Incidences of Cubic Curves in Finite Fields

Audie Warren

Submitted: Jul 6, 2023; Accepted: Dec 5, 2023; Published: Jan 12, 2024
(C) The author. Released under the CC BY license (International 4.0).

Abstract

In this paper we prove an incidence bound for points and cubic curves over prime fields. The methods generalise those used by Mohammadi, Pham, and Warren [4]. Mathematics Subject Classifications: 51B05, 11G20

1 Introduction

Given a set of points P in the plane \mathbb{F}^{2} over a field \mathbb{F}, and a set of irreducible algebraic curves C in \mathbb{F}^{2}, the number of incidences between P and C is defined as

$$
I(P, C):=\{(p, \gamma) \in P \times C: p \in \gamma\}
$$

In the case $\mathbb{F}=\mathbb{R}$ and when C is actually a set of lines L, an optimal upper bound for $I(P, L)$ was given by Szemerédi and Trotter [11].

Theorem 1 (Szemerédi-Trotter). For any finite sets of points and lines P and L in the real plane, we have ${ }^{1}$

$$
I(P, L) \ll(|P||L|)^{2 / 3}+|P|+|L| .
$$

Over \mathbb{R}, this theorem has been generalised to other curves, the most well known such result being the Pach-Sharir theorem, see [5], [6]. Such results for algebraic curves have also been proven over the complex numbers, see [9].

In this paper we consider the case $\mathbb{F}=\mathbb{F}_{p}$ for prime p. In this setting, point-line incidence bounds analogous to Theorem 1 are known, the first such result being proved by Bourgain, Katz, and Tao [1]. The state of the art point-line incidence bound is due to Stevens and de Zeeuw [10], which itself relies on the point-plane incidence bound of Rudnev [7]. Given that the sets of points and lines are not too large with respect to the characteristic p, they give the bound

$$
\begin{equation*}
I(P, L) \ll(|P||L|)^{11 / 15}+|P|+|L| . \tag{1}
\end{equation*}
$$

[^0]Using the basic geometric fact that two lines intersect in one point, and two points define one line, one can apply the Kővári-Sós-Turán theorem [3] to the incidence graph of P and L to obtain

$$
I(P, L) \ll \min \left\{|P||L|^{1 / 2}+|L|,|P|^{1 / 2}|L|+|P|\right\} .
$$

The bound (1) improves upon these bounds for a certain balancing of $|P|$ and $|L|$.
Obtaining incidence bounds between points and non-linear algebraic curves in \mathbb{F}_{p} has proved a difficult task, with very few results being known. However, recently there has been a flurry of activity concerning incidences between points and certain degree two curves in \mathbb{F}_{p}, see for instance [8] and [12]. Pushing the methods used in these papers further, an incidence bound between points and arbitrary irreducible conics was given in a paper of Mohammadi, Pham, and Warren [4].

In this paper, we adapt and generalise ideas present in [4] to prove an incidence bound between points and arbitrary cubic curves in \mathbb{F}_{p}. Our main result is the following.
Theorem 2. Let P be a set of points in \mathbb{F}_{p}^{2}, with $|P| \leqslant p^{15 / 13}$, and let C be any set of irreducible cubic curves in \mathbb{F}_{p}^{2}. Then we have

$$
I(P, C) \ll \min \left\{(|P||C|)^{39 / 43},|P \| C|^{9 / 10},|P|^{1 / 2}|C|\right\}+|P|+|C| .
$$

In fact, we will prove the following bound.
Theorem 3. Let P be a set of points in \mathbb{F}_{p}^{2}, with $|P| \leqslant p^{15 / 13}$, and let C be any set of irreducible cubic curves in \mathbb{F}_{p}^{2}. Then we have

$$
I(P, C) \ll(|P||C|)^{39 / 43}+|P|^{71 / 43}|C|^{28 / 43}+|C| .
$$

It is again important to compare this result with the trivial bounds given by Kővári-Sós-Turán. As above, this is given by the basic fact that two irreducible cubic curves intersect in at most nine points. This yields

$$
I(P, C) \ll \min \left\{|P||C|^{9 / 10}+|C|,|P|^{1 / 2}|C|+|P|\right\} .
$$

Comparing these bounds to the first term in Theorem 3, we see that Theorem 3 improves upon the trivial bounds when we have

$$
|P|^{35 / 8} \leqslant|C| \leqslant|P|^{40 / 3}
$$

and within this range the second term of Theorem 3 is dominated by the first. Theorem 2 is then the augmentation of Theorem 3 with the Kővári-Sós-Turán bounds. We note that although we have focused on \mathbb{F}_{p}, the results extend to other fields, with the same restriction on the size of P with respect to the characteristic p, and also to fields of characteristic zero by ignoring the restriction on the characteristic.

We mention that it is crucial to restrict to irreducible curves in Theorem 2 (and such incidence results in general), as otherwise $I(P, C)=|P||C|$ is obtainable. Take a single line l, and let all of P lie on l. Define a set of reducible cubic curves C, where each is the union of l with some other conic. Since every point lies on l, which is a component of every cubic in C, the number of incidences is $|P||C|$.

2 Proof of Theorem 3

2.1 The set-up

We now begin the proof of Theorem 3. The main idea will be to, in a certain sense, dualise the points and curves P and C, so that we recover point and line incidences. However, we will not work with incidences directly, choosing to instead work with k-rich curves. A curve $\gamma \in C$ is called k-rich if it contains between k and $2 k$ points of P, that is,

$$
k \leqslant|\gamma \cap P|<2 k .
$$

We let $C_{k} \subseteq C$ be the set of k-rich curves from C. Our main goal will be to bound, for all k sufficiently large, $\left|C_{k}\right|$. This will be achieved by first considering the problem locally.

Let $S \subseteq P$ be a set of seven points. We make the definition

$$
C_{k, S}:=\left\{\gamma \in C_{k}: \forall q \in S, q \in \gamma\right\} .
$$

In words, this is the set of k-rich curves which pass through all points of S. Given a bound for each $C_{k, S}$, we can give a bound on C_{k}. Indeed, if we sum over all subsets $S \subseteq P$ of size seven, each k-rich curve will be counted at least $\binom{k}{7} \gg k^{7}$ times, noting that this assumes $k \geqslant 7$. This implies that we have the inequality

$$
\begin{equation*}
\left|C_{k}\right| \ll \frac{1}{k^{7}} \sum_{\substack{S \subseteq P \\|S|=7}}\left|C_{k, S}\right| . \tag{2}
\end{equation*}
$$

We now begin the main part of the proof, which is to bound $\left|C_{k, S}\right|$.

2.2 Bounding $C_{k, S}$

To begin the dualisation process, we provide a map ϕ which sends our curves C to points in $\mathbb{P}\left(\mathbb{F}_{p}^{9}\right)$. The map is very simple - it takes a curve $f(x, y)=0$ to its list of coefficients. Note that this is a map into projective space since constant multiples of an equation $f(x, y)=0$ determine the same curve. The map is defined in the following way.

$$
\phi:\left\{\text { Curves of degree at most } 3 \text { over } \mathbb{F}_{p}^{2}\right\} \longrightarrow \mathbb{P}\left(\mathbb{F}_{p}^{9}\right)
$$

$$
\sum_{\substack{i, j) \\ i+j \leqslant 3}} c_{i, j} x^{i} y^{j}=0 \longrightarrow\left[c_{0,0}: c_{0,1}: \ldots: c_{2,1}: c_{3,0}\right] .
$$

The ordering chosen for the coordinates is irrelevant - we simply fix an ordering and use it consistently.

Fix a point $q=\left(q_{1}, q_{2}\right) \in \mathbb{F}_{p}^{2}$. If we let Γ_{q} be the set of all degree at most 3 curves passing through q, then the image $\phi\left(\Gamma_{q}\right)$ is a hyperplane in $\mathbb{P}\left(\mathbb{F}_{p}^{9}\right)$, since the point q
imposes a single linear condition on the coefficients of the curves. Indeed, the points $\left[X_{0,0}: X_{0,1}: \ldots: X_{2,1}: X_{3,0}\right] \in \phi\left(\Gamma_{q}\right)$ are precisely those that satisfy the linear equation

$$
\sum_{\substack{i, j) \\ i+j \leqslant 3}} X_{i, j} q_{1}^{i} q_{2}^{j}=0
$$

We denote such a hyperplane by π_{q}. We now take our set $S \subseteq P$ of size seven, and look at the image under ϕ of all degree at most 3 curves which pass through the points of S, call them Γ_{S}. From the above, this is given by

$$
\phi\left(\Gamma_{S}\right)=\bigcap_{q \in S} \pi_{q}
$$

We prove a lemma to control this image. We recall that in the following, a 2-flat is a two dimensional affine subspace.

Lemma 4. Let $S \subseteq P$ be a set of seven points. Then either $\phi\left(\Gamma_{S}\right)$ is a 2-flat, or $C_{k, S}$ is the empty set.

In order to prove this, we require a simple proposition. The following is a version of a result present in [2] - a proof can be found there which is valid over sufficiently large fields.

Proposition 5. Let S be a set of points in \mathbb{F}_{p}^{2}.

- If $|S|=7$ and S contains no five collinear points, then S imposes independent conditions on the set of all cubic curves.
- If $|S|=8$ and S contains no five collinear points and are not all on a common conic, then S imposes independent conditions on the set of all cubic curves.

The statement " S imposes independent conditions on the set of all cubic curves" means that the intersection $\cap_{q \in S} \pi_{q}$ is complete, that is, has dimension two. Note that the only way this can fail to happen is if at some point one of these intersections were trivial, that is, a hyperplane π_{q} contains the previous intersections $\cap_{q^{\prime} \in S^{\prime}} \pi_{q^{\prime}}$ for some subset $S^{\prime} \subset S$. If this happens, then every cubic curve passing through all of S^{\prime} also passes through q. We can now prove Lemma 4.

Proof of Lemma 4. Note that if S were contained in a conic, we must have $C_{k, S}=\emptyset$, as otherwise this conic intersects an irreducible cubic curve in seven points. This implies that Γ_{S} contains only cubic curves. If S contains four collinear points, then S cannot be contained within any irreducible cubic curve, by Bezout's theorem, and therefore $C_{k, S}=$ \emptyset. On the other hand, if no four points of S are collinear, then by Proposition 5, the intersections of the hyperplanes π_{q} for $q \in S$ is complete, so that $\phi\left(\Gamma_{S}\right)$ is a 2-flat.

We continue the proof, assuming that $\left|C_{k, S}\right| \neq 0$, implying that $\phi\left(\Gamma_{S}\right)$ is a 2-flat. Let π_{S} denote this 2-flat. We have that $\phi\left(C_{k, S}\right) \subseteq \pi_{S}$, and π_{S} contains only points corresponding to cubic curves.

The next step is to give a map which sends our original points P to lines in π_{S}. Since points not lying on any curve from $C_{k, S}$ do not contribute any incidences, we only perform this step for points which do indeed lie on curves from $C_{k, S}$ - by an abuse of notation we denote such points by $P \cap C_{k, S}$. Furthermore, we ignore the points of S, as they would be, in a certain sense, degenerate for this map. We define the map as follows.

$$
\begin{gathered}
\psi:\left(P \cap C_{k, S}\right) \backslash S \rightarrow\left\{\text { lines in } \pi_{S}\right\} \\
\psi(q)=\pi_{q} \cap \pi_{S}
\end{gathered}
$$

We must justify, firstly, that $\psi(q)$ is indeed a line in π_{S}. Since we are intersecting a hyperplane with a 2-flat, $\psi(q)$ can either be a line, as needed, or we have $\pi_{q} \cap \pi_{S}=\pi_{S}$. If this second case were to occur, it would mean that $\pi_{S} \subseteq \pi_{q}$, so that $S \cup\{q\}$ does not impose independent conditions on cubic curves, which by Proposition 5 implies that it contains five collinear points, or all eight are on a conic. In the first case, by removing q we find at least four points of S collinear, contradicting the assumption $\left|C_{k, S}\right| \neq 0$. In the second case, we must have that S lies on a conic, again contradicting Bezout's Theorem unless $C_{k, s}=\emptyset$. We therefore conclude that $\psi(q)$ is indeed a line.

Secondly, we check the multiplicity of the lines $\psi(q)$. We claim that for each line l lying in π_{S}, there are at most two points q, q^{\prime} which are both mapped to l, that is, these lines are defined with multiplicity at most two. To prove this, suppose there exist three points q_{1}, q_{2}, q_{3} with $\psi\left(q_{1}\right)=\psi\left(q_{2}\right)=\psi\left(q_{3}\right)=: l$. Consider the set $S \cup\left\{q_{1}, q_{2}, q_{3}\right\}$. Since $q_{1}, q_{2}, q_{3} \in\left(P \cap C_{k, S}\right) \backslash S$, there must exist an irreducible cubic curve $\gamma \in C_{k, S}$ such that $\phi(\gamma) \in l$. Indeed, this follows since we have for all $q \in\left(P \cap C_{k, S}\right) \backslash S$, and $\gamma \in C_{k, S}$,

$$
q \in \gamma \Longleftrightarrow \phi(\gamma) \in \psi(q)
$$

Then γ contains the ten points $S \cup\left\{q_{1}, q_{2}, q_{3}\right\}$. On the other hand, since l is a line, we can take any point other than $\phi(\gamma)$ on l, and we find another (possibly reducible) cubic curve containing $S \cup\left\{q_{1}, q_{2}, q_{3}\right\}$. Since γ is irreducible, this contradicts Bezout's theorem.

We now put together all of the above information, to recover an incidence problem between points and lines in \mathbb{F}_{p}^{2}. Take a k-rich curve $\gamma \in C_{k, S}$. It has been mapped to a point $\phi(\gamma) \in \pi_{S}$. Each point $q \in P \backslash S$ which lies on γ has been sent, via ψ, to a line $\psi(q) \subseteq \pi_{S}$, and this line must contain the point $\phi(\gamma)$, since $q \in \gamma$. Such lines are defined with multiplicity at most two. Therefore, the k-rich curve γ has been sent to an at least $\frac{k-7}{2}$-rich point $\phi(\gamma)$, with respect to the lines $L:=\psi\left(\left(P \cap C_{k, S}\right) \backslash S\right)$. We can now bound $\left|C_{k, S}\right|$ by the number of $\frac{k-7}{2}$-rich points defined by a set of $|L| \leqslant|P|$ lines in $\mathbb{F}_{p}^{2} \cong \pi_{S}$. This is done via the following result of Stevens and de Zeeuw [10].
Corollary 6. Let L be a set of lines in \mathbb{F}_{p}^{2}, with $|L| \ll p^{15 / 13}$, and for $t \geqslant 2$ let P_{t} denote the number of t-rich points with respect to L. Then

$$
\left|P_{t}\right| \ll \frac{|L|^{11 / 4}}{t^{15 / 4}}+\frac{|L|}{t}
$$

Note that this is where the condition $|P| \ll p^{15 / 13}$ is adopted. Since we are applying this result with $t=\frac{k-7}{2}$, we must assume $k \geqslant 11$. This gives

$$
\left|C_{k, S}\right| \ll \frac{|P|^{11 / 4}}{k^{15 / 4}}+\frac{|P|}{k}
$$

2.3 Finishing the proof

Returning to equation (2), we can bound the number of k-rich curves for $k \geqslant 11$ as

$$
\left|C_{k}\right| \ll \frac{|P|^{39 / 4}}{k^{43 / 4}}+\frac{|P|^{8}}{k^{8}} .
$$

We can now follow a standard argument to bound $I(P, C)$. In the following we denote by $C_{=k}$ the set of precisely k-rich curves.

$$
\begin{aligned}
I(P, C) & =\sum_{k \geqslant 1}\left|C_{=k}\right| k \\
& =\sum_{k \leqslant \Delta}\left|C_{=k}\right| k+\sum_{k>\Delta}\left|C_{=k}\right| k \\
& \ll \Delta|C|+\sum_{i \geqslant 0}\left|C_{2^{i} \Delta}\right|\left(2^{i} \Delta\right) \\
& \ll \Delta|C|+\sum_{i \geqslant 0}\left(\frac{|P|^{39 / 4}}{\left(2^{i} \Delta\right)^{43 / 4}}+\frac{|P|^{8}}{\left(2^{i} \Delta\right)^{8}}\right)\left(2^{i} \Delta\right) \\
& \ll \Delta|C|+\frac{|P|^{39 / 4}}{\Delta^{39 / 4}}+\frac{|P|^{8}}{\Delta^{7}} .
\end{aligned}
$$

We now optimise our choice of Δ. In order to ensure that the application of Corollary 6 was valid, we must have $\Delta \geqslant 11$. The best choice is then

$$
\Delta=\max \left\{11, \frac{|P|^{39 / 43}}{|C|^{\mid / 43}}\right\}
$$

If the second term is taken in this maximum, we recover the first two terms of Theorem 3. If the first term is chosen, then we must have $|C|^{4} \gg|P|^{39}$, and in this case our bound gives $I(P, C) \ll|C|$. Combining these two possibilities yields Theorem 3 .

Acknowledgements

The author was partially supported by the Austrian Science Fund FWF Project P-34180. I thank Niels Lubbes, Mehdi Makhul, Oliver Roche-Newton, Josef Schicho, and Ali Uncu for very helpful conversations. I would also like to thank the anonymous referees for their helpful comments.

References

[1] J. Bourgain, N. Katz, and T. Tao, A sum-product estimate in finite fields, and applications, Geom. Funct. Anal. 14 (2004), 27-57.
[2] D. Eisenbud, M. Green, and J. Harris, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. (N.S.) 33 (1996), 295-324.
[3] T. Kővári, V. T. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloq. Math. 3 (1954), 50-57.
[4] A. Mohammadi, T. Pham, and A. Warren, A point-conic incidence bound and applications over \mathbb{F}_{p}, European J. Combin. 107 (2023), 103596.
[5] J. Pach and M. Sharir, Repeated angles in the plane and related problems, J. Combin. Theory Ser. A 59 (1992), no. 1, 12-22.
[6] J. Pach and M. Sharir, On the number of incidences between points and curves, Combin. Probab. Comput. 7 (1998), no. 1, 121-127.
[7] M. Rudnev, On the number of incidences between planes and points in three dimensions, Combinatorica 38 (2014).
[8] M. Rudnev and J. Wheeler, On incidence bounds with Möbius hyperbolae in positive characteristic, Finite Fields Appl. 78 (2022), 101978.
[9] A. Sheffer, E. Szabó, and J. Zahl, Point-curve incidences in the complex plane, Combinatorica 38 (2018), 487-499.
[10] S. Stevens and F. de Zeeuw, An improved point-line incidence bound over arbitrary fields, Bull. Lond. Math. Soc. 49 (2017), no. 5, 842-858.
[11] E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry, Combinatorica 3 (1983), no. 3, 381-392.
[12] A. Warren and J. Wheeler, Incidences of Möbius transformations in \mathbb{F}_{p}, Discrete Comput. Geom. (2022).

[^0]: Radon Institute for Computational and Applied Mathematics, Linz, Austria (audie.warren@oeaw.ac.at).
 ${ }^{1}$ In this paper we use the notation $A \ll B$ to mean that there exists an absolute constant $c>0$ such that $A \leqslant c B$. We have $B \gg A$ if $A \ll B$.

