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Martin Škovierab,e

Submitted: Aug 25, 2023; Accepted: Feb 28, 2024; Published: Apr 5, 2024
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

The colouring defect of a cubic graph is the smallest number of edges left
uncovered by any set of three perfect matchings. While 3-edge-colourable graphs
have defect 0, those that cannot be 3-edge-coloured (that is, snarks) are known to
have defect at least 3. In this paper we focus on the structure and properties of
snarks with defect 3. For such snarks we develop a theory of reductions similar to
standard reductions of short cycles and small cuts in general snarks. We prove that
every snark with defect 3 can be reduced to a snark with defect 3 which is either
nontrivial (cyclically 4-edge-connected and of girth at least 5) or to one that arises
from a nontrivial snark of defect greater than 3 by inflating a vertex lying on a
suitable 5-cycle to a triangle. The proofs rely on a detailed analysis of Fano flows
associated with triples of perfect matchings leaving exactly three uncovered edges.
In the final part of the paper we discuss application of our results to the conjectures
of Berge and Fulkerson, which provide the main motivation for our research.
Mathematics Subject Classifications: 05C15, 05C21, 05C70, 05C75

1 Introduction

Every 3-edge-colourable cubic graph has a set of three perfect matchings that cover all of
its edges. Conversely, three perfect matchings cover the edge set of a cubic graph only
when they are pairwise disjoint and, therefore, the graph is 3-edge-colourable. It follows
that if a cubic graph is not 3-edge-colourable, then any collection of three perfect matchings
leaves some of its edges not covered. The minimum number of edges of a cubic graph G
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left uncovered by any set of three perfect matchings will be called the colouring defect of
G and will be denoted by df(G). For brevity, we usually drop the adjective “colouring”
and speak of the defect of a cubic graph. Clearly, a cubic graph has defect zero if and
only if it is 3-edge-colourable, so defect can be regarded as a measure of uncolourability of
cubic graphs.

The concept of colouring defect was introduced by Steffen [31] who used the notation
µ3(G) but did not coin any term for it. Among other things he proved that every 2-
connected cubic graph which is not 3-edge-colourable – that is, a snark – has defect at
least 3. He also proved that the defect of a snark is at least as large as one half of its girth.
Since there exist snarks of arbitrarily large girth [23], there exist snarks of arbitrarily large
defect.

The defect of a cubic graph was further examined by Jin and Steffen in [13] and was
also discussed in the survey of uncolourability measures by Fiol et al. [9, pp.13-14]. In [13],
Jin and Steffen studied the relationship of defect to other measures of uncolourability, in
particular its relationship to oddness. The oddness of a cubic graph G, denoted by ω(G),
is the minimum number of odd circuits in a 2-factor of G; it is correctly defined for any
bridgeless cubic graph. Jin and Steffen proved [13, Corollary 2.4] that df(G) ⩾ 3ω(G)/2
and investigated the extremal case where df(G) = 3ω(G)/2 in detail.

In this paper we to continue the study of the colouring defect of snarks with emphasis on
snarks with minimum possible defect, that is, defect 3. Snarks whose defect equals 3 have
a remarkable property that they contain a 6-cycle [31, Corollary 2.5], which immediately
implies that their cyclic connectivity does not exceed 6. This fact relates the study of
colouring defect to a fascinating conjecture of Jaeger and Swart [12, Conjecture 2] which
suggests that the cyclic connectivity of every snark is bounded above by 6. It is therefore
a natural question to ask what structural properties of snarks ensure that their defect is 3,
and conversely, what structural properties are implied by the fact that the defect is, or is
not, this minimum possible value.

A natural approach to improving our understanding of the structure of snarks with
defect 3 is through eliminating certain trivial features that they might posses. The main
purpose of this paper is, therefore, to develop a theory of reductions for snarks with
defect 3 analogous to standard reductions of short cycles and small cuts in general snarks.
Snarks that have cycle-separating edge cuts of size smaller than 4 or circuits of length
smaller than 5 are generally considered to be trivial. This is explained by the fact that
if a snark contains a digon, a triangle, or a quadrilateral, one can easily remove it and
subsequently restore 3-regularity to produce a smaller snark; similar reductions can be
applied to small cuts [33]. Thus, a nontrivial snark must be cyclically 4-edge-connected
and have girth at least 5.

The standard reductions to nontrivial snarks have been extremely useful in numerous
investigations related to important conjectures in the area, such as the cycle double-cover
conjecture [11], 5-flow conjecture [24], or Fulkerson’s conjecture [25]. In this situation it is
natural to attempt finding similar reductions within the class of snarks with defect 3. The
expected aim would be to show that, given a snark with defect 3, one can eliminate cycles
of length smaller than 5 and cycle-separating edge cuts of size smaller than 4 to produce
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– in a certain natural manner – a snark whose defect is still 3 but lacks these “trivial”
features. Our main results, Theorems 5.1 and 5.2, demonstrate that this expectation
almost comes true.

In Theorem 5.1 we show that every snark G with defect 3 can be reduced to a snark
G′ with defect 3 such that either G′ is nontrivial or G′ contains a single triangle whose
contraction produces a nontrivial snark with defect greater than 3. Such a triangle is
called essential.

In Theorem 5.2 we further show that the reduced snark G′ arises from a nontrivial
snark by inflating a vertex lying on a 5-cycle that contains an edge uv such that G′ −{u, v}
is 3-edge-colourable. Our main results thus indicate that in the study of colouring defect
of cubic graphs one cannot completely avoid graphs with triangles.

In addition, in Theorem 5.3 we show that by contracting an essential triangle in a
snark with defect 3 one can obtain a nontrivial snark with an arbitrarily high defect.

Proofs of these results require a detailed study of triples {M1,M2,M3} of perfect
matchings in cubic graphs that leave the minimum number of uncovered edges, along with
structures derived from them, especially hexagonal cores and Fano flows. A hexagonal
core of a snark with defect 3 is a 6-cycle induced by the set of all edges that are not simply
covered by the triple {M1,M2,M3}; it alternates the uncovered edges with the doubly
covered ones. A closely related concept is a that of a Fano flow. It is a nowhere-zero
Z2 × Z2 × Z2-flow on G induced by the 2-factors complementary to M1, M2, and M3. Its
flow values can be identified with the points of the Fano plane and flow patterns around
vertices with the lines of a configuration F4 of four lines covering all seven points of the
Fano plane (see Figure 1). Analysing Fano flows across small edge cuts or around short
circuits makes up a substantial part of the proofs of Theorems 5.1 and 5.2.

Our paper is organised as follows. In the next section we collect the most important
definitions and facts needed for understanding this paper. In Section 3 we introduce
structures related to the colouring defect and investigate their properties. After establishing
auxiliary results about reductions in Section 4, we prove our main results, Theorems 5.1
and 5.2, in Section 5. In Section 6 we discuss how the reductions established in the
previous sections can be applied to verifying Berge’s conjecture for snarks of defect 3.
The conjecture states that five perfect matchings are sufficient to cover all edges of any
bridgeless cubic graphs. We explain why every snark of defect 3 fulfils Berge’s conjecture,
moreover, we provide a structural characterisation of those snarks of defect 3 that require
five perfect matchings to cover their edges (Theorem 6.5). This significantly strengthens a
result of Steffen [31, Theorem 2.14], where Berge’s conjecture was verified for cyclically
4-edge-connected cubic graphs of defect 3. The proof will appear in a separate article
[19] (see also [18]). Finally, in Section 7 we summarise the outputs of computer-aided
experiments directed towards defect and cores of nontrivial snarks of order up to 36. These
results provide partial support for several conjectures that we propose at the end of this
paper.
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2 Preliminaries

All graphs in this paper are finite and for the most part cubic (3-valent). Multiple edges
and loops are permitted. We use the term circuit to mean a connected 2-regular graph.
An m-cycle is a circuit of length m. The length of a shortest circuit in a graph is its
girth. If H is an induced subgraph of G, we let G/H denote the graph arising from G by
contracting each component of H into a single vertex.

For a subgraph (or just a set of vertices) Y of a graph G we let δ(Y ) denote the edge
cut consisting of all edges joining Y to vertices not in Y . A connected graph G is said to
be cyclically k-edge-connected if the removal of fewer than k edges from G cannot create a
graph with at least two components containing circuits. An edge cut S in G that separates
two circuits from each other is cycle-separating.

Large graphs are typically constructed from smaller building blocks called multipoles.
Like a graph, each multipole M has its vertex set V (M), its edge set E(M), and an
incidence relation between vertices and edges. Each edge of M has two ends, and each end
may, but need not be, incident with a vertex of M . An end of an edge that is not incident
with a vertex is called a free end or a semiedge. An edge with exactly one free end is
called a dangling edge. An isolated edge is one whose both ends are free. All multipoles
considered in this paper are cubic; this means that every vertex is incident with exactly
three edge ends. An n-pole is a multipole with n free ends. Free ends of a multipole can
be distributed into pairwise disjoint sets, called connectors. An (n1, n2, . . . , nk)-pole is an
n-pole with n = n1 + n2 + · · · + nk whose semiedges are distributed into k connectors
S1, S2, . . . , Sk, each Si being of size ni.

Consider an arbitrary n-pole M and choose two distinct free ends si and sj belonging
to edges e and e′, respectively. We say that a multipole M ′ is formed by the junction of si

and sj if M ′ arises from M by identifying si and sj while retaining the other ends of e
and e′. The newly formed edge is denoted by si ∗ sj. If si and sj are the free ends of the
same isolated edge e, the junction amounts to the deletion of e. A junction of two n-poles
M and N is a cubic graph, denoted by M ∗N , arising from M and N by performing the
junction of their respective semiedge sets. If a bijection σ between the semiedges of M and
those of N is specified, we write M ∗σ N . Throughout the paper we will use the following
convention: if a graph G can be expressed in the form G = M ∗N , then, depending on
the context, G−M will either mean the multipole N including its dangling edges or will
denote the induced subgraph G−M . There is no danger of confusion.

An edge colouring of a multipole M is a mapping from the edge set of M to a set of
colours. A colouring is proper if any two edge-ends incident with the same vertex carry
distinct colours. A k-edge-colouring is a proper colouring where the set of colours has k
elements. A cubic graph G is said to be colourable or uncolourable depending on whether
it does or does not admit a 3-edge-colouring, respectively. A 2-connected uncolourable
cubic graph is called a snark.

In the study of snarks it is useful to take the colours 1, 2, and 3 to be the nonzero
elements of the group Z2 × Z2. To be specific, one can identify a colour with its binary
representation: 1 = (0, 1), 2 = (1, 0), and 3 = (1, 1). With this choice, the condition that
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the three colours meeting at any vertex v are all distinct is equivalent to requiring that the
sum of the colours at v is 0 = (0, 0). The latter condition coincides with the Kirchhoff law
for a nowhere-zero Z2 ×Z2-flow on a graph, or a multipole. Thus a proper 3-edge-colouring
of a cubic multipole coincides the a nowhere-zero Z2 × Z2-flow on it.

The following well-known statement is a direct consequence of Kirchhoff’s law.

Lemma 2.1 (Parity Lemma). Let M = M(s1, s2, . . . , sk) be a k-pole endowed with a
3-edge-colouring ϕ. Then

k∑
i=1

ϕ(si) = 0.

Equivalently, the number of free ends of M carrying any fixed colour has the same parity
as k.

Our definition leaves the concept of a snark as wide as possible since more restrictive
definitions may lead to overlooking certain important phenomena in cubic graphs. Our
definition thus follows Cameron et al. [6], Nedela and Škoviera [29], Steffen [30], and
others, rather than a more common approach where snarks are required to be cyclically
4-edge-connected and have girth at least 5, see for example [9]. In this paper, such snarks
are called nontrivial.

The problem of nontriviality of snarks has been widely discussed in the literature, see
for example [6, 29, 30]. Here we follow a systematic approach to nontriviality of snarks
proposed by Nedela and Škoviera [29]. A set of vertices or an induced subgraph H of
a snark G is called non-removable if the subgraph obtained by removing the vertices
contained in H is colourable; otherwise, H is removable. A snark G is critical if every pair
of distinct adjacent vertices of G is non-removable. A snark is bicritical if every pair of
distinct vertices of G is non-removable. A snark G is irreducible if every induced subgraph
H with at least two vertices is non-removable. It is known that a snark is irreducible if
and only if it is bicritical, see [29, Theorem 4.4 and Corollary 4.6].

The following well-known lemma a is a straightforward consequence of Lemma 2.1.

Lemma 2.2. In an arbitrary snark, every circuit of length at most 4 is removable.

Parity Lemma has a remarkable consequence that colourable 4-poles extendable to a
snark fall into two types – isochromatic and heterochromatic (see for example [7, Section 3]).
Such a 4-pole is isochromatic if its semiedges can be partitioned into two pairs {x, x′}
and {y, y′} such that for every 3-edge-colouring ϕ one has ϕ(x) = ϕ(x′) and ϕ(y) = ϕ(y′);
otherwise it is heterochromatic. It can be shown that a colourable 4-pole is isochromatic
M if and only if G arises from a snark G by removing two adjacent vertices u and v.
Moreover, the two pairs {x, x′} and {y, y′} correspond to the edges formerly incident with
the vertices u and v, respectively.
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3 Arrays of perfect matchings and the defect of a snark

Various important structures in cubic graphs, such as Tait colourings, Berge or Fulkerson
covers, Fan-Raspaud colourings, and several others, can be described in terms of sets or
lists of perfect matchings obeying certain additional conditions. In this paper such lists will
be called arrays of perfect matchings. To be more precise, a k-array of perfect matchings in
a cubic graph G, briefly a k-array for G, is an arbitrary collection M = {M1,M2, . . . ,Mk}
of k not necessarily distinct perfect matchings of G. In particular, a Berge cover of G is a
5-array B such that each edge of G belongs to some member of B; a Fulkerson cover is
6-array F such that each edge of G belongs to precisely two members of F .

This paper focuses on the properties of snarks that can be expressed by means of
k-arrays of perfect matchings with k = 3. Since every proper 3-edge-colouring gives rise
to an array whose members are the three colour classes, 3-arrays can be regarded as
approximations of 3-edge-colourings. An edge of G that belongs to at least one of the
perfect matchings of the array M = {M1,M2,M3} will be considered to be covered. An
edge will be called uncovered, simply covered, doubly covered, or triply covered if it belongs,
respectively, to zero, one, two, or three distinct members of M.

Given a 3-array M for G, it is a natural task to maximise the number of covered
edges, or equivalently, to minimise the number of uncovered ones. A 3-array that leaves
the minimum number of uncovered edges will be called optimal. The minimal number of
edges left uncovered by an optimal 3-array is the colouring defect of G, briefly, the defect,
denoted by df(G).

In this section we establish several basic results concerning 3-arrays and the defect of a
cubic graph with emphasis on optimal 3-arrays. We remark that some of the ideas and
results have already appeared in the papers by Steffen and others [13, 14, 31, 32]. However,
in order to make our exposition self-contained we need to accompany such results with
proofs.

With each 3-array of perfect matchings one can associate several important structures
which reside within the underlying graph. We discuss two of them: the characteristic flow
and the core.
1. Characteristic flow. Let M = {M1,M2,M3} be a 3-array of a cubic graph G. One
way to describe M is based on regarding the indices 1, 2, and 3 as colours. Since the same
edge may belong to more than one member of M, an edge of G may receive from M more
than one element of the set {1, 2, 3}. To each edge e of G we can therefore assign the list
ϕ(e) of elements of {1, 2, 3} in lexicographic order it receives from M. We let w(e) denote
the number of colours in the list ϕ(e) and call it the weight. In this way M gives rise to
an edge-colouring

ϕ : E(G) → {∅, 1, 2, 3, 12, 13, 23, 123}

where ∅ denotes the empty list. We call ϕ the characteristic colouring for M. Obviously,
such a colouring determines a 3-array if and only if, for each vertex v of G, all three indices
from {1, 2, 3} occur precisely once on the edges incident with v. In general, ϕ need not be
a proper colouring. As we shall see below, ϕ is a proper edge-colouring if and only if G
has no triply covered edge.
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A different but equivalent way of representing a 3-array uses a mapping

χ : E(G) → Z3
2, e 7→ χ(e) = (x1, x2, x3)

defined by setting xi = 0 if and only if e ∈ Mi for i ∈ {1, 2, 3}. Since the complement of
each Mi in G is a 2-factor, it is easy to see that χ is a Z3

2-flow. We call χ the characteristic
flow for M. Again, χ is a nowhere-zero Z3

2-flow if and only if G contains no triply covered
edge. In the context of 3-arrays the characteristic flow was introduced in [14, p. 166], but
the idea is older, see [27, Section 4]. Observe that the characteristic flow χ of a 3-array and
the colouring ϕ uniquely determine each other. In particular, the condition on ϕ requiring
all three indices from {1, 2, 3} to occur precisely once in a colour around any vertex is
equivalent to Kirchhoff’s law.

The following result characterises 3-arrays with no triply covered edge.

Proposition 3.1. Let M be a 3-array of perfect matchings of a cubic graph G. The
following three statements are equivalent.

(i) G has no triply covered edge with respect to M.

(ii) The associated colouring ϕ : E(G) → {∅, 1, 2, 3, 12, 13, 23, 123} is proper.

(iii) The characteristic flow χ for M, with values in Z3
2, is nowhere-zero.

Proof. (i) ⇔ (ii): Consider an arbitrary vertex v of G and the three edges e1, e2, and e3
incident with v. Since every perfect matching contains an edge incident with v, and since
G has no triply covered edge, the distribution of weights on (e1, e2, e3) is either (1, 1, 1) or
(2, 1, 0) up to permutation of values. In both cases it is obvious that e1, e2, and e3 receive
distinct colours from ϕ. For the converse, if an edge e = uv of G is triply covered, then
ϕ(e) = 123 and the other two edges incident with u receive colour ∅. Thus ϕ is not proper.

(ii) ⇔ (iii): This is an immediate consequence of the fact that the number of vanishing
coordinates in χ(e) coincides with w(e).

∅

23
13

12

1 2 3

(a)

111

100
010

001

011 101 110

(b)

Figure 1: The configuration F4 for 3-arrays with no triply covered edges

The fact that 3-arrays with no triply covered edge are associated to certain nowhere-
zero flows and proper edge-colourings suggests that they deserve a special attention. If a
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3-array M has no triply covered edge, the flow values of χ can be regarded as points of
the Fano plane PG(2, 2) represented by the standard projective coordinates from Z3

2 − {0}.
In this representation, the points of PG(2, 2) are the non-zero elements of Z3

2 and the lines
of PG(2, 2) are the 3-element subsets {x, y, z} of Z3

2 − {0} such that x+ y + z = 0. The
definition of the characteristic flow implies that for every vertex v of G the three flow values
meeting at v form a line of the Fano plane. Since every vertex of G is incident with an edge
of each member of M, one can easily deduce that only four lines of the Fano plane can
occur around a vertex, and these lines form a point-line configuration in PG(2, 2) which is
shown in Figure 1; we denote this configuration by F4. On the left-hand side of the figure
the points are labelled with the corresponding colours – subsets of {1, 2, 3}. Based on this
correspondence we will refer to the colouring ϕ and the flow χ as the Fano colouring and
the Fano flow associated with a 3-array M. The colours from {∅, 1, 2, 3, 12, 13, 23} and
the corresponding elements of Z3

2 − {0} will be used interchangeably.
2. Core. Another important structure associated with a 3-array is its core. The core of
a 3-array M = {M1,M2,M3} of G is the subgraph of G induced by all the edges of G
that are not simply covered; we denote it by core(M). The core will be called optimal
whenever M is optimal.

The edge set of core(M) thus coincides with E0(M) ∪ E23(M), where E0(M) and
E23(M) denote the set of all uncovered edges and the set of all doubly or triply covered
edges with respect to M, respectively. If |E0(M)| = k, we say that core(M) is a k-core.
It is worth mentioning that if G is 3-edge-colourable and M consists of three disjoint
perfect matchings, then core(M) is empty. If G is not 3-edge-colourable, then every core
must be nonempty. Figure 2 shows the Petersen graph endowed with a 3-array whose core
is the “outer” 6-cycle. The hexagon is in fact an optimal core of the Petersen graph.

∅

23 13

12

1
2

3

∅

∅3

3
1

1 2

2

Figure 2: An optimal 3-array of the Petersen graph

The following proposition, much of which was proved by Steffen in [31, Lemma 2.2],
lists the most fundamental properties of cores. We include the proof for the reader’s
convenience.

Proposition 3.2. Let M = {M1,M2,M3} be an arbitrary 3-array of perfect matchings of
a snark G. Then the following hold:

(i) Every component of core(M) is either an even circuit which alternates doubly covered
and uncovered edges or a subdivision of a cubic graph. Moreover, core(M) is a
collection of disjoint circuits if and only if G has no triply covered edge.
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(ii) Every 2-valent vertex of core(M) is incident with one doubly covered edge and one
uncovered edge, while every 3-valent vertex is incident with one triply covered edge
and two uncovered edges.

(iii) E23(M) is a perfect matching of core(M); consequently, |E0| = |E2(M)|+2|E3(M)|.

(iv) G− E0(M) is 3-edge-colourable.

(v) If M is optimal, then every component of core(M) is a simple graph which is either
an even circuit of length at least 6 or a subdivision of a cubic graph.

Proof. Set H = core(M). We claim that every vertex of H has valency at least 2. Indeed,
if a vertex v of G is incident with a triply covered edge, then the other two edges incident
with v are uncovered. So, in this case, v has degree 3 in H. If v is incident with a doubly
covered edge, then exactly one of the remaining edges is simply covered and the other one
is uncovered. Thus v has valency 2 in H. If all three edges incident with v are simply
covered, then v does not belong to H. It follows that every vertex in H has degree at
least 2, and also that the set E23(M) of edges forms a perfect matching in H. Statements
(i)–(iii) now follow immediately.

To prove (iv), assign colour i to every edge of G that is simply covered and belongs to
Mi. If an edge of G is doubly covered, then both end-vertices are incident in G with one
uncovered edge and one simply covered edge. It follows that we can colour such an edge
with the colour c ∈ {1, 2, 3} that does not occur on the simply covered edges adjacent
to it. Finally, if an edge of G is triply covered, both end-vertices are incident with two
uncovered edges. Thus we can colour such an edge with any colour from {1, 2, 3}. In this
manner we have clearly produced a 3-edge-colouring of G− E0(M).

To prove (v) it is enough to argue that neither a digon nor a 4-cycle can occur as
components of the core of an optimal 3-array. If core(M) contains a 4-cycle Q = (e0e1e2e3),
then two edges of Q are uncovered, say e0 and e2, and the other two are doubly covered.
Clearly, one of the three perfect matchings covers both e1 and e3. Without loss of generality
we may assume that it is M1. The characteristic colouring ϕ then satisfies ϕ(e1) = 1i and
ϕ(e3) = 1j for some i, j ∈ {2, 3}. We can modify ϕ to ϕ′ by setting ϕ′(e0) = 1, ϕ′(e2) = 1,
ϕ′(e1) = i, and ϕ′(e0) = j, and leaving all the remaining edges ϕ′(e) = ϕ(e). However, ϕ′

now clearly determines a 3-array with fewer uncovered edges, contradicting the minimality
of M. This proves that core(M) does not contain a quadrilateral. The argument that
core(M) does not contain a digon is similar and therefore is omitted.

We say that a 3-array M of G has a regular core if each component of core(M) is a
circuit; otherwise the core is called irregular. By Proposition 3.2(ii), a core is regular if
and only if G has no triply covered edge. (Steffen [31] calls such a core cyclic, but we
believe that the letter term is somewhat misleading as it might suggest that the core is
a single k-cycle for some k.) The well-known conjecture of Fan and Raspaud [8] states
that every bridgeless cubic graph has three perfect matchings M1, M2, and M3 with
M1 ∩M2 ∩M3 = ∅. Equivalently, the conjecture states that every bridgeless cubic graph
has a 3-array with a regular core. The conjecture is trivially true for 3-edge-colourable
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graphs. Máčajová and Škoviera [28] proved this conjecture to be true for cubic graphs
with oddness 2. We emphasise that neither the conjecture nor the proved facts suggest
anything about optimal cores.

The following theorem characterises snarks with minimal colour defect. The lower
bound 3 for the defect of a snark is due to Steffen [31, Corollary 2.5].

Theorem 3.3. Every snark G has df(G) ⩾ 3. Furthermore, the following three statements
are equivalent for any cubic graph G.

(i) df(G) = 3.

(ii) The core of any optimal 3-array of G is a 6-cycle.

(iii) G contains an induced 6-cycle C such that the subgraph G− E(C) admits a proper
3-edge-colouring under which the six edges of δ(C) receive colours 1, 1, 2, 2, 3, 3 or
1, 2, 2, 3, 3, 1 with respect to a fixed cyclic ordering induced by an orientation of C.

Proof. Let G be a snark. First observe that any two perfect matchings in G intersect.
Indeed, if there were two disjoint perfect matchings in G, the set of remaining edges would
be a third perfect matching, implying that G is 3-edge-colourable.

Now consider an optimal 3-array M = {M1,M2,M3} of perfect matchings of G, and
let H be the core of M. Since G is a snark, we have df(G) > 0, so G contains at least
one uncovered edge and at least one multiply covered edge. To prove that df(G) ⩾ 3 we
consider two cases.
Case 1. G contains a triply covered edge e. Since G is bridgeless, each end-vertex of e is
incident with two distinct uncovered edges. By Proposition 3.2(v), these four edges are all
pairwise distinct, implying that df(G) ⩾ 4.
Case 2. G contains no triply covered edge. Proposition 3.2(i) and (v) now implies that
each component of H is a circuit of length at least 6, which means that there are at least
three uncovered edges. Hence, df(G) ⩾ 3 in this case.

So far we have shown that for every snark we have df(G) ⩾ 3. We now finish the
proof by proving that the statements (i)-(iii) are equivalent. Let G be an arbitrary cubic
graph. Assume that df(G) = 3. If we combine (ii) and (v) of Proposition 3.2, we can
conclude that G contains no triply covered edge. Proposition 3.2(i) now tells us that each
component of H is an even circuit that alternates uncovered and doubly covered edges. By
Proposition 3.2(v), each such circuit has length at least 6, so H must be a single hexagon.
This establishes the implication (i) ⇒ (ii).

(ii) ⇒ (iii): Assume that the core of an optimal 3-array M of G is a 6-cycle C. Hence,
G is a snark. By Proposition 3.2(i) and (v), G has no triply covered edge. It follows that
on C the uncovered edges and the doubly covered edges alternate and that the edges
leaving C are simply covered. Since G is a snark, any two perfect matchings intersect,
which implies that the three doubly covered edges receive colours 12, 13, and 23 in some
order. The colours of doubly covered edges determine the order of colours on the edges
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leaving C uniquely, and it is easy to see that they are as stated. Consequently, the resulting
structure is as illustrated in Figure 3 up to permutation of the set {1, 2, 3}. In particular,
C = (e0e1 . . . e5), and the edges leaving C are f0, f1, . . . , f5, where each fi is adjacent to
ei−1 and ei with indices reduced modulo 6.

It remains to show that C is an induced 6-cycle. Suppose not. Then C has a chord,
necessarily a simply covered edge. Without loss of generality we can assume that under the
Fano colouring ϕM corresponding to M the chord has colour 1. If we adopt the notation
of Figure 3, the latter assumption means that f4 = f5. However, we can now extend the
3-edge-colouring of G− E(C) determined by M to a 3-edge-colouring ψ of the entire G.
Indeed, it is sufficient to set ψ(e1) = 1, which further forces ψ(e0) = 2, ψ(e2) = 3, and
ψ(e3) = ψ(e5) = 1. Thus we can define ψ(e4) = 2 and ψ(f4) = 3 and let ψ(x) = ϕM(x)
for all the remaining edges of G. Clearly, this is a proper 3-edge-colouring of G, which is a
contradiction.

The implication (iii) ⇒ (i) is trivial.

Figure 3: The core for df = 3 and its vicinity

If G is a snark with colouring defect 3, then by Theorem 3.3(iii) it contains an optimal
array M = {M1,M2,M3} whose core is an induced 6-cycle. Such a core will be referred
to as a hexagonal core of G.

Consider an arbitrary induced 6-cycle Q = (q0q1 . . . q5) in a snark G with df(G) = 3,
and let r1, . . . , r5 be the edges of δ(Q), where each ri is adjacent to qi−1 and qi, with indices
reduced modulo 6. In general, Q need not constitute the core of any optimal 3-array for G.
If it does, we say that Q is a core hexagon. In such a case, there is an optimal array M
for G such that E0(M) consists of three independent edges of Q. This can happen in two
ways, either E0(M) = {q0, q2, q4} or E0(M) = {q1, q3, q5}.

Assume that E0(M) = {q1, q3, q5}. Let ϕ = ϕM be the Fano colouring of G induced by
M. Since permuting the indices of the perfect matchings M1, M2, and M3 of M does not
essentially change the 3-array, we can assume, without loss of generality, that ϕ(q0) = 12,
ϕ(q2) = 13, and ϕ(q4) = 23. In other words, if E0(M) = {q1, q3, q5}, we can assume that
around Q the Fano colouring ϕ is as shown in Figure 3, with each qi being identified
with ei. Similarly, if E0(M) = {q0, q2, q4}, we can assume that the values of ϕ around Q
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are rotated one step counter-clockwise with respect to Figure 3. The conclusion is that if
Q is a core hexagon, then the cyclic sequence (ϕ(r0), ϕ(r1), . . . , ϕ(r5)) of colours leaving Q
is either (3, 3, 2, 2, 1, 1) or (3, 2, 2, 1, 1, 3), possibly after permuting the set {1, 2, 3}.

The previous considerations imply that in order to decide whether Q is, or is not, a
core hexagon, it is sufficient to check whether at least one of the assignments (3, 3, 2, 2, 1, 1)
or (3, 2, 2, 1, 1, 3) of colours to the edges of δ(Q) extends to a proper 3-edge-colouring of
G− E(Q). If both assignments extend, then Q is the core of two optimal 3-arrays with
disjoint sets of uncovered edges. In this case we say that Q is a double-core hexagon. If
only one of the assignments extends, then we say that Q is a single-core hexagon.

Observe that if a snark contains a double-core hexagon, then the two corresponding
3-arrays constitute a Fulkerson cover of G, that is, a collection of six perfect matchings
that cover each edge precisely twice. The distribution of various types of hexagons in
snarks will be discussed in Section 7.

4 Reduction to nontrivial snarks

Let G be a snark containing a k-edge-cut R with k ⩾ 2, which decomposes G into a
junction H ∗K of two k-poles H and K. If one of them, say H, is uncolourable, we can
extend H to a snark G′ of order not exceeding that of G by joining H with a suitable
k-pole L of order |L| ⩽ |K| (possibly L = K). Following [29], we call G′ a k-reduction of G,
and say that G can be reduced to G′ along R. With a slight abuse of terminology, we also
say that G′ arises from G by a reduction with respect to R. More generally, we say that a
snark G can be reduced to a snark G′ if there exists a sequence G = G0, G1, . . . , Gt = G′ of
snarks such that for each i ∈ {0, . . . , t−1} the snark Gi can be reduced to Gi+1 along some
edge cut. A reduction G′ of G is said to be proper if |G′| < |G|. A reduction G′ = H ∗ L
of G = H ∗K where L has the minimum possible order is called a completion of H to a
snark. Observe that if G′ = H ∗ L = H̄ is a completion of H, then |L| = 0 or 1 depending
on whether k is even or odd, respectively. Moreover, if k ∈ {2, 3}, then H has a unique
completion to a snark up to isomorphism.

The aim of the next two sections is to prove that every snark with defect 3 can be
reduced to a nontrivial snark with defect 3, or else it has a very specific structure. In this
section we gather auxiliary results needed for the proofs of our main results, which will be
presented in Section 5.

A short reflection reveals that a reduction to a nontrivial snark of defect 3 is clearly
not possible when the snark in question contains a triangle whose contraction produces a
snark with defect greater than 3. A triangle with this property will be called essential.
We show that the existence of an essential triangle is the only obstruction that prevents a
snark with defect 3 from reduction, and that, in such a case, there is only one essential
triangle in the graph. As we shall see later, an infinite family of snarks containing an
essential triangle indeed exists (see Theorem 5.3). One such graph can be created from
the graph in Figure 10 by inflating the central vertex z to a triangle.

Throughout this section we use the following notation: G is a snark with df(G) = 3,
M = {M1,M3,M3} is an optimal 3-array of G whose core C is a 6-cycle, χ is the
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characteristic flow for M, and ϕ is the associated Fano colouring. We further assume,
without loss of generality, that the Fano colouring and the names of edges in the vicinity
of C are those as in Figure 3.

Lemma 4.1. Let G be a snark with defect 3, let C be a hexagonal core of G, and let T be
an arbitrary triangle in G. The following statements hold.

(i) If C ∩ T = ∅, then T is not essential.

(ii) If C ∩ T ≠ ∅, then C ∩ T consists of a single uncovered edge, and the edge cut δ(T )
comprises three pairwise independent edges.

(iii) Every hexagonal core intersects at most one triangle.

(iv) G has at most one essential triangle.

Proof. Let G be a snark with df(G) = 3, let C be the core of an optimal 3-array M
of G, and let T be an arbitrary triangle in G. Clearly, G/T is a snark. We claim that if
C ∩ T = ∅, then T is not essential. Indeed, if C ∩ T = ∅, then δ(T ) consists of simply
covered edges, and by the Kirchhoff law for the characteristic flow these edges belong
to three distinct members of M. It follows that M induces a 3-array M′ of G/T with
core(M′) = C. Hence df(G/T ) = 3, which means that the triangle T is not essential. This
proves (i).

Now assume that C ∩ T ̸= ∅. Obviously, C ∩ T consists of a single edge e because C
is an induced 6-cycle, by Theorem 3.3. If e was doubly covered, then C ∩ δ(T ) would
consist of two uncovered edges, which in turn would violate the Kirchhoff law. Therefore e
is uncovered. To finish the proof of (ii), suppose to the contrary that two edges of δ(T )
are incident with the same vertex w outside T . Let f be the third edge of δ(T ). Clearly,
δ(T ∪ {w}) is a 2-edge-cut in G containing f , and both edges of δ(T ∪ {w}) are traversed
by C. Kirchhoff’s law implies that these two edges must carry the same value under the
characteristic flow, so both of them are uncovered. In particular, f is uncovered. However,
f is adjacent to e, so e is doubly covered, contrary to what we have already proved. This
establishes (ii). (A typical triangle along with the associated Fano colouring is illustrated
in Figure 4.)

Next we prove (iii). Suppose to the contrary that C = (e0e1 . . . e5) intersects two
distinct triangles T1 and T2. Adopting the notation of Figure 3, we can further assume
that T1 contains e1 while T2 contains e5, both edges being uncovered. The remaining
uncovered edge e3 may, or may not, belong to a triangle. Clearly, T1 = (e1f1f2) and
T2 = (e5f5f0). Let us contract each of T1 and T2 to a vertex thereby producing a cubic
graph G′ = G/(T1 ∪ T2). Note that G′ is a snark and C ′ = (e0e2e3e4) is a quadrilateral
in G′. Moreover, G′ − V (C ′) is 3-edge-colourable which means that C ′ is non-removable.
However, this fact contradicts Lemma 2.2 and establishes (iii).

Assume that G has an essential triangle, and let T be any of them. If C is an arbitrary
hexagonal core, then C intersects all essential triangles, according to (i); in particular, C
intersects T . However, (iii) implies that T is the only triangle intersected by C. Therefore,
T is the only essential triangle of G, which proves (iv).
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Figure 4: An essential triangle intersected by a hexagonal core

Lemma 4.2. Let G be a snark with df(G) = 3. If G contains a 2-edge cut R, then the
hexagonal core C of any optimal array is disjoint from R. Moreover, C is inherited into
the snark G′ with df(G′) = 3 arising from the reduction of G with respect to R.

Proof. Let R be a 2-edge-cut of G whose removal leaves components H and K. Consider
a 3-array M for G whose core is a 6-cycle C of G. We show that C is wholly contained in
one of the components of G−R. Suppose not. Then C intersects R, and hence R ⊆ C.
Kirchhoff’s law for the characteristic flow implies that the edges of R must have the same
colour, which means that both edges are uncovered. Adopting the notation for C in
accordance with Figure 3 we may assume that R = {e3, e5}. It follows that the edges e0,
e1, and e2 belong to one of the components, say H, and the edge e4 belongs to the other
component. The completion H̄ of H contains a 4-cycle (e0e1e2f), where f is the edge
resulting from the extension of H to H̄. It is easy to see that if f is assigned colour 1, then
the 3-edge-colouring of H − E(C) induced by M uniquely extends to a 3-edge-colouring
of H̄. Similarly we can check that the completion K̄ of K is 3-edge-colourable, too. With
both H̄ and K̄ being 3-edge-colourable, we conclude that so is G, which is a contradiction.
This proves that C is contained in one of the components of G−R, say H. All the edges
of K are now simply covered, so K is 3-edge-colourable, and hence H is not. It is easy to
see that the matchings M1 ∩H, M2 ∩H, and M3 ∩H of H extend to perfect matchings
M ′

1, M ′
2, and M ′

3 of H̄, which constitute a 3-array of H̄ having C as its core. Therefore
df(H̄) = 3, and G′ = H̄ is the sought reduction of G.

Lemma 4.3. Let G be a snark with df(G) = 3. If G contains a cycle-separating 3-cut, then
G admits a reduction to a smaller snark G′ with df(G′) = 3, unless one of the components
resulting from the removal of the cut is an essential triangle. Every hexagonal core of G
that does not intersect a triangle is inherited into G′.

Proof. Let R = {r1, r2, r3} be an arbitrary cycle-separating 3-edge-cut in G, and let H
and K be the components of G−R. There are two cases to consider.
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Case 1. G admits an optimal 3-array M such that core(M) ∩ R = ∅. We show that
contracting the component of G−R not containing core(M) to a vertex produces a proper
reduction G′ of G with df(G′) = 3. Let C be the 6-cycle constituting the core of M.
The assumption guarantees that C is fully contained in a component of G − R, say H.
Consider the completions H̄ and K̄ to cubic graphs. Since K is 3-edge-colourable, H is not.
Therefore K̄ is 3-edge-colourable, and H̄ is not. By Theorem 3.3, df(H̄) ⩾ 3. As C ⊆ H,
the edges of R are simply covered, and by the Kirchhoff law applied to the characteristic
flow for M they belong to three distinct members of M. It is now clear that M induces
a 3-array M′ of H̄ with C as its core. Therefore df(H̄) = 3, and G′ = H̄ is the required
reduction of G containing C. Note that G′ is isomorphic to the graph G/K obtained from
G by contracting K into a single vertex. This establishes Case 1.
Case 2. The core of every optimal 3-array for G intersects the 3-edge-cut R. We start
with the following observation.
Claim 1. G−R has a unique component Q such G/Q is a snark. Moreover, C ∩Q consists
of a single uncovered edge.
Proof of Claim 1. Clearly, |C ∩ R| = 2, and we may assume that C ∩ R = {r1, r2}.
Kirchhoff’s law yields that χ(r1) + χ(r2) + χ(r3) = 0. By Proposition 3.1, χ is a nowhere-
zero Z3

2-flow, therefore the values χ(r1), χ(r2), and χ(r3) constitute a line ℓ in the Fano
plane. Since C intersects R, the line {(0, 1, 1), (1, 0, 1), (1, 1, 0)} = {1, 2, 3} is excluded.
There remain two possibilities for ℓ, which imply that either

• both r1 and r2 are doubly covered, or

• one of them is doubly covered and the other is uncovered.

Without loss of generality we may assume that in the former case ϕ(r1) = 12, ϕ(r2) = 13,
and ϕ(r3) = 1, and in the latter case ϕ(r1) = 12, ϕ(r2) = ∅, and ϕ(r3) = 3, see Figure 1.
We prove that the latter possibility does not occur.

Suppose to the contrary that ϕ(r1) = 12, ϕ(r2) = ∅, and ϕ(r3) = 3. Since the edges
in R are independent, we conclude that r1 = e0 and r2 = e3, see Figure 3. Let H be the
component of G−R that contains e1 and e2. If we set ϕ′(e0) = 2, then the 3-edge-colouring
of ϕ of H −E(C) associated with M extends to a 3-edge-colouring ϕ′ of H̄. By symmetry,
the 3-edge-colouring ϕ of K − E(C) extends to a 3-edge-colouring of K̄. It follows that G
is 3-edge-colourable, which is a contradiction.

Therefore ϕ(r1) = 12, ϕ(r2) = 13, and ϕ(r3) = 1. Now r1 = e0 and r2 = e2, so one of
the components of G−R, say H, contains the path e3e4e5 and the other component K
contains the uncovered edge e1. Clearly, K is 3-edge-colourable. In other words, K is the
required component Q of G−R such that Q∩C consists of a single uncovered edge. This
establishes Claim 1.

To finish the proof it remains to establish the following.
Claim 2. If Q is not an essential triangle, then G has a proper reduction to a snark G′

with df(G′) = 3.
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Proof of Claim 2. We keep the assumptions adopted in the course of the proof of Claim 1.
In particular, C ∩R = {e0, e2}, Q = K, and the unique edge of Q ∩ C is e1.

First assume that Q = K is a triangle. Clearly, the graph G/K obtained by contracting
K into a single vertex is a snark, so df(G/K) ⩾ 3. As K is not essential, we conclude that
df(G/K) = 3, implying that G/K is the required reduction of G. Note that, in this case,
every hexagonal core of G/K intersects the vertex of G/K resulting from the contraction
of K, which means that it is not inherited from G.

Next assume that K is not a triangle. Consider the 3-edge-cut R′ = {f1, f2, r3} in G.
Let H ′ and K ′ be the components of G−R′, with K ′ being the one that does not contain e1.
Note that C ⊆ H ′. Clearly, M induces a proper 3-edge-colouring of K ′, so H ′ is not
3-edge-colourable, and therefore the graph G′ = G/K ′ obtained from G by contracting
K ′ into a single vertex is a snark. Clearly, G′ is a proper reduction of G. Observe that
the edges e1, f1, and f2 form a triangle separated by R′ from the rest of G′. To show
that G′ is the sought reduction it remains to check that df(G′) = 3. To this end it is
sufficient to realise that M ′

i = Mi ∩ G′ is a perfect matching of G′ for each i ∈ {1, 2, 3}.
Thus M′ = {M ′

1,M
′
2,M

′
3} is a 3-array of G′ with core(M′) = core(M) = C, and we are

done. This concludes the proof of Claim 2 as well as that of Lemma 4.3.

(a) (b)

Figure 5: No hexagonal core of the snark G is inherited into G/T

Example 4.4. Lemma 4.1(i) informs us that if a snark with defect 3 contains an essential
triangle, then the triangle must be intersected by every hexagonal core. Somewhat
surprisingly, the converse is not true, which implies that the discussion following Claim 2
in the proof of Lemma 4.3 cannot be avoided. The graph G in Figure 5(a) has defect 3
and possesses three hexagonal cores, all of which intersect its only triangle T . The triangle
T is not essential in G, because the graph G/T , shown in Figure 5(b), has defect 3 as
well. The latter graph has two hexagonal cores, both containing the vertex resulting from
contraction of T , which is denoted by v1. Note that inflating G/T at any of the vertices vi

with i ∈ {1, 2, 3, 4} produces a snark with a triangle having the same property as T has
in G.
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Lemma 4.5. Let G be a snark with df(G) = 3. If a hexagonal core of G intersects a
quadrilateral, then the intersection consists of a single uncovered edge. Moreover, two edges
leaving the quadrilateral are doubly covered and the other two are simply covered.

Proof. Consider an arbitrary optimal 3-array M for G, and let C be its hexagonal core.
We keep using the previous notation for the characteristic flow and the Fano colouring
around C (cf. Figure 1 and Figure 3). Further, let D be a 4-cycle in G, and let R = δ(D).
Claim 1. |C ∩R| = 2.
Proof of Claim 1. Clearly, |C ∩ R| is even, so |C ∩ R| = 2 or |C ∩ R| = 4. The latter
possibility cannot occur. Indeed, if we had |C ∩R| = 4, then C ∩D would consist of two
independent edges of D. However, the other two edges of D would constitute chords of C,
contrary to Theorem 3.3.

By Claim 1, the edges of R naturally come in two pairs, those that belong to C and
those that do not. Let us assume that R = {r1, r2, r3, r4} where C ∩ R = {r1, r2}. The
other pair {r3, r4} thus consists of simply covered edges.
Claim 2. ϕ(r1) ̸= ϕ(r2).
Proof of Claim 2. Suppose to the contrary that ϕ(r1) = ϕ(r2). Clearly, this is only possible
when both r1 and r2 are uncovered. Since C ∩ D is a path and C has no chords, we
conclude that C ∩D is not a path of length 3. Since we are assuming ϕ(r1) = ϕ(r2), C ∩D
cannot be a path of length 2. We conclude that C ∩ D has one edge. Without loss of
generality we may assume that r1 = e5 and r2 = e1, so the unique edge of C ∩ D is e0.
It follows that D = (e0f1d0f0), where d0 is the edge joining the end-vertices u0 and u1 of
f0 and f1, respectively, not lying on C. Since ϕ(r1) = ϕ(r2), Kirchhoff’s law implies that
ϕ(r3) = ϕ(r4). Recalling that ϕ(f0) = ϕ(f1) = 3, we conclude ϕ(r3) ∈ {1, 2}. Without
loss of generality we may assume that ϕ(r3) = ϕ(r4) = 1. We are going to recolour the
edges of C ∪ D. If we set ϕ′(e3) = 3, we can uniquely extend the 3-edge-colouring of ϕ
of G− E(C ∪D) induced by M to a 3-edge-colouring ϕ′ of the entire G with ϕ′(e0) = 1,
ϕ′(e1) = 3, ϕ′(e2) = 1, ϕ′(e4) = 2, ϕ′(e5) = 3, ϕ′(f0) = 2, ϕ′(f1) = 2, and ϕ′(d0) = 3. This
contradiction proves that ϕ(r1) ̸= ϕ(r2).

An important consequence of Claim 2 is that the set ℓ = {χ(r1), χ(r2), χ(r3) + χ(r4)}
forms a line of the Fano plane. Replacing χ with ϕ, there are two possibilities for ℓ up
to permutation of the index set {1, 2, 3}, just as in the proof of Lemma 4.3 (see Claim 1
therein): either ℓ = {12, 13, 1} or ℓ = {∅, 12, 3}. Next we show that the latter possibility
does not occur.
Claim 3. {ϕ(r1), ϕ(r2), ϕ(r3) + ϕ(r4)} = {12, 13, 1}.
Proof of Claim 3. Suppose to the contrary that {ϕ(r1), ϕ(r2), ϕ(r3) + ϕ(r4)} = {∅, 12, 3}.
In view of symmetry, we can assume that ϕ(r1) = 12 and ϕ(r2) = ∅. It follows that
C ∩D coincides with the path e1e2 or e5e4. Without loos of generality we may assume the
former, so f2 ∈ {r3, r4} and D = (e1e2f3f1). We may further assume that f2 = r3, whence
ϕ(r3) = 2. Since r4 shares a common vertex with f1 and f3, and one has ϕ(f1) = 3 and
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ϕ(f3) = 2, we conclude that ϕ(r4) = 1. This, in particular, confirms the assumption that
ϕ(r3) +ϕ(r4) = 3. If we set ϕ′(e5) = 2, then the 3-edge-colouring of ϕ of G−E(C) induced
by M uniquely extends to a 3-edge-colouring ϕ′ of the entire G with ϕ′(e0) = 1, ϕ′(e1) = 3,
ϕ′(e2) = 1, ϕ′(e3) = 2, ϕ′(e4) = 3, ϕ′(f1) = 2, and ϕ′(f3) = 3. This contradiction establishes
Claim 3.

We have just proved that {ϕ(r1), ϕ(r2), ϕ(r3)+ϕ(r4)} = {12, 13, 1}. In view of symmetry,
we can assume that ϕ(r1) = 12, which implies that r1 = e0, r2 = e2, and that the unique
edge of C ∩D is the uncovered edge e1. This proves the lemma.

Proposition 4.6. Let G be a snark with df(G) = 3. If G contains a 4-cycle, then G can
be reduced to a smaller snark G′ with df(G′) = 3. Moreover, every hexagonal core of G is
inherited into G′.

Proof. Let D be a 4-cycle in G, and let R = δ(D) = {r1, r2, r3, r4}. We may assume that
the edges of R are independent, because otherwise G would have a cycle-separating 2-cut
or 3-cut, and we could apply Lemmas 4.2 and 4.3 to conclude that G admits a proper
reduction to a snark G′ with df(G′) = 3. Let M = {M1,M2,M3} be an arbitrary optimal
3-array for G, and let C be its hexagonal core. There are essentially two possibilities for
C ∩D: either C ∩D = ∅ or, by Lemma 4.5, C ∩D consists of a single edge.

If C ∩ D = ∅, then C ∩ R = ∅. By Lemma 2.2, the graph G − V (D) is not 3-edge-
colourable. The four dangling edges of G−V (D) are simply covered, and by the Kirchhoff
law they occur in two equally coloured pairs. We join each pair into a single edge thereby
producing a snark G′ of order |G′| = |G| − 4. The Fano flow on G clearly induces one on
G′, which in turn determines the same core C. Hence, G′ is the required proper reduction
of G.

(a) (b)

Figure 6: A quadrilateral intersected by a hexagonal core and its reduction

Henceforth we may assume that C ∩ R ̸= ∅. From Lemma 4.5 we obtain that the
intersection of the core and the quadrangle consists of a unique uncovered edge of C, say e1.
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Since r1 = e0 and r2 = e2, we conclude that D = (e1f1d1f2), where d1 is the edge of D
joining the end-vertices u1 and u2 of f1 and f2, respectively, not lying on C. Without loss
of generality we may assume that r3 and r4 are incident with u1 and u2, respectively. Recall
that ϕ(f1) = 3 and ϕ(f2) = 2, which implies that ϕ(d1) = 1, ϕ(r3) = 2, and ϕ(r4) = 3, see
Figure 6(a). Now, we take the graph G− {u1, u2}, and keep the four dangling edges f1, f2,
r3, and r4. We form G′ from G− {u1, u2} by performing the junctions f1 ∗ r4 and f2 ∗ r3.
By Lemma 2.2, G − V (D) is not 3-edge-colourable, so df(G′) ⩾ 3. If we define ϕ′ by
setting ϕ′(f1 ∗ r4) = ϕ(f1) = ϕ(r4) = 3, ϕ′(f2 ∗ r3) = ϕ(f2) = ϕ(r3) = 2, and ϕ′(x) = ϕ(x)
for all other edges x of G′, we obtain a Fano colouring which determines a 3-array of G′

whose core coincides with C, see Figure 6(b). The proof is complete.

5 Main results

We are now ready to establish the main results of this paper.

Theorem 5.1. Every snark G with df(G) = 3 admits a reduction to a snark G′ with
df(G′) = 3 such that either G′ is nontrivial or G′ arises from a nontrivial snark K with
df(K) ⩾ 4 by inflating a vertex to a triangle; the triangle is essential in both G and G′.

Proof. Consider an arbitrary snark G with df(G) = 3. If G is nontrivial, then G′ = G is
the required reduction. Assume that G is not nontrivial, but it cannot be reduced to a
nontrivial snark with df(G) = 3. We show that G has a reduction to a snark G′ which
arises from a nontrivial snark K with df(K) ⩾ 4 by inflating a vertex to a triangle.

Let G′ be a reduction of G with df(G′) = 3 such that G′ is not nontrivial, but it has
no reduction to a smaller snark with defect 3. Lemmas 4.2 and 4.6 imply that G′ has no
2-edge-cuts and no quadrilaterals. Since G′ is not nontrivial, it has a cycle-separating
3-edge-cut. By Lemma 4.3, one of the resulting components must be an essential triangle,
which we denote by T . Set K = G′/T . Clearly, K has df(K) ⩾ 4. Hence, to finish the
proof it remains to prove that the graph K is cyclically 4-edge-connected and has no
quadrilaterals.
Claim 1. The graph K is cyclically 4-edge-connected.
Proof of Claim 1. Suppose to the contrary that K is not cyclically 4-edge-connected.
Clearly, K has no bridges and no 2-edge-cuts because these features would already be
present in G′. Therefore K has a cycle-separating 3-edge-cut R. Observe that the same
set R is a cycle-separating 3-edge-cut also in G′. Moreover, all of T is contained in the
same component of G′ −R; let us denote this component by L. Since L/T is a component
of K −R and L/T contains a circuit, L contains more than three vertices; in particular
L is not an essential triangle. The other component of G′ − R cannot be an essential
triangle either, because Lemma 4.1(iv) implies that G′ has only one essential triangle,
namely T . It follows that R is a cycle-separating 3-edge-cut in G′ such that neither of the
two components of G′ −R is an essential triangle. By Lemma 4.3, G′ admits a reduction
to a smaller snark G′′ with df(G′′) = 3. This contradicts the choice of G′ and proves that
K is cyclically 4-edge-connected.
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Claim 2. The graph K has no quadrilateral.
Proof of Claim 2. Suppose to the contrary that K contains a quadrilateral Q. The
vertex v of K obtained by the contraction of T lies on Q, therefore G′ has a 5-cycle
D = (d0d2d1d3d4) sharing an edge with T , say d0. Let g and h denote the other two edges
of T , with g adjacent to d1, and h adjacent to d4. There is a 4-edge-cut S in G′ that
separates D ∪ T from the rest of G′. Let H be the other component of G′ − S. Observe
that S survives the contraction of T , so S separates Q from H in G′/T as well. Since
G′/T is cyclically 4-edge-connected, S is an independent edge cut. Let s1 ∈ S be the edge
of δ(T ) not adjacent to d0, and for i ∈ {2, 3, 4} let si be the edge of S adjacent to both
di−1 and di, see Figure 7.

Figure 7: The structure of G′ when the contraction of an essential triangle creates a 4-cycle

Because df(G′) = 3, there is a 3-array M = {M1,M2,M3} in G′ whose hexagonal core
C intersects T . By Lemma 4.1(ii), C ∩ T consists of a single uncovered edge, so C cannot
be the hexagon (d1d2d3d4hg) fully contained in D∪T . Therefore C intersects S. It is easy
to see that |C ∩ S| = 2. Without loss of generality we may assume that the common edge
of C and T is the edge e1 of the standard hexagonal core shown in Figure 3. There are two
possibilities for the position of e1: either e1 is adjacent to s1, or not. If e1 is not adjacent
to s1, then e1 = d0. If e1 is adjacent to s1, then e1 ∈ {g, h}, and in view of symmetry we
may assume that e1 = g. Accordingly, we have two cases to consider.
Case 1. e1 = d0. In this case both d1 and d4 belong to C; in view of symmetry we
may clearly assume that d1 = e2 and d4 = e0. Moreover, s1 does not belong to C, so
C ∩ S consists of two edges from {s2, s3, s4}. In view of symmetry we may assume that
either C ∩ S = {s2, s3} or C ∩ S = {s2, s4}. The former possibility does not occur
because otherwise the edge d2 would be a chord of C, contrary to Theorem 3.3. Hence
C ∩ S = {s2, s4}. Now s2 = e3 and s4 = e5, so the only edge of C in H is e4. Recall that
ϕ(e4) = 23. If we change this colour to 2 (or apply Proposition 3.2(iv)), we obtain a proper
3-edge-colouring of H. However, H is now 3-edge-colourable, and the other component of
G′/T − S is a quadrilateral. By Lemma 2.2, G′/T is 3-edge-colourable, and hence so is G′.
This contradiction concludes Case 1.
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Case 2. e1 = g. In this case d1 and s1 belong C; in view of symmetry we may clearly
assume that d1 = e0 and s1 = e2. It follows that C ∩ S = {s1, sj} for some j ∈ {2, 3, 4}.
We show that j = 2. If C ∩S = {s1, s3}, then e5 = d2, f1 = d0, f2 = h, and f5 = d3. Since
ϕ(f1) = 3 and ϕ(f2) = 2, we have ϕ(d4) = 1. At the same time ϕ(f5) = 1, so d3 and d4
have the same colour, which is impossible, because they are adjacent. Therefore j ̸= 3.
Next, if C ∩S = {s1, s4}, then d4 = e4 and s4 = e3. In this situation, however, both e2 and
e3 belong to S although they are adjacent in C. As S is independent, this is impossible.
Therefore j ̸= 4, and we conclude that C ∩ S = {s1, s2}. Now e2 = s1 and e5 = s2, so e3
and e4 belong to H. Recall that ϕ(e3) = ∅ and ϕ(e4) = 23. If we change the colour of e3
to 3 and the colour of e4 to 2, we get a proper 3-edge-colouring of H. Again, by using
Lemma 2.2 we can conclude that G′ is 3-edge-colourable, which is a contradiction. This
finishes Case 2 and proves that K has no quadrilaterals. The proof is complete.

Our second theorem specifies conditions that must be satisfied by a snark K and a
vertex v in order for the inflation of v to decrease the defect of K to 3. The formulation
features an important concept of a cluster of 5-cycles in a snark that derives from relatively
little known results of Kászonyi [20]-[22] and Bradley [1]-[3] concerning the structure of
3-edge-colourings of graphs. A cluster of 5-cycles in a cubic graph G, or simply a 5-cluster
of G, is an inclusion-wise maximal connected subgraph of G formed by a union of 5-cycles.
Kászonyi [21, 22] and later Bradley [1] proved that for each edge e of a snark G there exists
a nonnegative integer ψG(e) such that the number of 3-edge-colourings of G ∼ e equals
18 · ψG(e). We refer to the function ψG : E(G) → N as the Kászonyi function for G. In
passing we mention that the Kászonyi function for the Petersen graph identically equals 1,
see [3, Theorem 3.5].

One of the most remarkable properties of the Kászonyi function is that it is constant
on each 5-cluster (see [1], [22], or the survey [3]). A 5-cluster H of a snark G will be called
heavy if ψG(e) > 0 for each edge e of H; otherwise, H will be called light. Equivalently, a
5-cluster H is heavy if and only if G ∼ e is 3-edge-colourable for each edge e of H. In this
context it is useful to recall that if e = uv, then G ∼ e is 3-edge-colourable if and only if
G− {u, v} is, see [29, Proposition 4.2].

Theorem 5.2. Let K be a nontrivial snark with df(K) ⩾ 4, let v be a vertex of K, and
let G be the snark created from K by inflating v to a triangle. Then df(G) = 3 if and only
if v lies in a heavy cluster of 5-cycles of K.

Proof. (⇒) Assume that df(G) = 3. Let T denote the triangle of G obtained by the
inflation of a vertex v of K. We show that v belongs to a heavy 5-cluster of K. Since
df(K) ⩾ 4 and df(G) = 3, the triangle T is essential. Let C be a hexagonal core of G.
Lemma 4.1(ii) implies that C ∩ T consists of a single uncovered edge, which we may
assume to be the edge e1 indicated in Figure 3. It follows that the Fano colouring ϕ
around C is as illustrated in Figure 4. Let us contract T back to the vertex v and keep
the colours of the edges of K. Clearly, C/T = (e0e2e3e4e5) is a 5-cycle containing v. To
prove that v belongs to a heavy 5-cluster it is sufficient to show that K ∼ e0 admits a
3-edge-colouring. Recall that e0 = v0v1 and consider the graph K − {v0, v1}. If we set
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ϕ′(e3) = 3 and ϕ′(e4) = 2, we obtain a proper 3-edge-colouring of K − {v0, v1}. We infer
that K ∼ e0 is 3-edge-colourable, too, and therefore v belongs to a heavy 5-cluster of K.

(⇐) For the converse, assume that v belongs to a heavy 5-cluster H of K. Consider
an (induced) 5-cycle D = (d0d1d2d3d4) of H such that v lies in D and is incident with the
edges d4 and d0. Since H is heavy, removing any edge of D together with its end-vertices
produces a 3-edge-colourable graph. Hence K − E(D) is 3-edge-colourable, as well. Let
gi be the edge of δ(D) adjacent to di−1 and di, with indices taken modulo 5. The edge
of δ(D) incident with v is therefore g0. From the Parity Lemma we deduce that every
3-edge-colouring σ of K − E(D) colours three of the edges in δ(D) with the same colour,
say 1, and the remaining two with colours 2 and 3, respectively. Moreover, if σ(gi) = 2
and σ(gj) = 3, then gi and gj are not adjacent to the same edge of D, otherwise σ would
extend to a 3-edge-colouring of K. Even more, as can be deduced from Lemmas 6.1, 6.2,
and 6.3 (iii) of [29], for any two edges gi and gj of δ(D) that are not incident with the same
edge of D there exists a 3-edge-colouring τ of K−E(D) such that τ(gi) = 2 and τ(gj) = 3.
Set τ(g1) = 2 and τ(g4) = 3, so that all the remaining edges of δ(D) receive colour 1, see
Figure 8 (left). Now, let us inflate v into a triangle T , thereby producing the graph G.

Figure 8: Creating an essential triangle by inflating a vertex on a non-removable 5-cycle

For each edge of K incident with v there is a unique corresponding edge of G leaving the
triangle T ; we let the latter edge keep the name of the former. Having made this agreement,
let d5 denote the edge of T adjacent to both d0 and d4. Clearly, D+ = (d0d1d2d3d4d5) is
an induced 6-cycle of G. Now we extend the colouring τ of K −E(D) to a colouring of G.
We start by setting τ(d4) = 12, τ(d5) = ∅, and τ(d0) = 13. This choice further enables
setting τ(d2) = 23 and τ(d1) = τ(d3) = ∅, as well as assigning colours 2 and 3 to the
remaining edges of T appropriately, see Figure 8 (right). It is easy to check that τ induces
a 3-array N of G with core(N ) = D+. Therefore df(G) = 3, as required.

Given a cubic graph G and a vertex v of G we let Gv denote the graph formed from G
by inflating v to a triangle. We now show that a single vertex inflation can decrease defect
from an arbitrarily large value to the minimal possible value of 3.

Theorem 5.3. For every integer n ⩾ 3 there exists a nontrivial snark G with df(G) ⩾ n
which contains a vertex whose inflation to a triangle produces a snark with defect 3.
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Proof. In [16, Theorems 5.1-5.3] it was proved that for every integer n ⩾ 3 there exists a
cyclically 5-edge-connected snark H = H2n with girth 2n which contains a pair of adjacent
vertices u and v such that H − {u, v} is 3-edge-colourable. By [31, Corollary 2.5] (see
also [16, Proposition 4.4]), the defect of H is at least n. Let I denote the isochromatic
(2, 2)-pole arising from H2n by removing the vertices u and v and forming connectors from
the semiedges formerly incident with the same vertex. To construct G = Gn, we take three
copies I0, I1, and I2 of I and a 6-pole Z arising from the Petersen graph Pg by severing
three independent edges p0, p1, and p2 on a 6-cycle. We turn Z into a (2, 2, 2)-pole with
connectors S1, S2, and S3 by forming each Si from the two half-edges of pi, denoted by pi1
and pi2. Next, for each j ∈ {0, 1, 2}, we join the input connector of Ij to Sj; we keep the
notation pj1 and pj2 for the resulting edges which connect Ij to Z. Finally, we match the
semiedges of the three output connectors in such a way that the two semiedges of each
output connector lead to two other output connectors, see Figure 9 (left). The result is
the required graph G = Gn.

We proceed to proving that Gn has the required properties. During our analysis we
refer to Figure 9 (right) for the notation of vertices and edges of Gn. In particular, z
denotes the central vertex of Z, the edges incident with z are e0, e1, and e2, and (f0f1 . . . f8)
is the 9-cycle obtained by removing z from Z. The edges of δ(Z) leave Z in the order
p01, p22, p11, p02, p21, p12 determined by a cyclic orientation of Z − z.
Claim 1. Gn is a nontrivial snark.
Proof of Claim 1. First we prove that Gn is a snark. Suppose that Gn admits a 3-edge-
colouring ϕ. Since each Ij is an isochromatic (2, 2)-pole, the edges pj1 and pj2 receive the
same colour from every 3-edge-colouring of Gn. Recall, that pj1 and pj2 arise by severing
the edge pj of Pg. It follows that the restriction of ϕ to Z extends to a 3-edge-colouring
of Pg, which is a contradiction. Thus Gn is a snark.

It is clear from the construction that Gn has girth at least 5. We need to check that
Gn is cyclically 4-edge-connected. To this end, it suffices to realise that the building blocks
of Gn – the 6-pole Z and the 4-poles I0, I1, and I2 – arise from nontrivial snarks and that
the way in which the building blocks have been combined in Gn guarantees that no cycle-
separating edge cut of size smaller than 4 can be created. Therefore every cycle-separating
edge cut in Gn has size at least 4. In fact, all minimum size cycle-separating edge cuts in
Gn separate one of the 4-poles Ij from the rest of Gn; hence, the cyclic connectivity of Gn

equals 4.
Claim 2. Gn has no 3-array whose core is fully contained in Z.
Proof of Claim 2. Suppose to the contrary that Gn has a 3-array M with core C ⊆ Z.
It follows that all the edges of Gn − Z as well as those belonging to the edge cut δ(Z)
connecting Z to Gn − Z are simply covered. There are two cases to consider.
Case 1. C contains a triply covered edge. If x is a triply covered edge of C, then the four
edges adjacent to x are uncovered, so x cannot be adjacent to an edge of δ(Z). Therefore
x is one of the edges e0, e1, or e2 incident with the central vertex z of Z, say e0. Assume
that the 9-cycle (f0f1 . . . f8) has its edges enumerated cyclically in such a way that f0 is
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Figure 9: The graph Gn and its heavy cluster Z

adjacent to e0 and f2 is adjacent to e1, see Figure 9 (right). All four edges adjacent to e0
are uncovered, in particular, so are f0 and e1. Since the edges of δ(Z) are simply covered,
it follows that f1 is doubly covered and f2 is uncovered. Now, e1 and f2 are adjacent
uncovered edges, so f3 must be triply covered. However, f3 is adjacent to an edge of δ(Z),
which is simply covered, and we have arrived at a contradiction.
Case 2. C contains no triply covered edge. In this case the core C is regular, and hence,
by Proposition 3.2(i), it is a collection of disjoint even circuits. Observe that every circuit
contained in Z is either a pentagon, an 8-gon, or a 9-gon. Therefore C must be a single
8-gon. Without loss of generality we may assume that C = (e0f0f1f2f3f4f5e2). Now, one
of e0 and e2 must be uncovered, say e0. It follows that f0 and f4 are doubly covered
and f8 is simply covered. Consider the Fano colouring ϕ of Gn associated with the 3-
array M. Without loss of generality we may assume that ϕ(f0) = 12. This implies that
ϕ(f8) = ϕ(p11) = 3, and since I1 is isochromatic, we infer that ϕ(p12) = ϕ(p11) = 3. Note
that f4 is doubly covered and is adjacent to both ϕ(p12) and ϕ(p21), so ϕ(f4) = 12, and
hence ϕ(p21) = 3. Using the isochromatic property of I2 we conclude that ϕ(p22) = 3, which
is impossible because p22 is adjacent to f8 and ϕ(f8) = 3 = ϕ(p22). This contradiction
completes the proof of Claim 2.
Claim 3. df(Gn) ⩾ n.
Proof of Claim 3. Let D be a circuit of the core of any 3-array of Gn. By Claim 2, D
must intersect at least one of I0, I1, and I2. If D is contained in some Ij, then its length
is clearly at least 2n. Otherwise, D contains at least 2n− 2 vertices of Ij and at least two
vertices of Z, and again its length is at least 2n. Recall that the edges of D are of three
kinds – uncovered, doubly covered and triply covered. Moreover, by Proposition 3.2(iii),
the union of doubly and triply covered edges in D forms a matching of D. Therefore, there
are at least n uncovered edges in D. In other words, the defect of Gn is at least n.
Claim 4. The 5-cluster Z is heavy.
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Proof of Claim 4. It is sufficient to show that Gn ∼ x is 3-edge-colourable for some edge
x of Z, say x = e0. Let J denote the 6-pole obtained from Gn by removing the vertices
of the 6-pole Z, so that Gn = J ∗ Z. Recall that every isochromatic 4-pole admits a
3-edge-colouring where all four dangling edges receive the same colour, see for example
[7, Section 3]). It follows that J admits a 3-edge-colouring where all six dangling edges
receive the same colour. It is easy to check that such an assignment of colours to the
dangling edges of Z extends to a 3-edge-colouring of Z ∼ e0; we leave the details to the
reader. By combining these two 3-edge-colourings we obtain one for Gn ∼ e0. This proves
that Z is a heavy 5-cluster.

Now we can finish the proof. Claim 4 states that df(Gn) ⩾ n. On the other hand,
Theorem 5.2 implies that the inflation of every vertex v of Z produces a graph Gv

n with
df(Gv

n) = 3. Both required properties of Gn are verified, and the proof is complete.

Figure 10: The smallest nontrivial snark with df ⩾ 4 that contains a heavy 5-cluster

Example 5.4. The smallest example of a nontrivial snark with defect greater than 3
containing a vertex whose inflation produces a snark with defect 3 has 34 vertices; it is
depicted in Figure 10. Its structure is similar to the graphs constructed in Theorem 5.3.
The isochromatic (2, 2)-poles I0, I1, and I2 arise from the Petersen graph by removing two
adjacent vertices. The defect of this snark is 4, and the corresponding core C is an 8-cycle
indicated in Figure 10 by dashed edges.

6 Berge covers of snarks with defect 3

To justify the importance of the results of the previous two sections, we briefly indicate
how they apply to verifying Berge’s conjecture for snarks with defect 3. We show that
every bridgeless cubic graph with defect 3 can have its edges covered with four or five
perfect matchings and we determine those that require five. In other words, we completely
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determine the perfect matching index of defect 3 graphs. A detailed proof will appear
in [19]. Recall that the perfect matching index (also known as the excessive index) of a
bridgeless cubic graph G, denoted by π(G), is the smallest number of perfect matchings
that cover all the edges of G. With this definition, Berge’s conjecture states that π(G) ⩽ 5
for every bridgeless cubic graph G. Note that π(G) ⩾ 3, and the equality holds if and only
if G is 3-edge-colourable.

The following theorem is proved in [17].
Theorem 6.1. Let G be a cyclically 4-edge-connected cubic graph with defect 3. Then
π(G) = 4, unless G is the Petersen graph.

In order to be able to discuss the general situation in the class of defect 3 graphs we
will make use of the following two well-known operations. Let G and H be cubic graphs
with distinguished edges e and f , respectively. We define a 2-sum G⊕2 H to be a cubic
graph obtained by deleting e and f and connecting the 2-valent vertices of G to those
of H. If instead of distinguished edges we have distinguished vertices u and v of G and H,
respectively, we can similarly define a 3-sum G⊕3 H. We simply remove u and v and join
the 2-valent vertices of G− u to those of H − v with three independent edges. Note that
G⊕3 H can be regarded as being obtained from G by inflating the vertex u to H − v.

A cubic graph G containing a cycle-separating 2-edge-cut or 3-edge-cut can be expressed
as G1 ⊕2 G2 or G1 ⊕3 G2 uniquely, only depending on the chosen edge cut. It is easy to
see that if two 2-edge-cuts or 3-edge-cuts intersect, the result of decomposition does not
depend on the order in which the cuts are taken. As a consequence, we have the following
result (see [10, Theorem 3.5]).
Theorem 6.2. Every 2-connected cubic graph G admits a decomposition into a collection
{G1, . . . , Gm} of cyclically 4-edge-connected cubic graphs such that G can be reconstructed
from them by repeated application of 2-sums and 3-sums. Moreover, this collection is
unique up to ordering and isomorphism.

Theorems 6.1 and 6.2, combined with results of the previous sections and with [17,
Theorem 4.1] (see also [18, Theorem 2.1]) can now be used to prove that cubic graphs of
defect 3 fulfil Berge’s conjecture.
Theorem 6.3. Every 2-connected cubic graph G with colouring defect 3 has π(G) = 4 or
π(G) = 5. Moreover, if G has an essential triangle, then π(G) = 4.

In order to characterise the cubic graphs of defect 3 that have perfect matching index
equal to 5 we need to introduce a new concept. A bridgeless cubic graph Q is quasi-
bipartite if it contains an independent set of vertices U such that the graph obtained by
the contraction of each component of Q− U to a vertex is a cubic bipartite graph where
U is one of the partite sets. Roughly speaking, a quasi-bipartite cubic graph arises from
a bipartite cubic graph by inflating certain vertices in one of the partite sets to larger
subgraphs, while preserving the edges between the partite sets.

The next theorem describes conditions under which a 3-sum of two graphs has perfect
matching index at least 5. A 3-sum with one of the summands being quasi-bipartite will
be called correct if the resulting graph is again quasi-bipartite.
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Theorem 6.4. Let G and H be 2-connected cubic graphs with distinguished vertices u
and v, respectively, where π(G) ⩾ 5 and H is 3-edge-colourable. Assume that π(G−u) = 4.
Then π(G⊕3 H) ⩾ 5 if and only if H is quasi-bipartite and the 3-sum is correct.

By Lemma 4.2, no hexagonal core can intersect a 2-edge-cut. Applying Theorem 6.2
we can now conclude that every 2-connected cubic graph with defect 3 arises from a
3-connected cubic graph H with defect 3 by performing repeated 2-sums of H with 3-edge-
colourable graphs in such a way that a core of H is not affected by the 2-sums. It follows
that we can restrict ourselves to 3-connected graphs.

The final result, for 3-connected graphs, reads as follows. Its proof involves the use
of Theorem 6.1, the decomposition into cyclically 4-edge-connected graphs presented in
Theorem 6.2, and a repeated application of Theorem 6.4.

Theorem 6.5. Every 2-connected cubic graph G of defect 3 has perfect matching index at
most 5. If G is 3-connected, then π(G) = 5 if and only if G arises from the Petersen graph
by inflating any number of vertices of a fixed vertex-star by quasi-bipartite cubic graphs in
a correct way.

7 Concluding remarks

Here we analyse the defect and several related invariants of small snarks. Our analysis is
computer-aided. We have computed the defect of all cyclically 4-edge-connected snarks of
girth at least 5 and of order at most 36 from the database House of Graphs: Snarks [4].
We summarise the output in Table 1. As expected, the major part of the analysed snarks
(in fact, around 99.999089%) have defect 3. The defect of all nontrivial snarks with at
most 36 vertices takes values in the set {3, 4, 5, 6}.

(a) df(G28) = 5 (b) df(G32) = 4 (c) df(G34) = 6

Figure 11: Smallest nontrivial snarks with defect greater than 3

We shall briefly discuss the smallest nontrivial snarks of defect 4, 5, and 6 in more
detail. The smallest nontrivial snark of defect greater than 3 has order 28. The graph
is denoted by G28 and is displayed in Figure 11(a); it has defect 5. It is not difficult
to understand the reason. If the defect of G28 was 3 or 4, then the core of an optimal
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3-array would be a circuit of length 6 or 8, respectively. The graph G28 contains nine
6-cycles and three 8-cycles. However, it can be easily seen that each of the 6-cycles and
8-cycles is removable. The graph G28 appears also in another context in [26] as the smallest
nontrivial snark different from the Petersen graph with circular flow number equal to 5.
The smallest nontrivial snark with defect 4, denoted by G32, has order 32, see Figure 11(b).
The smallest order where cyclically 4-edge-connected snarks with defect 6 occur is 34; there
are exactly seven such snarks. The most symmetrical of them, denoted by G34, is depicted
in Figure 11(c). By coincidence, G34 is the unique smallest nontrivial snark different from
the Petersen graph whose edges cannot be covered with four perfect matchings, see [5].
In each of the graphs displayed in Figure 11 bold edges highlight the core of an optimal
3-array.

Order Nontrivial Critical df = 3 df = 4 df = 5 df = 6
10 1 1 1 - - -
18 2 2 2 - - -
20 6 1 6 - - -
22 20 2 20 - - -
24 38 - 38 - - -
26 280 111 280 - - -
28 2900 33 2899 - 1 -
30 28399 115 28397 - 2 -
32 293059 29 293049 1 9 -
34 3833587 40330 3833538 24 18 7
36 60167732 14548 60167208 195 304 25∑ 64326024 55172 64325438 220 334 32

Table 1: Defects of small nontrivial snarks

It transpires that among the nontrivial snarks of order up to 36 there are exactly
three graphs of defect greater than 3 with a heavy cluster of 5-cycles. The smallest one is
depicted in Figure 10; it has 34 vertices and defect 4. The remaining two have order 36
and defect 4 and 5, respectively. Recall that, by Theorem 5.2, the inflation of any vertex
in a heavy cluster decreases the defect to 3.

We conclude this section with three remarks.
Remark 7.1. We have investigated properties of 6-cycles of all nontrivial snarks of order
not exceeding 34. A 6-cycle C in a snark can be either removable or non-removable. If C
is non-removable, then one of the following three possibilities occurs: C is a double-core
hexagon, C is a single-core hexagon, or C does not constitute a hexagonal core. If the latter
occurs, C is a non-core hexagon. Outputs of computations are summarised in Table 2.
The four columns on the right-hand side of the table represent a partition of the set of
all nontrivial snarks of defect 3 with at most 34 vertices according to the properties of
their 6-cycles. The column with heading “Double-core” contains the numbers of nontrivial
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snarks in which every 6-cycle is a double-core hexagon for some 3-array. The column
headed by “Double-core” and “Removable” enumerates nontrivial snarks in which every
6-cycle is either a double-core hexagon or it is removable, and both types of 6-cycles occur.
The families of snarks enumerated in the remaining two columns are defined in a similar
manner.

Order Nontrivial Critical

Double-core Double-core Double-core Double-core

Removable Single-core Single-core

Removable

10 1 1 1 - - -
18 2 2 2 - - -
20 6 1 1 - 5 -
22 20 2 3 - 17 -
24 38 - 1 6 22 9
26 280 111 112 63 21 84
28 2900 33 126 706 1374 693
30 28399 115 907 9126 10798 7566
32 293059 29 3693 133046 53799 102511
34 3833587 40330 55144 2095876 192684 1489834∑ 4158292 40624 59990 2238823 258720 1600697

Table 2: Hexagons in nontrivial snarks with defect 3

Every snark in the collection of tested snarks with defect 3 has been found to have
at least one double-core hexagon, which is a remarkable phenomenon. This property,
however, cannot be expected from trivial snarks. The graph G from Example 4.4, shown
in Figure 5(a), contains a triangle that is intersected by all core hexagons. According to
Lemma 4.1(ii), each hexagonal core of G is single-core. It is therefore natural to ask the
following question.

Problem 7.2. Does there exist a nontrivial snark with defect 3 in which every core hexagon
is single-core?

This problem is particularly interesting from the point of view of Fulkerson’s conjec-
ture. If such a snark did exist, then either its Fulkerson cover would not consist of two
complementary optimal 3-arrays, or else the snark would provide a counterexample to
Fulkerson’s conjecture.
Remark 7.3. There exist many snarks where every 6-cycle is a double-core hexagon, see
Table 2, and critical snarks of order at most 36 are among them. This observation motivates
the following conjecture.

Conjecture 7.4. Every critical snark has defect 3.
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Recall that the existence of a double-core hexagon in a snark implies that the union of
the corresponding two 3-arrays constitutes a Fulkerson cover. Therefore, we propose the
following.

Conjecture 7.5. In a critical snark, every hexagon is double-core. In particular, every
optimal 3-array of perfect matchings extends to a Fulkerson cover.

In [29] it is proved that the irreducible snarks coincide with the bicritical ones. It
means that the removal of any pair of distinct vertices yields a 3-edge-colourable graph.
Irreducible snarks thus constitute a subfamily of critical snarks. Hence, we have the
following weaker conjecture.

Conjecture 7.6. Every irreducible snark G has defect 3.

If Conjecture 7.6 is confirmed, then the following long-standing conjecture proposed in
[29] is verified as well.

Conjecture 7.7. There exist no irreducible snarks of girth greater than 6.

We note that Conjecture 7.7 can be viewed as an “improved” version of once famous
girth conjecture for snarks. Jaeger [12, Conjecture 1] conjectured that there exist no
(nontrivial) snarks of girth greater than 6, which was later disproved by Kochol in [23].

Conjectures 7.4 to 7.7 are related as follows:

Conjecture 7.5 ⇒ Conjecture 7.4 ⇒ Conjecture 7.6 ⇒ Conjecture 7.7

In [31, Conjecture 4.1] Steffen conjectured that every hypohamiltonian snark has defect 3.
Since every hypohamiltonian snark is easily seen to be irreducible [30], the validity of
Conjecture 7.6 would imply that of Steffen’s conjecture.
Remark 7.8. In the collection of tested snarks, every non-removable hexagon in a nontrivial
snark is either single-core or double-core. In other words, non-removable non-core 6-cycles
do not occur among the tested snarks. The following question suggests itself.

Problem 7.9. Does there exist a snark G of defect 3 which contains a 6-cycle C such that
G − V (C) is 3-edge-colourable, but C does not constitute a hexagonal core? (In other
words, does there exist a snark containing a non-removable non-core hexagon?)

This problem is closely related to a problem discussed in [15]. It asks whether a certain
theoretically derived colouring set, denoted by E13, admits a realisation by a suitable
6-pole. Answering this problem would represent a significant step towards the so-called
6-decomposition theorem for snarks.
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of interesting graphs, Discrete Appl. Math. 161 (2013), 311–314.
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[16] J. Karabáš, E. Máčajová, R. Nedela, M. Škoviera, Girth, oddness, and colouring defect
of snarks, Discrete Math. 345 (2022), 113040.

[17] J. Karabáš, E. Máčajová, R. Nedela, M. Škoviera, Berge’s conjecture for cubic graphs
with small colouring defect, arXiv:2210.13234.
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[27] E. Máčajová, M. Škoviera, Fano colourings of graphs and the Fulkerson Conjecture,

Theoret. Comput. Sci. 349 (2005), 112–120.
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