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Abstract

In this paper we prove an incidence bound for points and cubic curves over prime
fields. The methods generalise those used by Mohammadi, Pham, and Warren [4].

Mathematics Subject Classifications: 51B05, 11G20

1 Introduction

Given a set of points P in the plane F2 over a field F, and a set of irreducible algebraic
curves C in F2, the number of incidences between P and C is defined as

I(P,C) := {(p, γ) ∈ P × C : p ∈ γ}.

In the case F = R and when C is actually a set of lines L, an optimal upper bound for
I(P,L) was given by Szemerédi and Trotter [11].

Theorem 1 (Szemerédi-Trotter). For any finite sets of points and lines P and L in the
real plane, we have1

I(P,L) ≪ (|P ||L|)2/3 + |P |+ |L|.

Over R, this theorem has been generalised to other curves, the most well known such
result being the Pach-Sharir theorem, see [5], [6]. Such results for algebraic curves have
also been proven over the complex numbers, see [9].

In this paper we consider the case F = Fp for prime p. In this setting, point-line
incidence bounds analogous to Theorem 1 are known, the first such result being proved
by Bourgain, Katz, and Tao [1]. The state of the art point-line incidence bound is due
to Stevens and de Zeeuw [10], which itself relies on the point-plane incidence bound of
Rudnev [7]. Given that the sets of points and lines are not too large with respect to the
characteristic p, they give the bound

I(P,L) ≪ (|P ||L|)11/15 + |P |+ |L|. (1)

Radon Institute for Computational and Applied Mathematics, Linz, Austria
(audie.warren@oeaw.ac.at).

1In this paper we use the notation A ≪ B to mean that there exists an absolute constant c > 0 such
that A ⩽ cB. We have B ≫ A if A ≪ B.
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Using the basic geometric fact that two lines intersect in one point, and two points define
one line, one can apply the Kővári-Sós-Turán theorem [3] to the incidence graph of P and
L to obtain

I(P,L) ≪ min{|P ||L|1/2 + |L|, |P |1/2|L|+ |P |}.
The bound (1) improves upon these bounds for a certain balancing of |P | and |L|.

Obtaining incidence bounds between points and non-linear algebraic curves in Fp has
proved a difficult task, with very few results being known. However, recently there has
been a flurry of activity concerning incidences between points and certain degree two
curves in Fp, see for instance [8] and [12]. Pushing the methods used in these papers
further, an incidence bound between points and arbitrary irreducible conics was given in
a paper of Mohammadi, Pham, and Warren [4].

In this paper, we adapt and generalise ideas present in [4] to prove an incidence bound
between points and arbitrary cubic curves in Fp. Our main result is the following.

Theorem 2. Let P be a set of points in F2
p, with |P | ⩽ p15/13, and let C be any set of

irreducible cubic curves in F2
p. Then we have

I(P,C) ≪ min{(|P ||C|)39/43, |P ||C|9/10, |P |1/2|C|}+ |P |+ |C|.

In fact, we will prove the following bound.

Theorem 3. Let P be a set of points in F2
p, with |P | ⩽ p15/13, and let C be any set of

irreducible cubic curves in F2
p. Then we have

I(P,C) ≪ (|P ||C|)39/43 + |P |71/43|C|28/43 + |C|.

It is again important to compare this result with the trivial bounds given by Kővári-
Sós-Turán. As above, this is given by the basic fact that two irreducible cubic curves
intersect in at most nine points. This yields

I(P,C) ≪ min{|P ||C|9/10 + |C|, |P |1/2|C|+ |P |}.

Comparing these bounds to the first term in Theorem 3, we see that Theorem 3 improves
upon the trivial bounds when we have

|P |35/8 ⩽ |C| ⩽ |P |40/3,

and within this range the second term of Theorem 3 is dominated by the first. Theorem
2 is then the augmentation of Theorem 3 with the Kővári-Sós-Turán bounds. We note
that although we have focused on Fp, the results extend to other fields, with the same
restriction on the size of P with respect to the characteristic p, and also to fields of
characteristic zero by ignoring the restriction on the characteristic.

We mention that it is crucial to restrict to irreducible curves in Theorem 2 (and such
incidence results in general), as otherwise I(P,C) = |P ||C| is obtainable. Take a single
line l, and let all of P lie on l. Define a set of reducible cubic curves C, where each is
the union of l with some other conic. Since every point lies on l, which is a component of
every cubic in C, the number of incidences is |P ||C|.
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2 Proof of Theorem 3

2.1 The set-up

We now begin the proof of Theorem 3. The main idea will be to, in a certain sense, dualise
the points and curves P and C, so that we recover point and line incidences. However,
we will not work with incidences directly, choosing to instead work with k-rich curves. A
curve γ ∈ C is called k-rich if it contains between k and 2k points of P , that is,

k ⩽ |γ ∩ P | < 2k.

We let Ck ⊆ C be the set of k-rich curves from C. Our main goal will be to bound, for all
k sufficiently large, |Ck|. This will be achieved by first considering the problem locally.

Let S ⊆ P be a set of seven points. We make the definition

Ck,S := {γ ∈ Ck : ∀q ∈ S, q ∈ γ}.

In words, this is the set of k-rich curves which pass through all points of S. Given a
bound for each Ck,S, we can give a bound on Ck. Indeed, if we sum over all subsets S ⊆ P
of size seven, each k-rich curve will be counted at least

(
k
7

)
≫ k7 times, noting that this

assumes k ⩾ 7. This implies that we have the inequality

|Ck| ≪
1

k7

∑
S⊆P
|S|=7

|Ck,S|. (2)

We now begin the main part of the proof, which is to bound |Ck,S|.

2.2 Bounding Ck,S

To begin the dualisation process, we provide a map ϕ which sends our curves C to points
in P(F9

p). The map is very simple - it takes a curve f(x, y) = 0 to its list of coefficients.
Note that this is a map into projective space since constant multiples of an equation
f(x, y) = 0 determine the same curve. The map is defined in the following way.

ϕ : {Curves of degree at most 3 over F2
p} −→ P(F9

p)∑
(i,j)

i+j⩽3

ci,jx
iyj = 0 −→ [c0,0 : c0,1 : ... : c2,1 : c3,0].

The ordering chosen for the coordinates is irrelevant - we simply fix an ordering and use
it consistently.

Fix a point q = (q1, q2) ∈ F2
p. If we let Γq be the set of all degree at most 3 curves

passing through q, then the image ϕ(Γq) is a hyperplane in P(F9
p), since the point q

the electronic journal of combinatorics 31(1) (2024), #P1.18 3



imposes a single linear condition on the coefficients of the curves. Indeed, the points
[X0,0 : X0,1 : ... : X2,1 : X3,0] ∈ ϕ(Γq) are precisely those that satisfy the linear equation∑

(i,j)
i+j⩽3

Xi,jq
i
1q

j
2 = 0.

We denote such a hyperplane by πq. We now take our set S ⊆ P of size seven, and look
at the image under ϕ of all degree at most 3 curves which pass through the points of S,
call them ΓS. From the above, this is given by

ϕ(ΓS) =
⋂
q∈S

πq.

We prove a lemma to control this image. We recall that in the following, a 2-flat is a two
dimensional affine subspace.

Lemma 4. Let S ⊆ P be a set of seven points. Then either ϕ(ΓS) is a 2-flat, or Ck,S is
the empty set.

In order to prove this, we require a simple proposition. The following is a version of
a result present in [2] - a proof can be found there which is valid over sufficiently large
fields.

Proposition 5. Let S be a set of points in F2
p.

• If |S| = 7 and S contains no five collinear points, then S imposes independent
conditions on the set of all cubic curves.

• If |S| = 8 and S contains no five collinear points and are not all on a common
conic, then S imposes independent conditions on the set of all cubic curves.

The statement “S imposes independent conditions on the set of all cubic curves” means
that the intersection ∩q∈Sπq is complete, that is, has dimension two. Note that the only
way this can fail to happen is if at some point one of these intersections were trivial, that
is, a hyperplane πq contains the previous intersections ∩q′∈S′πq′ for some subset S ′ ⊂ S.
If this happens, then every cubic curve passing through all of S ′ also passes through q.
We can now prove Lemma 4.

Proof of Lemma 4. Note that if S were contained in a conic, we must have Ck,S = ∅, as
otherwise this conic intersects an irreducible cubic curve in seven points. This implies
that ΓS contains only cubic curves. If S contains four collinear points, then S cannot be
contained within any irreducible cubic curve, by Bezout’s theorem, and therefore Ck,S =
∅. On the other hand, if no four points of S are collinear, then by Proposition 5, the
intersections of the hyperplanes πq for q ∈ S is complete, so that ϕ(ΓS) is a 2-flat.
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We continue the proof, assuming that |Ck,S| ≠ 0, implying that ϕ(ΓS) is a 2-flat. Let πS
denote this 2-flat. We have that ϕ(Ck,S) ⊆ πS, and πS contains only points corresponding
to cubic curves.

The next step is to give a map which sends our original points P to lines in πS. Since
points not lying on any curve from Ck,S do not contribute any incidences, we only perform
this step for points which do indeed lie on curves from Ck,S - by an abuse of notation we
denote such points by P ∩ Ck,S. Furthermore, we ignore the points of S, as they would
be, in a certain sense, degenerate for this map. We define the map as follows.

ψ : (P ∩ Ck,S) \ S → {lines in πS}

ψ(q) = πq ∩ πS.
We must justify, firstly, that ψ(q) is indeed a line in πS. Since we are intersecting a
hyperplane with a 2-flat, ψ(q) can either be a line, as needed, or we have πq ∩ πS = πS.
If this second case were to occur, it would mean that πS ⊆ πq, so that S ∪ {q} does not
impose independent conditions on cubic curves, which by Proposition 5 implies that it
contains five collinear points, or all eight are on a conic. In the first case, by removing q
we find at least four points of S collinear, contradicting the assumption |Ck,S| ≠ 0. In the
second case, we must have that S lies on a conic, again contradicting Bezout’s Theorem
unless Ck,s = ∅. We therefore conclude that ψ(q) is indeed a line.

Secondly, we check the multiplicity of the lines ψ(q). We claim that for each line l
lying in πS, there are at most two points q, q′ which are both mapped to l, that is, these
lines are defined with multiplicity at most two. To prove this, suppose there exist three
points q1, q2, q3 with ψ(q1) = ψ(q2) = ψ(q3) =: l. Consider the set S ∪ {q1, q2, q3}. Since
q1, q2, q3 ∈ (P ∩ Ck,S) \ S, there must exist an irreducible cubic curve γ ∈ Ck,S such that
ϕ(γ) ∈ l. Indeed, this follows since we have for all q ∈ (P ∩ Ck,S) \ S, and γ ∈ Ck,S,

q ∈ γ ⇐⇒ ϕ(γ) ∈ ψ(q).

Then γ contains the ten points S ∪ {q1, q2, q3}. On the other hand, since l is a line, we
can take any point other than ϕ(γ) on l, and we find another (possibly reducible) cubic
curve containing S ∪{q1, q2, q3}. Since γ is irreducible, this contradicts Bezout’s theorem.

We now put together all of the above information, to recover an incidence problem
between points and lines in F2

p. Take a k-rich curve γ ∈ Ck,S. It has been mapped to a
point ϕ(γ) ∈ πS. Each point q ∈ P \ S which lies on γ has been sent, via ψ, to a line
ψ(q) ⊆ πS, and this line must contain the point ϕ(γ), since q ∈ γ. Such lines are defined
with multiplicity at most two. Therefore, the k-rich curve γ has been sent to an at least
k−7
2
-rich point ϕ(γ), with respect to the lines L := ψ((P ∩Ck,S) \ S). We can now bound

|Ck,S| by the number of k−7
2
-rich points defined by a set of |L| ⩽ |P | lines in F2

p
∼= πS.

This is done via the following result of Stevens and de Zeeuw [10].

Corollary 6. Let L be a set of lines in F2
p, with |L| ≪ p15/13, and for t ⩾ 2 let Pt denote

the number of t-rich points with respect to L. Then

|Pt| ≪
|L|11/4

t15/4
+

|L|
t
.
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Note that this is where the condition |P | ≪ p15/13 is adopted. Since we are applying
this result with t = k−7

2
, we must assume k ⩾ 11. This gives

|Ck,S| ≪
|P |11/4

k15/4
+

|P |
k
.

2.3 Finishing the proof

Returning to equation (2), we can bound the number of k-rich curves for k ⩾ 11 as

|Ck| ≪
|P |39/4

k43/4
+

|P |8

k8
.

We can now follow a standard argument to bound I(P,C). In the following we denote by
C=k the set of precisely k-rich curves.

I(P,C) =
∑
k⩾1

|C=k|k

=
∑
k⩽∆

|C=k|k +
∑
k>∆

|C=k|k

≪ ∆|C|+
∑
i⩾0

|C2i∆|(2i∆)

≪ ∆|C|+
∑
i⩾0

(
|P |39/4

(2i∆)43/4
+

|P |8

(2i∆)8

)
(2i∆)

≪ ∆|C|+ |P |39/4

∆39/4
+

|P |8

∆7
.

We now optimise our choice of ∆. In order to ensure that the application of Corollary 6
was valid, we must have ∆ ⩾ 11. The best choice is then

∆ = max

{
11,

|P |39/43

|C|4/43

}
.

If the second term is taken in this maximum, we recover the first two terms of Theorem
3. If the first term is chosen, then we must have |C|4 ≫ |P |39, and in this case our bound
gives I(P,C) ≪ |C|. Combining these two possibilities yields Theorem 3.
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