Perfect matchings in ϵ-regular graphs

Noga Alon
*School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; Email: noga@math.tau.ac.il.
Vojtech Rödl
${ }^{\dagger}$ Department of Mathematics and Computer Science, Emory University, Atlanta, USA; Email: rodl@mathcs.emory.edu.
> Andrzej Ruciński > \ddagger Department of Discrete Mathematics, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland; > Email: rucinski@math.amu.edu.pl.
Submitted: December 10, 1997; Accepted: February 8, 1998.

Abstract

A super (d, ϵ)-regular graph on $2 n$ vertices is a bipartite graph on the classes of vertices V_{1} and V_{2}, where $\left|V_{1}\right|=\left|V_{2}\right|=n$, in which the minimum degree and the maximum degree are between $(d-\epsilon) n$ and $(d+\epsilon) n$, and for every $U \subset V_{1}, W \subset V_{2}$ with $|U| \geq \epsilon n,|W| \geq \epsilon n,\left|\frac{e(U, W)}{|U| W \mid}-\frac{e\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|\left|V_{2}\right|}\right|<\epsilon$. We prove that for every $1>d>2 \epsilon>0$ and $n>n_{0}(\epsilon)$, the number of perfect matchings in any such graph is at least $(d-2 \epsilon)^{n} n$! and at most $(d+2 \epsilon)^{n} n!$. The proof relies on the validity of two well known conjectures for permanents; the Minc conjecture, proved by Brégman, and the van der Waerden conjecture, proved by Falikman and Egorichev.

[^0]An ϵ-regular graph on $2 n$ vertices is a bipartite graph on the classes of vertices V_{1} and V_{2}, where $\left|V_{1}\right|=\left|V_{2}\right|=n$, in which for every $U \subset V_{1}, W \subset V_{2}$ with $|U| \geq \epsilon n$, $|W| \geq \epsilon n$,

$$
\begin{equation*}
\left|\frac{e(U, W)}{|U||W|}-\frac{e\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|\left|V_{2}\right|}\right|<\epsilon, \tag{1}
\end{equation*}
$$

where here $e(X, Y)$ denotes the number of edges between X and Y. The quantity $\frac{e\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|\left|V_{2}\right|}$ is called the density of the graph.

Such a graph is a super (d, ϵ)-regular graph if, in addition, its minimum degree δ and its maximum degree Δ satisfy

$$
(d-\epsilon) n \leq \delta \leq \Delta \leq(d+\epsilon) n
$$

In this note we prove the following result
Theorem 1 Let G be a super (d, ϵ)-regular graph on $2 n$ vertices, where $d>2 \epsilon$ and $n>n_{0}(\epsilon)$. Then the number $M(G)$ of perfect matchings of G satisfies

$$
(d-2 \epsilon)^{n} n!\leq M(G) \leq(d+2 \epsilon)^{n} n!
$$

Thus, the number of perfect matchings in any super (d, ϵ)-regular graph on $2 n$ vertices is close to the expected number of such matchings in a random bipartite graph with edge probability d (which is clearly $d^{n} n!$). This result is combined with some additional ideas in [7] to derive a new proof of the Blow-Up Lemma of Komlós, Sárközy and Szemerédi.

The upper bound in Theorem 1 is true for all bipartite graphs with maximum degree at most $(d+\epsilon) n$ on at least one side, and is an easy consequence of the Minc conjecture [6] for permanents, proved by Brégman [2] (c.f. also [1] for a probabilistic description of a proof of Schrijver). Indeed, the Minc conjecture states that the permanent of an n by n matrix A with $(0,1)$ entries satisfies

$$
\operatorname{per}(A) \leq \prod_{i=1}^{n} r_{i} 1^{1 / r_{i}}
$$

where r_{i} is the sum of the entries of the i-th row of A. To derive the upper bound in Theorem 1 apply this estimate to the matrix $A=\left(a_{u, v}\right)_{u \in V_{1}, v \in V_{2}}$ in which $a_{u, v}=1$ if u, v are adjacent and $a_{u, v}=0$ otherwise. Here $M(G)=\operatorname{per}(A)$. Since the function $x!^{1 / x}$ is increasing, $M(G) \leq(k!)^{n / k}$, where $k=\lfloor(d+\epsilon) n\rfloor$, and the upper bound follows by applying the Stirling approximation formula for factorials.

It is worth noting that since every ϵ-regular graph with density d and $2 n$ vertices contains, in each color class, at most ϵn vertices of degree higher than $(d+\epsilon) n$, some version of the above upper bound is also true for any ϵ-regular graph of density d. Namely, one can show that for every $d>0$, if ϵ is sufficiently small as a function of d, then for every ϵ-regular graph G on $2 n$ vertices with density d we have

$$
M(G)<(d+3 \epsilon)^{n} n!
$$

provided $n>n_{0}(\epsilon)$.
To prove the lower bound observe that by the van der Waerden conjecture, proved by Falikman [4] and Egorichev [3], the number of perfect matchings in a bipartite k regular graph with n vertices in each color class is at least $(k / n)^{n} n$!. Thus it suffices to show that our graph contains a spanning k-regular subgraph (a k-factor), where $k=\lceil(d-2 \epsilon) n\rceil$. This is proved in the next lemma.

Lemma 2 Let G be a super (d, ϵ)-regular graph on $2 n$ vertices, $d>2 \epsilon$. Then G contains a spanning k-factor, where $k=\lceil(d-2 \epsilon) n\rceil$.

In the proof of this lemma we will apply the following criterion for containing a k-factor, which can be found e.g. in [5], page 70, Thm. 2.4.2.

Theorem 3 Let G be a bipartite graph on $2 n$ vertices in the classes V_{1} and V_{2}, where $\left|V_{1}\right|=\left|V_{2}\right|=n$. Then G has a k-factor if and only if for all $X \subseteq V_{1}$ and $Y \subseteq V_{2}$

$$
\begin{equation*}
k|X|+k|Y|+e\left(V_{1}-X, V_{2}-Y\right) \geq k n \tag{2}
\end{equation*}
$$

Proof of Lemma 2. We first assume, to simplify the notation and avoid using floor and ceiling signs when these are not crucial, that $(d-2 \epsilon) n$ is an integer.

By Theorem 3, all we need is to prove inequality (2). If $|X|+|Y| \geq n$ then the lefthand side of (2) is at least $n k$, and we are done. Assume, thus, that $|X|+|Y|<n$. Without loss of generality we may and will assume that $\left|V_{1}-X\right| \geq\left|V_{2}-Y\right|$. If $\left|V_{2}-Y\right|<\epsilon n$, then, since $|X|+|Y|<n$, it follows that $|X|<\left|V_{2}-Y\right|<\epsilon n$ and thus every vertex of $V_{2}-Y$ has at least $\delta-|X|>(d-2 \epsilon) n=k$ neighbors in $V_{1}-X$, implying that $e\left(V_{1}-X, V_{2}-Y\right) \geq(n-|Y|) k$, and showing that the left-hand side of (2) is at least $k|X|+k|Y|+k(n-|Y|) \geq k n$, as needed. Otherwise, $\left|V_{1}-X\right| \geq$ $\left|V_{2}-Y\right| \geq \epsilon n$, and thus, by the ϵ-regularity assumption and the obvious fact that $e\left(V_{1}, V_{2}\right) /\left(\left|V_{1}\right|\left|V_{2}\right|\right) \geq d-\epsilon$, it follows that $e\left(V_{1}-X, V_{2}-Y\right)>(d-2 \epsilon)(n-|X|)(n-|Y|)$. Therefore, the left-hand side of (2) is at least

$$
\begin{gathered}
k|X|+k|Y|+e\left(V_{1}-X, V_{2}-Y\right) \geq(d-2 \epsilon)(n|X|+n|Y|+(n-|X|)(n-|Y|)) \\
=(d-2 \epsilon)\left(n^{2}+|X||Y|\right) \geq(d-2 \epsilon) n^{2}=k n
\end{gathered}
$$

This completes the proof.
Remark: Note that in the last proof the assumption (1) may be relaxed, as we only used the fact that for every $U \subset V_{1}, W \subset V_{2}$, of cardinality at least ϵn each, $\frac{e(W, U)}{|W||U|} \geq \frac{e\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|\left|V_{2}\right|}-\epsilon$. For the lower bound in Theorem 1 the assumption about the maximum degree of G as well as the assumption that n is sufficiently large as a function of ϵ can also be omitted.

References

[1] N. Alon and J. Spencer, The Probabilistic Method, Wiley, New York, 1992.
[2] L. M. Brégman, Some properties of nonnegative matrices and their permanents, Soviet Math. Dokl. 14 (1973), 945-949 [Dokl. Akad. Nauk SSSR 211 (1973), 27-30].
[3] G.P. Egorichev, The solution of the van der Waerden problem for permanents, Dokl. Akad. Nauk SSSR 258 (1981), 1041-1044.
[4] D. I. Falikman, A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Mat. Zametki 29 (1981), 931-938.
[5] L. Lovász and M. D. Plummer, Matching Theory, Akadémiai Kiadó, Budapest, 1986
[6] H. Minc, Nonnegative Matrices, Wiley, 1988
[7] V. Rödl and A. Ruciński, Perfect matchings in ϵ-regular graphs and the Blow-up lemma, submitted.

[^0]: ${ }^{*}$ Research supported in part by a USA Israeli BSF grant, by the Hermann Minkowski Minerva Center for Geometry at Tel Aviv University and by a State of New Jersey grant.
 ${ }^{\dagger}$ Research supported by Polish-US NSF grant INT-940671 and by NSF grant DMS-9704114.
 ${ }^{\ddagger}$ Research supported by Polish-US NSF grant INT-940671 and by KBN grant 2 P03A 02309.
 ${ }^{0}$ Mathematics Subject Classification (1991); primary 05C50, 05C70; secondary 05C80

