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ABSTRACT

Let G2(n) denote a bipartite graph with n vertices in each color class, and let z(n, t)

be the bipartite Turán number, representing the maximum possible number of edges in

G2(n) if it does not contain a copy of the complete bipartite subgraph K(t, t). It is then

clear that ζ(n, t) = n2− z(n, t) denotes the minimum number of zeros in an n×n zero-one

matrix that does not contain a t × t submatrix consisting of all ones. We are interested

in the behaviour of z(n, t) when both t and n go to infinity. The case 2 ≤ t � n1/5

has been treated in [9] ; here we use a different method to consider the overlapping case

logn� t� n1/3. Fill an n× n matrix randomly with z ones and ζ = n2 − z zeros. Then,

we prove that the asymptotic probability that there are no t× t submatrices with all ones

is zero or one, according as z ≥ (t/ne)2/t exp{an/t2} or z ≤ (t/ne)2/t exp{(log t− bn)/t2},
where an tends to infinity at a specified rate, and bn →∞ is arbitrary. The proof employs

the extended Janson exponential inequalities [1].
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1. INTRODUCTION AND STATEMENT OF RESULTS

Given a graph F , what is the maximum number of edges in a graph on n vertices

that does not contain F as a subgraph? In the bipartite case, we let z(n, t) denote the

(diagonal) bipartite Turán number, which represents the maximum number of edges in

a bipartite graph [with n vertices in each color class] that does not contain a complete

bipartite graph K(t, t) of order t. An equivalent formulation of this problem is in terms

of zero-one matrices, and is called the problem of Zarankiewicz: What is the smallest

number of zeros ζ(n, t) that can be strategically placed among the entries of an n × n

zero-one matrix so as to prevent the existence of a t× t submatrix of all ones? We remind

the reader that, in this formulation, the submatrix in question need not have consecutive

rows or columns. It is clear that ζ(n, t) = n2 − z(n, t). [Generalizing this problem to s× t
submatrices of a zero-one matrix of order m×n leads naturally to the numbers z(m,n, s, t)

and ζ(m,n, s, t); Bollobás [4]has shown that

2ex(n,K(s, t)) ≤ z(n, n, s, t),

where ex(n, F ) denotes the maximum number of edges in a graph on n vertices that does

not contain F as a subgraph.] In contrast with the classical Turán numbers, definitive

general results are not known in the bipartite case. The initial search for numerical values

of z(n, t), t = 3, 4, 5 . . . ;n = 4, 5, 6, . . . , due to Zarankiewicz; Sierpinski; Brzezinski; Čulik;

Guy; and Znám, is chronicled in [4], as is the history of research (due to Hartman, Myciel-

ski and Ryll-Nardzewski; and Rieman) leading to asymptotic bounds on z(n, 2), and on

z(m,n, s, t) (the latter set of results are due to Kövári, Sós and Turán; Hyltén-Cavallius;

and Znám). The asymptotics of the numbers z(n, n, 2, t) (t fixed) and z(n, 3) have most

recently been investigated by Füredi ([6], [7]) who also describes the early related work

of Rieman; Kövári, Sós and Turán; Erdős, Rényi and Sós; Brown; Hyltén-Cavallius; and

Mörs. An excellent survey of these and related questions can be found in Section VI.2

of [4]. A problem similar in spirit to the Zarankiewicz question is the object of intense

study in reliability theory; see [2] for details and references, and [3] for background on the

Stein-Chen method of Poisson approximation.
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Most of the work described in the previous two paragraphs has focused on the case

where the dimensions (s, t) of the forbidden submatrix are fixed, and n tends to infinity;

a notable exception to this is provided by the recent work of Griggs and Ouyang [11] ,

and Gentry [8], who each study the half-half case, and derive several bounds and exact

values for the numbers z(2m, 2n,m, n). We continue this trend in this paper, focus on

the diagonal case m = n; s = t, and study the asymptotics of the problem as both n and

t tend to infinity. Our arguments will force us to assume that logn � t � n1/3, where,

given two non-negative sequences an and bn, we write an � bn if an/bn → 0 (n → ∞).

We thus obtain an extension of the results in [9], where the overlapping case 2 ≤ t� n1/5

was considered. Similarities and differences between the approaches in [9] and the present

paper will be given later in this section, and in the next section. Since z(n, t) ∼ n2 for

the range of t’s that we consider, we will occasionally rephrase our results in terms of the

minimum number ζ(n, t) of zeros of an n × n 0-1 matrix that prevents the existence of

a t × t submatrix of all ones. The key general bounds due to Znám [15] and Bollobás [

4](Theorems VI.2.5 and VI.2.10 in [4], adapted to our purpose,) are as follows:

(
n2 − (t− 1)1/tn2− 1

t − n(t− 1)
2

)
≤ ζ(n, t) ≤ 2n2 logn

t
{1 + o(1)} (t→∞; t� logn),

(1)

In particular, with t = nα, α < 1/2, we have

(1− α)n2−α log n{1 + o∗(1)} ≤ ζ(n, nα) ≤ 2n2−α logn{1 + o(1)}. (2)

We restate (1) and (2) in probabilistic terms as follows: Consider the probability measure

Pu,z that randomly and uniformly places ζ zeros and z = n2 − ζ ones among the entries

of the n × n matrix [the subscript u refers to the fact that the allotment is uniform, and

the subscript z to the fact that there are z ones in the array.] Let X denote the random

variable that equals the number of t× t submatrices consisting of all ones [we often denote

such a t× t matrix by Jt]. In other words,

X =
(nt)

2∑
j=1

Ij
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where Ij = 1 if the jth t × t submatrix equals Jt [Ij = 0 otherwise]. Equation (1) may

then be rephrased as

ζ ≤ n2 − (t− 1)1/tn2− 1
t − n(t− 1)

2
⇒ Pu,z(X = 0) = 0 (3)

and

ζ ≥ 2n2 log n
t

{1 + o(1)} ⇒ Pu,z(X = 0) > 0. (4)

The rate of growth of the numbers ζ(n, t) is given by (3) and (4); if t = nα, for example,

this rate is of order n2−α log n. We will primarily be concerned with proving results

that maintain the flavor of Bollobás’ and Znám’s results, through the establishment of a

threshold phenomenon for Pu,z(X = 0), i.e., a threshold function for the bipartite Turán

property.

One may obtain a clue as to the direction in which results such as (3) and (4) may

be steered by using the following rather elementary probabilistic argument: Suppose that

P denotes the probability measure that independently allots, to each position in [n]× [n],

a one with probability p and a zero with probability q = 1 − p, where p and q are to

be determined. Then, with X representing the same r.v. as before, E(X) =
(
n
t

)2
pt

2 ≤
K(ne/t)2tpt

2
/t → 0 if p = (t/ne)2/t exp{(log t − bn)/t2}, where bn → ∞ is arbitrary, so

that by Markov’s inequality, P(X = 0) → 1 if the expected number of ones is less than

n2(t/ne)2/t exp{(log t − bn)/t2}. The question, of course, is whether this is true if the

actual number of ones is at the same level, i.e., under the measure Pu,z.

In this paper, we use the extended Janson exponential inequalities [1] to show that

both P(X = 0) and Pu,z(X = 0) enjoy a sharp threshold at the level suggested by the

above reasoning. Specifically, we prove

Theorem. Consider the probability measure P that independently allots, to each position

in X = [n] × [n] = {1, 2, . . . , n} × {1, 2, . . . , n}, a one with probability p and a zero with

probability q = 1− p. Let t satisfy logn� t = o(n1/3), and set X =
∑(nt)

2

j=1 Ij, with Ij = 1

iff J = Jt, where J represents the jth t× t submatrix of X , and Ij = 0 otherwise. Then

p =
(
t

ne

)2/t

exp
{

log t+ an
t2

}
⇒ P(X = 0)→ 0 (n→∞)
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and

p =
(
t

ne

)2/t

exp
{

log t− bn
t2

}
⇒ P(X = 0)→ 1 (n→∞)

where bn →∞ is arbitrary, and an ≥ 2t+ log(n2/t2) + δn, where δn →∞ is arbitrary.

As a consequence of the above theorem, we will show that it is possible to prove a

result with a fixed (as opposed to random) number of ones, i.e., to prove that Pu,z(X = 0)

tends to zero or one according as z, the number of ones in the matrix, is larger than

n2(t/ne)2/t exp{(log t + an)/t2}, or smaller than n2(t/ne)2/t exp{(log t − bn)/t2}. This

comes as no surprise, since it is well-known that many graph theoretical properties hold

under the model G(n, p) if and only if they hold under the model G(n,m), with m = np.

In particular, with t = nα, we see that Jt submatrices pass from being sparse objects

to abundant ones at the level ζ = 2(1 − α)n2−α logn. As a further corollary, we will be

able to improve the general upper bound ζ(n, t) ≤ (2n2 logn)/t{1 + o(1)} to ζ(n, t) ≤
2n2(log(n/t))/t{1 + o(1)}, with the most significant improvement being when t = nα.

The versatility of Janson’s inequalities in combinatorial situations has been well-

documented; see, for example, the wide range of examples in Chapter 8 of [1] , or the

work of Janson,  Luczak, and Ruciński [12], who establish the definitive threshold results

for Turán-type properties in the unipartite case. Recent applications of these exponential

inequalities include an an analysis of the threshold behaviour of random covering designs

( [10] ); of random Sidon sequences ( [14]); and of the Schur property of random subsets (

[13]). A recent analysis of graph-theoretic properties with sharp thresholds may be found

in [5].

We end this section by stating the connections between this paper and [9]. In [9],

the same problem was treated as in this paper, and the (regular) Janson exponential

inequalities yielded the threshold function for the Zarankiewicz property for 2 ≤ t� n1/5.

A comment was made that the same technique would probably work, with a large amount

of extra effort, for t’s up to o(n1/3). In this paper, we choose, instead, to use the extended

Janson inequalities, together with a different technique for bounding the covariance terms,

to prove this fact. We indicate methods by which the main result could, possibly, be

extended to t = o(n1/2). Other points of difference and similarity with [9] will be indicated

at various points throughout this paper.
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2. PROOFS

Proof of the Theorem:

We have already provided a proof of the second part of the theorem using nothing

more than Markov’s inequality, and now turn to the first half. Throughout, we assume

that p = (t/ne)2/t exp{(log t + an)/t2}, with conditions on an to be determined. Let Bj

be the event that the jth t× t submatrix, denoted by J , equals Jt, i.e., has all ones. We

recall the Janson and extended Janson inequalities ( [1]):

P(X = 0) ≤ exp
{
−µ+

∆
2(1− ε)

}
; (5)

and

P(X = 0) ≤ exp
{
−µ

2(1− ε)
2∆

}
, (6)

where

ε =pt
2
;

µ =
(
n

t

)2

pt
2

= E(X); and

∆ =µ
t∑

r,c=1
r+c<2t

(
t

r

)(
n− t
t− r

)(
t

c

)(
n− t
t− c

)
pt

2−rc; (7)

and (in (6)) provided that ∆ ≥ µ(1−ε). We also mention the bound based on Chebychev’s

inequality, known in the combinatorics literature ( [1]) as the second-moment bound:

P(X = 0) ≤ ∆ + µ

µ2
. (8)

In [9], (5) was used to obtain the required threshold for 2 ≤ t � n1/5 with ∆ as in (7),

and it was noted that the second moment bound (8) could also be employed–but with a

worse rate of approximation, and without any significant reduction in the calculation. It

can readily be checked, moreover, that if the exact form of (7) is used for ∆, then ∆ = o(1)

iff µ2/∆→∞ iff t = o(n1/5), so that even the extended Janson inequality will not lead to

an improvement in the results of [9]. We need, therefore, to work with a different method

in conjunction with (6), and proceed as follows: Since k! ≥ A
√
k(k/e)k, k = 1, 2, . . . , and
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k! ≥ (k/e)k, k = 0, 1, 2, . . ., where A = e/
√

2 and we interpret 00 as unity, (7) yields the

estimate

∆ ≤ ∆1 + ∆2 (9)

where

∆1 ≤ 4
e4

(
n

t

)2

p2t2
t−1∑
r,c=1

(
te

c

)c(
te

r

)r (
ne

t− r
)t−r (

ne

t− c
)t−c 1√

rc(t− r)(t− c)p
−rc

≤
(
n

t

)2

p2t2
t−1∑
r,c=1

(
te

c

)c(
te

r

)r (
ne

t− r
)t−r (

ne

t− c
)t−c 1

t− 1
p−rc

=
(
n

t

)2

p2t2
t−1∑
r,c=1

ϕ(r, c) say, (10)

and

∆2 ≤
(
n

t

)2

p2t2
∑

max{r,c}=t
r+c<2t

ψ(r, c), (11)

where

ψ(r, c) = (t− 1)ϕ(r, c) =



(
te
c

)c ( te
r

)r ( ne
t−r
)t−r (

ne
t−c
)t−c

p−rc (max{r, c} < t);

et
(
te
r

)r ( ne
t−r
)t−r

p−rt (c = t, r < t);

et
(
te
c

)c ( ne
t−c
)t−c

p−ct (r = t, c < t)

e2tp−t
2

(r = c = t).

Note that ϕ and ψ are each defined on the compact subset 1, t]2 of R2. Now, in the main

result of [9], both an and bn could be taken to be arbitrary. We cannot prove such a result,

in our current theorem, for t’s of the form Ω(n1/5) ≤ t = o(n1/3) due, basically, to the

above-described “inflation” in the value of ∆. Actually, as we shall see, this is not really

an inflation at all: when p equals a slightly higher value, the proof of the theorem will

reveal that the maximum summand in ∆ (given by (9) through (11)) corresponds to (1,1),

whereas the maximum summand in [9]was at (t − 1, t), but for a smaller value of p, and

with ∆ given by (7). The overall effect, however, is for ∆ to decrease. The proof of the

theorem proceeds by a sequence of lemmas:

Lemma 1. The function ψ(r, c), extended to the closed domain A = [1, t]2 \ (t − 1, t]2 of

R2, has critical points only along the diagonal {(r, c) : r = c}

7
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Proof. Writing ψ on the interior of A as

ψ(r, c) = exp
{

logAc + r log
(
te

r

)
+ (t− r) log

(
ne

t− r
)

+ rc log s
}

where Ac depends only on c, and s = 1/p, we see that

∂ψ

∂r
= elogψ

{
log
(
te

r

)
− log

(
ne

t− r
)

+ c log s
}

which equals zero if
(t− r)sc

r
=
n

t
.

Similarly we verify that ∂ψ/∂c = 0 if (t− c)sr/c = n/t. It follows, that at a critical point,

(t− r)
rsr

=
(t− c)
csc

.

Now, since the function η(x) = (t − x)/xsx; (1 ≤ x ≤ t), is decreasing, it follows that

η(r) = η(c)⇒ r = c. The lemma follows.

Lemma 2. ψ(1, 1) ≥ ψ(1, x) = ψ(x, 1) ∀x ∈ [1, t], provided that t2 = o(n) and t� logn.

Proof. We show that ψ(1, x) is decreasing in x. Since ψ(1, x) = K(te/x)x(ne/(t −
x))t−xp−x for a constant K, we see that the sign of dψ(1, x)/dx is determined by the

quantity log(te/x)− log(ne/(t−x))+log s = log(t(t−x)s/nx), which is negative if t2s ≤ n.

This concludes the proof of Lemma 2, since p ≈ 1 in all the cases we consider.

Lemma 3. ψ(1, 1) ≥ ϕ(1, 1) ≥ ψ(t, x) = ψ(x, t) ∀x ∈ [1, t − 1], provided that t2 =

o(n), t � log n, and p = (t/ne)2/t exp{(log t + an)/t2} with an restricted to a range to be

specified below.

Proof. We consider the function ψ(t, x) = et(te/x)x(ne/(t − x))t−xp−tx, the sign of

whose derivative is determined by the quantity log(t(t − x)st/nx); it is easy to verify

that ψ′(t, x) ≥ 0 provided that x ≤ t2st/(n + tst). We next find conditions under which

t2st/(n+ tst) ≥ t− 1; this inequality may be checked to hold provided that st ≥ n, i.e., if

npt ≤ 1. Now if we set p = (t/ne)2/t exp{(log t+ an)/t2} we see that we must have

exp{(log t+ an)/t} ≤ ne2/t2 (12)

8
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in order for t2st/(n+ tst) to exceed t− 1. Since t2 = o(n), we can always choose an →∞
slowly enough so that (12) holds. But we must be more careful, for reasons that will soon

become apparent, and note, more specifically, that

an ≤ t log
(
ne2

t2

)
− log t (13)

will certainly suffice. Lemma 3 will follow if we can show that ϕ(1, 1) ≥ ψ(t, t − 1),

i.e., that (n/t)2t−3 ≥ 4p−t
2+t, and thus, with p = (t/ne)2/t exp{(log t + an)/t2}, that

exp{an − 2t} ≥ Kn/t2. The last condition clearly holds if

an ≥ 2t+ log
( n
t2

)
+ δn, (14)

where δn → ∞ is arbitrarily small; since 2t + log(n/t2) + δn ≤ t log(ne2/t2) − log t, (13)

and (14) complete the proof of Lemma 3.

Lemma 4.

ϕ(1, 1) ≥ max{ψ(t− 1, x) : t− 1 ≤ x ≤ t} under the same conditions as in Lemma 3.

Proof. Similar to that of Lemma 3; it turns out that Lemma 4 holds if

an ≥ 2t+ log
(
n2

t2

)
+ δn, (15)

for any δn →∞.

Lemma 5. ψ(1, 1) ≥ ψ(r, r), where (r, r) is any critical point of ψ, provided that t =

o(n1/2), and p = (t/ne)2/t exp{(log t+an)/t2}, where an ≤ t log(ne2/t2)−log t is arbitrary.

Proof. We shall show that α(r) = log
√
ψ(r, r), and hence β(r) = ψ(r, r), is first decreas-

ing and then increasing as a function of r if an is as stated above. Lemma 5 will then

follow from Lemma 4. We have α(r) = r log(te/r) + (t − r) log(ne/(t − r))− (r2/2) log p,

so that α(·) is increasing whenever

t(t− r)
nr

≥ pr. (16)

Note that both sides of (16) represent decreasing functions of r, and, moreover, that the

left side is convex. We next exhibit the fact that (16) does not hold when r = 1, but does

when r = t− 1; it will then follow that (16) holds for each r ≥ r0.

9
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With r = 1, (16) is satisfied only if t2/n ≥ p, which is clearly untrue since t2 = o(n)

and p ∼ 1. Let r = t − 1. (16) is then equivalent to the condition npt ≤ 1, which may

be checked to hold, as in the proof of Lemma 3, for any an ≤ t log(ne2/t2) − log t. This

concludes the proof of Lemma 5.

We have proved thus far that the function ψ, and thus the function ϕ, [(r, c) ∈
{1, 2, . . . , t}2 \ (t, t)], both achieve a maximum at (1,1) provided that t does not grow too

rapidly (or too slowly), and that p is large enough, but not too large. Continuing with the

proof, we assume that p = (t/ne)2/t exp{(log t + an)/t2}, with an = 2t + log(n2/t2) + δn,

i.e., equal to the value specified by (15). If we can establish that P(X = 0)→ 0 with this

value of p, then the same conclusion is certainly valid, by monotonicity, if p assumes any

larger value. So far, our analysis has led (roughly) to the conditions logn � t � n1/2;

we now see how the “legal” use of Janson’s inequalities forces further restrictions on t –

in particular, we will need to assume that log n � t � n1/3. Returning to the extended

Janson inequality, we must first find conditions under which ∆ ≥ µ; this condition will

ensure the validity of (6). Since, by (7), ∆ ≥ K(nt)2p2t2t2(ne/t)2t−2(1/t) for some constant

K, and µ =
(
n
t

)2
pt

2
, we must have

Kpt
2 ≥ t2t−3

n2t−2e2t−2

for ∆ to exceed µ. Setting p = (t/ne)2/t exp{(an + log t)/t2}, we see that ∆ ≥ µ if

K

(
t

ne

)2t

tean ≥ t2t−3

n2t−2e2t−2
,

i.e., if

Kt4ean ≥ n2e2,

or, if

an ≥ log
(
n2e2

t4K

)
.

This may certainly be assumed to be true, and we next investigate whether we have

µ2/∆ → ∞ for p = (t/ne)2/t exp{(an + log t)/t2}; this will be the final step in the proof

of the theorem. We have, by Lemmas 1 through 5,

µ2

∆
≥

(
n
t

)4
p2t2

t2
(
n
t

)2
p2t2ϕ(1, 1)

10
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=

(
n
t

)2
p

t2(te)2( ne
t−1 )2t−2(t− 1)−1

� (n− t)2tp

t(t/e)2tt2(te)2( ne
t−1 )2t−2(t− 1)−1

�n
2

t6
→∞

if t = o(n1/3); in the last two lines of the above calculation, the notation f � g means that

f ≥ Kg for some positive constant K. This proves the theorem; as in [9], the use of the

second moment method would have led to a proof with the same degree of computation

as above, but with a far worse approximation for P(X = 0).

Remarks. Observe that the above proof actually shows, as in [1], pp. 40–41, that X ∼
E(X) with high probability. The condition t � logn arises at several points in our

proof and is crucial. In a similar vein, we point out that the condition t = o(n1/3) arose

at the very end of our proof, when the generalized Janson inequality was invoked. A

more careful analysis, using the chain of inequalities ∆ ≤ (nt)2p2t2 [ϕ(1, 1) + t2T2]; ∆ ≤(
n
t

)2
p2t2 [ϕ(1, 1) + T2 + t2T3]; etc., where T2, T3 . . . represent the second, third,. . . largest

summands in (10) and (11), would clearly lead to improvements. We conjecture, therefore,

that the main result is true when t = o(n1/2), and also that an can be chosen (like bn)

to tend to infinity at an arbitrarily slow rate. The latter fact is known to be true for

t = o(n1/5) (see [9] for a proof). Now if one seeks to maximize ϕ (with ∆ as in (7)) for

p = (t/ne)2/t exp{(an + log t)/t2}, where an → ∞ at an arbitrarily slow rate, then the

maximum is achieved, for all t = o(n1/2), at (t− 1, t) (see [9] ). The problem, however, is

that the Janson and extended Janson inequalities are both valid only for t = o(n1/5) (as

proved in [9]), whilst for a ∆ inflated as in (10) and (11), the bound (5) is not useful, and,

as we have seen, the extended Janson inequality unfortunately requires, for t = o(n1/3),

that an grow at a fast enough rate–with the maximum of ϕ occurring at (1,1). Graphs of

ϕ(r, c), drawn using MAT HEMAT ICA c©, show how very sensitive the location of the

maximum value of ϕ is to small changes in the arguments. A new approach is, therefore,

needed to resolve the above conjecture. We end with two corollaries:

Corollary 1. Consider the probability measure Pu,z which uniformly places ζ zeros and

z = n2 − ζ ones among the entries of the n × n matrix. Let t satisfy logn � t = o(n1/3)

11



the electronic journal of combinatorics 4 (1997), #R18 12

and set X =
∑(nt)

2

j=1 Ij, with Ij = 1 or Ij = 0 according as the jth t× t submatrix consists

of all ones (or not). Then for any bn →∞, and an as in the theorem,

z = n2

(
t

ne

)2/t

exp
{

log t+ an
t2

}
⇒ Pu,z(X = 0)→ 0 (n→∞)

and

z = n2

(
t

ne

)2/t

exp
{

log t− bn
t2

}
⇒ Pu,z(X = 0)→ 1 (n→∞)

Proof. We clearly have, for each z, Pu,z(X = 0) = P(X = 0|the n×n matrix has z ones).

Set p = (t/ne)2/t exp{(log t+ an)/t2} and let z denote the corresponding number of ones.

Then

P(X = 0|z = n2p) ≤ P(X = 0|z ≤ n2p) ≤ 3P(X = 0)→ 0

by the theorem, where the last inequality above follows due to the observation that

P(A|B) ≤ P(A)/P(B) and the fact that the central limit theorem [or the approxi-

mate and asymptotic equality of the mean and median of a binomial distribution] im-

ply that P(z ≤ n2p) ≥ 1/3. This proves the first half of the corollary. Conversely, with

p = (t/ne)2/t exp{(log t− bn)/t2} the same reasoning implies that

P(X ≥ 1|z = n2p) ≤ P(X ≥ 1|z ≥ n2p) ≤ 3P(X ≥ 1)→ 0,

again by the theorem. This completes the proof.

Corollary 2. ζ(n, t) ≤ (2n2/t)(log(n/t)){1 + o(1)}.

Proof. By Corollary 1,

ζ(n, t) ≤n2

{
1−

(
t

ne

)2/t

exp
{

log t− bn
t2

}}

=n2

{
1− exp

{
−2
t

log
(ne
t

)
+

log t− bn
t2

}}
≤n2

{
2
t

log
(n
t

)
+

2
t
− log t

t2
+
bn
t2

}
=

2n2

t
log

n

t
{1 + o(1)},

12
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as asserted.
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