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In this paper, we will examine a very di�erent onnetion to oding theory and newgame-theoreti questions. We are interested in the question if a given light pattern anbe swithed o� ompletely or not, sine this swithability will turn out to be importantin appliations. We work in a more general framework, and onsider an n-dimensional nversion of Berlekamp's game with q� q�� � �� q many light bulbs. Here, we restrit q to qprime-powers, so that we an identify the light bulbs with the points in the vetor spaeFqn . This will enable us to use some linear algebra arguments. Furthermore, we do notjust allow the 2 states ON and OFF for any of the qn light bulbs. It is more general toexamine a modulo r version, with Zr := Z=rZ as the set of possible states of a light bulb. r, ZrWe even allow r = 0 with the integers Z0 := Z as the set of possible states of the points Z0v 2 Fqn . A (light) patterns is a map U : Fqn �! Zr , and an elementary move inreases Uor dereases the state of the bulbs along an axis-parallel aÆne subspae of dimension m .Already the axis-parallel aÆne m-dimensional subspae may be alled elementary move orm-move. For example, if (n; q;m; r) = (3; 7; 2; 0) then (�; 5; �) := f(x; 5; y) � x; y 2 F7g is (�; 5; �)an elementary 2-move on the 3-dimensional board F73 over F7 . Appliation of this movetransforms a pattern U : F73 �! Z0 either into U+(�; 5; �) or into U�(�; 5; �) , as we will U + (�; 5; �)write it. So [U � (�; 5; �)℄(1; 5; 3) = U(1; 5; 3)� 1 , but [U � (�; 5; �)℄(1; 6; 3) = U(1; 6; 3) .In Berlekamp's original version of the game (n; q;m; r) was (2; 10; 1; 2) . We all thegeneralized game Berlekamp or AÆne Berlekamp modulo r of order q and dimensionn with m-moves, for short ABn;mr (Fq ) . ABn;mrSwithability is onneted to linear anti-odes. A linear anti-ode of length n overFq is simply a linear ode, i.e. a subspae, U � Fqn . The pre�x \anti" just expresses U � Fqnthat we are not interested in the minimal weight, but in the maximal weight Æ , i.e., Æthe maximum of the weights w(u) := jsupp(u)j over all elements u 2 U . Codes with w(u)low maximal weight Æ an be used to onstrut information-theoretially good odes,i.e. odes with big minimal weight, see [MWS, Chapter 17 §6℄. We investigate the dualmaximal weight, whih would be the maximal weight of the dual (orthogonal) ode U?. U?Our disovery is that, if we view a subspae U � Fqn as a 0-1 pattern on the board Fqn ,U an be swithed o� with m-moves if and only if its dual maximal weight is at mostn � m . More preisely, it will turn out that U an be swithed o� modulo r if andonly if it an be swithed o� modulo any other r0, provided that r and r0 do not dividejU j . We just use the term m-swithability when we refer to any of these equivalent ases,inluding the ase r = 0 .We hope that the new onnetion from anti-odes to Berlekamp's Game will lead tonew insights about liner odes, and that the game an beome a useful tool in oding-theory. One ase of partiular interest was already investigated in our paper [Sh1℄. There,we examined the existene of full weight vetors in odes that arise from graph theory.Using the onnetion to Berlekamp's Game, we saw that a graph G has a nowhere-zerok-ow if and only if the Zk-bond spae of G annot be swithed o�. The graph G has avertex oloring with k olors if and only if a ertain orresponding ode over Zk annotbe swithed o�. Similar statements ould be proven for Tait olorings and for nowhere-zero points of matries. We also introdued normal forms to equivalene lasses of lightpatterns, and obtained new equivalents for the existene of full weight vetors in U?. Thisthe eletroni journal of ombinatoris 19 (2012), #P10 2



led to new equivalents, e.g., for the Four Color Problem, Tutte's Flow Conjetures andJaeger's Conjeture. Two of our equivalents for olorability and existene of nowhere zeroows of graphs inluded as speial ases results by Matiyasevih, by Bal�azs Szegedy and byOnn. Alon and Tarsi's suÆient ondition for vertex olorability also arose, remarkably,as a generalized full equivalent. In our present paper, we do not deal with suh graph-theoreti problems, and there are also three main di�erenes on the game-theoreti side:1. Here, we work over Fqn as board, whih requires q to be a prime-power. In [Sh1℄,we worked over the board Zkn , with no further restrition on k .2. In the present paper, we present simple ombinatorial proofs. In [Sh1℄, over therings Zkn, more ompliated algebrai proofs where required.3. In [Sh1℄, we restrited ourselves to the ase m = 1 . The treatment of the generalase would have been possible, but would have made the algebrai proofs there evenmore ompliated.Based on our study of the vetor spae Fqn as board of the game, we may also wonderif the game an be transferred to �nite projetive spaes, with one light bulb at anyprojetive point. We are only interested in the swithability of subspaes U of Fqn ,and they orrespond to subspaes U1 of PGn�1(Fq ) := PG(Fqn). Therefore, one might U1PGn�1expet that it is straight forward to �nd an equivalent game in projetive spae. However,our moves in ABn�1;mr (Fq ) are usually not linear subspaes, and in the onstrution ofPGn�1 out of Fqn one just disards the zero 0 2 Fqn . Therefore, on one hand, thereare some diÆulties in onstruting a projetive equivalent, but, on the other hand, ifthe game on PGn�1(Fq ) just would be a straight opy of the game on Fqn , it wouldnot be very interesting. We will work out a simple and nie de�nition of the allowedmoves in Projetive Berlekamp. Our projetive m-moves will be swithes of subspaesof PGn�1(Fq ) that run through at least m of the n oordinate axes he1i , he2i , . . . ,heni , viewed as independent projetive points in PGn�1(Fq ) . Over �nite �elds Fq withmore then 2 elements, q > 2 , our new Projetive Berlekamp PBn�1;mr (Fq ) will turn out PBn�1;mrto be an equivalent to AÆne Berlekamp ABn�1;mr (Fq ) . Hene, U1 an be swithed o� inPBn�1;mr (Fq ) if and only if U? has maximal weight at most n�m .With the desribed onnetions to anti-odes, our Berlekamp Games have the potentialto beome a helpful tool in oding theory and ombinatoris. At least, we think that theyare simple enough to be attrative. One thing that has already proven to be useful,are normal forms to the equivalene lasses of swithable patterns. In [Sh1℄, we evenprovided some formulas to alulate them (for m = 1 ). In this paper, we do not lookat these formulas, but we present generalized normal forms for arbitrary m . Also ofinterest may be the onnetion to the Combinatorial Nullstellensatz, whih an be provenusing a kind of Berlekamp Game, see [Sh2, Setion 7℄. The onnetion to the polynomialmanipulation tehniques in this paper was, in fat, the starting idea behind our �rst paperabout Berlekamp's Game [Sh1℄.We formally introdue AÆne Berlekamp in the next setion, Setion 2. In Setion 3,we work out the onnetions to oding theory. This study of linear subspaes (linearthe eletroni journal of ombinatoris 19 (2012), #P10 3



odes), as light patterns, will lead the way to projetive spaes and Projetive Berlekamp,whih we examine in Setion 4.2 AÆne BerlekampWe start here with a more general situation than desribed in the introdution. We takeany �nite set I (of light bulbs) as board, and any system M� ZIr of (light) patterns (i.e.maps U : I �! Zr ) as our olletion of elementary moves :De�nition 2.1 (General Berlekamp). A pair (I;M) of a �nite set I and a system (I;M)M� ZI of patterns is a (General) Berlekamp on the board I . The elements of M areits (elementary) moves. The elements of its Z-linear span hhMii � ZI are its swithable hhMii, Zrpatterns or omposed moves, they an be swithed o� by a sequene of moves. By replaingZ =: Z0 with Zr := Z=rZ , we obtain (I;M)r , (General) Berlekamp modulo r . (I;M)rIn what follows, we mostly work over Z0 = Z and may interpret the results modulor afterwards. We identify subsets U � I with their harateristi funtions I �! f0; 1gas 0-1 light patterns, i.e., U(v)U(v) := (1 if v 2 U ,0 if v =2 U . (1)This is used extensively. It simpli�es notation, but an lead to unusual expressions. Forexample, the one-point sets fvg ( v 2 I ) are also viewed as 0-1 patterns fvgfvg : I �! f0; 1g ; u 7�! fvg(u) : (2)These one-point sets form the standard basis of ZI .Based on General Berlekamp we an now introdue AÆne Berlekamp, and later Pro-jetive Berlekamp. For AÆne Berlekamp on boards of the form I := I1 � I2 � � � � � Inor I := Zkn see [Sh1℄. Here we only study the n-dimensional q � q � � � � � q boardI := Fqn . This board arries the struture of a vetor spae, an Fq -modulo. Sine theset of light patterns ZI is also a module, this time over Z as ring of salars, we haveto be areful with the notation. Subsets of I are usually viewed as 0-1 patterns inZI and added in (ZI;+), while elements of I = Fqn or a ombination of one elementand one subset of Fqn are always added in (Fqn ;+) , e.g. (0; 1) + (1; 0) = (1; 1) butf(0; 1)g+ f(1; 0)g = f(0; 1); (1; 0)g . Similar rules are used for the two salar multiplia-tions. The two linear spans are denoted di�erently. We use hh : : : ii in the module ZI and hh : : : iih : : : i in the vetor spae Fqn . With this notational basis, we de�ne: h : : : iDe�nition 2.2 (AÆne Berlekamp). We write ABn;m = ABn;m0 (Fq ) for the Berlekamp ABn;m0 (Fq )(Fqn ;AMm) { alled AÆne Berlekamp with m-moves { where AMm is the set of allaÆne axis-parallel m-dimensional subspaes v + hej1 ; ej2; : : : ; ejmi of Fqn . In the modulor ase, with Zr := Z=rZ in the plae of Z =: Z0 , we write ABn;mr with r as index. ABn;mrthe eletroni journal of ombinatoris 19 (2012), #P10 4



We also provide a simpler notation for moves. If v 2 Fqn and J � f1; 2; : : : ; ng , weset eJv�J := v + heJi where eJ := fej � j 2 Jg : (3)For example, an elementary 3-move trough a point v = (v1; v2; : : : ; v6) in Fq6 parallel to3 axes heji , say j 2 J := f2; 4; 5g , may be written as v�J(v1; �; v3)v�J = (v1; �; v3; �; �; v6) := fv1g � Fq � fv3g � Fq � Fq � fv6g : (4)210 210Figure 1: AB2;1(F3 )
Two moves are highlighted:(�; 1) = (0; 1)�1 := (0; 1)�f1g = F3 � f1g as a 0-1 pattern,(2; �) = (2; 0)�2 = (2; 1)�2 = f2g � F3 as a 0-1 pattern.

v�j
x3 e30 x1x2Figure 2: The basis vetor B0;e3 :=e3� ker(e3) = (0; 0; 1)�f1; 2g over F33The patterns B0;vker(v)supp(v)B0;v := v� ker(v) with ker(v) := fj � vj = 0g =: f1; 2; : : : ; ng n supp(v) ; (5)where v = (v1; v2; : : : ; vn) runs through Fqn (see Figure 2), form a basis B0 of the module B0of all light patterns ZFqn. Indeed, the hange of bases matrix from B0 to the standardbasis ffvg � v 2 Fqng is triangular with ones on the diagonal. We just have to hoose asuitable linear ordering on the set Fqn of indies of the two bases, in order to turn theminto appropriately ordered bases. We do this by seleting the linear order < on Fqn suhthat the weight funtion w : v 7�! w(v) = n�jker(v)j beomes a monotonous dereasingfuntion, i.e. v < v0w(v) > w(v0) () jker(v)j < jker(v0)j =) v < v0 : (6)In this way, B0;v = v� ker(v) only ontains elements u that ome before v ( u � v ),ensuring zeros below/above the diagonal. We even see that, for any k � n ,hhB�k0 ii = 

 fvg � v 2 Fqn with jker(v)j � k �� ; (7)the eletroni journal of ombinatoris 19 (2012), #P10 5



where B�k0B�k0 := fB0;v � v 2 Fqn with jker(v)j � k g : (8)This basis has the advantage that it ontains a basis of the submodule of allm-swithable light patterns, hhB�m0 ii = hhAMmii ; (9)where B�m0 is analogues to B�k0 above. This is easily veri�ed: To prove the inlusionhhB�m0 ii � hhAMmii , let v�J 2 AMm . We may assume jJ j = m > 0 and n 2 Jas the ase m = 0 is trivial. Now let v0 := (v1; v2; : : : ; vn�1) , then v0�(J\n) is an(m�1)-dimensional move on the (n�1)-dimensional board. Using an indution argument,we realize that this move is a linear ombination of ertain B0;(u1;:::;un�1) with at least m�1zero entrees uj . The orresponding linear ombination of the extended B0;(u1;:::;un�1;0) 2B�m0 is then equal to v�J , so that hhB�m0 ii � AMm . The opposite inlusion an beproven similarly. Atually, any axis-parallel aÆne subspaes of dimension at least m ism-swithable, and this is just a speial ase of our Lemma3.1 further below.The existene of a basis with the desribed properties has an important onsequene:Theorem 2.3. The Z-submodule of all swithable patterns in ABn;m(Fq ) is saturated,i.e., its elementary divisors are units. In partiular, if the multiple zU : v 7�! zU(v) zU( z 2 Z\0 ) of a pattern U an be swithed o�, then U an be swithed o�.Our two-tier basis B0 = B<m0 ℄ B�m0 also gives rise to a normal form Nm0 : U 7�! Nm0 (U)Nm0 (U) to the equivalene lasses of patterns U 2 ZFqn, where two patterns are equivalentif there is a sequene of m-moves that transforms one into the other:Theorem 2.4. The Z-submodule 

fvg � jker(v)j < m�� = hhB<m0 ii � ZFqn of all thosepatterns U : Fqn �! Z whih are zero on all (n�m)-dimensional oordinate subspaeshej1; ej2; : : : ; ejn�mi � Fqn , is a omplement to the Z-submodule of all m-swithable patternshhAMmii = hhB�m0 ii , 

fvg � jker(v)j < m�� � hhAMmii = ZFqn :In partiular, 

fvg � jker(v)j < m�� is a set of representatives Nm0 (U) to the equivalenelasses U+ hhAMmii 2 ZFqn=hhAMmii of patterns U 2 ZFqn with respet to m-swithes.If we want to transform a pattern U : x 7�! U(x) into its normal form Nm0 (U) , thereis an easy way to do so. Just selet a point x 2 supp(U) with maximal jker(x)j andthen swith (inrease) B0;x exatly �U(x) many times, provided that jker(x)j � m sothat B0;x is m-swithable. (If �U(x) < 0 this means to derease B0;x exatly U(x)many times.) Afterwards, U(x) = 0 and, aside from this value, only values U(y) withjker(y)j < jker(x)j have hanged. We have eliminated x from supp(U) without addingpoints y that are \as bad as x ". Repeating this step as long as possible, we will �nallyreah a leared out U with jker(x)j < m for all x 2 supp(U) , i.e. the initial U wastransformed into its normal form in 

fvg � jker(v)j < m�� .the eletroni journal of ombinatoris 19 (2012), #P10 6



If we look a bit loser to what happens in eah modi�ation step of this proedure,we see that only values U(y) with yjsupp(x) = xjsupp(x) are modi�ed. So, if we start witha single point pattern U := fug , any subsequently swithed light y oinides with u onsupp(u) , yj = uj for all j with uj 6= 0 . From this we an dedue the following lemma,whih we will need in the setion about Projetive Berlekamp, Setion 4:Lemma 2.5. For any u 2 Fqn , we have supp(Nm0 (fug)) � u� ker(u) . In other words, ifuj 6= 0 for a j 2 f1; 2; : : : ; ng , then all x 2 supp(Nm0 (fug)) ful�ll xj = uj .3 Swithable CodesThis setion desribes the onnetion between the maximal dual weight of a ode U � Fqn ,i.e. the maximal weight w(v) of elements v of U? := fv � (v � u) = 0 for all u 2 U g , U?and the m-swithability of U as 0-1 pattern in ABn;mr (Fq ) . We will need the simpleobservation that the m-swithable subspaes of Fqn form a �lter in the subspae lattieof Fqn :Lemma 3.1. If an subspae U � Fqn , as 0-1 pattern in ABn;mr (Fq ) , ontains anm-swithable subspae, then it is m-swithable itself. In partiular, this holds for theoordinate subspaes hej1 ; ej2; : : : ; ejmi , j1 < j2 < � � � < jm :ej1; ej2; : : : ; ejm 2 U =) U is m-swithable.Proof. Let W be the m-swithable subspae of U , then U an be deomposed into aÆnesubspaes of the form u+W. Sine these shifted opies of W are still m-swithable, Uan be swithed o� pieemeal.We will also need the following well-known fat:Lemma 3.2. Let U < Fqn be a proper subspae of odimension s := n�dim(U) . Then Uis ontained in qs�1+qs�2+� � �+q0 many hyperplanes H � U , and eah point v 2 Fqn nUoutside of U is ontained in qs�2 + qs�3 + � � �+ q0 many of them. In partiular,qs�1U + (qs�2 + � � �+ q0)Fqn = XfH � U � H is hyperplane g :Based on these lemmas, we an now prove our ore theorem:Theorem 3.3. For subspaes U � Fqn , m 2 f1; 2; : : : ; n�1g , and r 2 f2; 3; 4; : : :g notdividing jU j , the following are equivalent:(i) U? has maximal weight at most n�m .(ii) U an be swithed o� with m-moves.(iii) U an be swithed o� modulo r with m-moves.the eletroni journal of ombinatoris 19 (2012), #P10 7



Proof. The impliation (ii) ) (iii) is trivial. In order to prove (iii) ) (i) , assumethat U? ontains a vetor f with less than m zero entrees fj = 0 . Obviously, f?ontains U and is disjoint to the hyperplane f0 + f? , where we are hoosing f0 =2 f?.In partiular, our initial light pattern U has jU j many burning lights in f?, and nonein f0 + f?. This makes a di�erene of jU j ,Xv2f? U(v) � Xv2f0+f?U(v) = jU j 6� 0 (mod r) : (10)If we now perform an elementary m-dimensional swith v�fj1; j2; : : : ; jmg , eah of thetwo sums in this di�erene hanges by �qm�1 , sine the hyperplane f? is not parallelto m many oordinate axes heji at a time, as(f � ej) = fj = 0 for less then m indies j . (11)Therefore, the di�erene will not hange, even if we perform a whole sequene of elemen-tary moves. It is invariant and will never beome zero. In partiular, it is not possible toswith o� all lights.It is left to prove (i) ) (ii) . The ase U = Fqn is trivial, Fqn is always swithable.If U? > f0g has maximal weight at most n � m , then every hyperplane H � Ualso has the property that its orthogonal spae H? � U? has maximal weight at mostn � m . Hene, if H? = h(f1; f2; : : : ; fn)i , then fj = 0 for (at least) m indies j ,say j1; j2; : : : ; jm , and this means that ej1; ej2 ; : : : ; ejm 2 H . Therefore, by Lemma3.1,H an be m-swithed, i.e., eah hyperplane H � U an be m-swithed. However, byLemma3.2, qodim(U)�1U is basially the sum of these hyperplanes; only the full spae Fqnhas to be subtrated several times. Therefore, qodim(U)�1U is swithable, and this impliesthat U is swithable, as, by Theorem2.3, the Z-submodule of all swithable patterns issaturated.This theorem also follows from the following somehow interesting observation, forwhih we have urrently no further appliation:Theorem 3.4. For given 0 < m � n , set 0 := 1 , 1; 2; : : : ; m�1 := 0 and reursivelyde�ne i := �Pi�1j=0 j�ij� for i = m;m+ 1; : : : ; n . Hene, for m = 1 , (i) = ((�1)i) .Let U � Fqn be a subspae with dual maximal weight at most n�m . Then qodim(U)Uan be swithed o� by adding for eah subset E � fe1; e2; : : : ; eng with jEj � m them-swithable subspae hU [E i exatly jEj qodimhU[E i many times, followed by swithingthe full board Fqn a multiple of q many times. More formally,XE�fe1;:::;engjEj qodimhU[E i hU [ E i � ; (mod qFqn) ;where the summand with E = ; is the initial pattern U , those with 0 < jEj < m havevanishing oeÆients, and those with jEj � m are trivially m-swithable.Proof. We may assume U < Fqn , as the ase m = n is trivial. Sine U has dual maximalweight at most n�m , every hyperplane H � U has dual maximal weight at most n�mthe eletroni journal of ombinatoris 19 (2012), #P10 8



as well. Hene, if H = (f1; f2; : : : ; fn)?, then (f1; f2; : : : ; fn) has maximal weight at mostn�m , and fj = 0 for at least m many indies j 2 f1; 2; : : : ; ng . This means thati := jE \Hj � m ; where E := fe1; e2; : : : ; eng : (12)Hene, the reursive de�nition of i applies andXE�E\HjEj = i + i�1Xj=0 j�ij� = 0 for all H 2 HU := fH � U � H is hyperplaneg , (13)so that, by Lemma3.2,XE�E jEj qodimhU[E ihU [E i (q Fqn )� XE�E jEjXH2HUH�E qH = XH2HU � XE�EE�H jEj �qH = ; : (14)
4 Projetive BerlekampWe want to introdue Projetive Berlekamp in a way that desribes the onnetion toAÆne Berlekamp as diretly as possible, so that we an easily transfer results from onegame to the other. For this reason, we will have to study homotety-invariant patterns inAÆne Berlekamp, i.e. patterns U : Fqn �! Z with the property M�M�U = U for all � 2 Fq\0 , (15)where M�U (�v) := U(v) for all v 2 Fqn . (16)Suh patterns U an easily be viewed as patterns U1 on the projetive board PGn�1(Fq ) . U1PGn�1Just assign to the projetive point hvi 6= f0g the value U1(hvi) := U(v) . However, whatshall happen with the value U(0) of 0 2 Fqn ? Well, for the time being, let us try to looseno information. Let us introdue in Projetive Berlekamp an additional light, the ounter,orresponding to the 0 in Fqn . We represent this ounter by the subset f0g � Fqn , sothat we an de�ne an extended projetive board PGCn�1(Fq ) as the set PGCn�1PGCn�1(Fq ) := fhvi � v 2 Fqng ; (17)and de�ne the projetive opy U1 : PGCn�1(Fq ) �! Z of a homotety-invariant patternU : Fqn �! Z via U1U1(hvi) := U(v) for all v 2 Fqn , inluding v = 0 . (18)If the homotety-invariant pattern U is given as a subset, respetively a subspae, of Fqn ,then we also all U1 a subset, respetively a subspae, of PGCn�1(Fq ) . Our de�nitiondesribes a bijetion between homotety-invariant patterns in AÆne Berlekamp ABn;mr andthe eletroni journal of ombinatoris 19 (2012), #P10 9



patterns in Projetive Berlekamp with ounter, PBCn�1;mr , as we will write. However, the PBCn�1;mrmoves also should go well together. The moves in AÆne Berlekamp do not run throughthe point of origin 0 in general, but we will show that we an restrit ourselves to movesthat are vetor subspaes of Fqn . With this insight, it will be straight forward to de�nethe moves in PBCn�1;mr and its version PBn�1;mr without ounter. Several examinationsare required to reah this point. We start with the following simple lemma:Lemma 4.1. For (v) 2 ZFqn and � 2 Fq\0 holds:U = Xv2Fqn vB0;v =) M�U = Xv2Fqn ��1vB0;v :Proof. We prove this pointwise:M�U(�u) def= U(u) = Xv2Fqn vB0;v(u) = Xv2Fqn vB0;�v(�u) = hXw2Fqn ��1wB0;wi(�u) : (19)With this we an prove the following version of our Theorems 2.3 and 2.4 for homotety-invariant patterns:Theorem 4.2. The pattern �Bh0i := B0;0 = Fqn together with the qn�1q�1 many patterns �Bhvi�Bhvi := X�2Fq \0B0;�v = 
fvg [ eker(v)�� 
eker(v)� with hvi 2 PGn�1(Fq )form a basis �B of the module ZFqn of all homotety-invariant patterns over Fqn .The Z-submodule of m-swithable homotety-invariant patterns on Fqn is spanned by�B�m := f �Bhvi � v 2 Fqn with jker(v)j � m g . A omplement, inside the Z-module of �B�mhomotety-invariant patterns, is given by 

hvi\0 � jker(v)j < m�� , whih is also spannedby �B<m := �B n �B�m.Proof. The linear independene of �B follows from the fat that the di�erent �Bhvi bundletogether disjoint sets of base vetors B0;�v , as hvi\0 \hwi\0 = ; if hvi 6= hwi . To verifythe generating property, let U =Pv vB0;v be homotety-invariant, then �v = v for allv 2 Fq and � 2 Fq\0 , by Lemma4.1, so that we may de�ne �hvi := v for all v 2 Fqn .With this de�nition,U = 0B0;0 + Xhvi2PGn�1 Xw2hvi\0 wB0;w = �0 �Bh0i + Xhvi2PGn�1�hvi �Bhvi ; (20)whih shows that our basis generates all homotety-invariant patterns. Moreover, if U ism-swithable, i.e., if all oeÆients w with jker(w)j < m are zero, then all �hvi withjker(v)j < m are zero as well, and U 2 hh �B�mii . Hene, �B�m spans the whole submoduleof m-swithable homotety-invariant patterns, but also not more. It obviously has hh �B<miias omplement, whih is equal to 

hvi\0 � jker(v)j < m�� , in analogy to Equation (7).the eletroni journal of ombinatoris 19 (2012), #P10 10



From this follows the following orollary, whih gives us a �rst idea about how tode�ne the moves in Projetive Berlekamp:Corollary 4.3. Eah of the following sets of m-swithable subspaes generates the om-plete set of all m-swithable homotety-invariant patterns:(i) The Bhvi := 
fvg [ eker(v)� and 
eker(v)� with v 2 Fqn and jker(v)j � m . Bhvi(ii) The U � Fqn of dimension m or m+1 that ontain at least m oordinate axes.(iii) The U � Fqn of dimension n�1 or n that ontain at least m oordinate axes,provided r is non-zero and oprime to q .Proof. We work here only with subspaes that ontain at least m oordinate axes and arem-swithable. Therefore, we only have to see that all m-swithable patterns are atuallygenerated by these systems of m-swithable patterns.In the ase of the �rst system of patterns this is obvious. We know that the patterns�Bhvi with jker(v)j � m form a generating system, and eah �Bhvi (exept Bh0i ) is thedi�erene of two elements, Bhvi and 
eker(v)� , in our �rst system ( �Bh0i = Bh0i ).To prove that the seond system is generating, it is enough to show that it generatesall subspaes whih ontain m oordinate axes, and, in partiular, those in our �rstgenerating system. We show this by indution. Assume that we have already proven thatsubspaes of dimension s and s + 1 whih ontain m oordinate axes are generated,and let V be a subspae of dimension s + 2 � m + 2 , ontaining m oordinate axes.Selet any subspae V 0 � V of dimension s , ontaining m oordinate axes. Then V 0and all spaes H between V 0 and V , V 0 < H < V , have dimension s or s + 1 andare generated by our system. It follows that V is generated, beause V is a linearombination of these spaes, asqV 0 + V = XfH � V 0 < H < V g ; (21)by Lemma3.2, assuming that, w.l.o.g., s+ 2 = n , V = Fqn .The last generating property over ABn;mr follows with exatly the same indutive ar-gument, just top down. If V 0 is a given s-dimensional subspae ontaining m oordinateaxes, then qV 0 is a linear ombination of a �xed V > V 0 of dimension s+ 2 and all Hbetween V 0 and V , as above. To show that V 0, and not just qV 0, is generated, we need1 to be a multiple of q , i.e., we need to play modulo r (oprime to q ).With this, we are prepared to de�ne Projetive Berlekamp with Counter on the board PGCn�1PGCn�1(Fq ) := fhvi � v 2 Fqng = PGn�1(Fq ) ℄ fh0ig (22)and Projetive Berlekamp on the projetive spae PGn�1(Fq ) : PGn�1
the eletroni journal of ombinatoris 19 (2012), #P10 11



De�nition 4.4 (Projetive Berlekamp). We write PBCn�1;m = PBCn�1;m0 (Fq ) for PBCn�1;m0the Berlekamp (PGCn�1(Fq );PMm) { alled Projetive Berlekamp with Counter and PMmm-moves { where PMm is the set of all subspaes U1 � PBCn�1(Fq ) , i.e. U � Fqn ,whih ontain at least m of the projetive points he1i; he2i; : : : ; heni { alled axes.We write PBn�1;m = PBn�1;m0 (Fq ) for the Berlekamp (PGn�1(Fq );PMm) { alled PBn�1;m0Projetive Berlekamp with m-moves { where PMm is de�ned as before, but we ignorethe ounter f0g and view the moves U1 as subsets of PGn�1(Fq ) , and as 0-1 patternsU1 : PGn�1(Fq ) �! Z .In the modulo r ase, with Zr := Z=rZ in the plae of Z =: Z0 , we write PBCn�1;mr , PBCn�1;mrrespetively PBn�1;mr , with r as index. PBn�1;mrSine we derived our de�nition from Corollary 4.3, we see that PBCn�1;m(Fq ) is basi-ally the same as ABn�1;m(Fq ) restrited to homotety-invariant patterns. We have:Proposition 4.5. Let r 2 f0; 2; 3; 4; : : :g . A homotety invariant pattern U an beswithed o� in ABn;mr if and only if U1 an be swithed o� in PBCn�1;mr .We also remark, that in the de�nition of PBCn�1;m0 (Fq ) all m-moves U1 ontain theounter h0i . If we make an inreasing move, we also inrease the ounter, if we make adereasing move, we derease the ounter. This is why the ounter is alled ounter.Due to Corollary 4.3, it is further possible to restrit the set of moves PMm to smallergenerating sets. Consider the moves of projetive dimension m�1 and m in PBCn�1;m.In this ase, we may even alulate how many moves of eah dimension we need to switho� a swithable subspae U1 � PGn�1 of projetive dimension d :Let t1 , respetively t2 , be the number of moves of projetive dimension m�1 , re-spetively m , where dereasing moves are ounted negative. Then obviouslyt1 + t2 = �U(0) = �1 and t1pm + t2pm+1 = �jU j = �pd+1 : (23)The solution to this system of linear equations ist1 = pd�m + pd�m�1 + � � �+ p and � t2 = pd�m + pd�m�1 + � � �+ 1 : (24)One even an show that exatly m of the t2 \many" moves of projetive dimension mare oordinate subspaes heJi ( jJ j = m + 1 ), provided that U1 does not ontain anyaxis heji .In the important ase m = 1 (see [Sh1℄), one an further ignore the (m�1)-dimensional, i.e. 0-dimensional, moves heji , and just unsrew the n light bulbshe1i; he2i; : : : ; heni ; they would be swithable individually, anyway. Therefore, inPBn�1;1r (Fq ) we obtain partiularly nie swithing rules: The lines that run troughat least one axis heji are the swithes (see Figure 3 at the end of the paper).If, as usual, we interpret any pattern U : Fq �! Z as pattern Fq\0 �! Z on thesmaller board Fqn\0 , our basis �B from above must ontain a basis of the module of allpatterns on this smaller board. We an prove the following analog to the both theorems2.4 and 4.2:the eletroni journal of ombinatoris 19 (2012), #P10 12



Theorem 4.6. Let f 2 Fqn , e.g. f = 0 . Then �B\ �Bhfi is a basis of the module of all ho-motety-invariant patterns over Fqn\0. The Z-submodule of m-swithable homotety-invari-ant patterns over Fqn\0 is saturated and has �B�m := f �Bhvi � v 2 Fqn with jker(v)j � m g �B�mas a basis.Proof. The rank of the free Z-module of homotety-invariant patterns over Fqn\0 is obvi-ously one smaller than the rank of the homotety-invariant patterns over Fqn . Therefore,it suÆes to prove that �B\ �Bhfi is a generating set. However, for vetors u 6= 0Xhvi2PGCn�1(Fq )(�1)jsupp(v)j �Bhvi(u) = Xv2Fqn(�1)jsupp(v)jB0;v(u)= Xv : vj2f0;ujg(�1)jsupp(v)j = XU�supp(u)(�1)jU j = 0 ; (25)so that Xhvi2PGCn�1(Fq )(�1)jsupp(v)j �Bhvi � 0 on Fqn\0 . (26)Hene, �B\ �Bhfi generates �Bhfi and �B and all the homotety-invariant patterns on Fqn\0 .To prove the seond statement, we observe that �B�m is a subset of the basis �B\Bhfiif f has full weight ( ker(f) = ; ). Hene, �B�m is linearly independent, and obviouslygenerates a submodule of m-swithable patterns. It even generates all m-swithable pat-terns. That is beause, any m-swithable (homotety-invariant) pattern U over Fnq \0an be written as linear ombination of m-moves. This linear ombination an be viewedas m-swithable extension Û : Fnq �! Z of U : Fnq \0 �! Z to the full board Fqn . ByTheorem4.2, the homotety-invariant extension Û is generated by �B�m, so that U itselfis generated by �B�m , viewed as system of patterns on Fqn\0 .It would be desirable to �nd a \nie" omplement to the submodule of m-swithablepatterns, inside the Z-module of homotety-invariant patterns on Fqn\0 . One an showthat, if f is a �xed full weight vetor, a omplement is spanned by the linearly indepen-dent patterns hvi\0 with jker(v)j < m and hvi * hfi . Unfortunately, this omplementdepends on the hoie of f , it is somehow asymmetri. A normal form based on thedesribed ompliment also would be asymmetri. In PBCn�1;m the situation is di�erent,here we an de�ne a symmetri normal form Nm, based on the normal form Nm0 ofABn;m, via Nm(U1) := Nm0 (U)1 : (27)We would like to use this de�nition also in PBn�1;m, but the expression Nm0 (U) is notwell de�ned over Fqn\0 . If we just ignore the value U(0) of 0 , then we treat the patternsU and U + f0g as equal; U + f0g = U over Fqn\0 . In this sense, Nm0 (U + f0g)and Nm0 (U) would be two normal forms to the same pattern. The normal form Nm0 (U)for homotety-invariant patterns U on Fqn\0 would be unique only up to a multiple ofNm0 (f0g) = f0g|{z}� 0 onFqn\0 � Xv : jker(v)j�m(�1)jsupp(v)jB0;v = Xhvi2PGCn�1(Fq)ker(v)�m(�1)jsupp(v)j �Bhvi ; (28)the eletroni journal of ombinatoris 19 (2012), #P10 13



whih, in the speial ase m = 1 , equals �(Fq\0)n. Transferred to PBn�1;m, this meansthat we obtain a normal form Nm(U1) of a pattern U1 : PGn�1(Fq ) �! Z via De�ni-tion (27), but it is only unique up to multiples of Nm0 (f0g)1 . Pratially, we an transforma given pattern U1 : PGn�1(Fq ) 7�! Z into this normal form Nm(U1) in a similar man-ner as we desribed it for ABn;m after Theorem2.4. At �rst, we have to swith o� allprojetive points hvi with jker(v)j � m . This an be done step by step. In eah step,we look for a \un�nished" point hvi with maximal jker(v)j , and use the omposed move�Bhvi = 
fvg[eker(v)��
eker(v)� to swith it o�. At the end, no projetive point hvi withjker(v)j � m is left, jker(v)j � m =) U1(hvi) = 0 ; (29)and the resulting normal form will be uniquely determined up to multiples of Nm0 (f0g)1 .An example is disussed at the end of this setion, and illustrated in Figure 3.If q = 2 then every pattern is homotety-invariant and there is basially no di�erenebetween the projetive and aÆne version of the game. The projetive game PBn�1;1(F2)without ounter is quite uninteresting. Any pattern U1 in PBn�1;1(F2) an be swithedo�, sine any pattern U in ABn;1(F2) an be swithed into a singleton f0g , whih isdisarded in the projetive game.We want to study PBn�1;m(Fq ) with q 6= 2 . Sine we removed the arti�ial ounter,we will need additional assumptions to prove a statement similar to Proposition 4.5. Wewill see that, if q 6= 2 , the property of being a linear subspaes U � Fqn is strong enough.The main theorem about the maximal weight of the dual ode will hold in this ase aswell. To prove this, we will need the following lemma about AÆne Berlekamp; in whih,for any pattern U : Fqn �! Z and any vetor v 2 Fqn , the shifted pattern Mv(U) is Mv(U)de�ned pointwise via MvU(x + v) := U(x) for all v 2 Fqn . (30)Sine usually n 6= 1 , this de�nition of Mv will not ollide with our earlier de�nition ofM� , with � 2 Fq\0 . We provide:Lemma 4.7. Let q 6= 2 , r 2 f0; 2; 3; 4; : : :g and  2 Zr\0 . For homotety-invariantpatterns U : Fqn �! Zr the following swithability statements in ABn;mr hold:(i) U + fvg annot be swithed o�, for any hoie of v 2 Fqn exept possibly v = 0 .(ii) U + f0g annot be swithed o�, if Mv(U) = U for one vetor v 2 Fqn\0 .Proof. The �rst part follows mainly from Lemma2.5. If ker(v) = ; , thenNm0 (fvg) = fvg 6= 0 (31)and fvg annot be swithed o�. Hene, any single-light pattern fvg annot beswithed o�, even if ker(v) 6= ; , beause swithability obviously does not depend onthe relative position of a pattern on the board. Therefore,supp(Nm0 (fvg) 6= ; (32)the eletroni journal of ombinatoris 19 (2012), #P10 14



for any hoie of v 2 Fqn . Now, if j 2 supp(v) 6= ; then, for any � 2 Fq n f0; 1g ,x 2 supp(Nm0 (fvg)) 2:5=) xj = vj =) �xj 6= vj 2:5=) �x =2 supp(Nm0 (fvg)) :(33)Thus, Nm0 (fvg) is not homotety-invariant, if q 6= 2 ; but Nm0 (U) is homotety-invariant,sine U is. Hene, Nm0 (U + fvg) = Nm0 (U) +Nm0 (fvg) is not homotety-invariant and,in partiular, not zero, i.e., U + fvg annot be swithed o�.In order to prove the seond part, assume U = Mv U , then U + f0g is swithable ifand only if Mv(U + f0g) = U + fvg is swithable, but we already have seen that thisis not the ase.We also remark that any m-swithable patterns U : Fqn �! Z obviously ful�llsXv2Fqn U(v) � 0 (mod qm) ; (34)as any elementary m-move hanges this sum by �qm. (See [Sh1℄ for further invariants.)This would also lead to a simpler proof of some speial ases of Lemma4.7. However, weneed the full generality of this lemma in order to show that PBn�1;m(Fq ) behaves similarto ABn�1;m(Fq ) (always provided that we study only linear subspaes f0g 6= U � Fqn ,and q 6= 2 ). We an prove:Theorem 4.8. Let q 6= 2 and r 2 f0; 2; 3; 4; : : :g . Let U : Fqn �! Zr be a homotety-invariant pattern with Mv(U) = U for one vetor v 2 Fqn\0 . Then U an be swithedo� in ABn;mr if and only if its projetive opy U1 an be swithed o� in PBn�1;mr .Proof. If U is swithable in ABn;mr then U1 is swithable in PBn�1;mr , sine it is swith-able even in PBCn�1;m, as we have seen in Proposition 4.5. Now assume that U1 anbe swithed in PBn�1;mr , then U an be swithed into a pattern f0g in ABn;mr . Thus,U�f0g an be swithed o�. However, by Lemma4.7, this is only possible for  = 0 2 Zr ,so that the swithability of U in ABn;mr follows.Using this onnetion to AÆne Berlekamp, we an translate Theorem3.3 into theprojetive language. We obtain:Theorem 4.9. Let q 6= 2 . For subspaes U � Fqn , m 2 f1; 2; : : : ; n�1g , and r 2f2; 3; 4; : : :g not dividing jU j , the following are equivalent:(i) U? has maximal weight at most n�m .(ii) U1 an be swithed o� in PBn�1;m.(iii) U1 an be swithed o� modulo r , in PBn�1;mr .Proof. This follows from Theorem3.3 and Theorem4.8.the eletroni journal of ombinatoris 19 (2012), #P10 15



In both, Theorem4.9 and Theorem3.3, we assumed that r does not divide jU j . Itmight look more natural to assume r to be oprime to q , but our ondition is moregeneral. In general, one annot drop a ondition like this ompletely, as the followingexample in PB2;13 (F3) ( n = 3 , m = 1 , q = 3 , r = 3 ) shall demonstrate. We examinethe subspae U := h(1; 1; 1)i? � F33 . On one side, it has dual maximal weight 3 � n�m ,but, on the other side U1 is still m-swithable modulo 3 , as the reader may hek in thefollowing piture:

Figure 3: U1 := �h(1; 1; 1)i?�1 � PG2(F3 ) and its (up to multiples of Nm0 (f0g)1 unique) normal formN10 (U)1 , whih is modulo 3 equal to �(Fq\0)3�1 = �N10 (f0g)1 and equivalent to the zero pattern ;Aknowledgement:We want to thank Ayub Khan for his help. Thanks also go to the Abdus Salam Shoolof Mathematial Sienes, where we �nished the paper. Last but not least, the authorgratefully aknowledges the support provided by the King Fahd University of Petroleumand Minerals under the projet number IN100028.Referenes[CaSt℄ J. Carlson , D. Stolarski: The Corret Solution to Berlekamp's Swithing Game.Disrete Math. 287 (2004), 145-150.[FiSl℄ P.C. Fishburn, N. J.A. Sloane: The Solution to Berlekamp's Swithing Game.Disrete Math. 74 (1989), 263-290.[MWS℄ F. J.MaWilliams, N. J.A. Sloane: The Theory of Error-Correting Codes.North-Holland mathematial Library, Amsterdam 1978.[RoVi℄ R.M.Roth, K.Viswanathan: On the Hardness of Deoding the Gale-BerlekampCode. IEEE Trans. Inform. Theory, 54 (2008), 1050-1060.[Sh1℄ U. Shauz: Colorings and Nowhere Zero Flows of Graphs in Terms of Berle-kamp's Swithing Game. Eletron. J. Combin. 18/1 (2011), #P65.[Sh2℄ U. Shauz: Algebraially Solvable Problems: Desribing Polynomials as Equiva-lent to Expliit Solutions. Eletron. J. Combin. 15 (2008), #R10.the eletroni journal of ombinatoris 19 (2012), #P10 16


