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Abstract

In 1996, Matheson and Tarjan proved that every near planar triangulation on n
vertices contains a dominating set of size at most n/3, and conjectured that this
upper bound can be reduced to n/4 for planar triangulations when n is sufficiently
large. In this paper, we consider the analogous problem for independent dominating
sets: What is the minimum ε for which every near planar triangulation on n vertices
contains an independent dominating set of size at most εn? We prove that 2/7 6 ε 6
5/12. Moreover, this upper bound can be improved to 3/8 for planar triangulations,
and to 1/3 for planar triangulations with minimum degree 5.

Mathematics Subject Classifications: 05C10, 05C69

1 Introduction

Let S be a set of vertices of a graph G. We say that S is dominating if each vertex of G
is in S or is a neighbor of some vertex in S; and that S is independent if no two vertices
in S are adjacent. In particular, any maximal independent set in G is dominating. We
denote by γ(G) (resp. ι(G)) the cardinality of a minimum dominating (resp. independent
dominating) set of G. Note that γ(G) 6 ι(G). Such parameters are known as the
domination number and the independent domination number of G, respectively, and their
calculations are known to be NP-hard problems even on planar bipartite graphs with
maximum degree 3 [14, Corollary 3]. Therefore, it is natural to explore such parameters
in special classes of graphs, or to look for upper and lower bounds on them.

In this paper, we focus on planar graphs, i.e., graphs that can be drawn in the plane
so that intersections of edges happen only at their ends. By a plane graph we mean
a planar graph together with a fixed planar drawing of it. For general terminology on
planar graphs we refer to the book of Diestel [3]. In particular, a planar triangulation is a
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plane graph in which each face is bounded by a triangle; and a triangulated disk or a near
(planar) triangulation is a 2-connected plane graph in which each face, except possibly
its outer face, is bounded by a triangle. In 1996, Matheson and Tarjan [9] proved that
every near triangulation G on n vertices satisfies γ(G) 6 n/3, and posed the following
conjecture.

Conjecture 1 (Matheson–Tarjan, 1996). For every sufficiently large planar triangula-
tion G on n vertices, we have γ(G) 6 n/4.

Conjecture 1 is best possible since, for any planar triangulation G that consists of
a triangulation of k vertex-disjoint copies of K4 embedded so that each copy of K4 is
in the outer face of all other copies of K4, we have γ(G) = k = n/4. In spite of the
efforts of specialists [7, 8, 10, 11], the best general upper bound found so far for γ(G) is
due to Špacapan [13], who proved that γ(G) 6 17n/53 for every planar triangulation G
on n > 6 vertices. Observe also that the bound of Conjecture 1 is not satisfied for near
triangulations [9, Figure 1]. Related results for maximal outerplanar graphs have been
given in [2, 12].

We are interested in the analogous problem for the independent domination number:
What is the minimum ε such that ι(G) 6 εn for every near triangulation G on n vertices?
In contrast to the domination number, this parameter has not received so much attention
on near triangulations. It is known that ι(G) < 3n/4 for any connected planar graph G on
n > 10 vertices [5, Theorem 6]; and that ι(G) 6 n/2 whenever G is planar and δ(G) > 2
[5, Theorem 8]. Also, if G is a 2-connected outerplanar graph on n > 5 vertices, then
ι(G) 6 2n+1

5
[6, Theorem 1]. For an excellent survey on independent dominating sets,

see [4].
Now, note that since every Eulerian planar triangulation has chromatic number 3, they

contain three disjoint independent dominating sets. Goddard and Henning [5, Question 1]
asked whether such three sets exist in any planar triangulation. In particular, this would
imply that ι(G) 6 n/3 for every n-vertex planar triangulation G. We state the later
statement as a conjecture.

Conjecture 2. For every planar triangulation G on n vertices, we have ι(G) 6 n/3.

Our main contribution is the following theorem.

Theorem 3. For every near triangulation G on n vertices, we have ι(G) 6 5n/12. More-
over, if G is a planar triangulation, then ι(G) < 3n/8, and if G is a planar triangulation
with δ(G) = 5, then ι(G) 6 n/3.

We also show that the first two upper bounds are not less than 2n/7, by presenting an
infinite family of planar triangulations G for which ι(G) > 2n/7 (see Theorem 10). Note
that this improves an observation of Goddard and Henning [5, Figure 6], who presented
an infinite family of planar triangulations G for which ι(G) > 5n/19.

As a starting example, we prove that ι(G) 6 2n/5 for every planar triangulation G
on n vertices due to a relation between r-dynamic and acyclic colorings as follows. A
k-coloring of a graph G is a partition of V (G) into k independent sets. Each part in
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such a partition is called a color class. A coloring of G is r-dynamic if each vertex v has
neighbors in at least min{r, d(v)} color classes, where d(v) denotes the degree of v in G;
and a coloring of G is acyclic if the union of any two of its color classes induces a forest.
We use the following result of Goddard and Henning [5, Lemma 4].

Lemma 4 (Goddard–Henning, 2020). For every graph G on n vertices with δ(G) > r for
which there is an r-dynamic k-coloring, we have ι(G) 6 (k − r)n/k.

Borodin [1] showed that every planar graph admits an acyclic 5-coloring. Let G be
a planar triangulation and χa be an acyclic 5-coloring of G. If G is a triangle, clearly
ι(G) 6 2n/5. Otherwise, δ(G) > 3 and the neighborhood of each vertex contains a cycle;
hence, because χa is an acyclic coloring, every vertex has neighbors in at least three color
classes of χa. Therefore, χa is 3-dynamic and, by Lemma 4, we have ι(G) 6 2n/5.

2 An improved upper bound

In this section, we prove the main theorem of this paper, Theorem 3. For that, we
introduce a concept and settle some notation. For a vertex v in G, denote by N(v) the set
of neighbors of v in G. For a vertex set S of G, denote by N(S) the set of all neighbors
of vertices in S (that may also include vertices of S), and denote by N [S] the closed
neighborhood of S, that is, N [S] = N(S) ∪ S.

Recall that a near triangulation is a 2-connected planar graph in which any face is
bounded by a triangle, except possibly for the outer face, and note that every planar
triangulation is a near triangulation. We start with some basic properties of near trian-
gulations. In the next propositions, we consider a near triangulation G on n > 4 vertices
with a fixed planar embedding and let O be the boundary of the outer face of G.

Proposition 5. Let u ∈ V (G) and let G′ = G[N(u)]. Then G′ contains a spanning cycle
unless u ∈ V (O) and O is not a triangle, in which case G′ contains a spanning path.

For the next two propositions, let S be an independent set in G, and put H = G− S.
Since the neighborhood of every vertex of S in G contains a spanning path, any path of G
that joins two vertices of H can be modified to a path in G that avoids S. This yields
the following result.

Proposition 6. H is connected.

Now, let Y be the vertices of S in O and put X = S \ Y .

Proposition 7. Vertices of Y lie in the outer face of H. Vertices of X lie in inner faces
of H. Moreover, each inner face of H contains at most one vertex of X.

Now, given a plane graph H, we denote by fi(H) the number of faces of degree i in H,
that is, faces with i vertices in their boundary.

Lemma 8. For every connected plane graph H, f4(H) + 2
∑

i>6 fi(H) 6 |V (H)| − 2.
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Proof. For every i, let fi = fi(H). Note that,
∑

i>3 i fi = 2|E(H)| and the number of
faces of H is

∑
i>3 fi. Thus, by Euler’s formula (e.g., [3, Theorem 4.2.9]), we have∑

i>3

fi + |V (H)| =
1

2

∑
i>3

ifi + 2.

Hence

|V (H)| − 2 =
1

2

∑
i>3

ifi −
∑
i>3

fi

=
∑
i>3

i− 2

2
fi

>
∑
i>3

i− 2

2
fi −

1

2
f3 −

3

2
f5

> f4 + 2
∑
i>6

fi.

Although not needed here, we observe that Lemma 8 can be strengthen to the state-
ment f4(H) + 2

∑
i>6 fi(H) 6 |V (H)| − 2− f3(H)+3f5(H)

2
.

Proof of Theorem 3. Let G be a near triangulation on n vertices. The celebrated Four-
Color Theorem assures that there exists a 4-coloring for G (e.g., [3, Theorem 5.1.1]).
Let C1, C2, C3, C4 be the color classes in such a coloring. Each Ci is an independent set.
If some Ci is empty, then each of the other color classes is non-empty and dominating,
because each vertex is in a triangle. Therefore, the smallest of the three non-empty color
classes is an independent dominating set of size at most n/3 < 3n/8 6 5n/12.

So suppose each Ci is non-empty and note that n > 4. For each i, let Ui be the set of
vertices that are not dominated by Ci. Note that U1, U2, U3, and U4 are pairwise disjoint,
as the neighborhood of any vertex u is colored with at least two colors, distinct from the
color used in u. We start by proving a stronger statement on U1, U2, U3, and U4, namely
that

N [Ui] ∩ Uj = ∅ if i 6= j. (1)

Indeed, by contradiction, say v ∈ N(U1) ∩ U2. Then v ∈ C3 ∪ C4. Let u be a neighbor
of v in U1. As v ∈ U2, we conclude that u ∈ N(U2) ∩ U1, and hence u ∈ C3 ∪ C4 also.
Because G is a near triangulation, it is 2-connected. As u and v are adjacent, u and v
have a common neighbor, say w. Since either v ∈ C3 and u ∈ C4, or v ∈ C4 and u ∈ C3, w
has either color 1 or 2, contradicting the fact that v ∈ U2 and u ∈ U1.

Let Si be an independent dominating set of G[Ui] and let S = S1 ∪ S2 ∪ S3 ∪ S4.
Because each Si is a subset of Ui, by (1), set S is independent in G. In order to use
Propositions 5, 6, and 7, let O be the boundary of the outer face of G, let Y be the
vertices of S in O, and let X = S \ Y . Finally, let H = G− S, n′ = |V (H)|, and consider
the plane embedding of H induced by G, which is connected by Proposition 6.
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Claim 9. 2 |X| 6 n′ − 2 + f4(H).

Proof. By Proposition 7, any vertex of X is in an inner face of H, and each such face has
at most one vertex of X. Now, let u ∈ X, and let F be the face of H that contains u.
Since u ∈ Ui for some i, only two colors can appear in the vertices in the boundary of F ,
and hence the number of vertices in the boundary of F is even. Thus,

2 |X| 6 2
∑

i is even

fi(H) 6 2f4(H) + 2
∑
i>6

fi(H) 6 n′ − 2 + f4(H),

where the last inequality follows from Lemma 8.

Now, because |S| = |X|+ |Y |, by Claim 9, we have

3|X|+ |Y | = 2|X|+ |S| 6 n′ − 2 + f4(H) + |S| = n− 2 + f4(H). (2)

In what follows, we use |O| to denote the number of vertices in O. Because Y is an
independent set and O is a cycle, we have |Y | 6 |O|/2. Thus, from (2), we deduce that

3|S| = 3|X|+ 3|Y | 6 n− 2 + f4(H) + |O|. (3)

By the definition of Si, each set Ci ∪ Si is an independent dominating set. Moreover,

4∑
i=1

(|Ci|+ |Si|) = n+ |S| 6
4n− 2 + f4(H) + |O|

3
.

Therefore, the smallest of these four independent dominating sets has size at most n/3 +
(f4(H) + |O| − 2)/12. Let f ′4 be the number of inner faces of degree 4 of H, and let X4 be
the set of vertices of S in such inner faces. Note that f4(H) 6 f ′4 + 1 because the outer
face may have degree 4. Since G is a near triangulation, there is exactly one vertex of X4

in each such inner face, so f ′4 = |X4|. By Proposition 7, the vertices in X4 are in X, and
hence not in O. So |X4|+ |O| 6 n and f4(H)+ |O| 6 f ′4 +1+ |O| = |X4|+1+ |O| 6 n+1.
Thus, ι(G) 6 n/3 + (f4(H) + |O| − 2)/12 < 5n/12.

Now, if G is a planar triangulation, then |O| = 3 and |Y | 6 1. Thus, from (2), we
deduce that

3|S| 6 3|X|+ |Y |+ 2 6 n+ f4(H). (4)

The number of faces in G is 2n − 4, and there are 4f4(H) faces of G incident to the
vertices of degree 4 in S. Therefore, f4(H) 6 (2n− 4)/4 < n/2 and hence, by (4), we have
|S| < n/2. By the same argument as before, we conclude that ι(G) 6 (n+ |S|)/4 < 3n/8.
Furthermore, if G has minimum degree 5, then f4(H) = 0 and hence, by (4), we have
|S| 6 n/3. Hence ι(G) 6 (n+ |S|)/4 6 n/3.
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3 A lower bound

As far as we know, Theorem 3 might not be tight: we do not know a family of planar
triangulations G on n vertices with ι(G) approaching 3n/8. We improve the previous
lower bound on ε given by Goddard and Henning [5, Figure 6] in the next result.

Theorem 10. There is an infinite family F of planar triangulations such that
ι(G) = 2n/7 for every G ∈ F , where n is the number of vertices in G.

Proof. Consider the diamond graph depicted in Figure 1(a). Let us describe a family F
of planar triangulations using this graph. Each planar triangulation in F consists of
a circular chain of such diamond graphs, as depicted in Figure 1(b), with edges added
to result in a planar triangulation. The planar triangulation Gk obtained in this way
with k diamond graphs has n = 7k vertices. The squared vertices in Figure 1(b) show
an independent dominating set with 2k = 2n/7 vertices. Note that any independent
dominating set in such a planar triangulation Gk must contain at least two vertices in
each diamond graph, therefore ι(Gk) = 2k = 2n/7.

(a)

(b)

...

Figure 1: (a) A gadget consisting of seven vertices: the white vertex is not part of the
gadget. Any independent dominating set has one of the red vertices, otherwise, being
independent, it cannot dominate the three red vertices. Analogously, any independent
dominating set has one of the blue vertices, otherwise it does not dominate the middle
blue vertex. (b) A graph consisting of a circular chain of gadgets. In each copy of the
gadget, two of its vertices are needed in any independent dominating set. The red squared
vertices form an independent set with exactly two vertices in each gadget.

4 Further results and concluding remarks

In this section, we explore a few families of planar triangulations for which we can obtain
better bounds on their independent domination number. A planar 3-tree is a planar
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triangulation that can be obtained from a triangle by repeatedly choosing one of its faces
and adding a new vertex inside of it while joining this new vertex to the three vertices of
the face. It is not hard to prove that any planar 3-tree admits a 4-coloring in which each
of its color classes is dominating. Thus ι(G) 6 n/4 for every planar 3-tree on n vertices.

As we observed before, Conjecture 2 holds for any Eulerian planar triangulation. We
can prove a better bound for a particular class of Eulerian triangulations, which we call
recursive Eulerian triangulations, and define as follows. A recursive Eulerian triangulation
is either a triangle, or a graph obtained from a recursive Eulerian triangulation by selecting
one of its faces, drawing a triangle inside of it, and joining both ends of each edge of the
new triangle with a different vertex of the selected face, so that the subgraph induced by
the chosen face and the new triangle is isomorphic to the octahedron. It is not hard to
check that recursive Eulerian triangulations have the following property.

Proposition 11. In a recursive Eulerian triangulation of order at least 9, the degree-4
vertices induce a graph whose components have at most three vertices.

Now, given a graph G, we denote by χr(G) the minimum number of colors in an r-
dynamic coloring of G. Also, for a fixed coloring of G, we denote by LG(u) the set of
colors that u does not see, i.e., that do not appear in the closed neighborhood of u.

Lemma 12. Let G be a recursive Eulerian triangulation. There is a 5-dynamic 6-coloring
of G such that, if u and v are adjacent degree-4 vertices, then LG(u) 6= LG(v). In partic-
ular χ5(G) 6 6.

Proof. Let G be a recursive Eulerian triangulation on n vertices. We proceed by induction
on n. If n 6 6 then G is a triangle or the octahedron and the result is immediate. So,
suppose that n > 9. Let abc be the last triangle added in the recursive construction of G.

Let G′ = G − abc, and let xyz be the face of G′ where abc lies. We may assume
that {a, x}, {b, y} and {c, z} are independent sets. By induction hypothesis, there exists
a 5-dynamic 6-coloring χ′ = {C ′1, C ′2, C ′3, C ′4, C ′5, C ′6} of G′ as above. For every u ∈ V (G′),
set L′(u) := LG′(u), L(u) := LG(u), d′(u) := dG′(u) and d(u) = dG(u). As every vertex
has even degree, |L′(u)| = 1 if d′(u) = 4 and |L′(u)| = 0 if d′(u) > 6. Also, as G′ has at
least six vertices, every vertex in G′ has degree at least 4.

Without loss of generality, assume that x ∈ C ′1, y ∈ C ′2, and z ∈ C ′3. We may also
assume that L′(x) ⊆ {4}, L′(y) ⊆ {5}, and L′(z) ⊆ {6}. We define a new coloring χ by
maintaining the same colors to the vertices inG′ and assigning color 5 to a, color 6 to b, and
color 4 to c. Note that χ is in fact a proper coloring for G. We claim that χ is a coloring as
desired. Indeed, note that L(x) = L′(x)\{4, 6} = ∅. A similar argument holds for y and z.
Thus every vertex in G of degree at least 6 sees all colors. Also, L(a) = {1}, L(b) = {2},
and L(c) = {3}.

Theorem 13. For every recursive Eulerian triangulation G on n > 9 vertices, we
have ι(G) < 13n/42.

Proof. Let V4 be the set of degree-4 vertices of G.
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Claim 14. 6 ι(G) 6 n+ |V4|.

Proof. Let χ = {C1, C2, C3, C4, C5, C6} be a 5-dynamic 6-coloring of G as in Lemma 12.
For each i, let Ui be the set of vertices that are not dominated by Ci. Observe that
all vertices with degree at least 5 are dominated by every color of χ. Hence, ∪6i=1Ui

is precisely the set of degree-4 vertices. Moreover, a degree-4 vertex has exactly four
different colors on its neighborhood. Thus, the set {U1, U2, U3, U4, U5, U6} partitions V4.
Also, by the property of χ stated in Lemma 12, two adjacent degree-4 vertices are not
in the same set Ui. Hence, for every i, the set Ci ∪ Ui is independent. Therefore,
6 ι(G) 6

∑
i |Ci|+

∑
i |Ui| = n+ |V4|.

Claim 15. 7 |V4| 6 6n− 12.

Proof. Let G′ = G− V4. As G′ is a plane graph, the number f ′ of faces of G′ is at most
2|V (G′)| − 4 = 2(n− |V4|)− 4. By Proposition 11, if there are vertices of V4 inside a face
of G′, then there are at most three such vertices. Hence, |V4| 6 3f ′ 6 3(2n − 2|V4| − 4)
and the proof follows.

By Claims 14 and 15, we deduce that ι(G) 6 13n−12
42

.

We conclude by observing that, if every vertex of a planar triangulation G on n vertices
has odd degree, then every color class of a 4-coloring of G is dominating, so ι(G) 6 n/4.
We can extend this result as in the following theorem.

Theorem 16. Let G be a planar triangulation on n vertices. If G has at least αn odd-
degree vertices, then ι(G) 6 (2− α)n/4.

Proof. Let C1, C2, C3, C4 be the color classes of a 4-coloring of G. For each i, let Ui be
the set of vertices in G that are not dominated by Ci. Let U = U1 ∪ U2 ∪ U3 ∪ U4 and
observe that {U1, U2, U3, U4} partitions U . Note that each vertex in Ui, and thus in U ,
has even degree. Therefore the set of odd-degree vertices of G has size at most n − |U |,
and we must have n− |U | > αn, which implies that |U | 6 n− αn = (1− α)n.

For each i, let Si be an independent dominating set of G[Ui]. The set Ci ∪ Si is an
independent dominating set of G. Thus ι(G) 6 mini{|Ci|+ |Ui|}. Therefore,

4ι(G) 6
4∑

i=1

(|Ci|+ |Ui|) = n+ |U | 6 n+ (1− α)n = (2− α)n,

as desired.

Theorem 16 improves the result in Theorem 3 when α > 1/2. Also, Conjecture 2 holds
for any n-vertex planar triangulation with at least 2n/3 odd-degree vertices.
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