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Abstract

A graph G = (V,E) on n vertices is super ε-regular if (i) all vertices have
degree in the range [(d − ε)n, (d + ε)n], dn being the average degree, and (ii)
for every pair of disjoint sets S, T ⊆ V, |S|, |T | ≥ εn, e(S, T ) is in the range
[(d− ε)|S||T |, (d+ ε)|S||T |]. We show that the number of perfect matchings lies in
the range [((d−2ε)ν n!

ν!2ν , (d+ 2ε)ν n!
ν!2ν ], where ν = n

2 , and the number of Hamilton
cycles lies in the range [(d− 2ε)nn!, (d+ 2ε)nn!].

1 Introduction

Let G = (V,E) be a graph with |V | = n. Let 0 < d < 1 and ε > 0 be constants
(independent of n) where ε is assumed to be small compared with d. We assume that
the density of G is d i.e. |E|/

(
n
2

)
= d. Suppose that the following two conditions hold:

• If dG denotes vertex degree in G then

(d− ε)n ≤ dG(v) ≤ (d+ ε)n for all v ∈ V. (1)
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• If for S, T ⊆ V, S ∩ T = ∅ we let e(S, T ) denote the number of edges of G with

one end in S and the other in T and d(S, T ) = e(S,T )
|S| |T | then

|d(S, T )− d| ≤ ε for all S, T ⊆ V, S ∩ T = ∅, |S|, |T | ≥ εn. (2)

A graph satisfying (1),(2) said to be super ε-regular. We assume that n = 2ν is even.
Let m(G) denote the number of perfect matchings in G and let h(G) denote the number
of Hamilton cycles in G. In this paper we prove

Theorem 1 If ε is sufficiently small and n is sufficiently large then

(a)

(d− 2ε)ν
n!

ν!2ν
≤ m(G) ≤ (d+ 2ε)ν

n!

ν!2ν
.

(b)
(d− 2ε)nn! ≤ h(G) ≤ (d+ 2ε)nn!.

In both cases the bounds are “close” to the expected number of in the random graph
Gn,d. The results here are strongly related to the result of Alon, Rödl and Ruciński [2].
They considered bipartite graphs H with vertex partition A,B where |A| = |B| = n.
Assuming (1) and (2) for S ⊆ A and T ⊆ B they proved

Theorem 2 [2]
(d− 2ε)nn! ≤ m(G) ≤ (d+ 2ε)nn!.

Michael Krivelevich has made some interesting observations on Theorem 1: First of
all, part (b) of Theorem 1 improves Corollary 2.9 of Thomason [9] which estimates the
number of Hamilton cycles in a pseudo-random graph. Secondly, if G is dn-regular and
the second eigenvalue of the adjacency matrix of G is at most ηdn for small η, then G is
super ε(η)-regular (see for example Chung [4] Theorem 5.1) and so our result holds for
such graphs.

We note that a similar result can be proven for the number of spanning trees in such
a graph: if t(G) denotes the number of spanning trees of G then

(d− 2ε)n−1nn−2 ≤ t(G) ≤ (d+ 2ε)n−1nn−2. (3)

This follows from results of Alon [1] and Kostochka [7].
We prove Theorem 1(a) in the next section and Theorem 1(b) in Section 3. For

completeness, we also give a proof of (3) in Section 4.
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2 Perfect Matchings

Let A,B, |A| = |B| = ν be a partition of V . We re-express (2) in terms of ν i.e.

|d(S, T )− d| ≤ ε for all S ⊆ A, T ⊆ B, |S|, |T | ≥ 2εν. (4)

Furthermore, if A,B is a random partition and H = H(A,B) is the bipartite sub-graph
of G induced by A,B then with high probability dH(v) ∈ [(d− ε−o(1))ν, (d+ ε+o(1))ν]
for all v ∈ V . Thus the conditions of Theorem 2 are satisfied with ν replacing n and 2ε
replacing ε. It follows immediately that

m(H) ≥ (1− o(1))

(
n

ν

)
× ν!(d− 2ε)ν × 1

2ν
= (1− o(1))

n!

ν!2ν
(d− 2ε)ν . (5)

The factor 1
2ν

accounts for the fact that each perfect matching occurs in 2ν different
graphs H, assuming we consider the partition A,B distinct from B,A. There is slack in
the calculation in [2] and this will absorb the 1− o(1) term and so (5) proves the lower
bound in Theorem 1.

For the upper bound we follow [2] and use the Minc conjecture [8] proved by Bregman
[3]. For a partition A,B and v ∈ A let dB(v) denote the number of G-neighbours of v
in B. The Minc conjecture then states that

m(H) ≤
∏
v∈A

(dB(v))!1/dB(v).

Thus

m(G) ≤ 1

2ν

∑
A,B

∏
v∈A

(dB(v))!1/dB(v). (6)

For a fixed A, we let A1 = {v ∈ A : dB(v) > (d + ε)ν}. Property (1) implies that
|A1| ≤ εn. Now since (x!)1/x increases with x, we see, after using Stirling’s approximation
and (1), that

∏
v∈A

(dB(v))!1/dB(v) ≤
(
d+ ε

e
ν

)|A\A1|(d+ ε

e
n

)|A1|(
1 +O

(
lnn

n

))ν
≤
(
d+ ε

e
ν

)ν
2εnnO(1).

Hence

m(G) ≤ 1

2ν

(
n

ν

)(
d+ ε

e
ν

)ν
2εnnO(1) ≤ (d+ 2ε)ν

n!

ν!2ν

completing the proof of part (a) of Theorem 1. 2
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3 Hamilton Cycles

A Hamilton cycle is the union of two perfect matchings and so h(G) ≤ 1
2
m(G)2 and the

upper bound in part (b) of Theorem 1 follows from the upper bound in part (a).
The lower bound requires more work. For 1 ≤ k ≤ bn/3c, let Φk be the set of all

2-factors in G containing exactly k cycles, and let Φ = ∪kΦk be the set of all 2-factors.
Let fk = |Φk| so that f1 = h(G). If M is a perfect matching of G, let aM denote the
number of perfect matchings of G that are disjoint from M . Since deleting M only
disturbs ε-regularity marginally, we see by part (a) that aM ≥ (d− 2ε)ν n!

ν!2ν
. Thus

AG =
∑
M∈G

aM ≥
(

(d− 2ε)ν
n!

ν!2ν

)2

≥ (d− 2ε)nn!× 1

3n1/2
. (7)

On the other hand, we have

AG ≤
bn/3c∑
k=1

2kfk. (8)

We will show by a relatively crude argument that where k1 = d 4
(d−2ε)(d−ε)e

fk+1

fk
≤ n3 1 ≤ k ≤ k1. (9)

We then use an idea from Dyer, Frieze and Jerrum [5]. In this paper they show that if
an n vertex graph G has minimum degree δ(G) ≥ (1

2
+ α)n for a positive constant α,

then a polynomial fraction of the 2-factors of G are Hamilton cycles. We extend their
argument to ε-regular graphs.

Let β = 200
(d−2ε)(d−ε)2 . Let k0 = bβ lnnc, and for 1 ≤ k ≤ n, define γ(k) =

nβk!(β lnn)−k, and

φ(k) =

{
γ(k), if k ≤ k0;

γ(k0), otherwise.

Lemma 1 Let φ be the function defined above. Then

1. φ is non-increasing and satisfies

min{φ(k − 1), φ(k − 2)} = φ(k − 1) ≥ (β lnn)k−1φ(k);

2. φ(k) ≥ 1, for all k.

Proof Observe that γ is unimodal, and that k0 is the value of k minimizing γ(k);
it follows that φ is non-increasing. When k ≤ k0, we have φ(k − 1) = γ(k − 1) =
(β lnn)k−1γ(k) = (β lnn)k−1φ(k); otherwise, φ(k−1) = γ(k0) = φ(k) ≥ (β lnn)k−1φ(k).
In either case, the inequality in part 1 of the lemma holds.
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Part 2 of the lemma follows from the chain of inequalities

1

φ(k)
≤ 1

γ(k0)
≤ (β lnn)k0

nβk0!
≤ n−β

∞∑
k=0

(β lnn)k

k!
= n−β exp(β lnn) = 1.

2

Define

Ψ =
{

(F, F ′) : F ∈ Φk, F
′ ∈ Φk′ , k

′ < k, and F ⊕ F ′ is a 6-cycle
}
,

where ⊕ denotes symmetric difference. Observe that Γ = (Φ,Ψ) is an acyclic directed
graph; let us agree to call its component parts nodes and arcs to avoid confusion with
the vertices and edges of G. Observe also that if (F, F ′) ∈ Ψ is an arc, then F ′ can be
obtained from F by deleting three edges and adding three others, and that this operation
can decrease the number of cycles by at most two. Thus every arc (F, F ′) ∈ Ψ is directed
from a node F in some Φk to a node F ′ in Φk−1 or Φk−2.

Our proof strategy is to define a positive weight function w on the arc set Ψ such that
the total weight of arcs leaving each node (2-factor) F ∈ Φ≥k1 is significantly greater
than the total weight of arcs entering F . We will show below that∑

F+:(F,F+)∈Ψ

w(F, F+) ≥ 100φ(k)n2 lnn F ∈ Φk, k ≥ k1, (10)

∑
F−:(F−,F )∈Ψ

w(F−, F ) ≤ 9φ(k)n2Hn F ∈ Φk, k ≥ 1, (11)

where Hn =
∑n

i=1 i
−1 ≤ lnn+ 1 is the nth harmonic number.

Now let
Wk,l =

∑
F∈Φk,F

′∈Φl
(F,F ′)∈Ψ

w(F, F ′).

Then (10) and (11) imply that for k ≥ k1,

Wk+2,k +Wk+1,k ≤ 9fkφ(k)n2Hn (12)

Wk,k−1 +Wk,k−2 ≥ 100fkφ(k)n2 lnn. (13)

Now (13) implies that either
(i) Wk,k−1 ≥ 50fkφ(k)n2 lnn so that from (12)(k-1) we have

fk−1

fk
≥ 5

φ(k)

φ(k − 1)

or
(ii) Wk,k−2 ≥ 50fkφ(k)n2 lnn so that from (12)(k-2) we have

fk−2

fk
≥ 5

φ(k)

φ(k − 2)
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It follows that if k ≥ k0 + 2 then

fk ≤ 5−(k−k0)/2 max{fk0+1, fk0}.

Then from (8) we see that

AG ≤
√

5√
5− 2

k0+1∑
k=1

2kfk ≤
√

5√
5− 2

2k0+1

k0+1∑
k=1

fk. (14)

Furthermore, since F ∈ Φk, k > k1 implies that∑
F+:(F,F+)∈Ψ

w(F, F+)−
∑

F−:(F−,F )∈Ψ

w(F−, F ) ≥ 1

the total weight of arcs entering Φk1 is an upper bound on the number of 2-factors in G
with more than k1 cycles and the maximum total weight of arcs entering a single node

in Φk1 is an upper bound on the ratio ρ =
fk1+1+fk1+2+···+fbn/3c

fk1
. Thus

ρ ≤ 9φ(1)n2Hn = O(n2+β).

Combined with (14) and (9) we see that

AG ≤ nO(1)f1 (15)

and the lower bound in Theorem 1(b) follows from (7), modulo taking advantage of slack
to absorb the nO(1) term.

3.1 Proofs of (10) and (11)

The weight function w : Ψ → R+ we employ is defined as follows. For any arc (F ′, F )
with F ∈ Φk: if the 2-factor F is obtained from F ′ by coalescing two cycles of lengths l1
and l2 into a single cycle of length l1 + l2, then w(F ′, F ) = (l−1

1 + l−1
2 )φ(k); if F results

from coalescing three cycles of length l1, l2 and l3 into a single one of length l1 + l2 + l3,
then w(F ′, F ) = (l−1

1 + l−1
2 + l−1

3 )φ(k).
Let F ∈ Φk be a 2-factor with k > 1 cycles C1, C2, . . . , Ck, of lengths n1, n2, . . . , nk.

We proceed to bound from below the total weight of arcs leaving F . For this purpose
imagine that the cycles C1, C2, . . . , Ck are oriented in some way, so that we can speak
of each oriented edge (u, u′) in some cycle Ci as being “forward” or “backward”. For
each vertex a we can then let (a, π(a)) be the unique forward edge containing a. Since
we are interested in obtaining a lower bound, it is enough to consider only arcs (F, F+)
from F of a certain kind: namely, those for which the 6-cycle C = F ⊕F+ is of the form
C = (x, x′, y, y′, z, z′), where (x, x′) ∈ F is a forward cycle edge, (y, y′) ∈ F is a forward
edge in a cycle distinct from the first, and (z, z′) ∈ F is a backward cycle edge. The edge
(z, z′) may be in the same cycle as either (x, x′) or (y, y′), or in a third cycle. Observe
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that (x′, y), (y′, z) and (z′, x) must necessarily be edges of F+. It is routine to check
that any cycle C = (x, x′, y, y′, z, z′) satisfying the above constraints does correspond to
a valid arc from F . The fact that (z, z′) is oriented in the opposite sense to (x, x′) and
(y, y′) plays a crucial role in ensuring that the number of cycles decreases in the passage
to F+ when only two cycles are involved.

First, we estimate the number of cycles C for which a fixed (x, x′) is contained in a
particular cycle Ci of F . We say that C is rooted at Ci. Let Z ′ be the neighbour set of x
in G and Z = π(Z ′). Similarly, let Y ′ be the set of neighbours of x′ which do not belong
to Ci and let Y = π(Y ′). If |Y ′| ≥ εn then by ε-regularity there are at least (d − 2ε)n
vertices z ∈ Z which have at least (d − ε)|Y ′| ≥ (d − ε)((d − ε)n − ni) neighbours y′

in Y ′. Let δi = 1ni≤(d−2ε)n. We see that δi = 1 implies (x, x′) is contained in at least

(d− 2ε)(d− ε)((d− ε)n− ni)n cycles. Note also that
∑k

i=1 δi ≥ k − 1
d−2ε

.
We can now bound the total weight of arcs leaving F . Each arc (F, F+) defined

by a cycle C rooted at Ci has weight at least n−1
i min{φ(k − 1), φ(k − 2)}, which, by

Lemma 1, is bounded below by (β lnn)(kni)
−1φ(k). Thus the total weight of arcs leaving

F is bounded as follows:∑
F+:(F,F+)∈Ψ

w(F, F+) ≥
k∑
i=1

(d− 2ε)(d− ε)((d− ε)n− ni)nδini
(β lnn)φ(k)

kni
(16)

≥ β(d− 2ε)(d− ε)φ(k)

(
d− ε− 1

k(d− 2ε)
− 1

k

)
n2 lnn(17)

≥ β(d− 2ε)(d− ε)φ(k)
d− ε

2
n2 lnn,

≥ 100φ(k)n2 lnn (18)

where we have used the fact that k ≥ k1. Note that the presence of a unique backward
edge, namely (z, z′), ensures that each cycle C has a distinguishable root, and hence that
the arcs (F, F+) were not overcounted in summation (16). This completes the proof of
(10).

We now turn to the corresponding upper bound on the total weight of arcs (F−, F ) ∈
Ψ entering F . It is straightforward to verify that the cycle C = (x, x′, y, y′, z, z′) =
F− ⊕ F must contain three edges — (x, x′), (y, y′) and (z, z′) — from a single cycle Ci
of F , the remaining edges coming from F−. The labeling of vertices in C can be made
canonical in the following way: assume an ordering on vertices in V , and assign label x
to the smallest vertex. The condition (x, x′) ∈ F uniquely identifies vertex x′, and the
labeling of the other vertices in the cycle C follows.

Removing the three edges (x, x′), (y, y′) and (z, z′) from Ci leaves a triple of simple
paths of lengths (say) a − 1, b − 1 and c − 1: these lengths correspond (respectively)
to the segment containing x, the segment containing x′, and the remaining segment.
Going round the cycle Ci, starting at x′ and ending at x, the vertices x, x′, y, y′, z, z′

may appear in one of eight possible sequences:

x′, y′, y, z′, z, x;
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x′, z, z′, y, y′, x;
x′, z, z′, y′, y, x;
x′, z′, z, y, y′, x;
x′, y′, y, z, z′, x;
x′, y, y′, z′, z, x;
x′, z′, z, y′, y, x;
x′, y, y′, z, z′, x.

For a given triple of lengths (a, b, c), each of the above sequences corresponds to at most
ni possible choices for the edges (x, x′), (y, y′) and (z, z′), yielding a maximum of 8ni in
total. To see this, observe that the edge (x, x′) may be chosen in ni ways (minimality
of x fixes the orientation of the edge), and that the choice of (x, x′) combined with the
information provided by the sequence completely determines the triple of edges.

The eight sequences divide into five possible cases, as the first four sequences lead to
equivalent outcomes (covered by case 1 below). Taken in order, the five cases are:

1. For at most 4ni of the choices for the edges (x, x′), (y, y′) and (z, z′), Ci ⊕ C is a
single cycle;

2. for at most ni choices, Ci ⊕ C is a pair of cycles of lengths b and a+ c;

3. for at most ni choices, Ci ⊕ C is a pair of cycles of lengths a and b+ c;

4. for at most ni choices, Ci ⊕ C is a pair of cycles of lengths c and a+ b;

5. for at most ni choices, Ci ⊕ C is a triple of cycles of lengths a, b and c.

The first case does not yield an arc (F−, F ), since the number of cycles does not decrease
when passing from F− = F ⊕ C to F , but the other four cases do have to be reckoned
with.

The total weight of arcs entering F can be bounded above as follows:∑
F−:(F−,F )∈Ψ

w(F−, F ) ≤
k∑
i=1

niφ(k)
∑
a,b,c≥1

a+b+c=ni

[(
1

a
+

1

b
+

1

c

)
+

(
1

a
+

1

b+ c

)
+

(
1

b
+

1

a+ c

)
+

(
1

c
+

1

a+ b

)]
=

k∑
i=1

niφ(k)
∑
a,b,c≥1

a+b+c=ni

[
6

a
+

3

b+ c

]

≤
k∑
i=1

niφ(k)n

ni−1∑
a=1

[
6

a
+

3

ni − a

]
≤ 9φ(k)n2Hn.

This completes the proof of (11).
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3.2 Proof of (9)

We show that if F ∈ Φk and 2 ≤ k ≤ k1 then there is at least one arc (F, F ′) ∈ Ψ. Since
each F ′ is the terminus of at most n3 arcs, (9) follows immediately.

Let C1 be the largest cycle of F . Then |C1| ≥ n/k1 ≥ d2

5
n.

Case 1: |C1| ≤ n− 3εn.
ε-regularity implies that there are at most εn vertices X which have fewer than

(d−ε)|C1| neighbours in C1. As there are at least 3εn vertices not in C1, there are vertices
x1, x2 /∈ X which are neighbours on a cycle C2 6= C1. Let Ai, i = 1, 2 be the neighbour
sets of xi on C1 and let Bi = π(Ai) for i = 1, 2. By assumption, |Bi| ≥ 1

5
d2(d − ε)n

for i = 1, 2 and so we can choose B′i ⊆ Bi, i = 1, 2 such that B′1 ∩ B′2 = ∅ and
|B′1| = |B′2| ≥ 1

6
d(d − ε)n. ε-regularity implies that there is at least one edge joining

B′1, B
′
2. Suppose this is the edge (b1, b2). Then x1, π

−1(b1), b1, b2, π
−1(b2), x2, x1 defines

the requisite 6-cycle.
Case 2: |C1| > n− 3εn.
Just take any two vertices which are neighbours on a cycle other than C1. Each has

at least (d− 4ε)n neighbours in C1 and we can argue the existence of a 6-cycle as in the
previous case. 2

Remark: The proof shows that the number of Hamilton cycles is within a poly-
nomial factor of the number of two factors of G. Therefore one can generate a (near)
random Hamilton cycle of G by generating (near) random 2-factors of G until a Hamil-
ton cycle is produced. By doing this sufficiently many times we expect to obtain a good
approximation to the ratio of Hamilton cycles to 2-factors. Since the number of 2-factors
of G can be efficiently approximated to within arbitrary accuracy (Jerrum, Sinclair and
Vigoda [6]) we see that we can efficiently estimate the number of Hamilton cycles of G to
within arbitrary accuracy. Formally, there is a Fully Polynomial Time Randomised Ap-
proximation Scheme for estimating the number of Hamilton cycles in an super ε-regular
graph. It is of course assume that d > 0 is constant and ε < d. This same argument is
used in [5].

4 Spanning Trees

For the lower bound let Ω = {f : V → V : (v, f(v)) ∈ E, for all v ∈ V } be the set of
functions defined by each v ∈ V choosing a neighbour f(v). Clearly

|Ω| =
∏
v∈V

dG(v) ≥ (d− ε)nnn. (19)

Each f ∈ Ω defines a digraph Df = (V,Af ), Af = {(v, f(v) : v ∈ V }. A weak
component of Df consists of a cycle C with a rooted forest whose roots are in C. Suppose
that Df has kf weak components. We obtain a spanning tree of G by (i) deleting the
lexicographically first edge of each cycle of Df and then (ignoring orientation) extending
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the kf components to a spanning tree. We claim that if α = 4/
√
d− ε and

Ω1 = {f ∈ Ω : kf ≤ α
√
n}

then

|Ω1| ≥ |Ω|/2. (20)

Assume that (20) holds. Each spanning tree is obtained by deleting kf edges of a Df

and then adding kf − 1 edges. It follows that each spanning tree can be obtained in at

most
(
N
α
√
n

)2
, N =

(
n
2

)
ways from a member of Ω1. Thus

t(G) ≥ 1
2
n−4α

√
n(d− ε)nnn

and the lower bound in (3) follows.
Proof of (20)
Let f be chosen randomly from Ω and write

kf =
∑
v∈V

1

|Kv|

where Kv is the weak component containing v.
We will argue that

Pr(|Kv| ≤ k) ≤ k2

(d− ε)n k ≥ 1. (21)

Given (21) we have

E(|Kv|−1) ≤

√
(d−ε)n∑
k=1

1

k
(Pr(|Kv| ≤ k)−Pr(|Kv| ≤ k − 1)) +

1√
(d− ε)n

≤

√
(d−ε)n∑
k=1

Pr(|Kv| ≤ k)

k(k + 1)
+

1√
(d− ε)n

≤

√
(d−ε)n∑
k=1

1

(d− ε)n +
1√

(d− ε)n

=
2√

(d− ε)n

Thus

E(kf) ≤
2
√
n√

d− ε
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and (20) follows from the Markov inequality.
To verify (21), start with v and follow v, f(v), f2(v), . . . , until there is a repetition in
the sequence. The probability of a repetition at the ith step is at most i

(d−ε)n , since there

are always at least (d− ε)n random choices for f i(v). If there are no repetitions by step
k then |Kv| > k. Thus

Pr(|Kv| ≤ k) ≤
k∑
i=1

i

(d− ε)n
and (21) follows. 2

For the upper bound in (3) let Ω∗ = {f : V → V : (v, f(v)) ∈ E or f(v) = v for all v ∈
V }. Then

t(G) ≤ |Ω∗| ≤ ((d+ ε)n+ 1)n ≤ (d+ 2ε)n−1nn−2.

To see this consider the following injective map from the spanning trees of G into Ω∗:
orient each edge of tree T towards vertex 1 and then put f(1) = 1.
Acknowledgement We thank Michael Krivelevich for his earlier comments and for
pointing out the simple proof of the upper bound in (3).
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