.148
$$

and

$$
f\left(\lambda_{n-2}\right) \geqslant f(-0.264) \geqslant 0.069 \sqrt{m-2.5}-0.018
$$

Finally, combining Lemma 13 with $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.337 \sqrt{m-2.5}-5 \sqrt{m-1.85}-4.258)>0,
\end{aligned}
$$

a contradiction. Therefore T_{4} can not be an induced subgraph of G.
The proofs of Lemmas 19 and 20 can proceed in a similar way.
Proof of Lemma 19. The eigenvalues of graphs J_{1}, \ldots, J_{4} can be computed as follows.

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}	λ_{9}
J_{1}	2.151	1.268	0.618	0.420	-0.895	-1.618	-1.944		
J_{2}	2.554	1.223	0.618	0.565	0	-0.942	-1.618	-2.401	
J_{3}	2.900	1.362	0.690	0.618	0.618	-0.273	-1.618	-1.618	-2.679
J_{4}	3.082	1.380	0.827	0.670	0.338	-0.406	-1.209	-1.726	-2.956

Table 3: Eigenvalues of J_{1}, J_{2}, J_{3} and J_{4}.
If J_{1} is an induced subgraph of G, then Lemma 12 implies $\lambda_{2} \geqslant 1.268, \lambda_{3} \geqslant 0.618$ and $\lambda_{4} \geqslant 0.42$. Moreover, the negative eigenvalues of J_{1} gives $\lambda_{n-2} \leqslant-0.895$ and $\lambda_{n-1} \leqslant$ -1.618 . Then $-\sqrt{m-3.085} \leqslant \lambda_{n} \leqslant-1.944$ and

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-3.085}), f(-1.944)\}>0.25 \sqrt{m-2.5} .
$$

By Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.835 \sqrt{m-2.5}-5 \sqrt{m-1.85}-2.603)>0,
\end{aligned}
$$

a contradiction. Thus J_{1} can not be an induced subgraph of G.
If J_{2} is an induced subgraph of G, then Lemma 12 implies $\lambda_{2} \geqslant 1.223, \lambda_{3} \geqslant 0.618$ and $\lambda_{4} \geqslant 0.565$. In addition, the negative eigenvalues of J_{2} gives $\lambda_{n-2} \leqslant-0.942$ and $\lambda_{n-1} \leqslant-1.618$. Then $-\sqrt{m-3.202} \leqslant \lambda_{n} \leqslant-2.401$ and

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-3.202}), f(-2.401)\}>0.3 \sqrt{m-2.5} .
$$

Applying Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we have

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(6.002 \sqrt{m-2.5}-5 \sqrt{m-1.85}-2.826)>0,
\end{aligned}
$$

a contradiction. So J_{2} can not be an induced subgraph of G.
If J_{3} is an induced subgraph of G, then Lemma 12 implies $\lambda_{2} \geqslant 1.362, \lambda_{3} \geqslant 0.690$, $\lambda_{4} \geqslant 0.618$ and $\lambda_{5} \geqslant 0.618$. Additionally, the negative eigenvalues of J_{3} gives $\lambda_{n-3} \leqslant$ $-0.273, \lambda_{n-2} \leqslant-1.618$ and $\lambda_{n-1} \leqslant-1.618$. Then $-\sqrt{m-5.907} \leqslant \lambda_{n} \leqslant-2.679$ and

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-5.907}), f(-2.679)\}>1.5 \sqrt{m-2.5} .
$$

Using Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we get

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+\cdots+f\left(\lambda_{5}\right)+f\left(\lambda_{n-3}\right)+\cdots+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(9.907 \sqrt{m-2.5}-5 \sqrt{m-1.85}-5.164)>0,
\end{aligned}
$$

a contradiction. Therefore J_{3} can not be an induced subgraph of G.
If J_{4} is an induced subgraph of G, then Lemma 12 implies $\lambda_{2} \geqslant 1.380, \lambda_{3} \geqslant 0.827$, $\lambda_{4} \geqslant 0.670$ and $\lambda_{5} \geqslant 0.338$. Furthermore, the negative eigenvalues of J_{4} gives $\lambda_{n-3} \leqslant$ $-0.406, \lambda_{n-2} \leqslant-1.209$ and $\lambda_{n-1} \leqslant-1.726$. Then $-\sqrt{m-5.259} \leqslant \lambda_{n} \leqslant-2.956$ and

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-5.259}), f(-2.956)\}>1.3 \sqrt{m-2.5} .
$$

Due to Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, we obtain

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+\cdots+f\left(\lambda_{5}\right)+f\left(\lambda_{n-3}\right)+\cdots+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(9.059 \sqrt{m-2.5}-5 \sqrt{m-1.85}-3.442)>0,
\end{aligned}
$$

a contradiction. Henceforth J_{4} can not be an induced subgraph of G.

Proof of Lemma 20. By computation, we can obtain the eigenvalues of L_{1}, \ldots, L_{4}.

	λ_{1}	λ_{2}	λ_{3}	λ_{4}	λ_{5}	λ_{6}	λ_{7}	λ_{8}
L_{1}	2.950	1.156	0.618	0.522	0	-0.790	-1.618	-2.838
L_{2}	2.753	1.204	0.641	0.618	-0.253	-0.700	-1.618	-2.645
L_{3}	3.141	1.139	0.763	0	0	-0.277	-1.745	-3.021
L_{4}	2.964	1	0.764	0.513	0	-0.710	-1.722	-2.809

Table 4: Eigenvalues of L_{1}, L_{2}, L_{3} and L_{4}.
Suppose on the contrary that G contains L_{1} as an induced subgraph. Then Lemma 12 yields $\lambda_{2} \geqslant 1.156, \lambda_{3} \geqslant 0.618$ and $\lambda_{4} \geqslant 0.522$. The negative eigenvalues of L_{1} implies $\lambda_{n-2} \leqslant-0.790$ and $\lambda_{n-1} \leqslant-1.618$. Then $-\sqrt{m-2.734} \leqslant \lambda_{n} \leqslant-2.838$. By Lemma 14, we have

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.734}), f(-2.838)\}>0.1 \sqrt{m-2.5} .
$$

According to Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, it follows that

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.334 \sqrt{m-2.5}-5 \sqrt{m-1.85}-2.805)>0,
\end{aligned}
$$

which is a contradiction. Thus G does not contain L_{1} as an induced subgraph.
Suppose on the contrary that G contains L_{2} as an induced subgraph. Lemma 12 yields $\lambda_{2} \geqslant 1.204, \lambda_{3} \geqslant 0.641$ and $\lambda_{4} \geqslant 0.618$. The negative eigenvalues of L_{2} implies $\lambda_{n-3} \leqslant-0.253, \lambda_{n-2} \leqslant-0.7$ and $\lambda_{n-1} \leqslant-1.618$. Then $-\sqrt{m-2.918} \leqslant \lambda_{n} \leqslant-2.645$. Lemma 14 gives

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.918}), f(-2.645)\}>0.2 \sqrt{m-2.5} .
$$

By Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, it follows that

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-3}\right)+\cdots+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.618 \sqrt{m-2.5}-5 \sqrt{m-1.85}-2.35)>0,
\end{aligned}
$$

which is a contradiction. Therefore G does not contain L_{2} as an induced subgraph.
Suppose on the contrary that G contains L_{3} as an induced subgraph. Lemma 12 yields $\lambda_{2} \geqslant 1.139$ and $\lambda_{3} \geqslant 0.763$. The negative eigenvalues of L_{3} implies $\lambda_{n-2} \leqslant-0.277$ and $\lambda_{n-1} \leqslant-1.745$. Then $-\sqrt{m-2.504} \leqslant \lambda_{n} \leqslant-3.021$. Lemma 14 gives

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.504}), f(-3.021)\}>0.001 \sqrt{m-2.5} .
$$

By Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, it follows that for $m \geqslant 4.7 \times 10^{5}$,

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.005 \sqrt{m-2.5}-5 \sqrt{m-1.85}-3.412)>0,
\end{aligned}
$$

which is a contradiction. Thus, G does not contain L_{3} as an induced subgraph.
Suppose on the contrary that G contains L_{4} as an induced subgraph. Lemma 12 yields $\lambda_{2} \geqslant 1, \lambda_{3} \geqslant 0.764$ and $\lambda_{4} \geqslant 0.513$. The negative eigenvalues of L_{4} implies $\lambda_{n-2} \leqslant-0.710$ and $\lambda_{n-1} \leqslant-1.722$. Then $-\sqrt{m-2.818} \leqslant \lambda_{n} \leqslant-2.809$. Lemma 14 gives

$$
f\left(\lambda_{n}\right) \geqslant \min \{f(-\sqrt{m-2.818}), f(-2.809)\}>0.15 \sqrt{m-2.5} .
$$

By Lemma 13 and $\lambda_{1}<\beta(m)<\sqrt{m-1.85}$, it follows that

$$
\begin{aligned}
t(G) & >\frac{1}{6}\left(f\left(\lambda_{2}\right)+f\left(\lambda_{3}\right)+f\left(\lambda_{4}\right)+f\left(\lambda_{n-2}\right)+f\left(\lambda_{n-1}\right)+f\left(\lambda_{n}\right)\right)-\frac{2.5}{3} \lambda_{1} \\
& >\frac{1}{6}(5.468 \sqrt{m-2.5}-5 \sqrt{m-1.85}-3.883)>0
\end{aligned}
$$

which is a contradiction. Hence G does not contain L_{4} as an induced subgraph.

[^0]: ${ }^{a}$ School of Mathematics and Statistics, Central South University, Changsha, Hunan, 410083, P.R. China (ytli0921@hnu.edu.cn, fenglh@163.com).
 ${ }^{b}$ School of Mathematics, Hunan University, Changsha, Hunan, 410082, P.R. China (ypeng1@hnu.edu.cn).

[^1]: ${ }^{1}$ Paul Erdős liked to talk about THE BOOK, in which God maintains the perfect proofs for mathematical theorems, and he also said that you need not believe in God but you should believe in THE BOOK.

[^2]: ${ }^{2}$ Note that when we consider the result on a graph with respect to the given number of edges, we shall ignore the possible isolated vertices if there are no confusions.

[^3]: ${ }^{3}$ We believe intuitively that the spectral extremal graphs with even size are perhaps constructed from those in Figure 2 by 'replacing' the red copy of C_{5} with a longer odd cycle $C_{2 k+3}$.

