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Abstract

Let G be a t-tough graph on n > 3 vertices for some t > 0. It was shown by

Bauer et al. in 1995 that if the minimum degree of G is greater than n
t+1 −1, then G

is hamiltonian. In terms of Ore-type hamiltonicity conditions, the problem was only

studied when t is between 1 and 2, and recently the second author proved a general

result. The result states that if the degree sum of any two nonadjacent vertices of

G is greater than 2n
t+1 + t−2, then G is hamiltonian. It was conjectured in the same

paper that the “+t” in the bound 2n
t+1 + t− 2 can be removed. Here we confirm the

conjecture. The result generalizes the result by Bauer, Broersma, van den Heuvel,

and Veldman. Furthermore, we characterize all t-tough graphs G on n > 3 vertices

for which σ2(G) = 2n
t+1 − 2 but G is non-hamiltonian.

Keywords. Ore-type condition; toughness; hamiltonian cycle.

Mathematics Subject Classifications: 05C38

1 Introduction

We consider only finite simple graphs. Let G be a graph. Denote by V (G) and

E(G) the vertex set and edge set of G, respectively. Let v ∈ V (G), S ⊆ V (G), and

H ⊆ G. Then NG(v) denotes the set of neighbors of v in G, dG(v) := |NG(v)| is the

degree of v in G, and δ(G) := min{dG(v) : v ∈ V (G)} is the minimum degree of G.

Define degG(v,H) = |NG(v) ∩ V (H)|, NG(S) = (
⋃

x∈S NG(x)) \ S, and we write NG(H)

for NG(V (H)). Let NH(v) = NG(v) ∩ V (H) and NH(S) = NG(S) ∩ V (H). Again, we

write NH(R) for NH(V (R)) for any subgraph R of G. We use G[S] and G− S to denote

the subgraphs of G induced by S and V (G)\S, respectively. For notational simplicity we
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write G− x for G− {x}. Let V1, V2 ⊆ V (G) be two disjoint vertex sets. Then EG(V1, V2)

is the set of edges in G with one endvertex in V1 and the other endvertex in V2. For two

integers a and b, let [a, b] = {i ∈ Z : a 6 i 6 b}.

Throughout this paper, if not specified, we will assume t to be a nonnegative real

number. The number of components of a graph G is denoted by c(G). The graph G is

said to be t-tough if |S| > t·c(G−S) for each S ⊆ V (G) with c(G−S) > 2. The toughness

τ(G) is the largest real number t for which G is t-tough, or is ∞ if G is complete. This

concept was introduced by Chvátal [7] in 1973. It is easy to see that if G has a hamiltonian

cycle then G is 1-tough. Conversely, Chvátal [7] conjectured that there exists a constant

t0 such that every t0-tough graph is hamiltonian. Bauer, Broersma and Veldman [1] have

constructed t-tough graphs that are not hamiltonian for all t < 9
4
, so t0 must be at least

9
4
if Chvátal’s toughness conjecture is true.

Chvátal’s toughness conjecture has been verified for certain classes of graphs including

planar graphs, claw-free graphs, co-comparability graphs, and chordal graphs [2]. The

classes also include 2K2-free graphs [6, 15, 13], and R-free graphs for R ∈ {P2 ∪ P3, P3 ∪

2P1, P2 ∪ kP1} [16, 9, 17, 12, 19], where k > 4 is an integer. In general, the conjecture

is still wide open. In finding hamiltonian cycles in graphs, sufficient conditions such as

Dirac-type and Ore-type conditions are the most classic ones.

Theorem 1.1 (Dirac’s Theorem [8]). If G is a graph on n > 3 vertices with δ(G) > n
2
,

then G is hamiltonian.

Define σ2(G) = min{dG(u) + dG(v) : u, v ∈ V (G) and they are nonadjacent} if G is

noncomplete, and define σ2(G) = ∞ otherwise. Ore’s Theorem, as a generalization of

Dirac’s Theorem, is stated below.

Theorem 1.2 (Ore’s Theorem [11]). If G is a graph on n > 3 vertices with σ2(G) > n,

then G is hamiltonian.

Analogous to Dirac’s Theorem, Bauer, Broersma, van den Heuvel, and Veldman [4]

proved the following result by incorporating the toughness of the graph.

Theorem 1.3 (Bauer et al. [4]). Let G be a t-tough graph on n > 3 vertices. If δ(G) >
n

t+1
− 1, then G is hamiltonian.

A natural question here is whether we can find an Ore-type condition involving the

toughness of G that generalizes Theorem 1.3. Various theorems were proved prior to

Theorem 1.3 by only taking τ(G) between 1 and 2 [10, 3, 5]. Let G be a t-tough graph

on n > 3 vertices. The author showed in [14] that if σ2(G) > 2n
t+1

+ t − 2, then G is

hamiltonian. It was also conjectured in [14] that σ2(G) > 2n
t+1

− 2 is the right bound. In
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this paper, we confirm the conjecture. For any odd integer n > 3, the complete bipartite

graph G := Kn−1
2

,n+1
2

is n−1
n+1

-tough and satisfies σ2(G) = n−1 = 2n
1+n−1

n+1

−2. However, G is

not hamiltonian. Thus, the degree sum condition that σ2(G) > 2n
t+1

−2 is best possible for

a t-tough graph on at least three vertices to be hamiltonian. In fact, for any odd integers

n > 3, any graph from the familyH = {Hn−1
2
+K n+1

2
: Hn−1

2
is any graph on n−1

2
vertices}

is an extremal graph, where “+” represents the join of two graphs. We also show that H

is the only family of extremal graphs.

Theorem 1. Let G be a t-tough graph on n > 3 vertices. Then the following statements

hold.

(a) If σ2(G) > 2n
t+1

− 2, then G is hamiltonian.

(b) If σ2(G) = 2n
t+1

− 2 and G is not hamiltonian, then G ∈ H.

The remainder of this paper is organized as follows: in Section 2, we introduce some

notation and preliminary results, and in Section 3, we prove Theorem 1.

2 Preliminary results

Let G be a graph and λ be a positive integer. Following [18], a cycle C of G is a

Dλ-cycle if every component of G − V (C) has order less than λ. Clearly, a D1-cycle is

just a hamiltonian cycle. We denote by cλ(G) the number of components of G with order

at least λ, and write c1(G) just as c(G). Two subgraphs H1 and H2 of G are remote if

they are disjoint and there is no edge of G joining a vertex of H1 with a vertex of H2. For

a subgraph H of G, let dG(H) = |NG(H)| be the degree of H in G. We denote by δλ(G)

the minimum degree of a connected subgraph of order λ in G. Again δ1(G) is just δ(G).

Lemma 2.1 ([16]). Let t > 0 and G be a non-complete n-vertex t-tough graph. Then

|W | 6 n
t+1

for every independent set W in G.

Denote by
⇀

C an orientation of C. We assume that the orientation is clockwise through-

out the rest of this paper. For x ∈ V (C), denote the immediate successor of x on
⇀

C by

x+ and the immediate predecessor of x on
⇀

C by x−. We use N+
C (x) to denote the set of

immediate successors for vertices from NC(x). For u, v ∈ V (C), u
⇀

Cv denotes the segment

of
⇀

C starting at u, following
⇀

C in the orientation, and ending at v. Likewise, u
↼

Cv is the

opposite segment of
⇀

C with endpoints as u and v. Let dist⇀
C
(u, v) denote the length of

the path u
⇀

Cv. For any vertex u ∈ V (C) and any positive integer k, define

L+
u (k) = {v ∈ V (C) : dist⇀

C
(u, v) ∈ [1, k]}
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to be the set of k consecutive successors of u. Hereafter, all cycles under consideration

are oriented, and we will not distinguish between the notation C and
⇀

C.

The following lemma provides a way of extending a cycle C provided that the vertices

outside C have many neighbors on C. The proof follows from Lemma 2.1 and is very

similar to the proof of Lemma 10 in [16]: if we assume instead that C cannot be extended

by including x, then N+
C (x) ∪ {x} is an independent set in G.

Lemma 2.2. Let t > 0 and G be an n-vertex t-tough graph, and let C be a non-

hamiltonian cycle of G. If x ∈ V (G) \ V (C) satisfies degG(x, C) > n
t+1

− 1, then G

has a cycle C ′ such that V (C ′) = V (C) ∪ {x}.

A path P connecting two vertices u and v is called a (u, v)-path, and we write uPv or

vPu in order to specify the two endvertices of P . Let uPv and xQy be two paths. If vx

is an edge, we write uPvxQy as the concatenation of P and Q through the edge vx.

For an integer λ > 1, if a graph G contains a Dλ+1-cycle C but no Dλ-cycle, then

V (G) \ V (C) 6= ∅. Furthermore, G− V (C) has a component of order λ. The result below

with dG(H) replaced by δλ(G) and H replaced by any component of G−V (C) with order

λ was proved in [4, Corollary 7(a)].

Lemma 2.3 ([14]). Let G be a t-tough 2-connected graph of order n. Suppose G has a

Ds+1-cycle but no Ds-cycle for some integer s > 1. Let C be a Ds+1-cycle of G such that

C minimizes cp(G − V (C)) prior to minimizing cq(G − V (C)) for any p, q ∈ [1, s] with

p > q. Then n > (t+ |V (H)|)(dG(H) + 1) for any component H of G− V (C).

The lemma below is the key to get rid of the “+t” in the lower bound 2n
t+1

+ t− 2 on

σ2(G) for guaranteeing the existence of a hamiltonian cycle [14].

Lemma 2.4. Let G be a t-tough 2-connected graph of order n. Suppose that G has a Dλ+1-

cycle but no Dλ-cycle for some integer λ > 1. Let C be a cycle of G. Then G−V (C) has

a component H with order at least λ such that degG(x, C) 6 n
t+1

− λ for some x ∈ V (H).

Proof. Since G has no Dλ-cycle, it is clear that G − V (C) has a component of order

at least λ. We suppose to the contrary that for each component H with order at least λ

of G − V (C) and each x ∈ V (H), we have degG(x, C) > n
t+1

− λ. Among all cycles C ′

of G that satisfy the two conditions below, we may assume that C is one that minimizes

cp(G− V (C)) prior to minimizing cq(G− V (C)) for any p > λ and any q with q < p.

(1) Each component of G− V (C) either has order at most λ− 1, or

(2) the component H has order at least λ such that for each x ∈ V (H), we have

degG(x, C) > n
t+1

− λ.
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We take a component H with order at least λ and assume that NC(H) has size k

for some integer k > 2, and that the k neighbors are v1, . . . , vk and appear in the same

order along
⇀

C. Note that k > n
t+1

− λ by our assumption. For each i ∈ [1, k], and each

v ∈ V (v+i
⇀

Cv−i+1), where vk+1 := v1, we let C(v) be the set of components of G − V (C)

that have a vertex joining to v by an edge in G. As NC(H) ∩ V (v+i
⇀

Cv−i+1) = ∅, we have

H /∈ C(v). Let w∗
i ∈ V (v+i

⇀

Cv−i+1) be the vertex with dist⇀
C
(vi, w

∗
i ) minimum such that

∑

D∈
⋃

v∈V (v+
i

⇀
Cw∗

i
)

C(v)

|V (D)|+ |V (v+i
⇀

Cw∗
i )| > λ.

If such a vertex w∗
i exists, let L∗

vi
(λ) be the union of the vertex set V (v+i

⇀

Cw∗
i ) and all

those vertex sets of graphs in
⋃

v∈V (v+i
⇀

Cw∗

i )

C(v); if such a vertex w∗
i does not exist, let

L∗
vi
(λ) = L+

vi
(λ). Note that when w∗

i exists, by its definition, w∗
i ∈ V (v+i

⇀

Cv−i+1). Thus

V (v+i
⇀

Cw∗
i ) ∩ V (v+j

⇀

Cw∗
j ) = ∅ if both w∗

i and w∗
j exist for distinct i, j ∈ [1, k]. If w∗

i exists,

for any r ∈ [1, dist⇀
C
(vi, w

∗
i )], let v

r
i be the vertex from v+i

⇀

Cw∗
i such that dist⇀

C
(vi, v

r
i ) = r.

Then define

L∗
vi
(λ, r) =











⋃

D∈
⋃

v∈V (v+
i

⇀
Cvr

i
)

C(v)

V (D)











∪ V (v+i
⇀

Cvri ).

We will show that we can make the following assumptions:

(a) If for some i ∈ [1, k], it holds that L∗
vi
(λ) = L+

vi
(λ), then dist⇀

C
(vi, vj) > λ+ 1 for any

j ∈ [1, k] with j 6= i. Thus the vertex w∗
i exists for each i ∈ [1, k].

(b) G[L∗
vi
(λ)] and G[L∗

vj
(λ)] are pairwise remote for any distinct i, j ∈ [1, k].

With Assumptions (a) and (b), we can reach a contradiction as follows: note that

G[L∗
vi
(λ)] and G[L∗

vj
(λ)] are remote for any distinct i, j ∈ [1, k] and H and G[L∗

vi
(λ)] are

remote for any i ∈ [1, k]. Let S = V (G)\
(

(
⋃k

i=1 L
∗
vi
(λ)) ∪ V (H)

)

. Then |S| 6 n−(k+1)λ

and c(G− S) = k + 1. As G is t-tough, we get

n− (k + 1)λ > |S| > t · c(G− S) = t(k + 1),

giving k 6
n

t+λ
− 1. Since n > (λ+ t)(2t+ 1) by Lemma 2.3 (G has a Dλ+1-cycle C ′ such

that G − V (C ′) has a component H ′ of order λ, and dG(H
′) > 2t by G being t-tough),
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we get

n

t+ 1
− λ−

(

n

t+ λ
− 1

)

=
(λ− 1)(n− (t+ 1)(t+ λ))

(t + 1)(t+ λ)
> 0,

and so k 6
n

t+λ
− 1 6

n
t+1

− λ. This gives a contradiction to k > n
t+1

− λ. Thus we are

only left to show Assumptions (a) and (b). We show that if any one of the assumptions

is violated, then we can decrease cp(G− V (C)) for some p > λ.

For Assumption (a), if L∗
vi
(λ) = L+

vi
(λ) for some i ∈ [1, k] but dist⇀

C
(vi, vj) 6 λ for

some vj ∈ NC(H) with j 6= i, then there must exist two consecutive indices i, j ∈ [1, k]

such that dist⇀
C
(vi, vj) 6 λ. Thus we may just assume j = i + 1, where the index is

taken modulo k. Let v∗i , v
∗
i+1 ∈ V (H) such that viv

∗
i , vi+1v

∗
i+1 ∈ E(G), and let P be a

(v∗i , v
∗
i+1)-path in H . Let C1 = vi

↼

Cvi+1v
∗
i+1Pv∗i vi.

Note that every component of G − V (C) not having any vertex joining to a vertex

from v+i
⇀

Cv−i+1 in G is still a component of G− V (C1). Those components automatically

satisfy Conditions (1) and (2) as listed in the beginning of this proof. Vertices in v+i
⇀

Cv−i+1

are contained in a distinct component of G−V (C1), and the component has order at most

λ − 1 by the assumption that L∗
vi
(λ) = L+

vi
(λ) and dist⇀

C
(vi, vi+1) 6 λ. Finally, as any

vertex from each component of H − V (v∗i+1Pv∗i ) is not adjacent in G to any vertex from

v+i
⇀

Cv−i+1, we know that components of H−V (v∗i+1Pv∗i ) are components of G−V (C1), and

that degG(w,C1) >
n

t+1
− λ for any w ∈ V (H − V (v∗i+1Pv∗i )). Hence each component of

G− V (C1) either has order at most λ− 1 or is a component of order at least λ such that

each vertex from the component has in G more than n
t+1

− λ neighbors on C1. However,

c|V (H)|(G − V (C1)) < c|V (H)|(G − V (C)) and cq(G − V (C1)) = cq(G − V (C)) for any

q > |V (H)|, contradicting the choice of C. Therefore we have Assumption (a), which

implies that the vertex w∗
i exists for each i ∈ [1, k].

For Assumption (b), suppose it is false. Then there exist distinct i, j ∈ [1, k] such that

G[L∗
vi
(λ)] and G[L∗

vj
(λ)] are not remote. By the definition of remote subgraphs, we have

either L∗
vi
(λ) ∩ L∗

vj
(λ) 6= ∅ or L∗

vi
(λ) ∩ L∗

vj
(λ) = ∅ but EG(L

∗
vi
(λ), L∗

vj
(λ)) 6= ∅. In order to

achieve a contradiction, we first show the following general claim, call it Claim (∗).

Claim (∗): For any r ∈ [1, dist⇀
C
(vi, w

∗
i )] and s ∈ [1, dist⇀

C
(vj, w

∗
j )], if L

∗
vi
(λ, r)∩L∗

vj
(λ, s) =

∅, then EG(L
∗
vi
(λ, r), L∗

vj
(λ, s)) = ∅.

Suppose otherwise that EG(L
∗
vi
(λ, r), L∗

vj
(λ, s)) 6= ∅. Since L∗

vi
(λ, r) ∩ L∗

vj
(λ, s) = ∅,

EG(L
∗
vi
(λ, r), L∗

vj
(λ, s)) 6= ∅ implies that there exist y ∈ V (v+i

⇀

Cw∗
i ) ∩ L∗

vi
(λ, r) and z ∈

V (v+j
⇀

Cw∗
j ) ∩ L∗

vj
(λ, s) such that yz ∈ E(G). We choose y ∈ V (v+i

⇀

Cw∗
i ) ∩ L∗

vi
(λ, r) with

dist⇀
C
(vi, y) minimum and z ∈ V (v+j

⇀

Cw∗
j ) ∩ L∗

vj
(λ, s) with dist⇀

C
(vj , z) minimum such

that yz ∈ E(G). By the choice of y and z, we have EG(V (v+i
⇀

Cy−), V (v+j
⇀

Cz−)) = ∅.
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Let v∗i , v
∗
j ∈ V (H) such that viv

∗
i , vjv

∗
j ∈ E(G), P be a (v∗i , v

∗
j )-path in H , and let

C1 = vi
↼

Czy
⇀

Cvjv
∗
jPv∗i vi. Note that no vertex of H is adjacent in G to any vertex of

v+i
⇀

Cy− or v+j
⇀

Cz− by the fact that V (v+i
⇀

Cy−) ⊆ V (v+i
⇀

Cw∗
i ) and V (v+j

⇀

Cz−) ⊆ V (v+j
⇀

Cw∗
j )

and Assumption (a). By the assumption that L∗
vi
(r) ∩ L∗

vj
(s) = ∅ and the definitions of

L∗
vi
(λ) and L∗

vj
(λ), we know that v+i

⇀

Cy− and v+j
⇀

Cz− are respectively contained in distinct

components of G − V (C1) that each have order at most λ − 1. By the same reasoning

as in proving Assumption (a), we know that each component of G− V (C1) has order at

most λ− 1 or is a component such that each vertex from the component has in G more

than n
t+1

− λ neighbors on C1. However, c|V (H)|(G − V (C1)) < c|V (H)|(G − V (C)) and

cq(G− V (C1)) = cq(G− V (C)) for any q > |V (H)|, contradicting the choice of C. Thus

Claim (∗) holds.

Now let us get back to proving Assumption (b) by contradiction. Assume first that

L∗
vi
(λ) ∩ L∗

vj
(λ) 6= ∅. Then there exist v ∈ V (v+i

⇀

Cw∗
i ) and u ∈ V (v+j

⇀

Cw∗
j ) such that

C(v) ∩ C(u) 6= ∅, we then further choose v closest to vi and u closest to vj along
⇀

C

such that C(v) ∩ C(u) 6= ∅. Thus for any wi ∈ V (v+i
⇀

Cv−) and any wj ∈ V (v+j
⇀

Cu−),

it holds that C(wi) ∩ C(wj) = ∅. Let D ∈ C(v) ∩ C(u) and v′, u′ ∈ V (D) such that

vv′, uu′ ∈ E(G), and P ′ be a (v′, u′)-path of D. Let v∗i , v
∗
j ∈ V (H) such that viv

∗
i , vjv

∗
j ∈

E(G), and let P be a (v∗i , v
∗
j )-path in H . Then C1 = viv

∗
i Pv∗jvj

↼

Cvv′P ′u′u
⇀

Cvi is a cycle.

Since each of V (v+i
⇀

Cv−) and V (v+j
⇀

Cu−) contains at most λ − 1 vertices and they are

proper subsets of V (v+i
⇀

Cw∗
i ) and V (v+j

⇀

Cw∗
j ) respectively, by Assumption (a) above, we

have NC(H) ∩ (V (v+i
⇀

Cv−) ∪ V (v+j
⇀

Cu−)) = ∅. By the choices of v and u that for any

wi ∈ V (v+i
⇀

Cv−) and any wj ∈ V (v+j
⇀

Cu−), it holds that C(wi) ∩ C(wj) = ∅, Claim (∗)

implies that the components of G− V (C1) that respectively contain v+i
⇀

Cv− and v+j
⇀

Cu−

are disjoint. Since V (v+i
⇀

Cv−) is a proper subset of V (v+i
⇀

Cw∗
i ) and V (v+j

⇀

Cu−) is a proper

subset of V (v+j
⇀

Cw∗
j ), it follows by the definitions of L∗

vi
(λ) and L∗

vj
(λ) that the components

of G−V (C1) that respectively contain v+i
⇀

Cv− and v+j
⇀

Cu− have order at most λ−1. By the

same reasoning as in proving Assumption (a), we know that each component of G−V (C1)

has order at most λ− 1 or is a component such that each vertex from the component has

in G more than n
t+1

−λ neighbors on C1. However, c|V (H)|(G−V (C1)) < c|V (H)|(G−V (C))

and cq(G−V (C1)) = cq(G−V (C)) for any q > |V (H)|, contradicting the choice of C. Thus

we must have L∗
vi
(λ) ∩ L∗

vj
(λ) = ∅. Applying Claim (∗) again with r = dist⇀

C
(vi, w

∗
i ) and

s = dist⇀
C
(vj , w

∗
j ), we have EG(L

∗
vi
(λ), L∗

vj
(λ)) = ∅. Therefore, G[L∗

vi
(λ)] and G[L∗

vj
(λ)]

are remote, contradicting our assumption. Thus Assumption (b) holds.
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3 Proof of Theorem 1

Let G be a t-tough graph on n > 3 vertices such that σ2(G) > 2n
t+1

−2. We may assume

that G is not a complete graph. Thus G is ⌈2t⌉-connected as it is t-tough. Suppose to

the contrary that G is not hamiltonian.

Claim 1. We may assume that G is 2-connected.

Proof. Since t > 0, G is connected. Assume to the contrary that G has a cut vertex x.

By considering the degree sum of two vertices respectively from two components of G−x,

we know that σ2(G) 6 n− 1. On the other hand, G has a cut vertex implies t 6 1
2
and so

σ2(G) > 2n
t+1

−2 >
4n
3
−2. If σ2(G) > 4n

3
−2, then we get a contradiction to σ2(G) 6 n−1

as n > 3. Thus we assume σ2(G) = 4n
3
− 2, which contradicts σ2(G) 6 n − 1 if n > 4.

Thus n = 3 and so G = P3, but this implies G ∈ H.

Since G is 2-connected, Lemma 2.3 implies

n > (t+ 1)(⌈2t⌉ + 1).

Also as G is 2-connected, G contains cycles. Let λ > 0 be the integer such that G

admits no Dλ-cycle but a Dλ+1-cycle. Then we choose C to be a longest Dλ+1-cycle that

minimizes cp(G−V (C)) prior to minimizing cq(G−V (C)) for any p, q ∈ [1, λ] with p > q.

As G is not hamiltonian, we have λ > 1. Thus V (G) \ V (C) 6= ∅. Since C is not a

Dλ-cycle but a Dλ+1-cycle, G− V (C) has a component H of order λ. Let

W = NC(H) and ω = |W |.

Since G is a connected t-tough graph, it follows that ω > ⌈2t⌉. On the other hand,

Lemma 2.3 implies that ω 6
n

t+λ
− 1.

Claim 2.










λ+ ω <
n

t + 1
if λ > 2,

λ+ ω 6
n

t+ 1
if λ = 1.

Proof. If λ = 1, then the assertion holds by ω 6
n

t+λ
− 1. Thus we assume λ > 2 and

assume to the contrary that λ+ω >
n

t+1
. Then we have n 6 (λ+ω)(t+1). By Lemma 2.3,

we have n > (λ+ t)(ω + 1). Thus we have

(λ+ t)(ω + 1) 6 (λ+ ω)(t+ 1),

which implies λω+ λ+ tω+ t 6 λt+ λ+ tω+ω and so (λ− 1)ω 6 (λ− 1)t. Since λ > 2,

we get ω 6 t, a contradiction to ω > 2t. Note that the argument above for λ > 2 holds

for all components of G−V (C) as Lemma 2.3 holds for all components of G−V (C).
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Claim 3. If σ2(G) > 2n
t+1

− 2, then H is the only component of G− V (C).

Proof. Suppose H∗ 6= H is another component of G − V (C). Then we have dG(x) +

dG(y) > σ2(G) for any x ∈ V (H) and y ∈ V (H∗). Since dG(x) 6 λ + ω − 1 and

dG(y) 6 |V (H∗)| + |NC(H
∗)| − 1, Claim 2 implies that |V (H∗)| + |NC(H

∗)| > σ2(G) −

( n
t+1

−1)+1 >
n

t+1
if λ > 2. Repeating exactly the same argument for |V (H∗)|+ |NC(H

∗)|

as in the proof of Claim 2 leads to a contradiction.

Thus we assume λ = 1. We get the same contradiction as above if σ2(G) > 2n
t+1

− 2 or

λ+ω < n
t+1

. Thus we have σ2(G) = 2n
t+1

−2 and ω = n
t+1

−1 by Claim 2. Then H and H∗

each contains only one vertex, say x and y, respectively. We first claim that the vertex y

is adjacent in G to at most one vertex from W+. For otherwise, suppose there are distinct

u, v ∈ W+ such that yu, yv ∈ E(G). Then C∗ = u−
↼

Cvyu
⇀

Cv−xu− is a Dλ+1-cycle of G

with cλ(G− V (C∗)) < cλ(G− V (C)). This contradicts the choice of C.

We then claim that the set W+ is an independent set in G. For otherwise, suppose

there are distinct u, v ∈ W+ such that uv ∈ E(G). Then C∗ = u−
↼

Cvu
⇀

Cv−xu− is a

Dλ+1-cycle of G with cλ(G− V (C∗)) < cλ(G− V (C)). This contradicts the choice of C.

Now let S = V (G) \ (W+ ∪ V (H) ∪ V (H∗)). Then c(G− S) > ω + 1. However

|S|

c(G− S)
6

n− ω − 2

ω + 1
=

tn
t+1

− 1
n

t+1

< t,

a contradiction.

Therefore, H is the only component of G− V (C).

Since H is the only component of G − V (C), every vertex v ∈ V (C) \ W is only

adjacent in G to vertices on C. As vertices from V (C) \ W are nonadjacent in G with

vertices from H , we have

degG(v, C) > σ2(G)− (ω + λ− 1) for any v ∈ V (C) \W. (1)

We construct the vertex sets L+
u for each u ∈ W as follows:

L+
u =











{v ∈ V (C) : dist⇀
C
(u, v) <

n

t+ 1
− ω + 1} if σ2(G) = 2n

t+1
− 2;

{v ∈ V (C) : dist⇀
C
(u, v) 6

n

t + 1
− ω + 1} if σ2(G) > 2n

t+1
− 2.

Claim 4. The following statements hold.

(a) If σ2(G) = 2n
t+1

−2, then for any two distinct vertices u, v ∈ W , we have dist⇀
C
(u, v) >

n
t+1

− ω + 1 and EG(L
+
u , L

+
v ) = ∅.

(b) If σ2(G) > 2n
t+1

−2, then for any two distinct vertices u, v ∈ W , we have dist⇀
C
(u, v) >

n
t+1

− ω + 1 and EG(L
+
u , L

+
v ) = ∅.
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Proof. We only show Claim 4(a), as the proof for Claim 4(b) follows the same argument

by just using the strict inequality. Let u∗ ∈ NH(u), v
∗ ∈ NH(v) and P be a (u∗, v∗)-path

of H . For the first part of the statement, it suffices to show that when we arrange the

vertices of W along
⇀

C, for any two consecutive vertices u and v from the arrangement,

we have dist⇀
C
(u, v) >

n
t+1

− ω + 1. Note that V (u+
⇀

Cv−) ∩ W = ∅ for such pairs of u

and v. Assume to the contrary that there are distinct u, v ∈ W with V (u+
⇀

Cv−) ∩W =

∅ and dist⇀
C
(u, v) < n

t+1
− ω + 1. Let C∗ = u

↼

Cvv∗Pu∗u. Since H has order λ and

V (u+
⇀

Cv−) ∩ W = ∅, H − V (P ) is a union of components of G − V (C∗) that each is

of order at most λ − 1 and u+
⇀

Cv− is a component of G − V (C∗) of order less than
n

t+1
− ω but at least λ (G has no Dλ-cycle). By (1), for each vertex x ∈ V (u+

⇀

Cv−),

degG(x, C
∗) > σ2(G)− (ω+ λ− 1)− ( n

t+1
− ω− 1) = n

t+1
− λ. This shows a contradiction

to Lemma 2.4.

For the second part of the statement, we assume to the contrary that EG(L
+
u , L

+
v ) 6= ∅.

Applying the first part, we know that dist⇀
C
(u, v) > n

t+1
−ω+1 and dist⇀

C
(v, u) > n

t+1
−ω+1

(exchanging the role of u and v). Thus L+
u ∩L+

v = ∅. We choose x ∈ L+
u with dist⇀

C
(u, x)

minimum and y ∈ L+
v with dist⇀

C
(v, y) minimum such that xy ∈ E(G). By this choice of x

and y, it follows that EG(V (u+
⇀

Cx−), V (v+
⇀

Cy−)) = ∅. Let C∗ = u
↼

Cyx
⇀

Cvv∗Pu∗u. Since

H is of order λ and no vertex of H is adjacent in G to any vertex of u+
⇀

Cx− or v+
⇀

Cy−

by the first part of the statement, H −V (P ) is a union of components of G−V (C∗) that

each have order at most λ − 1. Also u+
⇀

Cx− and v+
⇀

Cy− are components of G − V (C∗)

that each have order less than n
t+1

− ω but at least one of them has order at least λ.

Since EG(V (u+
⇀

Cx−), V (v+
⇀

Cy−)) = ∅, by (1), for each vertex w ∈ V (u+
⇀

Cx−) ∪

V (v+
⇀

Cy−), degG(w,C
∗) > n

t+1
− λ. This shows a contradiction to Lemma 2.4.

By Claim 4, G[L+
u ] and G[L+

v ] are remote for any two distinct u, v ∈ W . Furthermore,

H is remote with G[L+
u ] for any u ∈ W . In addition, we have |L+

u | >
n

t+1
− ω if σ2(G) =

2n
t+1

− 2, and |L+
u | >

n
t+1

− ω if σ2(G) > 2n
t+1

− 2. Let S = V (G) \
(

(
⋃

u∈W L+
u ) ∪ V (H)

)

.

Then c(G− S) = ω + 1 and















|S| < n− ω

(

n

t+ 1
− ω

)

− λ if σ2(G) > 2n
t+1

− 2,

|S| 6 n− ω

(

n

t+ 1
− ω

)

− λ if σ2(G) = 2n
t+1

− 2.
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As G is t-tough and so |S| > tc(G− S) = t(ω + 1), we get















n > ω

(

n

t + 1
− ω + t

)

+ λ + t if σ2(G) > 2n
t+1

− 2,

n > ω

(

n

t+ 1
− ω + t

)

+ λ+ t if σ2(G) = 2n
t+1

− 2.

Claim 5. It holds that σ2(G) = 2n
t+1

− 2, λ = 1, and ω = n
t+1

− 1.

Proof. Note that we have ω 6
n

t+1
− λ 6

n
t+1

− 1 by Claim 2. Suppose to the contrary

that σ2(G) > 2n
t+1

− 2, λ > 2, or ω < n
t+1

− 1. Now we have

n > ω

(

n

t + 1
− ω + t

)

+ λ+ t,

implying
(

ω

t + 1
− 1

)

n 6 ω(ω − t)− λ− t. (2)

The inequality (2) cannot achieve equality when σ2(G) > 2n
t+1

− 2, since we have n >

ω
(

n
t+1

− ω + t
)

+ λ+ t under the current assumptions. If ω < t + 1, then we have ω < 2

because 2t 6 ω < t+1 implies t < 1, a contradiction to Claim 1. Thus we have ω > t+1,

implying ω
t+1

− 1 > 0. Then by Claim 2, we have

(

ω

t + 1
− 1

)

n >

(

ω

t + 1
− 1

)

(ω + λ)(t + 1). (3)

Note that if λ > 2 or ω < n
t+1

−1, then the inequality (3) cannot achieve the equality. By

the assumption for the contrary, at least one of the inequalities (2) or (3) cannot achieve

the equality. Therefore, combining (2) and (3), we get

ω(ω − t)− λ− t >

(

ω

t+ 1
− 1

)

(ω + λ)(t+ 1),

which implies

ω2 − ωt− λ− t > ω(ω + λ)− (ω + λ)(t+ 1)

= ω2 + ωλ− ωt− ω − λt− λ.

This gives (λ− 1)t > (λ− 1)ω, leading to 0 < 0 or ω < t, a contradiction.

By Claim 5, Theorem 1(a) holds. In the rest of the proof, we show Theorem 1(b).

Recall thatH consists of a single vertex, and this assumption will be used in the remainder

of the proof. Let

W ∗ = W+ ∪ V (H).

Since u+ ∈ L+
u for each u ∈ W , Claim 4 implies that W ∗ is an independent set in G.
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Claim 6. Every vertex in V (G) \W ∗ is adjacent in G to at least two vertices from W ∗.

Proof. Suppose to the contrary that there exists x ∈ V (G)\W ∗ such that x is adjacent

in G to at most one vertex from W ∗. Let S = V (G)\ (W ∗∪{x}). Then c(G−S) > ω+1.

However
|S|

c(G− S)
6

n− ω − 2

ω + 1
=

tn
t+1

− 1
n

t+1

< t,

a contradiction.

Claim 7. For every v ∈ W+, we have degG(v, C) = n
t+1

− 1 and v is not adjacent in G

to any two consecutive vertices on C.

Proof. Since σ2(G) = 2n
t+1

− 2, we have degG(v, C) >
n

t+1
− 1 for every v ∈ W+. As

W ∗ is an independent set in G, v+ 6∈ W ∗. By Claim 6, v+ is adjacent in G to another

vertex u from W ∗. If {u} = V (H), then C∗ = v−
↼

Cv+uv− is a Dλ+1-cycle of G with v

being the only component of G−V (C∗). Assume instead that u ∈ W+. Let V (H) = {x}.

Then C∗ = v+u
⇀

Cv−xu−
↼

Cv+ is a Dλ+1-cycle of G with v being the only component of

G− V (C∗).

Again, since G has no Dλ-cycle and v is the only vertex of G outside V (C), it follows

that v is not adjacent in G to any two consecutive vertices on C∗. Furthermore, we

must have degG(v, C
∗) = n

t+1
− 1. As if degG(v, C

∗) > n
t+1

− 1, then {v} ∪ NC(v)
+ is an

independent set of G with more than n
t+1

vertices, a contradiction to Lemma 2.1. The

claim follows as degG(v, C) = degG(v, C
∗) and two neighbors of v that are consecutive on

C will also be consecutive on C∗ as v is not adjacent in G to any vertex from W+.

Our goal is to show that NC(W
+) = NC(H). To do so, we investigate how vertices in

NC(W
+) are located along

⇀

C. We start with some definitions. A chord of C is an edge

uv with u, v ∈ V (C) and uv 6∈ E(C). Two chords ux and vy of C that do not share any

endvertices are crossing if the four vertices u, x, v, y appear along
⇀

C in the order u, v, x, y

or u, y, x, v. For two distinct vertices x, y ∈ NC(W
+), we say x and y form a crossing if

there exist distinct vertices u, v ∈ W+ such that ux and vy are crossing chords of C.

Claim 8. For any two distinct x, y ∈ NC(W
+) with xy ∈ E(C), it follows that x and y

do not form any crossing.

Proof. Suppose to the contrary that for some distinct x, y ∈ NC(W
+) with xy ∈ E(C),

the two vertices x and y form a crossing. Let u, v ∈ W+ such that xu, yv ∈ E(G).

Assume, without loss of generality, that the four vertices u, v, x, y appear in the order

u, v, x, y along
⇀

C. Let V (H) = {w}. Then ux
↼

Cvy
⇀

Cu−wv−
↼

Cu is a hamiltonian cycle of

G, a contradiction to our assumption that G is not hamiltonian.
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Claim 9. For any vertex v ∈ W+ and any two distinct x, y ∈ NC(v), x
⇀

Cy contains a

vertex from W+.

Proof. By Claim 7, x
⇀

Cy has at least three vertices. Suppose to the contrary that x
⇀

Cy

contains no vertex from W+. We furthermore choose x and y so that x
⇀

Cy contains no

other vertex from NC(v) \ {x, y}. Assume that the three vertices v, x, y appear in the

order v, x, y along
⇀

C. By Claim 6, each internal vertex of x
⇀

Cy is adjacent in G to a vertex

from W+. Then by our selection of x and y, we know that each internal vertex of x
⇀

Cy is

adjacent in G to a vertex from W+ \ {v}. Applying Claim 8, x+ does not form a crossing

with x, and so x+ forms a crossing with y. Similarly, x++ does not form a crossing with

x+, and so forms a crossing with y. Continuing this argument for all the internal vertices

of x++
⇀

Cy, we know that y− forms a crossing with y, a contradiction to Claim 8.

We assume that the ω neighbors of the vertex from V (H) on C are v1, . . . , vω and they

appear in the same order along
⇀

C. For each i ∈ [1, ω], let Ii = V (vi
⇀

Cvi+1) \ {vi}, where

vω+1 := v1.

Claim 10. For every v ∈ W+, it holds that NC(v) = W .

Proof. Since x
⇀

Cy contains a vertex from W+ for any two distinct x, y ∈ NC(v) by

Claim 9, it follows that no Ii can contain more than one vertex from NC(v). Since

degG(v, C) = ω = |W+| by Claim 7 and {I1, . . . , Iω} is a partition of V (C), the Pigeon-

hole Principle implies that each Ii contains exactly one vertex from NC(v).

Assume to the contrary that NC(v) 6= W . Let i ∈ [1, ω] be the index such that

dist⇀
C
(v, vi) is largest and vvi 6∈ E(G). Note that the index i exists since v− ∈ W and

vv− ∈ E(G). In particular, every vertex u ∈ W ∩ V (v+i
⇀

Cv) is adjacent to v by the

choice of i. Let z be the vertex in NC(v) ∩ Ii−1. We prove the four subclaims below. Let

V (H) = {x} in the rest arguments.

Claim A: z = v−i .

Proof of Claim A. Suppose otherwise that z 6= v−i . Then by Claim 6, z+ is adjacent in

G to at least two vertices from W+. By Claim 8, NC(z
+) ∩ W+ ⊆ V (v+i

⇀

Cv). Thus

z+ is adjacent in G to a vertex from W+ ∩ V (v+i
⇀

Cv−) as z is the only neighbor of

v from Ii−1 in G. By repeating this procedure for all the vertices from V (z++
⇀

Cv−i )

iteratively, we conclude that v−i is adjacent in G to a vertex u ∈ W+ ∩ V (v+i
⇀

Cv−). As

v+i vi ∈ E(G) and viv
−
i ∈ E(C), Claim 7 implies that v+i is not adjacent in G to v−i . Thus

we have u 6∈ {v+i , v}. However, since u−v ∈ E(G) by our choice of the index i, the cycle

xv−
↼

Cuv−i
↼

Cvu−
↼

Cvix is longer than C, a contradiction. Thus z must be v−i .

Claim B: vi+1 = v−.
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Proof of Claim B. Suppose that vi+1 6= v−. Considering v+i+1 in the place of v and apply-

ing Claim A to it, v+i+1 must be adjacent to vi or v
−
i (if v+i+1vi 6∈ E(G), then i is the index

such that dist⇀
C
(v+i+1, vi) is largest and v+i+1vi 6∈ E(G)). If v+i+1v

−
i ∈ E(G), then the cycle

xv−
↼

Cv+i+1v
−
i

↼

Cvvi+1

↼

Cvix is longer than C, a contradiction. Thus we have v+i+1vi ∈ E(G).

We consider the vertex v+. Since W− is independent in G and v is adjacent to v−i ∈ W−,

we have v 6∈ W−. Thus v+ 6∈ W . Then by Claim 6, v+ is adjacent in G to a vertex

u ∈ W+ \ {v}. However, the cycle



















xvi
⇀

Cvv−i
↼

Cuv+
⇀

Cu−x if u ∈ V (v+
⇀

Cv+i−1),

xviv
+
i+1

⇀

Cvv−i
↼

Cv+v+i
⇀

Cvi+1x if u = v+i ,

xv−
↼

Cuv+
⇀

Cv−i vu
−
↼

Cvix if u ∈ V (v+i+1

⇀

Cv−),

is longer than C, a contradiction.

Claim C: ω > 4.

Proof of Claim C. By Claim 1, we have ω > 2. Suppose that ω ∈ [2, 3]. First, suppose

ω = 2. Since v ∈ W+ is adjacent to a vertex in W− and W+ is independent in G,

we have W− \ W+ 6= ∅. Also a vertex u ∈ W− \ W+ is adjacent to all vertices in

W+ by Claim 6. Then u+ ∈ W and so u++ ∈ W+ is adjacent to u+ and u, contrary

to Claim 7. Next, suppose ω = 3. We let, without loss of generality, v = v+1 . Then

Claim B implies v+1 v
−
3 ∈ E(G). Note that since W+ is independent in G, v−3 must not

be v+2 . We also have v+2 v1 6∈ E(G), as otherwise v1v
+
2

⇀

Cv−3 v
+
1

⇀

Cv2xv3
⇀

Cv1 is a cycle longer

than C. Applying Claim A to v+2 , we get v+2 v
−
1 ∈ E(G). Similarly, v+3 v2 6∈ E(G), as

otherwise v+3 v2
↼

Cv1xv3
↼

Cv+2 v
−
1

↼

Cv+3 is a cycle longer than C. Applying Claim A to v+3 , we

get v+3 v
−
2 ∈ E(G). Then as the degrees of all vertices from W+ are of degree 3 in G,

Claims 3, 6, and 7 imply that the graph G is isomorphic to the Petersen graph. However,

3 = ω = 10
t+1

− 1 implies that G is 3
2
-tough, contradicting that the toughness of the

Petersen graph is at most 4
3
(in the Petersen graph, deleting two independent vertices

from one 5-cycle and another two independent vertices that are non-neighbors of the first

two deleted vertices from the second disjoint 5-cycle gives three components). Thus we

have ω > 4.

Claim D: For every j ∈ [1, ω], |Ij | 6= 3.

Proof of Claim D. Suppose that |Ij | = 3 for some j ∈ [1, ω]. Then we have v+j v
−
j+1 ∈

E(C), which implies NC(v
+
j ) 6= W . Applying Claim A to v+j , we get v+j v

−
j−1 ∈ E(G). By

symmetry of the orientation of C, we have v−j+1v
+
j+2 ∈ E(G). Also we have ω > 4 by Claim

C, which implies vj−1 ∈ V (v+j+2

⇀

Cv−j ). Then the cycle xvj−1

⇀

Cv+j v
−
j−1

↼

Cv+j+2v
−
j+1

⇀

Cvj+2x is

longer than C, a contradiction.
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We now show a contradiction. The vertex v+ must not be in W since vv−i ∈ E(G) by

Claim A andW− is independent inG. Thus v+ is adjacent inG to a vertex u ∈ W+\{v} by

Claim 6. If u 6= v+i , then the cycle xvi
⇀

Cvv−i
↼

Cuv+
⇀

Cu−x is longer than C, a contradiction.

Thus we have u = v+i . We consider the cycle C∗ = v+
⇀

Cvixv
−
↼

Cv+i v
+ in G. Note that

we have V (C∗) = V (G) \ {v}. Then since the length of C∗ is equal to the length of C,

we can apply Claim D to C∗. However, v−, x, vi, v
−
i are four consecutive vertices on C∗

appearing in the order v−, x, vi, v
−
i and v−, v−i ∈ NC∗(v), showing that C∗ does not satisfy

Claim D, a contradiction. This completes the proof of Claim 10.

Claim 10 implies that NC(W
∗) = W . Thus every vertex from W ∗ is adjacent in G

to every vertex from W . Therefore t 6 τ(G) 6 |W |
|W ∗|

as W ∗ is an independent set in G.

Consequently, |W | > t|W ∗| = tn
t+1

and so W = V (G) \W ∗ by noticing |W ∗| = n
t+1

. Thus

G contains a spanning complete bipartite graph between W ∗ and W . On the other hand,

since |W+| = |W | = n
t+1

− 1 and V (G) = W ∗ ∪W = (W+ ∪ V (H)) ∪W , we know that

2( n
t+1

−1)+1 = n and so t = n−1
n+1

. Thus |W | = n−1
2

and |W ∗| = n−1
2

+1 = n+1
2
. Therefore,

G ∈ H. The proof of Theorem 1 is now complete.
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