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Abstract

Peter Borwein has conjectured that certain polynomials have non-negative
coefficients. In this paper we look at some generalizations of this conjec-
ture and observe how they relate to the study of generating functions
for partitions with prescribed hook differences. A combinatorial proof of
the generating function for partitions with prescribed hook differences is
given.

1 Introduction

In a personal communication to George Andrews in 1990, Peter Borwein made
the following three conjectures. We use the notation

(a; q)n =
n−1∏
j=0

(1− a qj),

[
N

M

]
=

(qN−M+1; q)M
(q; q)M

.

Conjecture 1 The polynomials An(q), Bn(q), and Cn(q) defined by

(q; q3)n(q2; q3)n = An(q3)− qBn(q3)− q2Cn(q3) (1)

have non-negative coefficients.

Conjecture 2 The polynomials A∗n(q), B∗n(q), and C∗n(q) defined by

(q; q3)2
n(q2; q3)2

n = A∗n(q3)− qB∗n(q3)− q2C∗n(q3) (2)

have non-negative coefficients.

1
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Conjecture 3 The polynomials A?n(q), B?n(q), C?n(q), D?
n(q) and E?n(q) defined

by

(q; q5)n(q2; q5)n(q3; q5)n(q4; q5)n
= A?n(q5)− qB?n(q5)− q2C?n(q5)− q3D?

n(q5)− q4E?n(q5) (3)

have non-negative coefficients.

George Andrews [1] has generalized the first two conjectures:

Conjecture 4 For m ≥ 1, the polynomials A†(m,n, t, q), B†(m,n, t, q), and
C†(m,n, t, q) defined by

(q; q3)m(q2; q3)m(zq; q3)n(zq2; q3)n

=
2n∑
t=0

zt
[
A†(m,n, t, q3)− q B†(m,n, t, q3)− q2C†(m,n, t, q3)

]
(4)

have non-negative coefficients.

Dennis Stanton has discovered a generalization of the first conjecture. We can
use the q-binomial theorem to expand (k odd, 1 ≤ a < k/2)

(qa; qk)m(qk−a; qk)n =
(k−1)/2∑

ν=(1−k)/2

(−1)νqk(ν2+ν)/2−aνFν(qk), (5)

where

Fν(q) =
∞∑

j=−∞
(−1)jqj(k

2j+2kν+k−2a)/2

[
m+ n

m+ ν + kj

]
. (6)

Each monomial in qk(ν2+ν)/2−aνFν(qk) involves a power of q for which the ex-
ponent is congruent to −aν modulo k.

Conjecture 5 If a is relatively prime to k and m = n, then the coefficients of
Fν(q) are non-negative.

The polynomial Fν(q) appears to be a special case of the generating function
for partitions “with prescribed hook differences,” [2]. In particular, it is shown
in that paper that if α+ β < 2K and −K + β ≤ n−m ≤ K − α, then

G(α,β,K; q) =
∑
j

(−1)jqj[K(α+β)j+K(α−β)]/2

[
m+ n

m+Kj

]
(7)

is the generating function for partitions inside an m× n rectangle with “hook
difference conditions” specificed by α, β, andK. The polynomial Fν(q) is simply
the special case

K = k, α = ν +
k + 1

2
− a

k
, β = −ν +

k − 1
2

+
a

k
.
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Since we know that this is a generating function, it follows that the coefficients
are non-negative.

The only problem with this analysis is that the hook difference conditions
defined in [2] only make sense for integer values of α, β, and K. In section 2, we
will examine these hook difference conditions, and in section 3 we will consider
what is involved in extending the definition to non-integer values. We are not
able to show that Fν(q) is a generating function. However, it is possible to con-
struct a family of partition generating functions, Am,n(q), that are remarkably
close to An(q) when m = n. Furthermore, it appears that conjecture 5 can be
strengthened to the following.

Conjecture 6 Let α and β be positive rational numbers and K an integer
greater than 1 such that αK and βK are integers. If 1 ≤ α + β ≤ 2K − 1
(with strict inequalities when K = 2) and −K + β ≤ n − m ≤ K − α, then
G(α,β,K; q) has non-negative coefficients.

This conjecture is justified heuristically by the arguments of section 3. Sev-
eral special cases have been verified. For K = 2 and m = n, this author has
proven identities that imply the conjecture for α = 1, β = 1/2 and α = 3/2,
β = 1 [4]:

G(1, 1/2, 2; q) =
m∑
j=0

qjm
[
m

j

]
, (8)

G(3/2, 1, 2; q) =
m∑
j=0

qj
2
[
m

j

]
. (9)

Mourad Ismail and Dennis Stanton [5] have proven that the conjecture holds if

α+ β = K and α− β = m− n+ 1.

Experimentally, it appears that the bounds on n − m are sharp. For ex-
ample, An(q) = G(5/3, 4/3, 3; q) with m = n. The conjecture states that
G(5/3, 4/3, 3; q) has non-negative coefficients when |n−m| ≤ 1:
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m n G(5/3, 4/3, 3; q)

2 1 1 + q + q2

2 1 + q + 2q2 + q3 + q4

3 1 + q + 2q2 + 2q3 + 2q4 + q6

4 1 + q + 2q2 + 2q3 + 3q4 + q5 + q6 − q9 − q10

3 1 1 + q + q2 + q3 − q4

2 1 + q + 2q2 + 2q3 + q4 + q5 + q6

3 1 + q + 2q2 + 3q3 + 2q4 + 2q5 + 3q6 + 2q7 + q8 + q9

4 1 + q + 2q2 + 3q3 + 3q4 + 3q5 + 4q6 + 3q7 + 3q8 + 2q9 + q10 + q12

5 1 + q + 2q2 + 3q3 + 3q4 + 4q5 + 5q6 + 4q7 + 4q8 + 3q9 + 2q10 − q13

−q14 − q15 − q16 − q17

4 2 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 − q9

3 1 + q + 2q2 + 3q3 + 3q4 + 2q5 + 4q6 + 3q7 + 3q8 + 2q9 + q10 + q11

+q12

4 1 + q + 2q2 + 3q3 + 4q4 + 3q5 + 5q6 + 5q7 + 6q8 + 5q9 + 5q10 + 3q11

+4q12 + 3q13 + 2q14 + q15 + q16

5 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 6q6 + 6q7 + 8q8 + 7q9 + 8q10 + 6q11

+6q12 + 5q13 + 5q14 + 3q15 + 3q16 + q17 + q18 + q20

6 1 + q + 2q2 + 3q3 + 4q4 + 4q5 + 7q6 + 7q7 + 9q8 + 9q9 + 10q10 + 8q11

+9q12 + 6q13 + 6q14 + 4q15 + 3q16 − q19 − 2q20 − 2q21 − 2q22 − 2q23

−q24 − q25 − q26

I wish to acknowledge Dennis Stanton’s contribution to this paper in the
form of many fruitful discussions.

2 Partitions with prescribed hook differences

Given a partition λ whose ith largest part is λi, we define λ′i to be the ith largest
part in the conjugate partition (λ′i is the number of parts that are greater than
or equal to i). We say that λ fits inside an m×n rectangle if m ≥ λ′1 and n ≥ λ1.
If (i, j) ∈ λ (equivalently, if λi ≥ j), then we define the hook difference at
position (i, j) to be λi−λ′j . The diagonal δ is the set of all positions (i, j) ∈ λ
for which i− j = δ. The following proposition is a special case of theorem 1 in
[2].

Proposition 1 If −K + β ≤ n − m ≤ K − α where α, β, and K are posi-
tive integers, α + β < 2K, then G(α,β,K; q) as defined in equation (7) is the
generating function for partitions inside an m× n rectangle for which the hook
differences on diagonal α− 1 are less than or equal to K − α− 1 and the hook
differences on diagonal 1− β are greater than or equal to β + 1−K.
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The proof of this proposition given in [2] relies on recurrences and does not
lend itself to non-integer values of α or β. However, as we shall demonstrate,
there is a combinatorial proof of this proposition that uses the approach of [3].
It is this proof that appears to be amenable to generalization.

Proof: We shall use the Frobenius representation of a partition,

λ =
(
a1, a2, . . . , at
b1, b2, . . . , bt

)
,

where ai = λi − i, bi = λ′i − i, and t is the largest integer for which λt ≥ t. We
note that a1 > a2 > · · · > at ≥ 0, b1 > b2 > · · · > bt ≥ 0, and the number
being partitioned is t +

∑
(ai + bi). We want to show that G(α, β,K; q) is the

generating function for partitions whose Frobenius representation satisfies

a1 < n, b1 < m

ai − bi−α+1 ≤ K − 2α, bi − ai−β+1 ≤ K − 2β, for all i. (10)

We shall say that a partition has an (α,β,K) positive oscillation of
length j, j ≥ 1, if we can find a sequence i1 < i2 < · · · < ij for which

ai1 − bi1−α+1 > K − 2α,
bi2 − ai2−β+1 > K − 2β,

...{
aij − bij−α+1 > K − 2α, j odd,
bij − aij−β+1 > K − 2β, j even. (11)

A partition has an (α,β,K) negative oscillation of length j, j ≥ 1, if we
can find a sequence i1 < i2 < · · · < ij for which

bi1 − ai1−β+1 > K − 2β,
ai2 − bi2−α+1 > K − 2α,

...{
aij − bij−α+1 > K − 2α, j even,
bij − aij−β+1 > K − 2β, j odd. (12)

Lemma 1 If α, β, and K are positive integers with α+β < 2K and if −K+β ≤
n −m ≤ K − α, then the generating function for partitions inside an m × n
rectangle with an (α, β,K) positive oscillation of length j is

f+
α,β,K(j; q) = qj[K(α+β)j+K(α−β)]/2

[
m+ n

m+Kj

]
. (13)
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By conjugating the partition (interchanging the as and bs in the Frobenius
representation), this lemma implies that the generating function for partitions
inside an m× n rectangle with an (α,β,K) negative oscillation of length j is

f−α,β,K(j; q) = qj[K(α+β)j−K(α−β)]/2

[
m+ n

m−Kj

]
. (14)

Lemma 1 thus implies that

G(α,β,K; q) =
[
m+ n

m

]
+
∞∑
j=1

(−1)j
[
f+
α,β,K(j; q) + f−α,β,K(j; q)

]
. (15)

Proposition 1 is an immediate consequence of equation (15):
[
m+n
m

]
is the gen-

erating function for all partitions that sit inside an m × n box, and if such a
partition has a positive or negative oscillation and if j is the length of the longest
such oscillation, then the alternating sum will count it with a total weight of

−2
⌊
j

2

⌋
+ 2

⌊
j − 1

2

⌋
+ (−1)j = −1.

Proof of lemma 1: Let λ be a partition into at most m+Kj parts, each part
less than or equal to n−Kj. If i is greater than the number of parts in λ, then
we define λi = 0. We let t be the largest integer (≥ 0) such that

λ2dj/2eα+2bj/2cβ+t ≥ t, (16)

and then define sequences a1, . . . , aµ and b1, . . . , bµ, µ = dj/2eα + bj/2cβ + t,
as follows. If j is even, then

ai =



λi + jK − i, 1 ≤ i ≤ α,
λi+α+β + (j − 2)K + α+ β − i, α+ 1 ≤ i ≤ 2α+ β,
λi+2(α+β) + (j − 4)K + 2(α+ β)− i, 2α+ β + 1 ≤ i ≤ 3α+ 2β,

...
λi+j(α+β)/2 + j(α+ β)/2− i,

j(α+ β)/2− β + 1 ≤ i ≤ j(α+ β)/2 + t,

(17)

bi =



λα+i + (j − 1)K + α− i, 1 ≤ i ≤ α+ β,
λ2α+β+i + (j − 3)K + 2α+ β − i, α+ β + 1 ≤ i ≤ 2(α+ β),
λ3α+2β+i + (j − 5)K + 3α+ 2β − i, 2(α+ β) + 1 ≤ i ≤ 3(α+ β),

...
λj(α+β)/2−β+i +K + j(α+ β)/2− β − i,

( j2 − 1)(α+ β) + 1 ≤ i ≤ j(α+ β)/2,
λ′i−j(α+β)/2 − j(α+ β)/2− i,

j(α+ β)/2 + 1 ≤ i ≤ j(α+ β)/2 + t.

(18)
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We note that

j

2
(α+ β) + t+

∑
i

(ai + bi) =
j(α+β)+t∑

i=1

λi +
t∑
i=1

λ′i − t[j(α+ β) + t]

+
j

2
[K(α+ β)j +K(α− β)]

=
∑
i≥1

λi +
j

2
[K(α+ β)j +K(α− β)].

(19)

If j is odd then,

ai =



λi + jK − i, 1 ≤ i ≤ α,
λi+α+β + (j − 2)K + α+ β − i, α+ 1 ≤ i ≤ 2α+ β,

...
λi+(j−1)(α+β)/2 +K + (j − 1)(α+ β)/2− i,

(j − 1)(α+ β)/2− β + 1 ≤ i ≤ α+ (j − 1)(α+ β)/2,
λ′i−α−(j−1)(α+β)/2 − α− (j − 1)(α+ β)/2− i,

α+ (j − 1)(α+ β)/2 + 1 ≤ i ≤ α+ (j − 1)(α+ β)/2 + t,

(20)

bi =



λα+i + (j − 1)K + α− i, 1 ≤ i ≤ α+ β,
λ2α+β+i + (j − 3)K + 2α+ β − i, α+ β + 1 ≤ i ≤ 2(α+ β),

...
λα+(j−1)(α+β)/2+i + α+ (j − 1)(α+ β)/2− i,

(j − 1)(α+ β)/2 + 1 ≤ i ≤ (j − 1)(α+ β)/2 + α+ t.

(21)

Here we have that

α+
j − 1

2
(α+ β) + t+

∑
i

(ai + bi) =
(j+1)α+(j−1)β+t∑

i=1

λi +
t∑
i=1

λ′i

− t[(j + 1)α+ (j − 1)β + t]

+
j

2
[K(α+ β)j +K(α− β)]

=
∑
i≥1

λi +
j

2
[K(α+ β)j +K(α− β)].

(22)

The αi and βi are non-negative integers because of the choice of t. Since
λ1 ≤ n− jK and n−m ≤ K − α, we have that

a1 = λ1 + jK − 1 < n, (23)
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b1 = λα+1 + (j − 1)K + α− 1 < m. (24)

Furthermore, if we take i1 = α, i2 = α + β, i3 = 2α + β, i4 = 2α + 2β,
. . . , ij = dj/2eα + bj/2cβ, then these sequences satisfy the inequalities in (11)
that characterize a partition with an (α,β,K) positive oscillation of length j.
The only reason why these sequences might not represent a partition with an
(α, β,K) positive oscillation of length j is that we might have

bj(α+β)/2 ≤ bj(α+β)/2+1

when j is even or

aα+(j−1)(α+β)/2 ≤ aα+(j−1)(α+β)/2+1

when j is odd.

2.1 Combinatorial proof of equivalence: first direction

We now perform a shifting operation that is done, successively, for each integer
value of r from j down through 1. Initially, we take ij+1 to be∞, ir = dr/2eα+
br/2cβ for j ≥ r ≥ 1. Our objective is to define a bijection between the pairs
of sequences given above and the pairs of sequences that give the Frobenius
representation for partitions inside an m×n rectangle with an (α,β,K) positive
oscillation of length j.

If r is even:

τ = bir − air−β+1, (25)
κ = max{ν | ir < ν ≤ ir+1 − α, bν − aν−β+1 > τ}, (26)

γ(ν) = max{bi − ai−β+1 − τ | ν ≤ i ≤ κ}. (27)

If the set that defines κ is empty, then we do no shifting for this value of r.
Otherwise, for ir < ν ≤ κ, we set

bν ←− bν − γ(ν), (28)
aν−β ←− aν−β + γ(ν), (29)

and then reset the value of ir to κ.

If r is odd:

τ = air − bir−α+1, (30)
κ = max{ν | ir < ν ≤ ir+1 − β, aν − bν−α+1 > τ}, (31)

γ(ν) = max{ai − bi−α+1 − τ | ν ≤ i ≤ κ}. (32)
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If the set that defines κ is empty, then we do no shifting for this value of r.
Otherwise, for ir < ν ≤ κ, we set

aν ←− aν − γ(ν), (33)
bν−α ←− bν−α + γ(ν), (34)

and then reset the value of ir to κ.
We claim that this shifting procedure yields a pair of sequences that give

the Frobenius representation for a partition inside an m × n rectangle with an
(α, β,K) positive oscillation of length j.

If j is even, then after doing the shift for r = j, the new value of bj(α+β)/2

is strictly larger than the new value of bj(α+β)/2+1. To see this, we observe that
the value of bj(α+β)/2 does not change, and if the old value of bj(α+β)/2+1 is
greater than or equal to the old value of bj(α+β)/2, then

γ(j(α+β)/2+1) ≥ bj(α+β)/2+1−aj(α+β)/2−β+2−
(
bj(α+β)/2 − aj(α+β)/2−β+1

)
,

(35)
so that the new value of bj(α+β)/2+1 equals

bj(α+β)/2+1 − γ(j(α+ β)/2 + 1) ≤ bj(α+β)/2 + aj(α+β)/2−β+2 − aj(α+β)/2−β+1

< bj(α+β)/2. (36)

The function γ is weakly decreasing, and so the new values of aν−β are still
strictly decreasing. We do need to verify that

bν − γ(ν) > bν+1 − γ(ν + 1).

This will be true if γ(ν) = γ(ν + 1). If these values of γ are not equal, then by
definition:

γ(ν) = bν − aν−β+1 − τ, γ(ν + 1) ≥ bν+1 − aν−β+2 − τ. (37)

It follows that

bν − γ(ν) = aν−β+1 + τ > aν−β+2 + τ ≥ bν+1 − γ(ν + 1). (38)

We note that after the shift for r = j, the value of aj(α+β)/2−β might be less
than or equal to the new value of aj(α+β)/2−β+1 which will be bounded by

aj(α+β)/2−β+1 < λ′1 − jα− (j − 2)β −K. (39)

After the next shift, for r = j − 1, the new value of aj(α+β)/2−β will be strictly
greater than the new value of aj(α+β)/2−β+1.

The same argument holds mutatis mutandis if j is odd and for each successive
value of r. If r is even, then the new value of adr/2eα+br/2cβ−β+1 is bounded by

adr/2eα+br/2cβ−β+1 < λ′1 − rα− (r − 2)β − (j − r + 1)K. (40)
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If r is odd, then the new value of bdr/2eα+br/2cβ−α+1 is bounded by

bdr/2eα+br/2cβ−α+1 < λ′1 − (r − 1)α− (r − 1)β − (j − r + 1)K. (41)

We observe that the value of a1 is left unchanged and so is strictly less than
n, and that the final value of b1 (after the shift that corresponds to r = 1) is
strictly less than λ′1 − jK ≤ m.

2.2 Combinatorial proof of equivalence: other direction

To see that we do, in fact, have a bijection we note that we can uniquely
reconstruct the values of τ , κ, and γ(ν) for each shift as r runs from 1 back up
to j. We first choose the sequence i1 < i2 < · · · < ij maximally. That is to say,
we find the largest integer ij for which bij − aij−β+1 > K − 2β (if j is even) or
aij − bij−α+1 > K− 2α (if j is odd), and then after each ir is chosen, we choose
the largest possible value for ir−1. To reverse the shifting process, we perform
the following operation for each r from 1 through j.

If r is even:

τ∗ = max{bν − aν−β+1 | r(α+ β)/2 ≤ ν ≤ ir}, (42)
κ∗ = min{ν | r(α+ β)/2 ≤ ν ≤ ir, bν − aν−β+1 = τ∗}, (43)

γ∗(ν) = min{τ∗ − (bi − ai−β+1) | r(α+ β)/2 ≤ i < ν}. (44)

For r(α+ β)/2 < ν ≤ κ∗, we set

bν ←− bν + γ∗(ν), (45)
aν−β ←− aν−β − γ∗(ν). (46)

If r is odd:

τ∗ = max{aν − bν−α+1 | dr/2eα+ br/2cβ ≤ ν ≤ ir}, (47)
κ∗ = min{ν | dr/2eα+ br/2cβ ≤ ν ≤ ir, aν − bν−α+1 = τ∗}, (48)

γ∗(ν) = min{τ∗ − (ai − bi−α+1) | dr/2eα+ br/2cβ ≤ i < ν}. (49)

For dr/2eα+ br/2cβ < ν ≤ κ∗, we set

aν ←− aν + γ∗(ν), (50)
bν−α ←− bν−α − γ∗(ν). (51)

It is left to the reader to verify that this does uniquely reverse the shifting
done in section 2.1. To prove that we have a bijection between pairs of se-
quences generated by f+

α,β,K(j; q) and partitions inside an m×n rectangle with
an (α, β,K) positive oscillation of lenth j, we need to verify that if we start with
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an arbitrary partition, we get a pair of sequences generated by f+
α,β,K(j; q). The

only condition on these sequences that is not straightforward to verify is that
they are strictly decreasing with the possible exception that if j is even then
we might have bj(α+β)/2+1 ≥ bj(α+β)/2 and if j is odd then we might have
adj/2eα+bj/2cβ+1 ≥ adj/2eα+bj/2cβ.

We observe that in applying the shift given above for r = 1, the new value
for aα might be less than or equal to the new value for aα+1. If j = 1, there is
no problem. If j is larger than 1, then on the r = 2 shift we replace aα+1 with

aα+1 ←− aα+1 − (τ∗ − bα+β + aα+1) = bα+β − τ∗.

We note that if the new value of aα+1 is greater than or equal to the new value
of aα, then the value of b1 after the r = 1 shift is strictly less than its original
value. This implies that after the r = 1 shift we have aα − b1 > K − 2α. We
combine this observation with the following inequalities:

b1 − bα+β ≥ α+ β − 1, (52)
τ∗ ≥ K − 2β, (53)

2K > α+ β, (54)

to see that
bα+β − τ∗ < aα. (55)

The new value of aα+1 after the r = 2 shift is strictly less than aα. This
argument continues to hold for each r < j so that after all of the shifting we
have at most one pair of consecutive elements in the sequences for which we do
not have strict decrease.

Q.E.D.

3 Prescribed Hook Differences with non-integer
parameters

We want to define a prescribed hook difference condition when α and β are not
integers. While there does not seem to be hope for doing this in general, the
particular case

α = ν +
K + 1

2
− a

K
, β = −ν +

K − 1
2

+
a

K
(56)

does hold promise. In particular, let

α = α− a/K, β = β + a/K, (57)
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where α and β are positive integers and a is a positive integer less than or equal
to min{α,β}. Let {ai} and {bi} be the pair of sequences generated by

f+

α,β,K
(j; q) = qj[K(α+β)j+K(α−β)]/2

[
m+ n

m+Kj

]
as given in equations (17–18) and (20–21). We now define

ai = ai −


1, if α− a+ 1 ≤ (i mod α+ β) ≤ α

and i ≤ dj/2e(α+ β)− β,
0, otherwise,

(58)

bi = bi −


1, if α+ β − a+ 1 ≤ (i mod α+ β) ≤ α+ β,

and i ≤ bj/2c(α+ β),

0, otherwise,

(59)

where (i mod α+ β) is the least positive residue of i modulo (α+ β = α+ β).
We have subtracted a total of aj from the pair of sequences. We are left with a
pair of sequences generated by

f+
α,β,K(j; q) = qj[K(α+β)j+K(α−β)]/2

[
m+ n

m+Kj

]
.

To get a pair of sequences generated by f−α,β,K(j; q), we find the sequences
generated by f+

β,α,K(j; q) and then interchange the as and bs. This means that
we start with the pair of sequences generated by f+

β,α,K
(j; q) and then add aj

to them by defining

ai = ai +


1, if β + 1 ≤ (i mod β + α) ≤ β + a

and i ≤ bj/2c(β + α),

0, otherwise,

(60)

bi = bi +


1, if 1 ≤ (i mod β + α) ≤ a,

and i ≤ dj/2eβ + bj/2cα,
0, otherwise.

(61)

It is not clear to what partitions these pairs of sequences correspond. The
sequences generated by f+

α,β,K(j; q) satisfy a weakened form of the oscillating
condition. If we set ir = dr/2eα+ br/2cβ, then

air − bir−α+1 ≥ K − 2α, j odd, (62)
bir − air−β+1

≥ K − 2β, j even. (63)

We also introduce additional inequalities:

air−a > air−a+1, j odd, (64)
bir−a > bir−a+1, j even. (65)
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3.1 Am,n(q): a related partition generating function

If we restrict our attention to the polynomial An(q) = G(5/3, 4/3, 3; q) given in
conjecture 1—see equations (2) and (7)—then we have

K = 3, a = 1, , α = 2, β = 1.

A family of partitions whose generating function appears to be very closely
related to An(q) consists of those that fit inside an m× n rectangle and satisfy
the following conditions for all i such that λi ≥ i:

either λi − λ′i ≥ 0 or λi = λi+1, (66)
either λi+1 − λ′i ≤ −1 or λi = λi+1. (67)

These two conditions can be combined into

either λi = λi+1 or λi ≥ λ′i > λi+1. (68)

If we designate the generating function for these partitions by Am,n(q), then we
have a simple recursion from which they can be computed:

Am,n = 0, if m < 0 or n < 0, (69)
Am,n = 1, if mn = 0, m ≥ 0, n ≥ 0 (70)

A1,n =
[
n+ 1

1

]
, if n ≥ 0, (71)

Am,n = Am−1,n +Am,n−1 −Am−1,n−1

+ qm+n−1 [Am−1,n−1 −Am−1,n−2 + χ(m ≤ n)Am−1,m−2] ,
if m ≥ 2, n ≥ 1. (72)

We compare An,n with An:

An(q)−An,n(q) = 0, n ≤ 4, (73)
A5(q)−A5,5(q) = q11 − q12 − q13 + q14, (74)
A6(q)−A6,6(q) = q11 − q13 − q15 + q17 + q19 − q21 − q23 + q25, (75)
A7(q)−A7,7(q) = q11 − q15 − q16 + q19 + q20 + 2q22 − q23 − 2q24

− 2q25 − q26 + 2q27 + q29 + q30 − q33 − q34 + q38.

(76)

It is easily verified by induction that

Am,n(1) =

{
2× 3n−1, m = n,

3min(m,n), |m− n| = 1.
(77)

so that in fact
An(1) = An,n(1). (78)
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As n increases, the coefficients of An(q) − An,n(q) do increase, but remain
substantially less than the coefficients of either An(q) or An,n(q). Plots of these
coefficients for n = 8, 10, 12, 15, and 18 are included in the file borwein.ps.
While we do get coefficients on the order of 4000 when n = 18, this is less than
1/500 of the corresponding coefficient in either An(q) or An,n(q).

One interesting pattern does emerge. For 5 ≤ n ≤ 17,

Pn(q) =
An(q)−An,n(q)
q11(1− q)(1− q2)

is a symmetric, unimodal, monic polynomial of degree n2 − 25 with strictly
positive coefficients. The fact that it is symmetric and monic of degree n2 − 25
follows from the fact that both An,n(q) and An(q) are symmetric polynomials.
There is no apparent reason why it should be unimodal with strictly positive
coefficients.

References

[1] George E. Andrews, On a conjecture of Peter Borwein, preprint.

[2] George E. Andrews et al, Partitions with prescribed hook differences, Eu-
rop. J. Combinatorics (1987) 8, 341–350.

[3] David M. Bressoud, Extension of the partition sieve, J. Number Theory
(1980) 12, 87–100.

[4] David M. Bressoud, Some identities for terminating q series, Math. Proc.
Camb. Phil. Soc. (1981) 89, 211–223.

[5] Mourad Ismail and Dennis Stanton, private communication.

Department of Mathematics and Computer Science, Macalester College, Saint
Paul, MN 55105, USA


