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Abstract

Define the neighborhood characteristic of a graph to be s1 − s2 + s3 − · · ·, where
si counts subsets of i vertices that are all adjacent to some vertex outside the subset.
This amounts to replacing cliques by neighborhoods in the traditional ‘Euler char-
acteristic’ (the number of vertices, minus the number of edges, plus the number of
triangles, etc.). The neighborhood characteristic can also be calculated by knowing,
for all i, j ≥ 2, how many Ki,j subgraphs there are or, through an Euler-Poincaré-
type theorem, by knowing how those subgraphs are arranged. Chordal bipartite
graphs are precisely the graphs for which every nontrivial connected induced sub-
graph has neighborhood characteristic 2.

1 The Neighborhood Characteristic

Define the neighborhood characteristic of any graph G without isolated vertices to be

Nchar(G) = s1 − s2 + s3 − · · · , (1)

where si is the number of subsets of V (G) of cardinality i that are externally dominated,
meaning that S ⊆ N(v) for some v ∈ V (G) − S. Thus s1 = n is just the order of G, and
s2 is the number of pairs of vertices that have a common neighbor.

For comparison, the traditional (Euler) characteristic [7]—which might be thought of
as the clique characteristic—is

char(G) = k1 − k2 + k3 − · · · , (2)

where ki is the number of complete subgraphs of G of order i; thus k1 = s1, k2 = m is the
number of edges, and k3 is the number of triangles. So Nchar(G) can be thought of as mod-
ifying char(G) by replacing complete subgraphs with externally dominated subgraphs. In
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topological terms, char(G) is the characteristic of the simplicial complex whose simplices
are the complete subgraphs of G, and Nchar(G) is the characteristic of the ‘neighborhood
complex’ N (G), as in [1], whose simplices are the externally dominated subgraphs of G.

Simple Examples:

Nchar(Cn) =

{
4 − 2 = 2 if n = 4
n − n = 0 if n 6= 4

Nchar(Kn) = n − (n
2

)
+ · · ·+ (−1)n

(
n

n−1

)
=

{
2 if n is even
0 if n is odd

Nchar(Km,n) = [m+n] − [
(

m
2

)
+
(

n
2

)
] + [

(
m
3

)
+
(

n
3

)
] − · · · = 2

Nchar(Cn + K1) =

{
5 − 10 + 6 − 1 = 0 if n = 4
(n + 1) − (n+1

2

)
+ [
(

n
3

)
+ n] − (n

4

)
+ · · · = 2 if n 6= 4

Nchar(cube) = 8 − 12 + 8 = 4

Nchar(octahedron) = 6 − 15 + 12 − 3 = 0

Nchar(dodecahedron) = 20 − 60 + 20 = −20

2 Computing the Neighborhood Characteristic

The neighborhood characteristic of a graph can also be calculated in terms of the complete
bipartite subgraphs present in G. Let ki,j count the number of complete bipartite—but
not necessarily induced—subgraphs that are isomorphic to Ki,j (so ki,j = kj,i). Notice
that si is not necessarily equal to k1,i since the same i vertices could be counted in more
than one K1,i. Such overcounting is corrected for in the following theorem (which also
shows that, for a bipartite graph G, Nchar(G) equals twice the ‘bipartite characteristic’
defined in [5]).

Theorem 1 For every graph G without isolated vertices,

Nchar(G) = 2
∑

1≤i≤j

(−1)i+jki,j. (3)

Proof. Using simple counting arguments, noting the symmetry of each Ki,i, Nchar(G) =
s1 − s2 + s3 − · · · equals

n −




k1,2

−2k2,2

+k3,2

−k4,2
...


+




k1,3

−k2,3

+2k3,3

−k4,3
...


− · · · = n +




−k1,2 + k1,3 − · · ·
+2k2,2 − k2,3 + · · ·
−k3,2 + 2k3,3 − · · ·

...
...

. . .


 ,
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which, using ki,j = kj,i, can be rewritten as

n − 2k1,1 + k1,2 − k1,3 + · · · + 2




k1,1 − k1,2 + k1,3 − · · ·
+ k2,2 − k2,3 + · · ·

+ k3,3 − · · ·
+ · · ·


 . (4)

The final term in (4) equals the right side of (3), while the rest of (4) equals
∑

v[
(
deg v

0

)−(
deg v

1

)
+
(
deg v

2

)− · · ·] = 0. 2

Therefore Nchar(G) is always even. Moreover, the computation in formula (3) can be
reduced to

Nchar(G) = 2

(
n − m +

∑
2≤i≤j

(−1)i+jki,j

)
(5)

by first noting that expression (4) also equals

n − k1,2 + k1,3 + · · · + 2


k2,2 − k2,3 + · · ·

+ k3,3 − · · ·
+ · · ·


 . (6)

The final term in (6) equals 2
∑

2≤i≤j(−1)i+jki,j, while the rest of (6) equals (2n − 2m −
n + 2k1,1) − k1,2 + k1,3 − · · · , which in turn equals

2n − 2m −
∑

v

[(
deg v

0

)
−
(

deg v

1

)
+

(
deg v

2

)
· · ·
]

= 2(n − m).

Notice too that, by (5), if G contains no C4 subgraphs (induced or not), then Nchar(G) =
2(n − m).

A vertex v of G is called covered in [2] if some vertex of G−v externally dominates N(v).
The following theorem reduces the calculation of Nchar(G) to graphs G with no covered
vertices (in other words, to graphs whose open neighborhoods are pairwise incomparable).

Theorem 2 If v is a covered vertex of G, then Nchar(G) = Nchar(G − v).

Proof. Suppose v is a covered vertex of G and S is any subset of N(v) with |S| ≥ 2 and
with S externally dominated by d ≥ 1 vertices of G − v. Vertex v can be involved with
part of N(v) in a complete bipartite (not necessarily induced!) subgraph H + H ′—and
so contribute to ki,j in expression (5)—in two ways:

Case 1: v ∈ H , S = H ′, and H ∩ N(v) = ∅. For each i ≥ 1, there are
(

d
i

)
subgraphs

isomorphic to Ki+1,|S| that involve v and S in this way, so the total contribution to
Nchar(G) − Nchar(G − v) in expression (5) in this case is

(−1)2+|S|
(

d

1

)
+ (−1)3+|S|

(
d

2

)
+ · · · + (−1)d+1+|S|

(
d

d

)
= (−1)|S|.
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Case 2: v ∈ H , S = H ′ ∪ {w1, . . . , wh}, H ∩ N(v) = {w1, . . . , wh}, and h ≥ 1. For
each i ≥ 0, there are

(
d
i

)
subgraphs isomorphic to Ki+1+h,|S|−h that involve v and S in this

way, the total contribution to Nchar(G) − Nchar(G − v) in expression (5) in this case is

(−1)1+|S|
(

d

0

)
+ (−1)2+|S|

(
d

1

)
+ · · ·+ (−1)d+1+|S|

(
d

d

)
= 0.

Adding v to G−v increases n by 1 and m by |N(v)|. Therefore, the total contribution
to Nchar(G) − Nchar(G − v) involving all S ⊆ N(v) in expression (5) is

2


1 − |N(v)| +

∑
S⊆N(v),|S|≥2

(−1)|S|


 = 2

∑
i≥0

(−1)i

(|N(v)|
i

)
= 0.

Therefore, Nchar(G) = Nchar(G − v). 2

A chordal bipartite graph is a bipartite graph in which every cycle of length at least
six has a chord; see [6, §7.3] and the papers cited there. Suppose G is a chordal bipartite
graph. In [3], a set S ⊆ V (G) is called a minimal edge separator if there exist edges e and
f that are in different components of the subgraph G − S induced by V (G) − S, and no
proper subset of S has that same property. If S is a minimal edge separator of G, with
e and f as above, then the definition of chordal bipartite implies that every two vertices
in S of opposite ‘color’ in G will be adjacent (they will be endpoints of a chord in a cycle
that contains e and f). If S is an edge separator of G with one component of G − S as
small as possible, then S will contain an edge e with endpoints v and w such that every
two vertices in N(v) ∪ N(w) of opposite color in G will be adjacent. Such an edge is
called a bisimplicial edge. As in [3], this shows that every chordal bipartite graph contains
a bisimplicial edge.

The following corollary is analogous to the observation in [4] that a graph is chordal
if and only every induced subgraph H has char(H) = 1. (Notice that the proof shows
that Nchar(H) = 2 in the statement of the corollary could be equivalently replaced by
Nchar(H) 6= 0.)

Corollary 3 A graph with no isolated vertices is chordal bipartite if and only if every
connected induced subgraph H of order ≥ 2 has Nchar(H) = 2.

Proof. First suppose G is a chordal bipartite graph and H is any connected induced
subgraph of G with |V (H)| ≥ 2. Then H must be chordal bipartite as well. Since G is
chordal bipartite, there will be a bisimplicial edge vw in G and, without loss of generality,
v can be assumed to have degree at least two. Then w is covered and can be removed
with, by Theorem 2, Nchar(H) = Nchar(H − w). Repeating this eventually ends with a
single edge, and so Nchar(H) = 2.

Conversely, suppose G is not chordal bipartite. If G is not bipartite, then G contains
an induced odd cycle C and Nchar(C) = 0. If G is bipartite but not chordal bipartite, then
G must contain an induced even cycle C of length at least six, and again Nchar(C) = 0. 2
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3 An Euler-Poincaré-type Theorem

This section develops machinery for the Euler-Poincaré-like Theorem 4, a formula for
calculating Nchar(G) in terms of, roughly speaking, the arrangement of the Ki,j subgraphs
present in G. This development parallels [7].

For any graph G, define the 0-dimensional bicliques to be the vertices of G, the 1-
dimensional bicliques to be the edges, the 2-dimensional bicliques to be all the K2,2 sub-
graphs (where ‘all’ means ‘whether induced or not’), the 3-dimensional bicliques to be
all the K2,3 subgraphs, and for j ≥ 4, the j-dimensional bicliques to be all the Ki,j−i+2

subgraphs for which 2 ≤ i < j.
Define the boundary of a j-dimensional biclique to be the set of all the (j − 1)-

dimensional bicliques it contains (or the empty set when j = 0). Thus the boundary
of an edge consists of its two endpoints, the boundary of a K2,2 consists of the four edges
of that 4-cycle, the boundary of a K2,3 consists of its three 4-cycles, and so on. The
boundary of a set {S1, . . . , S`} of j-dimensional bicliques is the symmetric difference of
the boundaries of the Si’s. Thus the boundary of the edge set of a path consists of the end-
points of the path, while the boundary of the edge set of a cycle is empty. The boundary
of the set of 4-cycles of a cube is also empty, as is the boundary of any set of vertices.

For j ≥ 1, define a j-Ncircuit to be any set S of j-dimensional bicliques whose boundary
is empty. For instance, the edge set of all cycles in a graph is a 1-Ncircuit, and the six
4-cycles of a cube form a 2-Ncircuit, as do the n 4-cycles of any wheel Cn + K1 with
n 6= 4. In C4 +K1, let A, B, and C be the 4-cycles contained in one of the K2,3 subgraphs
and C, D, and E be the 4-cycles contained in the other K2,3 subgraph. Then {A, B, C},
{C, D, E}, and {A, B, D, E} are 2-Ncircuits. The six K2,3 subgraphs in a K3,3 form a
3-Ncircuit, but wheels have no 3-Ncircuits. The set of all j-Ncircuits of a graph forms a
vector space over Z2, with an empty j-Ncircuit as the zero vector, 1S = S and 0S = 0
defining scalar multiplication, and the sum of j-Ncircuits being the symmetric difference
of their sets of j-dimensional bicliques.

Call two j-Ncircuits bihomologous whenever either is the sum of the other along with
any number of (j+1)-dimensional bicliques—or, equivalently, if their sum is the boundary
of some set of (j + 1)-dimensional bicliques. When j = 1 for instance, two cycles (1-
Ncircuits) are bihomologous if one is the sum of the other and 4-cycles. Thus, all cycles
of an cube are pairwise bihomologous, as are all the triangles of a wheel, and as are all
the 4-cycles of a wheel. When j = 2, using the notation in the preceding paragraph,
the 2-Ncircuit {A, B, D, E} of C4 + K1 is bihomologous to the empty 2-Ncircuit (using
the two 3-dimensional bicliques), as is each of the 2-Ncircuits {A, B, C} and {C, D, E}
(automatically, since each is itself a 3-dimensional biclique). The 2-Ncircuit of K3,3 that
consists of all nine 4-cycles is also bihomologous to the empty 2-Ncircuit (using the three
3-dimensional bicliques [K2,3s] that contain all the vertices of either of the two color
classes).

For any j-Ncircuit S, let [S] denote its bihomology class—the equivalence class of j-
Ncircuits bihomologous to S. The bihomology classes of all j-Ncircuits of G form another
Z2-vector space where the zero vector is the bihomology class of the empty j-Ncircuit
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and the sum of bihomology classes [S1] and [S2] is the bihomology class of the sum (sym-
metric difference) of S1 and S2. Let βN

j (G) denote the dimension of the vector space
of bihomology classes of j-Ncircuits of G. For j = 0, there is a basis consisting of one
representative vertex from each component, and so βN

0 (G) is the number of components
of G. For j = 1, there is a basis consisting of selected cycles with lengths different from
four, with βN

1 (G) = 0 if and only if the circuit space of G has a basis consisting of 4-cycles.
For instance, the cube has βN

0 = 1 since it is connected, βN
1 = 0 since the circuit space

has a basis consisting of (any five) 4-cycles, βN
2 = 1 since the six 4-cycles form the only

2-Ncircuit (there are no 3-dimensional bicliques), and βN
i = 0 for all i ≥ 3 since there are

no such i-Ncircuits. Similarly, C4 + K1 has βN
0 = βN

1 = 1 and βN
i = 0 for all i ≥ 2; all the

other wheels are the same except that βN
2 = 1.

Theorem 4 is the Nchar(G) analogy of the Euler-Poincaré theorem [7] for char(G). To
illustrate formula (7), the cube has Nchar = 2(1 − 0 + 1 − 0 + · · ·) = 4, Nchar(C4) =
2(1 − 0 + 0 + · · ·) = 2, and Nchar(C4 + K1) = 2(1 − 1 + 0 + · · ·) = 0; when n 6= 4,
Nchar(Cn) = 2(1− 1 + 0 + · · ·) = 0 and Nchar(Cn + K1) = 2(1− 1 + 1− 0 + 0 + · · ·) = 2.

Theorem 4 For every graph G without isolated vertices,

Nchar(G) = 2(βN
0 − βN

1 + βN
2 − · · ·). (7)

Proof. For every integer j ≥ 0, let Bj be the set of all sets S of j-dimensional bicliques
of G. As with any power set, each Bj is a vector space over Z2 with symmetric difference
as sum. Since the singletons of Bj form a standard basis, dim(B0) = n, dim(B1) = m,
dim(B2) = k2,2, dim(B3) = k2,3, and for j ≥ 4, dim(Bj) =

∑
i ki,j−i+2 over all i for which

2 ≤ i < j.
For each j ≥ 1, taking boundaries of members of Bj constitutes a map ∂j : Bj → Bj−1

between vector spaces. A set S of j-dimensional bicliques is a j-Ncircuit if and only if
S ∈ Kernel(∂j), whereas S is a boundary of a set of (j + 1)-dimensional bicliques if and
only if S ∈ Image(∂j+1).

Since the vector space of bihomology classes of j-Ncircuits of G is formed from j-
Ncircuits modulo the boundaries of (j + 1)-dimensional bicliques, this vector space is
isomorphic to the quotient space Kernel(∂j)/Image(∂j+1) and so has dimension βN

j =
dim(Kernel(∂j)) − rank(∂j+1). But

dim(Kernel(∂j)) + rank(∂j) = dim(Bj) (8)

by the dimension theorem for vector spaces, so

βN
j = dim(Bj) − rank(∂j) − rank(∂j+1). (9)

Since βN
0 counts the number of connected components of G, Kernel(∂1) (because it is

the ‘circuit subspace’ of G; see [8]) has dimension m − n + βN
0 (the ‘cyclomatic number’

of G). So by (8), rank(∂1) = m − [m − n + βN
0 ] = n − βN

0 . For j ≥ max{i : si 6= 0},
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rank(∂j+1) = 0. Therefore, using (9),∑
j≥0

(−1)jβN
j = βN

0 +
∑
j≥1

(−1)j[dim(Bj) − rank(∂j) − rank(∂j+1)]

= βN
0 + rank(∂1) +

∑
j≥1

(−1)jdim(Bj)

= βN
0 + (n − βN

0 ) − m + k2,2 +
∑
j≥3

(−1)jdim(Bj)

= n − m + k2,2 +
∑
j≥3

(−1)j

(
j−1∑
i≥2

ki,j−i+2

)

= n − m +
∑

2≤i≤j

(−1)i+jki,j,

which equals 1
2
Nchar(G) by (5). 2
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